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Reminder: Review Assignments 

 Was Due: Tuesday, October 9, 11:59pm. 

 

 Sohi et al., “Multiscalar Processors,” ISCA 1995. 

 

 Due: Thursday, October 11, 11:59pm. 

 

 Herlihy and Moss, “Transactional Memory: Architectural Support 
for Lock-Free Data Structures,” ISCA 1993. 

 

 Austin, “DIVA: A Reliable Substrate for Deep Submicron 
Microarchitecture Design,” MICRO 1999. 
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Last Lectures 

 Wrap-up Multithreading 

 Different uses 

 Transient fault tolerance 

 DIVA 

 MBI 

 Helper threading 

 

 System Z Guest Lecture 
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Today 

 More multithreading 

 

 Speculation in Parallel Machines 
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Other Uses of Multithreading 

 

 

 

 

 



Now that We Have MT Hardware …  

 … what else can we use it for? 

 

 Redundant execution to tolerate soft (and hard?) errors 

 

 Implicit parallelization: thread level speculation 

 Slipstream processors 

 Leader-follower architectures 

 

 Helper threading  

 Prefetching 

 Branch prediction 

 

 Exception handling 
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Why These Uses? 

 What benefit of multithreading hardware enables them? 

 

 Ability to communicate/synchronize with very low latency 
between threads  

 Enabled by proximity of threads in hardware 

 Multi-core has higher latency to achieve this 
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Helper Threading for Prefetching 

 Idea: Pre-execute a piece of the (pruned) program solely 
for prefetching data  

 Only need to distill pieces that lead to cache misses 

 

 Speculative thread: Pre-executed program piece can be 
considered a “thread” 

 

 Speculative thread can be executed  

 On a separate processor/core 

 On a separate hardware thread context 

 On the same thread context in idle cycles (during cache misses) 
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Generalized Thread-Based Pre-Execution 

 Dubois and Song, “Assisted 
Execution,” USC Tech 
Report 1998. 

 

 Chappell et al., 
“Simultaneous Subordinate 
Microthreading (SSMT),” 
ISCA 1999. 

 

 Zilles and Sohi, “Execution-
based Prediction Using 
Speculative Slices”, ISCA 
2001. 
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Thread-Based Pre-Execution Issues 

 Where to execute the precomputation thread? 

1. Separate core (least contention with main thread) 

2. Separate thread context on the same core (more contention) 

3. Same core, same context  

 When the main thread is stalled 

 When to spawn the precomputation thread? 

1. Insert spawn instructions well before the “problem” load 

 How far ahead?  

 Too early: prefetch might not be needed 

 Too late: prefetch might not be timely 

2. When the main thread is stalled 

 When to terminate the precomputation thread? 

1. With pre-inserted CANCEL instructions 

2. Based on effectiveness/contention feedback 
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Slipstream Processors 
 Goal: use multiple hardware contexts to speed up single 

thread execution (implicitly parallelize the program) 

 Idea: Divide program execution into two threads: 

 Advanced thread executes a reduced instruction stream, 
speculatively 

 Redundant thread uses results, prefetches, predictions 
generated by advanced thread and ensures correctness 

 

 Benefit: Execution time of the overall program reduces 

 Core idea is similar to many thread-level speculation 
approaches, except with a reduced instruction stream 

 

 Sundaramoorthy et al., “Slipstream Processors: Improving 
both Performance and Fault Tolerance,” ASPLOS 2000. 

 

 

11 



Slipstreaming 

 “At speeds in excess of 190 m.p.h., high air pressure forms at 
the front of a race car and a partial vacuum forms behind it. This 
creates drag and limits the car’s top speed.  

 A second car can position itself close behind the first (a process 
called slipstreaming or drafting). This fills the vacuum behind the 
lead car, reducing its drag. And the trailing car now has less wind 
resistance in front (and by some accounts, the vacuum behind 
the lead car actually helps pull the trailing car).  

 

 As a result, both cars speed up by several m.p.h.: the two 
combined go faster than either can alone.” 
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Slipstream Processors 

 Detect and remove ineffectual instructions; run a shortened 
“effectual” version of the program (Advanced or A-stream) 
in one thread context 

 

 Ensure correctness by running a complete version of the 
program (Redundant or R-stream) in another thread 
context 

 

 Shortened A-stream runs fast; R-stream consumes near-
perfect control and data flow outcomes from A-stream and 
finishes close behind 

 

 Two streams together lead to faster execution (by helping 
each other) than a single one alone   

 
13 



Slipstream Idea and Possible Hardware 
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Instruction Removal in Slipstream 
 IR detector 

 Monitors retired R-stream instructions 

 Detects ineffectual instructions and conveys them to the IR predictor 

 Ineffectual instruction examples: 

 dynamic instructions that repeatedly and predictably have no 
observable effect (e.g., unreferenced writes, non-modifying 
writes)  

 dynamic branches whose outcomes are consistently predicted 
correctly. 

 IR predictor 

 Removes an instruction from A-stream after repeated 
indications from the IR detector 

 A stream skips ineffectual instructions, executes everything 
else and inserts their results into delay buffer 

 R stream executes all instructions but uses results from the 
delay buffer as predictions 
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What if A-stream Deviates from Correct Execution? 

 Why 
 A-stream deviates due to incorrect removal or stale data 

access in L1 data cache 

 
 How to detect it? 

 Branch or value misprediction happens in R-stream (known as 
an IR misprediction) 
 

 How to recover? 
 Restore A-stream register state: copy values from R-stream 

registers using delay buffer or shared-memory exception 
handler 

 Restore A-stream memory state: invalidate A-stream L1 data 
cache (or speculatively written blocks by A-stream) 
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Slipstream Questions 

 How to construct the advanced thread 

 Original proposal:  

 Dynamically eliminate redundant instructions (silent stores, 
dynamically dead instructions) 

 Dynamically eliminate easy-to-predict branches 

 Other ways: 

 Dynamically ignore long-latency stalls 

 Static based on profiling 

 

 How to speed up the redundant thread 

 Original proposal: Reuse instruction results (control and data 
flow outcomes from the A-stream) 

 Other ways: Only use branch results and prefetched data as 
predictions 
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Dual Core Execution 

 Idea: One thread context speculatively runs ahead on load 
misses and prefetches data for another thread context 

 Zhou, “Dual-Core Execution: Building a Highly Scalable 
Single- Thread Instruction Window,” PACT 2005.  
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Dual Core Execution: Front Processor 

 

 

 

 

 

 The front processor runs faster by invalidating long-latency cache-
missing loads, same as runahead execution  

 Load misses and their dependents are invalidated  

 Branch mispredictions dependent on cache misses cannot be resolved 

 

 Highly accurate execution as independent operations are not 
affected  

 Accurate prefetches to warm up caches  

 Correctly resolved independent branch mispredictions 
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Dual Core Execution: Back Processor 

 

 

 

 

 

 

 Re-execution ensures correctness and provides precise program 
state 

 Resolve branch mispredictions dependent on long-latency cache 
misses  

 Back processor makes faster progress with help from the front 
processor 

 Highly accurate instruction stream  

 Warmed up data caches  
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Dual Core Execution 
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DCE Microarchitecture 
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Dual Core Execution vs. Slipstream 

 Dual-core execution does not  

 remove dead instructions 

 reuse instruction register results 

 uses the “leading” hardware context solely for prefetching 
and branch prediction 

 

+ Easier to implement, smaller hardware cost and complexity 

- “Leading thread” cannot run ahead as much as in slipstream 
when there are no cache misses 

- Not reusing results in the “trailing thread” can reduce 
overall performance benefit 
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Some Results 
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Thread Level Speculation 
 Speculative multithreading, dynamic multithreading, etc… 

 

 Idea: Divide a single instruction stream (speculatively) into 
multiple threads at compile time or run-time 

 Execute speculative threads in multiple hardware contexts 

 Merge results into a single stream 

 

 Hardware/software checks if any true dependencies are 
violated and ensures sequential semantics 

 Threads can be assumed to be independent 

 Value/branch prediction can be used to break dependencies 
between threads 

 Entire code needs to be correctly executed to verify such 
predictions 
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Thread Level Speculation Example 

 Colohan et al., “A Scalable Approach to Thread-Level 
Speculation,” ISCA 2000. 

26 



TLS Conflict Detection Example 
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Some Sample Results [Colohan+ ISCA 2000] 
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Other MT Issues  

 How to select threads to co-schedule on the same 
processor? 

 Which threads/phases go well together? 

 This issue exists in multi-core as well 

 

 How to provide performance isolation (or predictable 
performance) between threads? 

 This issue exists in multi-core as well  

 

 How to manage shared resources among threads 

 Pipeline, window, registers 

 Caches and the rest of the memory system 

 This issue exists in multi-core as well  
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Speculation in Parallel Machines 
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Readings: Speculation 

 Required 

 Sohi et al., “Multiscalar Processors,” ISCA 1995. 

 Herlihy and Moss, “Transactional Memory: Architectural Support for 
Lock-Free Data Structures,” ISCA 1993. 

 

 Recommended 

 Rajwar and Goodman, “Speculative Lock Elision: Enabling Highly 
Concurrent Multithreaded Execution,” MICRO 2001. 

 Colohan et al., “A Scalable Approach to Thread-Level Speculation,” 
ISCA 2000. 

 Akkary and Driscoll, “A dynamic multithreading processor,” MICRO 
1998. 

 

 Reading list will be updated… 
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Speculation 

 Speculation: Doing something before you know it is needed. 

 

 Mainly used to enhance performance 

 

 Single processor context 

 Branch prediction 

 Data value prediction 

 Prefetching 

 

 Multi-processor context 

 Thread-level speculation 

 Transactional memory 

 Helper threads 
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Speculative Parallelization Concepts 

 Idea: Execute threads unsafely in parallel 

 Threads can be from a sequential or parallel application 

 

 Hardware or software monitors for data dependence 
violations 

 

 If data dependence ordering is violated 

 Offending thread is squashed and restarted 

 If data dependences are not violated 

 Thread commits 

 If threads are from a sequential order, the sequential order 
needs to be preserved  threads commit one by one and in 

order 
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Inter-Thread Value Communication 
 Can happen via 

 Registers 

 Memory 

 

 Register communication 

 Needs hardware between processors 

 Dependences between threads known by compiler 

 Can be producer initiated or consumer initiated  

 If consumer executes first:  

 consumer stalls, producer forwards  

 If producer executes first  

 producer writes and continues, consumer reads later  

 Can be implemented with Full/Empty bits in registers 
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Memory Communication 

 Memory dependences not known by the compiler 

 True dependencies between predecessor/successor threads 
need to be preserved 

 

 Threads perform loads speculatively 

 get the data from the closest predecessor  

 keep record that read the data (L1 cache or other structure) 

 Stores performed speculatively 

 buffer the update while speculative (write buffer or L1)  

 check successors for premature reads  

 if successor did a premature read: squash  

 typically squash the offending thread and all successors  
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Dependences and Versioning 

 Only true data dependence violations should cause a thread 
squash 

 Types of dependence violations:  

 LD, ST: name dependence; hardware may handle  

 ST, ST: name dependence; hardware may handle  

 ST, LD: true dependence; causes a squash  

 

 Name dependences can be resolved using versioning 

 Idea: Every store to a memory location creates a new 
version 

 

 Example: Gopal et al., “Speculative Versioning Cache,” HPCA 
1998. 
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Where to Keep Speculative Memory State 

 Separate buffers 

 E.g. store queue shared between threads 

 Address resolution buffer in Multiscalar processors 

 

 

 L1 cache 

 Speculatively stored blocks marked as speculative 

 Not visible to other threads 

 Need to make them non-speculative when thread commits 

 Need to invalidate them when thread is squashed 
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Multiscalar Processors (ISCA 1992, 1995) 

 Exploit “implicit” thread-level parallelism within a serial 
program  

 Compiler divides program into tasks  

 Tasks scheduled on independent processing resources 
 

 Hardware handles register dependences between tasks 

 Compiler specifies which registers should be communicated 
between tasks 

 Memory speculation for memory dependences 

 Hardware detects and resolves misspeculation 

 

 Franklin and Sohi, “The expandable split window paradigm for 
exploiting fine-grain parallelism,” ISCA 1992. 

 Sohi et al., “Multiscalar processors,” ISCA 1995. 
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Multiscalar vs. Large Instruction Windows  

 

39 



Multiscalar Model of Execution 
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Multiscalar Tasks 

 A task is a subgraph of the control 
flow graph (CFG)  

 e.g., a basic block, multiple basic 
blocks, loop body, function 

 

 Tasks are selected by compiler and 
conveyed to hardware 

 

 Tasks are predicted and scheduled 
by processor  

 

 Tasks may have data and/or control 
dependences 
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Multiscalar Processor 
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