
Detailed Design and Evaluation of Redundant
Multithreading Alternatives*

Shubhendu S. Mukherjee
VSSAD

Massachusetts Microprocessor Design Center
Intel Corporation

334 South Street, SHR1-T25
Shrewsbury, MA 01545

Shubu.Mukherjee@intel.com

A B S T R A C T
Exponential growth in. the number of on-chip transistors, coupled

with reductions in voltage levels, makes each generation of
microprocessors increasingly vulnerable to transient faults. In a
multithreaded environment, we can detect these faults by running
two copies of the same program as separate threads, feeding them
identical inputs, and comparing their outputs, a technique we call
Redundant Muhithreading (RMT).

This paper studies RMT techniques in the context of both single-
and dual-processor simultaneous muhithreaded (SMT) single-chip
devices. Using a detailed, commercial-grade, SMT processor
design we uncover subtle RMT implementation complexities, and
find that RMT can be a more significant burden for single-
processor devices than prior studies indicate. However, a novel
application of RMT techniques in a dual-processor device, which
we term chip-level redundant threading (CRT), shows higher
performance than locksteppbzg the two cores, especially on
muhithreaded workloads.

1. I N T R O D U C T I O N

Modern microprocessors are vulnerable to transient hardware
faults caused by alpha particle and cosmic ray strikes. Strikes by
cosmic ray particles, such as neutrons, are particularly critical
because of the absence of any practical way to protect microproces-
sor chips from such strikes. As transistors shrink in size with
succeeding technology generations, they become individually less
vulnerable to cosmic ray strikes. However, decreasing voltage
levels and exponentially increasing transistor counts cause overall
chip susceptibility to increase rapidly. To compound the problem,
achieving a particular failure rate for a large multiprocessor server
requires an even lower failure rate for the individual microproces-
sors that comprise it. Due to these trends, we expect fault detection
and recovery techniques, currently used only for mission-critical
systems, to become common in all but the least expensive
microprocessor devices.

One fault-detection approach for microprocessor cores, which we
term redundant muhithreading (RMT), runs two identical copies of
the same program as independent threads and compares their
outputs. On a mismatch, the checker flags an error and initiates a
hardware or software recovery sequence. RMT has been proposed
as a technique for implementing fault detection efficiently on top of
a simultaneous multithreaded (SMT) processor (e.g., [18], [17],
[15]). This paper makes contributions in two areas of RMT. First,
we describe our application of RMT techniques to a processor that
resembles a commercial-grade SMT processor design. The
resulting design and its evaluation are significantly more detailed
than previous RMT studies. Second, we examine the role of RMT

* This work was performed at Compaq Computer Corporation, where
Shubhendu S. Mukherjee was a full-time employee, Michael Kontz was
an intern, and Steven K. Reinhardt was a contractor.

Michael Kontz
Colorado VLSI Lab

Systems & VLSI Technology Operations
Hewlett-Packard Company

3404 East Harmony Road, ms 55
Fort Collins, CO 80525
michael_kontz @ hp.com

Steven K. Reinhard!
EECS Department

University of Michigan, Ann Arbor
1301 Beal Avenue

Ann Arbor, MI 48109-2122
stever@ eecs.umich.edu

techniques in forthcoming dual-processor single-chip devices.
Our implementation of the single-processor RMT device is based

on the previously published simultaneous and redundantly threaded
(SRT) processor design [15] (Figure la). Howeveri unlike previous
evaluations, we start with an extremely detailed performance model
of an aggressive, commercial-grade SMT microprocessor
resembling the Compaq Alpha Arafia (a.k.a. 21464 or EV8) [12].
We call this our base processor. We found several subtle issues
involved in adding SRT features to such a base SMT design. For
example, adapting the SRT branch outcome queue, which uses
branch outcomes from one thread (the "leading" thread) to
eliminate branch mispredictions for its redundant copy (the
"trailing" thread), to our base processor's line-prediction-driven
fetch architecture proved to be a particularly difficult task. We also
describe and analyze a simple extension to the proposed SRT
design, called preferential space redundancy, which significantly
improves coverage of permanent faults.

We then compare the performance of our SRT implementation
with the baseline processor using the same detailed performance
model. Our results indicate that the performance degradation of
RMT (running redundant copies of a thread) compared to our
baseline processor (running a single copy of the same thread) is
32% on average, greater, than the 21% indicated by our previous
work [15]. We also find that store queue size has a major impact
on SRT performance. Our SRT implementation lengthens the
average lifetime of a leading-thread store by roughly 39 cycles,
requiring a significantly greater number of store queue entries to
avoid stalls. We propose the use of per-thread store queues to
increase the number of store queue entries without severely
impacting cycle time. This optimization reduces average perform-
ance degradation from 32% to 30%, with significant benefits on
several individual benchmarks.

We also expand our performance study beyond that of previous
work by examining the impact of SRT on multithreaded workloads.
We run two logical application threads as two redundant thread
pairs, consuming four hardware thread contexts on a single
processor. We find our SRT processor's performance degradation
for such a configuration is about 40%. However, the use of per-
thread store queues can reduce the degradation to about 32%.

Our second area of contribution involves the role of RMT
techniques in dual-processor single-chip devices. Initial examples
of these two-way chip multiprocessors (CMPs) are shipping (e.g.,
the IBM Power4 [7] and the HP Mako [8]). We expect this
configuration to proliferate as transistor counts continue to grow
exponentially and wire delays, rather than die area, constrain the
size of a single processor core.

A two-way CMP enables on-chip fault detection using lockstep-
ping, where the same computation is performed on both processors
on a cycle-by-cycle basis, that is, in "lockstep" (Figure lb).
Lockstepping has several advantages over SRT-style redundancy.
Lockstepping is a well-understood technique, as it has long been

q063-6897/02 $17.00 © 2002 I E E E 99

\
\,

Sphere of Replication Sphere of Replication Sphere.of.Re l i c a t l O n ~ o
• . , . , .

tle'i ading ~ ~ n g Tiiread (~ Microprocessor] (Microprocessor "~ ~ "" " i Lea~ingThrea~, [I __aTnTrail'mg Th~e'"a~
It~re~/,,,.~ :~L~rmt~ n '] / Pipeline 1 / [Pipeline 2 /] [i

i i i

i i i ~ ; ~ _ ~ . I", s j • ~._.I_n_p_ut_l [_Output_.~ \ ". ~ ~ f Output) ,.'

l ~ Microprocessor ~ ! ~ ~Microprocessor
Rest of the Systern I Pipeline I M i c r o p r o c e s s o r [I Pipeline 2

Rest of the System Pipeline 1 Rest of the System

(a) Simultaneous and Redundantly (b) Lockstepped Microprocessor (c) Chip-Level Redundantly Threaded
Threaded Processor (SRT) Pipelines Processor (CRT)

Figure 1. Fault Detection Usinfi SRT, Lockstepped Microprocessors, and CRT. Specifically, in our implementations, the microprocessor
pipelines, input replicators, ann output comparators are on the same chip. The ' rest of the system" is split into on-chip components (L2
cache, memory controllers, on-chip router) and off-chip components (memory, disks, other I/0 devices).

used across separate chips on commercial fault-tolerant systems
(e.g., Compaq Himalaya systems [30]), and is used on-chip in some
fault-tolerant processors (e.g., the IBM G5 [21]). Lockstepping
also provides more complete fault coverage than SRT, particularly
for permanent faults, as redundant computations are executed on
physically separate hardware. However, lockstepping uses
hardware resources less efficiently than SRT, as both copies of a
computation are forced to waste resources--in lockstep--on
misspeculation and cache misses. Lockstepping also requires all
signals from both processors to be routed to a central checker
module before being forwarded to the rest of the system, increasing
cache-miss latencies.

To combine the fault coverage of lockstepping with the effi-
ciency of SRT, we propose a new technique--chip-level redundant
threading (CRT)--that extends SRT techniques to a CMP
environment (Figure lc). As in SRT, CRT uses loosely synchro-
nized redundant threads, enabling lower checker overhead and
eliminating cache miss and misspeculation penalties on the trailing
thread copy. As in lockstepping, the two redundant thread copies
execute on separate processor cores; they are not multiplexed as
different thread contexts on a single core as in SRT.

On single-thread workloads, CRT performs similarly to lockstep-
ping, because the behavior of CRT's leading thread is similar to
that of the individual threads in the lockstepped processors.
However, with multithreaded workloads, CRT "cross-couples" the
cores for greater efficiency. For example, with two application
threads, each core runs the leading thread for one application and
the trailing thread for the other. The resources freed up by CRT on
each core from optimizing one application's trailing thread are then
applied to the more resource-intensive leading thread of a different
application. On these multithreaded workloads, CRT outperforms
lockstepping by 13% on average, with a maximum improvement of
22%.

The rest of the paper is organized as follows. The next two
sections discuss background matedah Section 3 describes the
specifics of the previously proposed SRT scheme and Section 4
briefly describes our baseline processor architecture. Section 5
begins our contributions, describing our adaptation of SRT
concepts to our baseline processor model. Section 6 covers our
new chip-level redundant threading (CRT) technique for two-way
CMP devices. We describe our evaluation methodology in
Section 7 and present results in Section 8. We conclude in
Section 9.

2, B A S I C S R T C O N C E P T S
An SRT processor detects faults by running two identical copies

of the same program as independent threads on an SMT processor
[15]. For several reasons, it is useful to maintain one thread
slightly further along in its execution than the other, creating a
distinct leading thread and trailing thread within the pair. Adding
SRT support to an SMT processor involves two key mechanisms:
input replication and output comparison. Input replication
guarantees that both threads see identical input values; otherwise,
they may follow different execution paths even in the absence of
faults. Output comparison verifies that the results produced by the
two threads are identical before they are forwarded to the rest of the
system, signaling a fault and possibly initiating a system-dependent
recovery process if they are not identical.

A key concept introduced in the SRT work is the sphere of
replication, the logical boundary of redundant execution within a
system. Components within the sphere enjoy fault coverage due to
the redundant execution; components outside the sphere do not, and
therefore, must be protected via other means, such as information
redundancy. Values entering the sphere of replication are inputs
that must be replicated; values leaving the sphere of replication are
outputs that must be compared.

For this paper, we chose the larger of the spheres of replication
described in the SRT paper, including the processor pipeline and
register files, but excluding the L1 data and instruction caches.
Sections 2.1 and 2.2, respectively, review the required input
replication and output comparison mechanisms for this sphere.
Section 2.3 reviews two SRT performance optimization techniques:
slack fetch and the branch outcome queue.

2.1 Input Repl icat ion
Because our sphere of replication excludes the L1 data and

instruction caches, we must perform input replication on values
coming from these structures, i.e., the results of cacheable loads
and instruction fetches. For cached load value replication, SRT
proposes a first-in first-out load value queue. As each leading-
thread load retires, it writes its address and load value to the load
value queue. The trailing thread's loads read the load value queue
in program order, verifying the load address and retrieving the data.
Because the data is not read redundantly out of the cache, the load
value queue contents must be protected by some other means, e.g.,
ECC. The load value queue prevents external updates to shared

100

Table 1. Base Processor Parameters
IBOX

PBOX

QBOX

Fetch Width

Line Predictor

LI Instruction
Cache
Branch Predictor
Memory
Dependence
Predictor
Rate Matching
Buffer

Map Width

Instruction
Queue
Issue Width

RBOX Register File

EBOX &
FBOX

MBOX

System
Interface

Functional Units
(includes a
register cache)
LI Data Cache

Load Queue
Store Queue
Coalescing
Merge Buffer
L2 Cache

Memory
Interface
Network Router
& Interface

2 8-instruction chunks (from same
thread) per cycle
Predicts two chunks per cycle.
The two chunks can be non-sequential
Total number of entries = 28K
64 Kbytes, 2-way set associative with
way prediction, 64 byte blocks
208 Kbits
Store Sets, 4K entries [2]

Collapses 2 8-instruction chunks (from
same thread) to create one map chunk
with up to 8 instructions
One 8-instruction chunk (from same
thread) per cycle
t 28 entries window

8 instructions per cycle
512 physical registers, 256 architectural
registers (64 registers per thread)
8 operations per cycle
8 integer units, 8 logic units, 4 memory
units, 4 floating point units
64 Kbytes, 2-way set associative, 64 byte
blocks, 3 load ports, one write port
64 entries
64 entries
16 64-byte blocks

3 Megabytes, 8-way set-associative, 64
byte cache blocks
2 Rambus controllers, 10 Rambus
channels
On-chip two-dimensional mesh router,
similar to the Alpha 21364 [10]

memory locations---e.g., from other processors or I/O devices- -
from causing the threads to diverge.

As in the original SRT work, we assume that the instruction
space is read-only. Thus, as long as both threads generate the same
sequence of program counter values (which they will in the absence
of faults), they will receive the same instruction values from the
memory system. Most modern systems already require special
synchronization operations to modify the instruction space safely;
these can be extended if necessary to provide proper replication of
instruction values.

Techniques for replicating less frequent inputs, such as uncached
load values and interrupt inputs, are also described in the original
SRT paper. We leave detailed implementation of these replication
mechanisms for future work.

2.2 Output Comparison
Cacheable stores are the primary form of output from our sphere

of replication. SRT proposes an enhanced store queue for output
comparison of cacheable stores. Leading-thread store addresses
and data are held in the store queue until they are verified by
comparing the address and data values generated by the corre-
sponding store in the trailing thread. Once a store has been
matched and verified, a single store operation is forwarded outside
the sphere. Again, we defer implementation of other required, but
less frequent, output comparisons identified in the SRT paper, such
as uncached stores and uncached load addresses, to future work.

I , I P I o I R IEIMI
Figure 2. Base Processor's Integer Pipeline. I = IBOX consisting
of the thread chooser, line prediction, instruction cache access,
and the rate matching buffer. P = PBOX consisting of wire delays
and register rename, Q = QBOX consisting of instruction queue
operattons, R = RBOX consisting of register read stages, E =
EBOX consisting of functional units, and M = MBOX consisting of
data caches, load queue, and store queue. In our evaluation, we
assumed the following latencies: 1 = 4, P = 2, Q = 4, R = 4, E =1,
and M = 2 cycles.

2.3 Performance Optimizations
An SRT processor lends itself to a few significant performance

optirnizations. The key insight is that the trailing thread can use
information from the leading thread's execution to make its own
execution more efficient.

One such situation occurs when the leading thread encounters an
instruction cache miss. If the trailing thread is sufficiently delayed,
then its corresponding fetch may not occur until the block has been
loaded into the instruction cache, avoiding a stall. A similar benefit
can be obtained on data cache misses; even though the trailing
thread reads load values out of the load value queue, a sufficient lag
between the threads will guarantee that the load value queue data
will be present when the trailing thread's load executes, even if the
corresponding leading-thread access was a cache miss. The
original SRT work proposed a slack fetch mechanism to achieve
this benefit. In slack fetch, instruction fetch of the trailing thread is
delayed until some number of instructions from the leading thread
has retired, forcing a "slack" between the threads to absorb these
cache delays. Our earlier work [15] showed that slack fetch could
achieve about a 10% boost in performance on average.

A second optimization uses the result of leading-thread branches
to eliminate control-flow mispredictions in the trailing thread. To
achieve this effect, SRT proposes a branch outcome queue, a
simple FIFO that forwards branch and other control flow targets
from the leading thread's commit stage to the trailing thread's fetch
stage.

3. BASE PIPELINE
Our base processor is an eight-way superscalar SMT machine

with four hardware thread contexts. Table 1 lists some of the
architectural parameters of our base processor used in this paper.

Figure 2 shows the base processor's pipeline. The pipeline is
divided into the following segments: IBOX (instruction fetch),
PBOX (instruction rename), QBOX (instruction queue), RBOX
(register read), EBOX & FBOX (integer and floating point
functional units), and MBOX (memory system). There are
additional cycles incurred to retire instructions beyond the MBOX.
Below we describe our base processor architecture's specific
portions and boxes, which we modified to create an SRT architec-
ture.

3.1 I B O X

The IBOX fetches instructions in 8-instruction "chunks" and
forwards them to the instruction rename unit or PBOX. In each
cycle, the IBOX fetches up to 16 instructions (two chunks) from a
single thread.

In our evaluation, we assume a four-stage IBOX. The first stage
chooses the thread for which instructions will be fetched in each
cycle. We pick the thread with the minimum number of instruc-
tions in its rate-matching buffer, giving an approximation of the
ICOUNT fetch policy described by Tullsen, et al [28]. The second
stage uses the line predictor to predict two chunk addresses per

101

Lo~
Queue

2 " r a i l ~ . ~ a d _ ~ _ a . q ,

I
Leading Thread Load o

l

LI Data I " i I I v °e
Cache

,k U U °u°u°
I " ' " , . .

T St'ore
Output Mux / Queue

I b.~ v
To Execution Units

Figure 3. The load value queue integrated in the MBOX.

cycle. As in the Alpha 21264, our base processor's line predictor
generates a sequence of predicted instruction-cache line (set and
way) indices to drive instruction fetch. The third stage uses these
addresses to fetch two potentially non-contiguous chunks of eight
instructions each from the instruction cache. In the fourth stage,
the processor writes these instructions to the per-thread rate
matching buffers. Control-flow predictions from the branch
predictor, jump target predictor, and return address stack become
available in this stage. If these predictions disagree with the line
prediction, the line predictor is retrained and the fetch is re-
initiated.

In our base processor, the line predictor is indexed by the pre-
dicted line index from the previous cycle. Thus the line predictor
must be "primed" with a line prediction from an external source to
begin predicting down a different instruction stream, e.g., when the
thread chooser decides to switch to a different thread. The thread
chooser stores the line predictor's last predictions for each thread
and reissues those predictions whenever fetching for a thread is
suspended and restarted. The task of selecting either the line
predictor's output or the thread chooser's stored prediction to use
as the instruction cache index falls on the instruction cache address
driver, which is located in the second IBOX stage after the line
predictor. There exists a complex interaction between the thread
chooser, line predictor, and address driver to facilitate instruction
fetch. Section 4.4 discusses how we overcame this complexity to
mimic the functionality of SRT's branch outcome queue in this
line-prediction-oriented fetch scheme.

3.2 PBOX
The PBOX performs initial processing on instructions fetched by

the IBOX, including register renaming and partial decoding. The
PBOX also maintains checkpoints of various mapping tables to
facilitate fast recovery from branch mispredictions and other
exceptional conditions. In our evaluation, we assume that the
PBOX occupies two pipeline stages.

3.3 QBOX
The QBOX receives instructions in program order from the

PBOX and issues them out of order to the EBOX, FBOX or MBOX
when their operands become ready. The QBOX also retires
instructions, committing their results to architectural state in
program order. The QBOX contains three main structures: the
instruction queue, which schedules and issues instructions from the
PBOX; the in-flight table, which tracks instructions from issue until
they complete execution; and the completion unit, which tracks
them up to retirement.

The instruction queue is the most complex part of the QBOX. It
holds 128 instructions, and accepts and issues up to eight instruc-

tions per cycle. The queue is divided into upper and lower halves,
each with 64 entries. Both halves have the same capabilities (in
terms of functional units) and each can issue up to four instructions
per cycle. An instruction is assigned to a particular queue half
based on its position in the chunk created by the rate-matching
buffer.

3.4 M B O X

The MBOX processes memory instructions, such as loads, stores,
and memory barriers. The QBOX can issue a maximum of four
memory operations per cycle, with a maximum of two stores and
three loads.

Loads entering the MBOX record themselves in the load queue,
probe the data cache and store queue simultaneously, and return
their result to the load queue in a single cycle. On a data cache or
store queue hit, the data is forwarded in the next cycle to the
execution units for bypassing to dependent instructions.

Similarly, stores entering the MBOX record themselves in the
store queue and probe the load queue to check for store-load order
violation. Store data arrives at the store queue two cycles after the
store address. When a store retires, its address and data are
forwarded to a coalescing merge buffer, which eventually updates
the data cache.

For multithreaded runs, we divide up the 64-entry load and store
queues statically among the different threads. Thus, when this base
processor runs two threads, we allocate 32 entries to each thread.
For multithreaded runs with four threads, we allocate 16 entries to
each thread.

4. SRT ON OUR BASE P R O C E S S O R
One of the major goals of this work is to understand the feasibil-

ity and performance impact of implementing SRT extensions on a
realistic, commercial-grade SMT processor. As discussed in
Section 2, the key SRT mechanisms are input replication and
output comparison; we discuss our implementation of these
mechanisms on our base processor in Sections 4.1 and 4.2. Section
4.3 describes additional changes required to avoid deadlock
situations. One of the greatest challenges in our effort was to map
SRT's branch outcome queue to our base processor's line-predictor
driven fetch architecture; the specific problems and our solutions
are detailed in Section4.4. Finally, Section 4.5 describes our
implementation of preferential space redundancy, an enhancement
to the original SRT proposal for improved fault coverage.

4.1 Input Replication
We use a variant of SRT's load value queue (LVQ), described in

Section 2.1, to forwacd cached load values from the leading to the
trailing thread. Figure 3 shows the relationship of the LVQ to the
rest of the MBOX.

Leading-thread loads entering the MBOX probe the load queue,
data cache, and store queue, as in the base design. The QBOX
completion unit writes the address and data values generated by
these loads to the LVQ as the loads retire. Trailing-thread loads
bypass all three structures and directly access the LVQ. The LVQ
forwards load values to the MBOX output mux, which now has one
additional input. Because the QBOX can issue up to three loads
per cycle, the LVQ must support three concurrent accesses.

The original SRT design assumes that the trailing thread issues its
loads in program order, preserving the FIFO structure of the LVQ.
Although we could easily add this constraint to the QBOX
scheduler by creating dependences between loads, this approach
would limit the trailing thread to issuing at most one load per cycle.
Rather than modifying the scheduler to allow three "dependent"

102

loads to issue to the LVQ in a single cycle, we modified the LVQ
to allow out-of-order load issue from the trailing thread. Each
leading-thread load is assigned a small load correlation tag value by
the PBOX, which is written to the LVQ entry along with the load's
address and data. Using the line prediction queue, described in
Section 4.4, we can easily associate the same tag with the
corresponding load from the trailing thread. When the trailing
thread issues, it uses this tag to perform an associative lookup in the
LVQ to read out the appropriate address and data values. Then, the
LVQ entry is deallocated.

This LVQ probe is similar to the lookup done on each load
address in the store queue; in fact, it is slightly simpler, since the
LVQ need not worry about multiple address matches, partial
forwarding cases, or relative ages of entries. Thus, an associative
LVQ equal in size to the store queue should be able to support three
simultaneous accesses per cycle without adding to the critical path.

The LVQ provides a small additional performance benefit
because it keeps the trailing thread's loads out of the load queue,
thereby freeing up entries for the leading thread's loads. Thus,
when one application program runs in SRT mode with two
redundant threads, the leading thread gets all 64 load-queue entries.
Similarly, when two application programs run in SRT mode, each
with two redundant threads, each leading thread gets 32 load queue
entries.

4.2 O u t p u t C o m p a r i s o n

As described in Section 2.2, the original SRT proposal included
an enhanced store queue to perform output comparison on
cacheable stores. We implemented a separate structure, the store
comparator, which sits next to the store queue and monitors its
inputs. When a trailing-thread store instruction and its data enter
the store queue, the store comparator searches itself for a matching
entry from the leading thread. If a matching entry exists, the store
comparator performs the store comparison and signals the store
queue that the specific store is ready to be retired to the data cache.

Forcing every leading-thread store to wait in the store queue until
the corresponding trailing-thread store is executed increases store-
queue utilization significantly, causing additional pipeline stalls
when the store queue becomes full. Section 7 shows that these
stalls degrade SRT performance noticeably relative to the base
architecture. However, because the data cache is outside our
sphere of replication, the cache cannot be updated until this output
comparison is performed. Meanwhile, subsequent leading-thread
loads must compare against these waiting stores to obtain the latest
memory values, just as they compare against speculative stores in
the base architecture. Thus we see no practical alternative to
leaving these stores in the store queue until they are checked.

Unfortunately, the store queue CAM is a critical path in our base
architecture; increasing its size beyond 64 entries would force the
CAM to be pipelined across multiple cycles, increasing the load-to-
use delay and adversely affecting performance. Instead, we
propose addressing this problem by creating separate per-thread
store queues of 64 entries each. Although this proposal does not
increase the size of any individual store queue CAM, the physical
implementation may still be challenging because of the additional
wires and multiplexors introduced in the path of the load probe.
Nevertheless, our results in Section 7 do show that per-thread store
queues can provide a significant boost in performance.

4.3 Avoiding Deadlocks
An SMT machine is vulnerable to deadlock if one thread is

allowed to consume all of a particular resource (e.g., instruction
queue slots) while stalled waiting for another thread to free a

From OBOXComple t ion Unit To IBOX Address Driver
2!V

Active Head :Every
Figure 4. The Line Prediction Queue in the IBOX Line Prediction
Unit.

different resource or post a synchronization event. Our base design
assumes that such inter-thread dependencies do not exist. While
this assumption is valid for conventional multithreaded workloads,
dependencies between leading and trailing threads in an SRT
machine significantly increase the possibility of deadlock. In
particular, the leading thread's dependence on seeing a correspond-
ing store from the trailing thread before freeing a store-queue entry
can lead to frequent deadlocks.

For example, the leading thread can easily fill the QBOX instruc-
tion queue, backing up into the PBOX pipeline itself. In this case,
the trailing thread is unable to move instructions from its IBOX
rate-matching buffer into the PBOX. If the leading thread is stalled
waiting for a matching trailing-thread store, deadlock results. To
avoid this situation, we made all PBOX storage structures per
thread, and reserved space for one chunk per thread in the QBOX
queue. Because the IBOX already contained per-thread rate
matching buffers, no changes were needed there.

A second class of deadlocks induced by our line prediction queue
is covered in Section 4.4.2.

4.4 I m p l e m e n t i n g the B r a n c h O u t c o m e Q u e u e

The original SRT design proposed a simple FIFO called the
branch outcome queue, which forwards leading-thread branch
targets to the trailing thread's fetch stage. Ideally, since this queue
represents a perfect stream of target predictions (in the absence of
faults), the trailing thread should never fetch a misspeculated
instruction. Unfortunately, our base processor uses a line predictor
to access the instruction cache; the branch and other control-flow
predictors serve only to verify these line predictions. Because the
line predictor's misprediction rate is significant (between 14% and
28% for our benchmarks), using the branch outcome queue in place
of the branch target prediction structures, as originally proposed,
would still allow a noticeable amount of misfetching on the trailing
thread.

A simple alternative is to share the line predictor between the two
redundant threads, in the hope that the leading thread would train
the line predictor, improving prediction accuracy for the trailing
thread. Unfortunately, this scheme does not work well due to
excessive aliasing in the line prediction table.

Instead, we adapt the concept of the branch outcome queue to fit
the base design, and use a line prediction queue to forward correct
line predictions from the leading to the trailing thread. The line
prediction queue provides perfect line predictions to the trailing
thread in the absence of faults, thereby completely eliminating
misfetches.

The implementation of the line prediction queue was quite
challenging, and required careful consideration to maintain perfect
line prediction accuracy and avoid deadlocks. We organize the
design issues into two parts: those involved with reading predic-
tions from the line prediction queue on the IBOX end and those
regarding writing predictions to the line prediction queue on the
QBOX end. Although the details of our design are specific to our
base architecture, we believe many of the challenges we encoun-

103

tered are inherent to most modern microarchitectures, which are not
designed to generate or operate on a precise sequence of fetch
addresses. We were certainly surprised that a seemingly straight-
forward feature, added easily to our earlier SimpleScalar-based
simulator, induced such complexities in this more realistic design.

After incorporating the line prediction queue into our design, we
found that the "slack fetch" mechanism of the original SRT design,
described in Section 2.3, was not necessary. The inherent delay
introduced by waiting for leading-thread retirement before
initiating the corresponding trailing-thread fetch was more than
adequate to provide the benefits of slack fetch. In fact, given the
store-queue pressure discussed in Section 7.1, we found that the
best performance was achieved by giving the trailing thread
priority, and fetching based on the line prediction queue whenever
a prediction was available.

4.4.1 R e a d i n g f r o m the Line Prediction Queue
One set of line prediction queue challenges came about because

the IBOX was not designed to expect a precise stream of line
predictions. Specifically, as described in Section 3.1, the line
predictor sends predictions to the address driver mux, but does not
know whether the prediction is selected by the address driver or
not. Even if the address driver selects the line predictor's output,
the access may be a cache miss, requiring the prediction to be re-
sent after the needed block is filled from the L2 cache.

A conventional line predictor is happy to repeatedly predict the
same next line, given the same input (e.g. from the thread chooser's
stored prediction latch). However, the line prediction queue stores
a precise sequence of chunk addresses; if a prediction is read from
the line prediction queue but not used, a gap will appear in the
trailing thread's instruction stream.

We addressed this problem in two steps. First, we enhanced the
protocol between the address driver and line predictor to include an
acknowledgment signal. On a successful acceptance of a line
prediction, the address driver acks the line predictor, which
advances the head of the line prediction queue. Otherwise, the line
prediction queue does not adjust the head, and resends the same
line prediction on the subsequent cycle.

Instruction cache misses require additional sophistication; in
these cases, the address driver does accept a line prediction from
the line prediction queue, but must reissue the same fetch after the
miss is handled. To deal with this and similar situations, we
provided the line prediction queue with two head pointers (Figure
4). The active head is advanced by acks from the address driver,
and indicates the next prediction to send. A second recover), head
is advanced only when the corresponding instructions have been
successfully fetched from the cache. Under certain circumstances,
including cache misses, the IBOX control logic can request the line
prediction queue to roll the active head back to the recovery head,
and reissue a sequence of predictions.

4.4.2 W r i t i n g to the Line Prediction Queue
The tail end of the line prediction queue, where leading-thread

instructions retiring from the QBOX generate predictions for the
trailing thread, also presented some challenges. Each line
prediction queue entry corresponds to a single fetch chunk, i.e., a
contiguous group of up to eight instructions. To achieve reasonable
fetch efficiency, the logic at the QBOX end of the line prediction
queue must aggregate multiple retired instructions into a single
chunk prediction. The key decision made by this logic is when to
terminate a trailing-thread fetch chunk and actually record a
prediction in the line prediction queue.

Some chunk-termination situations are clear, such as when two
retiring instructions have non-contiguous addresses, or when the
eight-instruction chunk limit has been reached. However, other
necessary criteria were more subtle, and resulted in deadlocks when
they were ignored. For example, a memory barrier instruction is
not eligible to retire until all preceding stores have flushed from the
store queue. If a store precedes a memory barrier in the same
leading-thread fetch chunk, the store will not flush until the
corresponding trailing-thread store executes. However, this
trailing-thread store will not be fetched until the chunk is termi-
nated and its address is forwarded via the line prediction queue.
Under normal circumstances (in non-SRT mode), we will not
terminate the chunk until the memory barrier retires, as it is a
contiguous instruction and can be added to the current chunk. To
avoid this deadlock situation, however, we must force termination
of the trailing-thread fetch chunk whenever the oldest leading-
thread instruction is a memory barrier.

A similar situation arises due to base processor's handling of
partial data forwarding. For example, if a word load is preceded by
a byte store to the same location, our base processor flushes the
store from the store queue so that the load can pick up the full word
from the data cache. If the store and load are in the same leading-
thread fetch chunk, we must terminate the chunk at the store to
allow the trailing-thread's store to be fetched. Then the store will
be verified and exit the store queue, enabling the load to execute.

Interestingly, the line prediction queue logic can occasionally
create trailing-thread fetch chunks that are larger than those of the
leading thread. For example, a predicted taken branch in the
middle of a leading-thread fetch chunk will cause the chunk to be
terminated. If the branch was mispredicted, and actually fell
through, we can add the fall-through instructions to the trailing
thread's fetch chunk.

4.5 Improving Fault Coverage
The original SRT proposal focuses on detection of transient

faults, which only temporarily disrupt processor operation. For
example, a cosmic ray may strike a latch and change its stored
value; this fault will last only until the latch is next written, at
which time it will again have a correct state. However, microproc-
essors are also vulnerable to permanent faults, which can arise due
to manufacturing defects or electromigration. A transient fault in a
rarely written latch value (e.g., a mode bit written only at boot
time) may also behave like a permanent fault. This section
describes how we extended our SRT design to provide improved
coverage of permanent faults with negligible performance impact.

The original SRT design's vulnerability to permanent faults is
due to the combination of space redundancy (where redundant
instructions use physically distinct hardware resources) and time
redundancy (where redundant instructions use the same hardware
resource at different times). Note that the same pair of instructions
can be covered by space redundancy in some portions of the
pipeline and time redundancy in others. Time redundancy provides
effective coverage for transient and some timing-dependent faults,
but is not effective for detecting permanent hardware faults.

We introduce a new technique, called preferential space redun-
dancy, which simply biases an SRT processor to provide space
redundancy rather than only time redundancy whenever the option
exists. As a concrete example, we implemented preferential space
redundancy for the QBOX instruction queue, providing extremely
high coverage of permanent faults in this critical structure. We
leverage our base processor's partitioning of the queue into upper
and lower halves. When a leading-thread instruction executes, it
records which half of the queue it traversed. We add the up-

104

Processor Pipeline 1, Processor Pipeline 2

I' I

Leading ad A T T ral mg Thread A

Trailing ead B Leading Thread B

Figure 5. CRT processor configuration. The arrows represent
threads in the processors. A and B are logically distinct programs.
Each program runs a redundant copy: a leading copy and a
trailing copy in the physically distinct processor pipelines. Note
that the leading thread o f A is coupled with the trailing thread o f
B and vice versa in the two processors.

per/lower selection bits for all instructions in a fetch chunk to each
line prediction queue entry as it is forwarded to the trailing thread's
fetch stage. These bits are carried along to the QBOX, which then
assigns the corresponding trailing-thread instructions to the
opposite half of the queue relative to their leading-thread counter-
parts. We thus guarantee that corresponding instructions are
handled by distinct IQ entries. Section 7.1.1 will show that this
technique virtually eliminates all time redundancy in the instruction
queue and function units without any loss in performance.

Preferential space redundancy applies only to situations in which
there are multiple identical structures to provide space redundancy,
such as queue entries or function units. Fortunately, the remaining
structures that provide only time redundancy are primarily
transmission lines, which can be protected from single permanent
faults by the addition of parity bits. We therefore believe that an
SRT processor can be designed to detect most, if not all, single
permanent faults, in addition to the transient faults for which it was
originally designed.

5. C H I P - L E V E L R E D U N D A N T T H R E A D I N G

In this section, we extend SRT techniques to the emerging class
of chip multiprocessors (CMPs) to create a chip-level redundantly
threaded (CRT) processor, achieving lockstepping's permanent
fault coverage while maintaining SRT's low-overhead output
comparison and efficiency optimizations. The basic idea of CRT is
to generate logically redundant threads, as in SRT, but to run the
leading and trailing threads on separate processor cores, as shown
in Figure 5.

The trailing threads' load value queues and line prediction queues
now receive inputs from leading threads on the other processor.
Similarly, the store comparator, which compares store instructions
from redundant threads, receives retired stores from the leading
thread on one processor and trailing thread on another processor.
Clearly, to forward inputs to the load value queue, line prediction
queue, and the store comparator, we need moderately wide
datapaths between the processors. We believe that the processor
cores can be laid out on the die such that such datapaths do not
traverse long distances. These datapaths will be outside the sphere
of replication and must be protected with some form of information
redundancy, such as parity.

CRT processors provide two advantages over lockstepped
microprocessors. First, in lockstepped processors, all processor
output signals must be compared for mismatch, including miss
requests from the data and instruction caches. This comparison is
in the critical path of the cache miss, and often adversely affects
performance. More generally, the checker must interpose on every
logical signal from the two processors, check for mismatch, and

then forward the signal outside the sphere of replication. Of
course, a CRT processor incurs latency to forward data to the line
prediction queue, load value queue, or store comparator, but these
queues serve to decouple the execution of the redundant threads
and are not generally in the critical path of data accesses.

Second, CRT processors can run multiple independent threads
more efficiently than lockstepped processors. By pairing leading
and trailing threads of different programs on the same processor,
we maximize overall throughput. A trailing thread never misspecu-
lates, freeing resources for the other application's leading thread.
Additionally, in our implementation, trailing threads do not use the
data cache or the load queue, freeing up additional resources for
leading threads.

Our evaluation, detailed in Section 7.2, shows that our CRT
processor performs similarly to tockstepping for single-program
runs, but outperforms lockstepping by 13% on average (with a
maximum improvement of 22%) for multithreaded program runs.

6. M E T H O D O L O G Y

This section describes the performance model, benchmarks,
target architecture parameters, and evaluation metric that we used
for our evaluation.

6.1 Asim: The P e r f o r m a n c e Mode l F r a m e w o r k
Asim [4] is a performance model framework, which was used to

build an extremely detailed performance model of a modern,
aggressive, dynamically scheduled, eight-wide SMT processor
resembling the Alpha Arafia processor. This model provides cycle-
by-cycle simulation of most of the components in this base
processor. We modified this detailed base processor model written
in Asim to create the SRT and the CRT processor models.

6.2 B e n c h m a r k s
For our evaluation with single programs, we used all the 18

SPEC CPU95 benchmarks (http://www.spec.org). To get to the
interesting portions of the benchmarks, we skipped between 250
million and 2 billion instructions. Then, we warmed up the
processor structures for one million instructions and executed 15
million committed instructions for each program.
For our evaluation with multiple programs, we combined a subset
of the SPEC CPU95 programs. For runs with two programs, we
combined two of gcc, go, fpppp, and swim. The four benchmarks
generate a total of six pairs. Similarly, for our four-program runs,
we combined four of gcc, go, ijpeg, fpppp, and swim to generate a
total of 15 combinations. We ran 15 million committed instruc-
tions for each program. Thus, our CRT processor running four
logical threads executed a total of 120 million instructions (15
million instructions per program x 4 programs x 2 redundant
threads per program).

We did not use the SPEC CPU2000 suite partly due to limitations
in our simulation environment, and partly to allow us to compare
our single-program SRT results with our earlier evaluation [15],
which also used SPEC CPU95.

6.3 Target Archi tec ture & Parameters
We simulate four target architectures: the base processor,

lockstepping, SRT, and CRT. We listed the basic processor's
parameters in Table 1.

For the lockstepped processor, we chose two configurations. The
first one--Lock0--has an ideal (but unrealistic) checker that
executes in zero cycles. The second one---Lock8~is a more
realistic checker that incurs an eight-cycle penalty to do the
lockstep checking. We believe 8 cycles is realistic because of
dense wiring to the centralized checker, wire delays, latency within

105

C
w

I--

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

z: E o
o

[] Base2

I ISRT

[] SRT + ptSQ

[] SRT + noSC

Figure 6. SMT-Efficiencies for one logical thread for four single-processor configurations. Base2 = base processor running one logical
thread with two redundant copies, but no input replication or output comparison. SRT +fitS,Q, = SRT with per-thread store queue (with
each store queue having 64 entries). SRT + noSC = SRT with no Store Comparison. ' 1.0' on the vertical axis represents the SMT-
Efficiency of the base processor for one logical thread (running the same program) with no redundant copies.

the checker itself to do the comparisons, and the logic required to
tolerate minor synchronization errors between processors. Many
checkers allow processors to go out of lockstep briefly to tolerate
non-deterministic timing, as can occur when one processor requires
an extra cycle to address a correctable ECC fault in an internal
structure such as the TLB.

For the SRT architecture, we conservatively assumed 4 cycles to
forward line predictions from the QBOX to IBOX and 2 cycles to
forward load values from the QBOX to the MBOX. For the CRT
architecture, we assumed an additional 4-cycle penalty to forward
data from one processor to the other processor's line prediction
queue, load value queue, and store comparator.

6.4 E v a l u a t i o n Metric
Instructions per cycle (IPC) is not a useful metric to compare

SMT architectures,even though it has proven to be quite useful for
single-threaded machines [22][19]. An SMT architecture may
improve its overall IPC by favoring a more efficient thread
(perhaps one with fewer cache misses and branch mispredictions),
simply avoiding the challenging part of the workload.

Instead, we use SMT-Efficiency as a metric to evaluate the
performance of our SRT, lockstepped, and CRT architectures. We
compute SMT-Efficiency of an individual thread as the IPC of the
thread in SMT mode (and running with other threads) divided by
the IPC of the thread when it would run in single-thread mode
through the same SMT machine. Then, we compute the SMT-
Efficiency for all threads, as the arithmetic mean of the SMT-
Efficiencies of individual threads. This arithmetic mean is the
same as Snavely and Tullsen's weighted speedup metric [22].

7. R E S U L T S

This section evaluates the performance of the SRT, lockstepping,
and CRT techniques using one or more independent logical threads.
A logical thread runs an independent program, such as gcc.
Normally, without any fault detection, a logical thread maps to a
single hardware thread. However, in redundant mode, a logical
thread is further decomposed into two hardware threads, each
running a redundant copy of the program. Section 7.1 examines the
performance of our SRT design using one and two logical threads.

This section also shows how preferential space redundancy can
improve SRT's fault coverage. Section 7.2 compares the perform-
ance of lockstepped and CRT processors using one, two, and four
logical threads.

7.1 S R T

This section begins by analyzing the impact of preferential space
redundancy, then evaluates the performance of our SRT design for
one and two logical threads in detail.

7.1.1 Preferential Space Redundancy
This section examines the preferential space redundancy tech-

nique described in Section 4.5. We changed the scheduling policy
o f the SRT processor to direct corresponding instructions from the
redundant threads to different halves of the QBOX, thereby
improving fault coverage.

Figure 7 shows that, on average, without preferential space
redundancy 65% of instructions go to the same functional unit.
The fraction of corresponding instructions entering the same
functional unit is higher than 50% because instructions are directed
to a specific half of the queue based on their positions in the chunk
forwarded to the QBOX. It is likely that instructions in both the
leading and trailing threads will have instructions in similar
positions of their chunks, which force them to go to the same half
of the queue and, eventually, to the same functional unit. However,
enabling preferential space redundancy reduces such instructions to
0.06%, thereby dramatically improving the fault coverage of the
processor. The number is non-zero because if a different half is not
available for the trailing thread, then the scheduler is forced to issue
it in the same half. This technique, however, provides no
performance degradation (not shown here), and in a few cases, such
as hydro2d, improves performance because of better load balancing
on the QBOX halves. Our remaining results in this section use
preferential space redundancy.

7.1.2 One Logical Thread
Figure 6 shows the performance of the SRT processor for one

logical thread. SRT, on average, degrades performance over
running just the single thread (without any redundant copies) by
32%. However, SRT techniques improve performance over

106

o

i ~ , ,~i ' ~:<. ~'~ " 100 ~, ~ '~';

~o i l l 4 40
a0 ii il'4

o

Figure Z Percentage of corresponding instructions from redun-
dant threads in the SRT processor entering the same functional
unit (for one logical thread) in the absence of preferential space
redundancy. With preferential space redundancy (not shown), the
fraction of corresponding instructions entering the same fimctional
unit is almost zero.

running two redundant copies of the same program (without any
input replication or output comparison)--base2 in the figure--by
11%. This improvement is due to the positive effects of the load
value queue and line prediction queue in the SRT processor. The
load value queue reduces data-cache misses in two ways: the
trailing thread cannot miss, as it never directly accesses the cache,
and the leading thread thrashes less in "hot" cache sets because it
does not compete with the trailing thread. We find that the SRT
processor, on average, has 68% fewer data cache misses compared
to the base processor running redundant copies of two threads.

The store comparator is one of the key bottlenecks in the SRT
design. As explained in Section 4.2, the store comparator increases
the lifetime of a leading thread's stores, which must now wait for
the corresponding stores from the trailing thread to show up, before
they can retire. On average, for one logical thread, the store
comparator increases the lifetime of a leading thread's store by 39
cycles. Eighteen of these cycles represent the minimum latency, for
the trailing-thread store to fetch and execute; the extra 21 cycles
come from queuing delays in the line prediction queue and
processor pipeline.

Consequently, increasing the size of the store queue has signifi-
cant impact on performance because this allows other stores from
the leading thread to make progress. Using a per-thread store
queue (with 64 entries per thread) improves the SMT-Efficiency by
,4%, bringing the degradation to only roughly 30%. Completely
eliminating the impact of the store comparator (SRT + noSCin the
figure), perhaps with an even bigger store queue, would improve
performance by another 5% and reduce the performance degrada-
tion to 26%.

Our 30% performance degradation for an SRT processor (with
the per-thread store queue) is higher than our prior work [15],
which reported only 21% degradation. We believe this discrepancy
arises because our base processor's structures are optimized
primarily for uniprocessor performance, making its multithreaded
performance relatively worse than that reported by our Simplesca-
Iar/SMT model.

7.1.3 Two Logical T h r e a d s

Interestingly, the per-thread store queue provides significantly
greater benefits for two logical threads. Figure 8 shows results for
the SRT processor variants for two logical threads. The overall
degradation of the base SRT processor is 40% on average, about
8% higher than experienced by one logical thread, due to the

g B a s e 2 + p t S Q + n o S C [I S R T O S R T O S R T

1.0 :~. :~,:> .!~, ~.~o~ ~=~,~ ~.:~ ,~ ;~ ~,~o.~. I ~ . ~ : : : ~ , ~ ~ ~ ¢ ~ - ~ , ,~,~

"~ 0.8
0.7
0 .6
0 .5

m 0 .4
0 .3

~' 0.2

'~ 0.0
Q_ o E cx E cx

4- ~ o o
o o E
o o t ie

Figure 8. Relative SMT-Efficiencies for two logical threads for
four single-processor configurations. The numbers are relative to
SMT-Efficiencies for two logical threads running through our
base processor without any redundancy. Base 2 = base processor
running two logical threads, each with two redundant copies, but
no input replication or output comparison. SRT + ptSQ = SRT
with per-thread store queue (with each store queue having 64 "
entries). SRT + noSC = SRT with no store comparator.

greater resource pressures caused by the additional threads.
However, adding a per-thread store queue significantly boosts the
performance (by 15%) and reduces the degradation to only 32%,
which is comparable to the 30% degradation experienced by one
logical thread. The performance boost from the per-thread store
queue is higher because the average lifetime of a leading thread's
store goes up to 44 cycles with two logical threads (compared to 39
cycles for one logical thread). Eliminating the store comparator
entirely would provide only another 5% boost in performance,
indicating that other resources are now the primary bottleneck.

The per-thread store queue provides significantly greater im-
provement in SMT-Efficiencies for gcc+fpppp, gcc+go, and
gcc+swim compared to go+fpppp, go+swim, and swim+fpppp.
Nevertheless, the overall IPC improvements of the SMT machines
are comparable across all six benchmark configurations. The IPC
improvements are 23%, 18%, 11%, 26%, 13%, and 9%, respec-
tively for the six configurations. This suggests that the absence of
the per-thread store queue penalizes the threads with low IPCs
more than it penalizes threads with high IPCs, thereby decreasing
the overall SMT-Efficiency.

7.2 C R T

This section compares the performance of our CRT processor
with lockstepping for one, two, and four logical threads. We
examine two versions of lockstepping--Lock0 and Lock8. Lock0
is an unrealistic implementation with a zero-cycle penalty for the
checker. Lock8 is a more realistic implementation with an eight-
cycle penalty for the checker.

7.2.1 O n e Logica l T h r e a d

Figure 9 compares the performance of CRT variants with lock-
stepping for one logical thread. For a single logical thread, a CRT
processor performs similarly to Lock8 (about 2% better on
average). This result is expected, because the CRT processor's
leading thread, which behaves similarly to the threads in the
lockstepped processor, dominates its performance. The slight
improvement in performance arises because all L2 cache misses
incur higher penalty in Lock8 due to the presence of the checker.
The absence of the checker (as in Lock0, the base case for the
figure) would improve Lock8's performance by about 5%.

107

~, [DLock8 ~ C R T D C R T + noSC]
O : 1.2

~ 0.6 0 . 8 W : ? : i :

0.4
._~ 0.2

.~ 0

gN

0 ..C: E "-'
0

Figure 9. Comparison o f Relative SMT-Efficiencies o f Lockstepped
and CRT processors f o r one logical thread. The numbers are
relative to lockstepped processor with zero-cycle penalty f o r the
checker. Lock8 is the lockstepped processor with an eight-cycle
penalty f o r the checker. CRT is the Chip-Level Redundantly
Threaded processor. CRT + noSC is the CRT processor with no
store comparator (SC).

7.2.2 Two logical threads
Figure 10 compares CRT variants with lockstepping for two

logical threads. On average, CRT outperforms Lock8 by 10% and
Lock0 by about 2%. This performance improvement arises due to
the cache and misspeculation effects of CRT. First, the presence of
multiple threads creates cache contention in the lockstepped
processors (where both threads contend in both caches) but not in
the CRT processors (where the trailing threads get their data solely
via the load value queue, leaving each leading thread with
exclusive use of one cache). As a result, the CRT processor incurs
61% fewer data cache misses. In addition, the larger number of
misses in the lockstepped configuration increases the performance
impact of the checker penalty.

Second, CRT trailing threads do practically no misspeculation,
unlike the lockstepped processors on which both threads misspecu-
late equally. The CRT processor has 24% fewer squashed
instructions compared to a lockstepped processor. The percentage
is lower than 50% because the CRT leading thread does more
misspeculation than a lockstepped processor thread. Relative to a
lockstepped thread, the CRT trailing thread uses reduced resources,
allowing the CRT leading thread to run faster and, thereby,
misspeculate more.

Adding the per-thread store queue to the CRT processor further
improves the performance by 6%, making the CRT processor 13%
better in performance than Lock8 on average, with a maximum
improvement of 22%. The average lifetime of a store in a CRT
processor goes up to 69 cycles (compared to 39 cycles for SRT and
49 cycles for CRT with one logical thread), so clearly a bigger store
queue helps. Eliminating the store comparator completely, as in
the CRT + noSC configuration, would give it another boost of 6%.

7.2.3 F o u r Logica l Threads
Figure 11 compares the performance of CRT variants with

lockstepping for four logical threads. Interestingly, unlike for two
logical threads, CRT with a shared store queue performs similarly
to LockS. This result occurs because of the smaller number of
entries per thread in the store queue. Thus, adding the per-thread
store queue makes the CRT processor 13% better than Lock8 in
performance on average, with a maximum improvement of 22%,
which is similar to the improvements for two logical threads.

1.4
O

.~ 1.2

• =~ 1.0 II=
~. o.8
i - 0.6

0.4

..~ 0.2

0.0

IDLock8 I~CRT ~ C R T + ptSQ D C R T + noSC]

~. o E ~- E cz

o ~ o~ E

Figure 10. Comparison o f Relative SMT-Efficiencies o f Lock-
stepped and CRT processors f o r two logical threads. The numbers
are relative to lockstepped processor with zero-cycle penalty for
the checker. Lock8 is the lockstepped processor with 8 cycle
penalty for the checker. CRT is the Chip-Level Redundantly
Threaded processor. CRT + ptSQ =CRT with per-thread store
queue. CRT + noSC is the CRT processor with no store compara-
tor (SC).

Eliminating the store comparator, however, would only improve
performance by another 2%.

8. RELATED WORK
Section 8.1 and 8.2 discuss related work in detecting faults in a

single processor and dual processor systems, respectively. Section
8.3 discusses how our work relates to recent proposals for fault
recovery.

[] Lock8 ~ CRT [] CRI- + ptSQ Q CRT + noSC

~ 0.8
~ 0.6
~ 0.4
~ 0.2
"~ 0.0
IT.

Figure 11. Comparison o f Relative SMT-Eff iciencies o]
Lockstepped and CRT processors f o r f o u r logical threads. The
numbers are relative to lockstepped processor with zero-cycle
penalty .for the checker. Lock8 is the lockstepped processor
with 8 cycle penalty f o r the checker. CRT is the Chip-Level
Redundantly Threaded processor. CRT + ptSQ =CRT with
per-thread store queue. CRT + noSC is the CRT processor
with no store comparator (SC).

108

8.1 Fault Detection using a Single Processor
Several researchers have proposed the use of RMT techniques in

single-processor SMT devices to detect transient faults. Saxena
and McCluskey [18] were the first to propose the use of SMT
processors for transient fault detection. Subsequently, Rotenberg's
AR-SMT [17] and our SRT design [15] expanded this idea and
proposed mechanisms to efficiently implement RMT techniques on
a single-processor SMT device. We improve upon this body of
prior work in four ways. First, we uncovered subtle implementa-
tion complexities by attempting to design a single-processor RMT
processor based on a pre-existing SMT core resembling a
commercial-grade microprocessor. For example, we had to replace
the branch outcome queue--used both by AR-SMT and S R T- -
with a line prediction queue to help replicate the instruction stream
in the redundant threads. Similarly, we found subtleties in the
implementations of the load value replieator and store instruction
comparator.

Second, we found that RMT techniques can incur a higher
performance penalty for single-processor devices than previous
studies on AR-SMT and SRT processors have demonstrated.
Specifically, we find that the size of the store queue for the leading
thread has a significant impact on the performance of single-
processor RMT devices. This result led us to propose the use of
per-thread store queues to enhance performance.

Third, we provide the first characterization of the performance of
RMT devices with multithreaded workloads. We found that, with
multithreaded workloads, the store queue size has a significantly
higher impact on the performance of single-processor RMT
devices. Nevertheless, with the use of per-thread store queues, the
performance penalty of multithreaded workloads is similar to that
of single-threaded workloads.

Finally, we demonstrated that even single-processor RMT
devices could be modified effectively (e.g., with the use of
preferential space redundancy) to significantly improve coverage of
permanent faults, unlike prior work that only focused on transient
fault detection for these devices.

Several researchers (e.g., [3,4,6,7,9,11]) have proposed a host of
other non-multithreaded techniques for fault detection for
uniprocessors.

8.2 Fault Detection using Two Processors
Lockstepped dual processors--both on a single die and different

dies--have long been used for fault detection. Commercial fault-
tolerant computers used for mission-critical applications have
typically employed two processors with cycle-by-cycle lockstep-
ping, such as the IBM S/390 with the G5 processor [21] and the
Compaq Himalaya system [30].

Recently, Mahmood and McCluskey [9], Austin [1], and Sunda-
ramoorthy, et al. [26] proposed the use of RMT techniques on dual-
processor CMP cores. Mahmood and McCluskey's design uses a
main processor core and a watchdog processor that compares its
outputs with the outputs of the main processor. Austin's DIVA
processor employs two processor cores--an aggressive high-
performance processor, resembling a leading thread, and a low-
performance checker processor, resembling a trailing thread.
Because the processor cores are different, Austin's DIVA processor
can potentially detect design faults, in addition to transient and
permanent faults. Sundaramoorthy, et al.'s Slipstream processor
uses a variant of AR-SMT on CMP processors. Although a
Slipstream processor improves fault coverage, it cannot detect all
single transient or permanent faults because it does not replicate all
instructions from the instruction stream.

We improve upon this body of work on fault detection using dual
processor cores in two ways. First, we show that the efficiency
techniques of SRT can be extended to dual-processor CMPs.
Second, we compared the performance of these CRT processors
with on-chip lockstepping, using both single-threaded and
multithreaded workloads. We demonstrated that CRT processors
provide little advantage for single-threaded workloads, but perform
significantly better than tockstepped processors for multithreaded
workloads.

8.3 Fault Recovery
Recently, Vijaykumar et al. [29] proposed an architecture called

SRTR, which extends SRT techniques to support transparent
hardware recovery. SRTR compares instructions for faults before
they retire and relies on the processor's intrinsic checkpointed state
for recovery. Unlike SRTR, the RMT techniques in this paper
assume that instructions are compared for faults after the instruc-
tions retire and rely on explicit software checkpoints (e.g., as in
Tandem systems [30]) or hardware checkpoints (e.g., [25], [13]) for
recovery.

9. C O N C L U S I O N S

Exponential growth in the number of on-chip transistors, coupled
with reductions in voltage levels, has made microprocessors
extremely vulnerable to transient faults. In a multithreaded
environment, we can detect these faults by running two copies of
the same program as separate threads, feeding them identical
inputs, and comparing their outputs, a technique we call Redundant
Multithreading (RMT).

This paper studied RMT techniques in the context of both single-
and dual-processor simultaneous multithreaded (SMT) single-chip
devices. Using a detailed, commercial-grade, SMT processor
design we uncovered subtle RMT implementation complexities in
the implementation of the load value queue, line prediction queue,
and store comparator--structures that were necessary for efficient
implementation of a single-processor RMT device.

We found that RMT techniques may have a more significant
performance impact on single-processor devices than prior studies
indicated. RMT degraded performance on single-threaded and
multithreaded workloads on a single processor on average by 30%
and 32%, respectively, noticeably higher than prior studies
indicated. We also found that the store queue size could have a
significant impact on performance. Because simply increasing the
store queue size is likely to impact the processor cycle time, we
proposed the use of per-thread store queues to allow greater
number of store queue entries per thread.

We also demonstrated that a single-processor RMT device could
not only cover transient faults, but could also significantly improve
its permanent fault coverage by using a technique called preferen-
tial space redundancy. Preferential space redundancy directs a
processor to choose space over time redundancy, given a choice
between the two.

Although RMT techniques could be a significant performance
burden for single-processor SMT devices, we found that a novel
application of RMT techniques in a dual-processor device, which
we term chip-level redundant threading (CRT), showed higher
performance than lockstepping, especially on muitithreaded
workloads. We demonstrated that a CRT dual processor outper-
forms a pair of lockstepped CPUs by 13% on average (with a
maximum improvement of 22%) on multithreaded workloads. This
makes CRT a viable alternative for fault detection in upcoming
dual-processor devices.

109

Acknowledgments
We thank Bob Jardine and Alan Wood for inspiring many of the
ideas in this paper. We thank George Chrysos, Joel Emer, Stephen
Felix, Tryggve Fossum, Chris Gianos, Matthew Mattina, Panha
Kundu, and Peter Soderquist for helping us understand the
intricacies of the Alpha 21464 processor architecture. We also
thank Eric Borch, Joel Emer, Artur Klauser, and Bobbie Manne for
helping us with the Asim modeling environment. Finally, we thank
Joel Emer and Geof f Lowney for providing helpful comments on
initial drafts of this paper.

References
[1] Todd M. Austin, "DIVA: A Reliable Substrate for Deep Submicron

Microarchitecture Design," Proc. 32 "a Annual Int'l Syrup. on Microar-
chitecture, pp. 196-207, Nov. 1999.

[2] George Chrysos and Joel Emer, "Memory Dependence Prediction
using Store Sets," Proc. 25 tn Int'l Syrup. on Computer Architecture,
pp. 142-153, Jun. 1998.

[3] Joel S. Emer, "Simultaneous Multithreading: Multiplying Alpha
Performance," Microprocessor Forum, Oct. 1999.

[4] Joel Emer, Pfitpal Ahuja, Nathan Binkert, Eric Borch, Roger Espasa,
Toni Juan, Artur Klauser, Chi-Keung Luk, Srilatha Manne, Shub-
hendu S. Mukherjee, Hafish Patil, and Steven Wallace, "Asim: A
Performance Model Framework", IEEE Computer, 35(2):68-76, Feb.
2002.

[5] Manoj Franklin, "Incorporating Fault Tolerance in Superscalar
Processors," Proc. 3 "t lnt'l Conf on High Perfornumce Computing,
pp. 301-306, Dec. 1996.

[6] John G. Holm and Pfithviraj Banerjee, "Low Cost Concurrent Error
Detection in a VLIW Architecture Using Replicated Instructions,"
Proc, Int'l Conf on Parallel Processing, Vol. I, pp. 192-195,
Aug. 1992.

[7] IBM, "Power4 System Microarchitecture," http://wwwl.ibm.com/
serversleserver/psefies/hardware/whitepaperslpower4.html.

[8] David J.C. Johnson, "HP's Mako Processor," Fort Collins Microproc-
essor Lab, Oct. t6, 2001. http://cpus.hp.com/technical_referencesl
mpf_2001 .pdf.

[9] A. Mahmood and E. J. McCluskey, "Concurrent Error Detection
Using Watchdog Processors--A Survey," 1EEE Trans. on Computers,
37(2):160-174, Feb. 1988.

[10] Shubhendu S, Mukherjee, Peter Bannon, Steven Lang, Aaron Spink,
and David Webb, "The 21364 Network Architecture," IEEE Micro,
22(1):26-35, Jan/Feb 2002.

[11] Janak H. Patel and Leona Y. Fung, "Concurrent Error Detection in
ALU's by Recomputing with Shifted Operands," IEEE Trans. on
Computers, 31(7):589-595, Jul. 1982.

[12] R. Preston, et al., "Design of an 8-Wide Superscalar RISC Microproc-
essor with Simultaneous Multithreading," Digest of Technical Papers,
2002 IEEE International Solid State Circuits Conference, pp. 334-
335, San Francisco, CA.

[13] Milos Prvulovic, Zheng Zhang, and Josep Torrellas, "Cost-Effective
Architectural Support for Rollback Recovery in Shared-Memory
Multiprocessors," Proc. 29 th Annual Int'l Symp. on Computer Archi-
tecture, May 2002.

[14] Joydeep Ray, James Hoe, and Babak Falsafi, "Dual Use of Supersca-
lar Datapath for Transient-Fault Detection and Recovery," Proc. 34 ~
lnt'l Syrup. on Microarchitecture, pp. 214-224, Dec. 2001.

[15] Steven K. Reinhardt and Shubhendu S. Mukherjee, "Transient Fault
Detection via Simultaneous Multithreading," Proc. 27 tn lnt'l Syrup. on
Computer Architecture, Jun. 2000.

[16] Dennis A. Reynolds and Gemot Metze, "Fault Detection Capabilities
of Altemating Logic," IEEE Trans. on Computers, 27(12): 1093-1098,
Dec. 1978.

[17] Eric Rotenberg, "AR-SMT: A Microarchitectural Approach to Fault
Tolerance in Microprocessor," Proc. of Fault-Tolerant Computing
Systems, pp. 84-91, Jun. 1999.

[18] N. R. Saxena and E. J. McCluskey, "Dependable Adaptive Computing
Systems," Proc. IEEE Systems, Man, and Cybernetics Conf.,
pp. 2172-2177, Oct. 11-14, 1998.

[19] Yiannakis Sazeides and Toni Juan, "How to Compare the Perform-
ance of Two SMT Architectures," Proc. 2001 lnt'l Syrup. on Perform-
ance Analysis of Systems and Software, Nov. 2001.

[20] Daniel P. Siewiorek and Robert S. Swarz, Reliable Computer Systems:
Design and Evaluation, A.K. Peters Ltd, Oct. 1998.

[21] T. J. Siegel, et al., "IBM's S/390 G5 Microprocessor Design," IEEE
Micro, 19(2): 12-23, Mar/Apr 1999.

[22] Allan Snavely and Dean Tullsen, "Symbiotic Job scheduling for a
Simultaneous Multithreading Processor," Proc. Ninth lnt'l Conf. on
Architectural Support for Programming Languages and Operating
Systems, pp. 234-244, Nov. 2000.

[23] G. S. Sohi, M. Franklin, and K. K. Saluja, "A Study of Time-
Redundant Fault Tolerance Techniques for High-Performance Pipe-
lined Computers," Digest of Papers, 19 ~ Int'l Syrup. on Fault-
Tolerant Computing, pp. 436-443, 1989.

[24] G. S. Sohi, "Instruction Issue Logic for High-Performance,
Interruptible, Multiple Functional Unit, Pipelined Computers," IEEE
Trans. on Computers, 39(3):349-359, March 1990.

[25] Daniel J. Sorin, Milo M. K. Martin, Mark D. Hill, and David A.
Wood, "SafetyNet: Improving the Availability of Shared Memory
Multiprocessors with Global Checkpoint/Recovery," Proc. 29 jh An-
nual lnt'l Syrup. on Computer Architecture, May 2002.

[26] Karthik Sundaramoorthy, Zach Purser, and Eric Rotenberg,
"Slipstream Processors: Improving both Performance and Fault Toler-
ance," Proc. Ninth Int'l Conf. on Architectural Support for Program-
ming Languages and Operating Systems, pp. 257-268, Nov. 20001.

[27] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy, "Simultaneous
Multithreading: Maximizing On-Chip Parallelism," Proc. 22 ~d Annual
lnt'l Syrup. on Computer Architecture, pp. 392-403, Jun. 1995.

[28] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack
L. Lo, and Rebecca U Stamm, "Exploiting Choice: Instruction Fetch
and Issue on an lmplementable Simultaneous Multithreading Proces-
sor," Proc. 23 rd Annual lnt'l Syrup. on Computer Architecture,
pp. 191-202, May I996.

[29] T. N. Vijaykumar, kith Pomeranz, and Karl Cheng, "'Transient Fault
Recovery using Simultaneous Multithreading," Proc. 29 '~ Annual lnt'l
Syrup. on Computer Architecture, May 2002.

[30] Alan Wood, "Data Integrity Concepts, Features, and Technology,"
White paper, Tandem Division, Compaq Computer Corporation.

[31] Wayne Yamamoto and Mario Nemirovsky, "Increasing Superscalar
Performance Through Multistreaming," Proc. 1995 Annual Int'l Conf.
on Parallel Architectures and Compilation Techniques, pp. 49-58,
June 1995.

110

