
18-742 Fall 2012

Parallel Computer Architecture

Lecture 15: Speculation I

Prof. Onur Mutlu

Carnegie Mellon University

10/10/2012

Reminder: Review Assignments

 Was Due: Tuesday, October 9, 11:59pm.

 Sohi et al., “Multiscalar Processors,” ISCA 1995.

 Due: Thursday, October 11, 11:59pm.

 Herlihy and Moss, “Transactional Memory: Architectural Support
for Lock-Free Data Structures,” ISCA 1993.

 Austin, “DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” MICRO 1999.

2

Last Lectures

 Wrap-up Multithreading

 Different uses

 Transient fault tolerance

 DIVA

 MBI

 Helper threading

 System Z Guest Lecture

3

Today

 More multithreading

 Speculation in Parallel Machines

4

Other Uses of Multithreading

Now that We Have MT Hardware …

 … what else can we use it for?

 Redundant execution to tolerate soft (and hard?) errors

 Implicit parallelization: thread level speculation

 Slipstream processors

 Leader-follower architectures

 Helper threading

 Prefetching

 Branch prediction

 Exception handling
6

Why These Uses?

 What benefit of multithreading hardware enables them?

 Ability to communicate/synchronize with very low latency
between threads

 Enabled by proximity of threads in hardware

 Multi-core has higher latency to achieve this

7

Helper Threading for Prefetching

 Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

 Only need to distill pieces that lead to cache misses

 Speculative thread: Pre-executed program piece can be
considered a “thread”

 Speculative thread can be executed

 On a separate processor/core

 On a separate hardware thread context

 On the same thread context in idle cycles (during cache misses)

8

Generalized Thread-Based Pre-Execution

 Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

 Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999.

 Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
2001.

9

Thread-Based Pre-Execution Issues

 Where to execute the precomputation thread?

1. Separate core (least contention with main thread)

2. Separate thread context on the same core (more contention)

3. Same core, same context

 When the main thread is stalled

 When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load

 How far ahead?

 Too early: prefetch might not be needed

 Too late: prefetch might not be timely

2. When the main thread is stalled

 When to terminate the precomputation thread?

1. With pre-inserted CANCEL instructions

2. Based on effectiveness/contention feedback

 10

Slipstream Processors
 Goal: use multiple hardware contexts to speed up single

thread execution (implicitly parallelize the program)

 Idea: Divide program execution into two threads:

 Advanced thread executes a reduced instruction stream,
speculatively

 Redundant thread uses results, prefetches, predictions
generated by advanced thread and ensures correctness

 Benefit: Execution time of the overall program reduces

 Core idea is similar to many thread-level speculation
approaches, except with a reduced instruction stream

 Sundaramoorthy et al., “Slipstream Processors: Improving
both Performance and Fault Tolerance,” ASPLOS 2000.

11

Slipstreaming

 “At speeds in excess of 190 m.p.h., high air pressure forms at
the front of a race car and a partial vacuum forms behind it. This
creates drag and limits the car’s top speed.

 A second car can position itself close behind the first (a process
called slipstreaming or drafting). This fills the vacuum behind the
lead car, reducing its drag. And the trailing car now has less wind
resistance in front (and by some accounts, the vacuum behind
the lead car actually helps pull the trailing car).

 As a result, both cars speed up by several m.p.h.: the two
combined go faster than either can alone.”

12

Slipstream Processors

 Detect and remove ineffectual instructions; run a shortened
“effectual” version of the program (Advanced or A-stream)
in one thread context

 Ensure correctness by running a complete version of the
program (Redundant or R-stream) in another thread
context

 Shortened A-stream runs fast; R-stream consumes near-
perfect control and data flow outcomes from A-stream and
finishes close behind

 Two streams together lead to faster execution (by helping
each other) than a single one alone

13

Slipstream Idea and Possible Hardware

14

Delay Buffer

Execution
Core

Reorder
Buffer

Instruction
Cache

Branch
Predictor

L1
Data

Cache

Execution
Core

Reorder
Buffer

Instruction
Cache

Branch
Predictor

L1
Data

Cache

IR-Predictor

IR-Detector

A-stream R-stream

L2 Cache (R-stream state only)

Instruction Removal in Slipstream
 IR detector

 Monitors retired R-stream instructions

 Detects ineffectual instructions and conveys them to the IR predictor

 Ineffectual instruction examples:

 dynamic instructions that repeatedly and predictably have no
observable effect (e.g., unreferenced writes, non-modifying
writes)

 dynamic branches whose outcomes are consistently predicted
correctly.

 IR predictor

 Removes an instruction from A-stream after repeated
indications from the IR detector

 A stream skips ineffectual instructions, executes everything
else and inserts their results into delay buffer

 R stream executes all instructions but uses results from the
delay buffer as predictions

15

What if A-stream Deviates from Correct Execution?

 Why
 A-stream deviates due to incorrect removal or stale data

access in L1 data cache

 How to detect it?

 Branch or value misprediction happens in R-stream (known as
an IR misprediction)

 How to recover?
 Restore A-stream register state: copy values from R-stream

registers using delay buffer or shared-memory exception
handler

 Restore A-stream memory state: invalidate A-stream L1 data
cache (or speculatively written blocks by A-stream)

16

Slipstream Questions

 How to construct the advanced thread

 Original proposal:

 Dynamically eliminate redundant instructions (silent stores,
dynamically dead instructions)

 Dynamically eliminate easy-to-predict branches

 Other ways:

 Dynamically ignore long-latency stalls

 Static based on profiling

 How to speed up the redundant thread

 Original proposal: Reuse instruction results (control and data
flow outcomes from the A-stream)

 Other ways: Only use branch results and prefetched data as
predictions

17

Dual Core Execution

 Idea: One thread context speculatively runs ahead on load
misses and prefetches data for another thread context

 Zhou, “Dual-Core Execution: Building a Highly Scalable
Single- Thread Instruction Window,” PACT 2005.

18

Dual Core Execution: Front Processor

 The front processor runs faster by invalidating long-latency cache-
missing loads, same as runahead execution

 Load misses and their dependents are invalidated

 Branch mispredictions dependent on cache misses cannot be resolved

 Highly accurate execution as independent operations are not
affected

 Accurate prefetches to warm up caches

 Correctly resolved independent branch mispredictions
19

Dual Core Execution: Back Processor

 Re-execution ensures correctness and provides precise program
state

 Resolve branch mispredictions dependent on long-latency cache
misses

 Back processor makes faster progress with help from the front
processor

 Highly accurate instruction stream

 Warmed up data caches

20

Dual Core Execution

21

DCE Microarchitecture

22

Dual Core Execution vs. Slipstream

 Dual-core execution does not

 remove dead instructions

 reuse instruction register results

 uses the “leading” hardware context solely for prefetching
and branch prediction

+ Easier to implement, smaller hardware cost and complexity

- “Leading thread” cannot run ahead as much as in slipstream
when there are no cache misses

- Not reusing results in the “trailing thread” can reduce
overall performance benefit

23

Some Results

24

Thread Level Speculation
 Speculative multithreading, dynamic multithreading, etc…

 Idea: Divide a single instruction stream (speculatively) into
multiple threads at compile time or run-time

 Execute speculative threads in multiple hardware contexts

 Merge results into a single stream

 Hardware/software checks if any true dependencies are
violated and ensures sequential semantics

 Threads can be assumed to be independent

 Value/branch prediction can be used to break dependencies
between threads

 Entire code needs to be correctly executed to verify such
predictions

25

Thread Level Speculation Example

 Colohan et al., “A Scalable Approach to Thread-Level
Speculation,” ISCA 2000.

26

TLS Conflict Detection Example

27

Some Sample Results [Colohan+ ISCA 2000]

28

Other MT Issues

 How to select threads to co-schedule on the same
processor?

 Which threads/phases go well together?

 This issue exists in multi-core as well

 How to provide performance isolation (or predictable
performance) between threads?

 This issue exists in multi-core as well

 How to manage shared resources among threads

 Pipeline, window, registers

 Caches and the rest of the memory system

 This issue exists in multi-core as well

29

Speculation in Parallel Machines

30

Readings: Speculation

 Required

 Sohi et al., “Multiscalar Processors,” ISCA 1995.

 Herlihy and Moss, “Transactional Memory: Architectural Support for
Lock-Free Data Structures,” ISCA 1993.

 Recommended

 Rajwar and Goodman, “Speculative Lock Elision: Enabling Highly
Concurrent Multithreaded Execution,” MICRO 2001.

 Colohan et al., “A Scalable Approach to Thread-Level Speculation,”
ISCA 2000.

 Akkary and Driscoll, “A dynamic multithreading processor,” MICRO
1998.

 Reading list will be updated…

31

Speculation

 Speculation: Doing something before you know it is needed.

 Mainly used to enhance performance

 Single processor context

 Branch prediction

 Data value prediction

 Prefetching

 Multi-processor context

 Thread-level speculation

 Transactional memory

 Helper threads
32

Speculative Parallelization Concepts

 Idea: Execute threads unsafely in parallel

 Threads can be from a sequential or parallel application

 Hardware or software monitors for data dependence
violations

 If data dependence ordering is violated

 Offending thread is squashed and restarted

 If data dependences are not violated

 Thread commits

 If threads are from a sequential order, the sequential order
needs to be preserved threads commit one by one and in

order

33

Inter-Thread Value Communication
 Can happen via

 Registers

 Memory

 Register communication

 Needs hardware between processors

 Dependences between threads known by compiler

 Can be producer initiated or consumer initiated

 If consumer executes first:

 consumer stalls, producer forwards

 If producer executes first

 producer writes and continues, consumer reads later

 Can be implemented with Full/Empty bits in registers

34

Memory Communication

 Memory dependences not known by the compiler

 True dependencies between predecessor/successor threads
need to be preserved

 Threads perform loads speculatively

 get the data from the closest predecessor

 keep record that read the data (L1 cache or other structure)

 Stores performed speculatively

 buffer the update while speculative (write buffer or L1)

 check successors for premature reads

 if successor did a premature read: squash

 typically squash the offending thread and all successors

35

Dependences and Versioning

 Only true data dependence violations should cause a thread
squash

 Types of dependence violations:

 LD, ST: name dependence; hardware may handle

 ST, ST: name dependence; hardware may handle

 ST, LD: true dependence; causes a squash

 Name dependences can be resolved using versioning

 Idea: Every store to a memory location creates a new
version

 Example: Gopal et al., “Speculative Versioning Cache,” HPCA
1998.

 36

Where to Keep Speculative Memory State

 Separate buffers

 E.g. store queue shared between threads

 Address resolution buffer in Multiscalar processors

 L1 cache

 Speculatively stored blocks marked as speculative

 Not visible to other threads

 Need to make them non-speculative when thread commits

 Need to invalidate them when thread is squashed

37

Multiscalar Processors (ISCA 1992, 1995)

 Exploit “implicit” thread-level parallelism within a serial
program

 Compiler divides program into tasks

 Tasks scheduled on independent processing resources

 Hardware handles register dependences between tasks

 Compiler specifies which registers should be communicated
between tasks

 Memory speculation for memory dependences

 Hardware detects and resolves misspeculation

 Franklin and Sohi, “The expandable split window paradigm for
exploiting fine-grain parallelism,” ISCA 1992.

 Sohi et al., “Multiscalar processors,” ISCA 1995.

 38

Multiscalar vs. Large Instruction Windows

39

Multiscalar Model of Execution

40

Multiscalar Tasks

 A task is a subgraph of the control
flow graph (CFG)

 e.g., a basic block, multiple basic
blocks, loop body, function

 Tasks are selected by compiler and
conveyed to hardware

 Tasks are predicted and scheduled
by processor

 Tasks may have data and/or control
dependences

41

Multiscalar Processor

42

