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A B S T R A C T  
Exponential growth in. the number of on-chip transistors, coupled 

with reductions in voltage levels, makes each generation of 
microprocessors increasingly vulnerable to transient faults. In a 
multithreaded environment, we can detect these faults by running 
two copies of the same program as separate threads, feeding them 
identical inputs, and comparing their outputs, a technique we call 
Redundant Muhithreading (RMT). 

This paper studies RMT techniques in the context of  both single- 
and dual-processor simultaneous muhithreaded (SMT) single-chip 
devices. Using a detailed, commercial-grade, SMT processor 
design we uncover subtle RMT implementation complexities, and 
find that RMT can be a more significant burden for single- 
processor devices than prior studies indicate. However, a novel 
application of RMT techniques in a dual-processor device, which 
we term chip-level redundant threading (CRT), shows higher 
performance than locksteppbzg the two cores, especially on 
muhithreaded workloads. 

1. I N T R O D U C T I O N  

Modern microprocessors are vulnerable to transient hardware 
faults caused by alpha particle and cosmic ray strikes. Strikes by 
cosmic ray particles, such as neutrons, are particularly critical 
because of the absence of any practical way to protect microproces- 
sor chips from such strikes. As transistors shrink in size with 
succeeding technology generations, they become individually less 
vulnerable to cosmic ray strikes. However, decreasing voltage 
levels and exponentially increasing transistor counts cause overall 
chip susceptibility to increase rapidly. To compound the problem, 
achieving a particular failure rate for a large multiprocessor server 
requires an even lower failure rate for the individual microproces- 
sors that comprise it. Due to these trends, we expect fault detection 
and recovery techniques, currently used only for mission-critical 
systems, to become common in all but the least expensive 
microprocessor devices. 

One fault-detection approach for microprocessor cores, which we 
term redundant muhithreading (RMT), runs two identical copies of 
the same program as independent threads and compares their 
outputs. On a mismatch, the checker flags an error and initiates a 
hardware or software recovery sequence. RMT has been proposed 
as a technique for implementing fault detection efficiently on top of 
a simultaneous multithreaded (SMT) processor (e.g., [18], [17], 
[15]). This paper makes contributions in two areas of RMT. First, 
we describe our application of RMT techniques to a processor that 
resembles a commercial-grade SMT processor design. The 
resulting design and its evaluation are significantly more detailed 
than previous RMT studies. Second, we examine the role of RMT 
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techniques in  forthcoming dual-processor single-chip devices. 
Our implementation of the single-processor RMT device is based 

on the previously published simultaneous and redundantly threaded 
(SRT) processor design [15] (Figure la). Howeveri unlike previous 
evaluations, we start with an extremely detailed performance model 
of an aggressive, commercial-grade SMT microprocessor 
resembling the Compaq Alpha Arafia (a.k.a. 21464 or EV8) [12]. 
We call this our base processor. We found several subtle issues 
involved in adding SRT features to such a base SMT design. For 
example, adapting the SRT branch outcome queue, which uses 
branch outcomes from one thread (the "leading" thread) to 
eliminate branch mispredictions for its redundant copy (the 
"trailing" thread), to our base processor's line-prediction-driven 
fetch architecture proved to be a particularly difficult task. We also 
describe and analyze a simple extension to the proposed SRT 
design, called preferential space redundancy, which significantly 
improves coverage of permanent faults. 

We then compare the performance of our SRT implementation 
with the baseline processor using the same detailed performance 
model. Our results indicate that the performance degradation of 
RMT (running redundant copies of a thread) compared to our 
baseline processor (running a single copy of the same thread) is 
32% on average, greater, than the 21% indicated by our previous 
work [15]. We also find that store queue size has a major impact 
on SRT performance. Our SRT implementation lengthens the 
average lifetime of a leading-thread store by roughly 39 cycles, 
requiring a significantly greater number of store queue entries to 
avoid stalls. We propose the use of per-thread store queues to 
increase the number of store queue entries without severely 
impacting cycle time. This optimization reduces average perform- 
ance degradation from 32% to 30%, with significant benefits on 
several individual benchmarks. 

We also expand our performance study beyond that of previous 
work by examining the impact of SRT on multithreaded workloads. 
We run two logical application threads as two redundant thread 
pairs, consuming four hardware thread contexts on a single 
processor. We find our SRT processor's performance degradation 
for such a configuration is about 40%. However, the use of per- 
thread store queues can reduce the degradation to about 32%. 

Our second area of contribution involves the role of RMT 
techniques in dual-processor single-chip devices. Initial examples 
of these two-way chip multiprocessors (CMPs) are shipping (e.g., 
the IBM Power4 [7] and the HP Mako [8]). We expect this 
configuration to proliferate as transistor counts continue to grow 
exponentially and wire delays, rather than die area, constrain the 
size of a single processor core. 

A two-way CMP enables on-chip fault detection using lockstep- 
ping, where the same computation is performed on both processors 
on a cycle-by-cycle basis, that is, in "lockstep" (Figure lb). 
Lockstepping has several advantages over SRT-style redundancy. 
Lockstepping is a well-understood technique, as it has long been 
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Figure 1. Fault Detection Usinfi SRT, Lockstepped Microprocessors, and CRT. Specifically, in our implementations, the microprocessor 
pipelines, input replicators, ann output comparators are on the same chip. The ' rest of the system" is split into on-chip components (L2 
cache, memory controllers, on-chip router) and off-chip components (memory, disks, other I/0 devices). 

used across separate chips on commercial fault-tolerant systems 
(e.g., Compaq Himalaya systems [30]), and is used on-chip in some 
fault-tolerant processors (e.g., the IBM G5 [21]). Lockstepping 
also provides more complete fault coverage than SRT, particularly 
for permanent faults, as redundant computations are executed on 
physically separate hardware. However, lockstepping uses 
hardware resources less efficiently than SRT, as both copies of a 
computation are forced to waste resources--in lockstep--on 
misspeculation and cache misses. Lockstepping also requires all 
signals from both processors to be routed to a central checker 
module before being forwarded to the rest of the system, increasing 
cache-miss latencies. 

To combine the fault coverage of lockstepping with the effi- 
ciency of SRT, we propose a new technique--chip-level redundant 
threading (CRT)--that extends SRT techniques to a CMP 
environment (Figure lc). As in SRT, CRT uses loosely synchro- 
nized redundant threads, enabling lower checker overhead and 
eliminating cache miss and misspeculation penalties on the trailing 
thread copy. As in lockstepping, the two redundant thread copies 
execute on separate processor cores; they are not multiplexed as 
different thread contexts on a single core as in SRT. 

On single-thread workloads, CRT performs similarly to lockstep- 
ping, because the behavior of CRT's leading thread is similar to 
that of the individual threads in the lockstepped processors. 
However, with multithreaded workloads, CRT "cross-couples" the 
cores for greater efficiency. For example, with two application 
threads, each core runs the leading thread for one application and 
the trailing thread for the other. The resources freed up by CRT on 
each core from optimizing one application's trailing thread are then 
applied to the more resource-intensive leading thread of a different 
application. On these multithreaded workloads, CRT outperforms 
lockstepping by 13% on average, with a maximum improvement of 
22%. 

The rest of the paper is organized as follows. The next two 
sections discuss background matedah Section 3 describes the 
specifics of the previously proposed SRT scheme and Section 4 
briefly describes our baseline processor architecture. Section 5 
begins our contributions, describing our adaptation of SRT 
concepts to our baseline processor model. Section 6 covers our 
new chip-level redundant threading (CRT) technique for two-way 
CMP devices. We describe our evaluation methodology in 
Section 7 and present results in Section 8. We conclude in 
Section 9. 

2, B A S I C  S R T  C O N C E P T S  
An SRT processor detects faults by running two identical copies 

of the same program as independent threads on an SMT processor 
[15]. For several reasons, it is useful to maintain one thread 
slightly further along in its execution than the other, creating a 
distinct leading thread and trailing thread within the pair. Adding 
SRT support to an SMT processor involves two key mechanisms: 
input replication and output comparison. Input replication 
guarantees that both threads see identical input values; otherwise, 
they may follow different execution paths even in the absence of 
faults. Output comparison verifies that the results produced by the 
two threads are identical before they are forwarded to the rest of the 
system, signaling a fault and possibly initiating a system-dependent 
recovery process if they are not identical. 

A key concept introduced in the SRT work is the sphere of 
replication, the logical boundary of redundant execution within a 
system. Components within the sphere enjoy fault coverage due to 
the redundant execution; components outside the sphere do not, and 
therefore, must be protected via other means, such as information 
redundancy. Values entering the sphere of replication are inputs 
that must be replicated; values leaving the sphere of replication are 
outputs that must be compared. 

For this paper, we chose the larger of the spheres of replication 
described in the SRT paper, including the processor pipeline and 
register files, but excluding the L1 data and instruction caches. 
Sections 2.1 and 2.2, respectively, review the required input 
replication and output comparison mechanisms for this sphere. 
Section 2.3 reviews two SRT performance optimization techniques: 
slack fetch and the branch outcome queue. 

2.1 Input  Repl icat ion 
Because our sphere of replication excludes the L1 data and 

instruction caches, we must perform input replication on values 
coming from these structures, i.e., the results of cacheable loads 
and instruction fetches. For cached load value replication, SRT 
proposes a first-in first-out load value queue. As each leading- 
thread load retires, it writes its address and load value to the load 
value queue. The trailing thread's loads read the load value queue 
in program order, verifying the load address and retrieving the data. 
Because the data is not read redundantly out of the cache, the load 
value queue contents must be protected by some other means, e.g., 
ECC. The load value queue prevents external updates to shared 
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Table 1. Base Processor Parameters 
IBOX 

PBOX 

QBOX 

Fetch Width 

Line Predictor 

LI Instruction 
Cache 
Branch Predictor 
Memory 
Dependence 
Predictor 
Rate Matching 
Buffer 

Map Width 

Instruction 
Queue 
Issue Width 

RBOX Register File 

EBOX & 
FBOX 

MBOX 

System 
Interface 

Functional Units 
(includes a 
register cache) 
LI Data Cache 

Load Queue 
Store Queue 
Coalescing 
Merge Buffer 
L2 Cache 

Memory 
Interface 
Network Router 
& Interface 

2 8-instruction chunks (from same 
thread) per cycle 
Predicts two chunks per cycle. 
The two chunks can be non-sequential 
Total number of entries = 28K 
64 Kbytes, 2-way set associative with 
way prediction, 64 byte blocks 
208 Kbits 
Store Sets, 4K entries [2] 

Collapses 2 8-instruction chunks (from 
same thread) to create one map chunk 
with up to 8 instructions 
One 8-instruction chunk (from same 
thread) per cycle 
t 28 entries window 

8 instructions per cycle 
512 physical registers, 256 architectural 
registers (64 registers per thread) 
8 operations per cycle 
8 integer units, 8 logic units, 4 memory 
units, 4 floating point units 
64 Kbytes, 2-way set associative, 64 byte 
blocks, 3 load ports, one write port 
64 entries 
64 entries 
16 64-byte blocks 

3 Megabytes, 8-way set-associative, 64 
byte cache blocks 
2 Rambus controllers, 10 Rambus 
channels 
On-chip two-dimensional mesh router, 
similar to the Alpha 21364 [10] 

memory locations---e.g., from other processors or I/O devices- -  
from causing the threads to diverge. 

As in the original SRT work, we assume that the instruction 
space is read-only. Thus, as long as both threads generate the same 
sequence of  program counter values (which they will in the absence 
of  faults), they will receive the same instruction values from the 
memory system. Most modern systems already require special 
synchronization operations to modify the instruction space safely; 
these can be extended if necessary to provide proper replication of 
instruction values. 

Techniques for replicating less frequent inputs, such as uncached 
load values and interrupt inputs, are also described in the original 
SRT paper. We leave detailed implementation of these replication 
mechanisms for future work. 

2.2 Output Comparison 
Cacheable stores are the primary form of output from our sphere 

of replication. SRT proposes an enhanced store queue for output 
comparison of cacheable stores. Leading-thread store addresses 
and data are held in the store queue until they are verified by 
comparing the address and data values generated by the corre- 
sponding store in the trailing thread. Once a store has been 
matched and verified, a single store operation is forwarded outside 
the sphere. Again, we defer implementation of other required, but 
less frequent, output comparisons identified in the SRT paper, such 
as uncached stores and uncached load addresses, to future work. 

I , I P I  o I R IEIMI 
Figure 2. Base Processor's Integer Pipeline. I = IBOX consisting 
of  the thread chooser, line prediction, instruction cache access, 
and the rate matching buffer. P = PBOX consisting of  wire delays 
and register rename, Q = QBOX consisting of  instruction queue 
operattons, R = RBOX consisting of  register read stages, E = 
EBOX consisting of  functional units, and M = MBOX consisting of  
data caches, load queue, and store queue. In our evaluation, we 
assumed the following latencies: 1 = 4, P = 2, Q = 4, R = 4, E =1, 
and M = 2 cycles. 

2.3 Performance Optimizations 
An SRT processor lends itself to a few significant performance 

optirnizations. The key insight is that the trailing thread can use 
information from the leading thread's execution to make its own 
execution more efficient. 

One such situation occurs when the leading thread encounters an 
instruction cache miss. If the trailing thread is sufficiently delayed, 
then its corresponding fetch may not occur until the block has been 
loaded into the instruction cache, avoiding a stall. A similar benefit 
can be obtained on data cache misses; even though the trailing 
thread reads load values out of the load value queue, a sufficient lag 
between the threads will guarantee that the load value queue data 
will be present when the trailing thread's load executes, even if the 
corresponding leading-thread access was a cache miss. The 
original SRT work proposed a slack fetch mechanism to achieve 
this benefit. In slack fetch, instruction fetch of the trailing thread is 
delayed until some number of instructions from the leading thread 
has retired, forcing a "slack" between the threads to absorb these 
cache delays. Our earlier work [15] showed that slack fetch could 
achieve about a 10% boost in performance on average. 

A second optimization uses the result of leading-thread branches 
to eliminate control-flow mispredictions in the trailing thread. To 
achieve this effect, SRT proposes a branch outcome queue, a 
simple FIFO that forwards branch and other control flow targets 
from the leading thread's commit stage to the trailing thread's fetch 
stage. 

3. BASE PIPELINE 
Our base processor is an eight-way superscalar SMT machine 

with four hardware thread contexts. Table 1 lists some of the 
architectural parameters of our base processor used in this paper. 

Figure 2 shows the base processor's pipeline. The pipeline is 
divided into the following segments: IBOX (instruction fetch), 
PBOX (instruction rename), QBOX (instruction queue), RBOX 
(register read), EBOX & FBOX (integer and floating point 
functional units), and MBOX (memory system). There are 
additional cycles incurred to retire instructions beyond the MBOX. 
Below we describe our base processor architecture's specific 
portions and boxes, which we modified to create an SRT architec- 
ture. 

3.1 I B O X  

The IBOX fetches instructions in 8-instruction "chunks" and 
forwards them to the instruction rename unit or PBOX. In each 
cycle, the IBOX fetches up to 16 instructions (two chunks) from a 
single thread. 

In our evaluation, we assume a four-stage IBOX. The first stage 
chooses the thread for which instructions will be fetched in each 
cycle. We pick the thread with the minimum number of instruc- 
tions in its rate-matching buffer, giving an approximation of the 
ICOUNT fetch policy described by Tullsen, et al [28]. The second 
stage uses the line predictor to predict two chunk addresses per 
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Figure 3. The load value queue integrated in the MBOX. 

cycle. As in the Alpha 21264, our base processor's line predictor 
generates a sequence of predicted instruction-cache line (set and 
way) indices to drive instruction fetch. The third stage uses these 
addresses to fetch two potentially non-contiguous chunks of eight 
instructions each from the instruction cache. In the fourth stage, 
the processor writes these instructions to the per-thread rate 
matching buffers. Control-flow predictions from the branch 
predictor, jump target predictor, and return address stack become 
available in this stage. If these predictions disagree with the line 
prediction, the line predictor is retrained and the fetch is re- 
initiated. 

In our base processor, the line predictor is indexed by the pre- 
dicted line index from the previous cycle. Thus the line predictor 
must be "primed" with a line prediction from an external source to 
begin predicting down a different instruction stream, e.g., when the 
thread chooser decides to switch to a different thread. The thread 
chooser stores the line predictor's last predictions for each thread 
and reissues those predictions whenever fetching for a thread is 
suspended and restarted. The task of selecting either the line 
predictor's output or the thread chooser's stored prediction to use 
as the instruction cache index falls on the instruction cache address 
driver, which is located in the second IBOX stage after the line 
predictor. There exists a complex interaction between the thread 
chooser, line predictor, and address driver to facilitate instruction 
fetch. Section 4.4 discusses how we overcame this complexity to 
mimic the functionality of SRT's branch outcome queue in this 
line-prediction-oriented fetch scheme. 

3.2 PBOX 
The PBOX performs initial processing on instructions fetched by 

the IBOX, including register renaming and partial decoding. The 
PBOX also maintains checkpoints of various mapping tables to 
facilitate fast recovery from branch mispredictions and other 
exceptional conditions. In our evaluation, we assume that the 
PBOX occupies two pipeline stages. 

3.3 QBOX 
The QBOX receives instructions in program order from the 

PBOX and issues them out of order to the EBOX, FBOX or MBOX 
when their operands become ready. The QBOX also retires 
instructions, committing their results to architectural state in 
program order. The QBOX contains three main structures: the 
instruction queue, which schedules and issues instructions from the 
PBOX; the in-flight table, which tracks instructions from issue until 
they complete execution; and the completion unit, which tracks 
them up to retirement. 

The instruction queue is the most complex part of the QBOX. It 
holds 128 instructions, and accepts and issues up to eight instruc- 

tions per cycle. The queue is divided into upper and lower halves, 
each with 64 entries. Both halves have the same capabilities (in 
terms of functional units) and each can issue up to four instructions 
per cycle. An instruction is assigned to a particular queue half 
based on its position in the chunk created by the rate-matching 
buffer. 

3.4 M B O X  

The MBOX processes memory instructions, such as loads, stores, 
and memory barriers. The QBOX can issue a maximum of four 
memory operations per cycle, with a maximum of two stores and 
three loads. 

Loads entering the MBOX record themselves in the load queue, 
probe the data cache and store queue simultaneously, and return 
their result to the load queue in a single cycle. On a data cache or 
store queue hit, the data is forwarded in the next cycle to the 
execution units for bypassing to dependent instructions. 

Similarly, stores entering the MBOX record themselves in the 
store queue and probe the load queue to check for store-load order 
violation. Store data arrives at the store queue two cycles after the 
store address. When a store retires, its address and data are 
forwarded to a coalescing merge buffer, which eventually updates 
the data cache. 

For multithreaded runs, we divide up the 64-entry load and store 
queues statically among the different threads. Thus, when this base 
processor runs two threads, we allocate 32 entries to each thread. 
For multithreaded runs with four threads, we allocate 16 entries to 
each thread. 

4. SRT ON OUR BASE P R O C E S S O R  
One of the major goals of this work is to understand the feasibil- 

ity and performance impact of implementing SRT extensions on a 
realistic, commercial-grade SMT processor. As discussed in 
Section 2, the key SRT mechanisms are input replication and 
output comparison; we discuss our implementation of these 
mechanisms on our base processor in Sections 4.1 and 4.2. Section 
4.3 describes additional changes required to avoid deadlock 
situations. One of the greatest challenges in our effort was to map 
SRT's branch outcome queue to our base processor's line-predictor 
driven fetch architecture; the specific problems and our solutions 
are detailed in Section4.4. Finally, Section 4.5 describes our 
implementation of preferential space redundancy, an enhancement 
to the original SRT proposal for improved fault coverage. 

4.1 Input Replication 
We use a variant of SRT's load value queue (LVQ), described in 

Section 2.1, to forwacd cached load values from the leading to the 
trailing thread. Figure 3 shows the relationship of the LVQ to the 
rest of the MBOX. 

Leading-thread loads entering the MBOX probe the load queue, 
data cache, and store queue, as in the base design. The QBOX 
completion unit writes the address and data values generated by 
these loads to the LVQ as the loads retire. Trailing-thread loads 
bypass all three structures and directly access the LVQ. The LVQ 
forwards load values to the MBOX output mux, which now has one 
additional input. Because the QBOX can issue up to three loads 
per cycle, the LVQ must support three concurrent accesses. 

The original SRT design assumes that the trailing thread issues its 
loads in program order, preserving the FIFO structure of the LVQ. 
Although we could easily add this constraint to the QBOX 
scheduler by creating dependences between loads, this approach 
would limit the trailing thread to issuing at most one load per cycle. 
Rather than modifying the scheduler to allow three "dependent" 
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loads to issue to the LVQ in a single cycle, we modified the LVQ 
to allow out-of-order load issue from the trailing thread. Each 
leading-thread load is assigned a small load correlation tag value by 
the PBOX, which is written to the LVQ entry along with the load's 
address and data. Using the line prediction queue, described in 
Section 4.4, we can easily associate the same tag with the 
corresponding load from the trailing thread. When the trailing 
thread issues, it uses this tag to perform an associative lookup in the 
LVQ to read out the appropriate address and data values. Then, the 
LVQ entry is deallocated. 

This LVQ probe is similar to the lookup done on each load 
address in the store queue; in fact, it is slightly simpler, since the 
LVQ need not worry about multiple address matches, partial 
forwarding cases, or relative ages of entries. Thus, an associative 
LVQ equal in size to the store queue should be able to support three 
simultaneous accesses per cycle without adding to the critical path. 

The LVQ provides a small additional performance benefit 
because it keeps the trailing thread's loads out of the load queue, 
thereby freeing up entries for the leading thread's loads. Thus, 
when one application program runs in SRT mode with two 
redundant threads, the leading thread gets all 64 load-queue entries. 
Similarly, when two application programs run in SRT mode, each 
with two redundant threads, each leading thread gets 32 load queue 
entries. 

4.2 O u t p u t  C o m p a r i s o n  

As described in Section 2.2, the original SRT proposal included 
an enhanced store queue to perform output comparison on 
cacheable stores. We implemented a separate structure, the store 
comparator, which sits next to the store queue and monitors its 
inputs. When a trailing-thread store instruction and its data enter 
the store queue, the store comparator searches itself for a matching 
entry from the leading thread. If a matching entry exists, the store 
comparator performs the store comparison and signals the store 
queue that the specific store is ready to be retired to the data cache. 

Forcing every leading-thread store to wait in the store queue until 
the corresponding trailing-thread store is executed increases store- 
queue utilization significantly, causing additional pipeline stalls 
when the store queue becomes full. Section 7 shows that these 
stalls degrade SRT performance noticeably relative to the base 
architecture. However, because the data cache is outside our 
sphere of replication, the cache cannot be updated until this output 
comparison is performed. Meanwhile, subsequent leading-thread 
loads must compare against these waiting stores to obtain the latest 
memory values, just as they compare against speculative stores in 
the base architecture. Thus we see no practical alternative to 
leaving these stores in the store queue until they are checked. 

Unfortunately, the store queue CAM is a critical path in our base 
architecture; increasing its size beyond 64 entries would force the 
CAM to be pipelined across multiple cycles, increasing the load-to- 
use delay and adversely affecting performance. Instead, we 
propose addressing this problem by creating separate per-thread 
store queues of 64 entries each. Although this proposal does not 
increase the size of any individual store queue CAM, the physical 
implementation may still be challenging because of the additional 
wires and multiplexors introduced in the path of the load probe. 
Nevertheless, our results in Section 7 do show that per-thread store 
queues can provide a significant boost in performance. 

4.3 Avoiding Deadlocks 
An SMT machine is vulnerable to deadlock if one thread is 

allowed to consume all of a particular resource (e.g., instruction 
queue slots) while stalled waiting for another thread to free a 

From OBOXComple t ion  Unit  To IBOX Address Driver 
2!V 

Active Head :Every 
Figure 4. The Line Prediction Queue in the IBOX Line Prediction 
Unit. 

different resource or post a synchronization event. Our base design 
assumes that such inter-thread dependencies do not exist. While 
this assumption is valid for conventional multithreaded workloads, 
dependencies between leading and trailing threads in an SRT 
machine significantly increase the possibility of deadlock. In 
particular, the leading thread's dependence on seeing a correspond- 
ing store from the trailing thread before freeing a store-queue entry 
can lead to frequent deadlocks. 

For example, the leading thread can easily fill the QBOX instruc- 
tion queue, backing up into the PBOX pipeline itself. In this case, 
the trailing thread is unable to move instructions from its IBOX 
rate-matching buffer into the PBOX. If the leading thread is stalled 
waiting for a matching trailing-thread store, deadlock results. To 
avoid this situation, we made all PBOX storage structures per 
thread, and reserved space for one chunk per thread in the QBOX 
queue. Because the IBOX already contained per-thread rate 
matching buffers, no changes were needed there. 

A second class of deadlocks induced by our line prediction queue 
is covered in Section 4.4.2. 

4.4 I m p l e m e n t i n g  the  B r a n c h  O u t c o m e  Q u e u e  

The original SRT design proposed a simple FIFO called the 
branch outcome queue, which forwards leading-thread branch 
targets to the trailing thread's fetch stage. Ideally, since this queue 
represents a perfect stream of target predictions (in the absence of 
faults), the trailing thread should never fetch a misspeculated 
instruction. Unfortunately, our base processor uses a line predictor 
to access the instruction cache; the branch and other control-flow 
predictors serve only to verify these line predictions. Because the 
line predictor's misprediction rate is significant (between 14% and 
28% for our benchmarks), using the branch outcome queue in place 
of the branch target prediction structures, as originally proposed, 
would still allow a noticeable amount of misfetching on the trailing 
thread. 

A simple alternative is to share the line predictor between the two 
redundant threads, in the hope that the leading thread would train 
the line predictor, improving prediction accuracy for the trailing 
thread. Unfortunately, this scheme does not work well due to 
excessive aliasing in the line prediction table. 

Instead, we adapt the concept of the branch outcome queue to fit 
the base design, and use a line prediction queue to forward correct 
line predictions from the leading to the trailing thread. The line 
prediction queue provides perfect line predictions to the trailing 
thread in the absence of faults, thereby completely eliminating 
misfetches. 

The implementation of the line prediction queue was quite 
challenging, and required careful consideration to maintain perfect 
line prediction accuracy and avoid deadlocks. We organize the 
design issues into two parts: those involved with reading predic- 
tions from the line prediction queue on the IBOX end and those 
regarding writing predictions to the line prediction queue on the 
QBOX end. Although the details of our design are specific to our 
base architecture, we believe many of the challenges we encoun- 
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tered are inherent to most modern microarchitectures, which are not 
designed to generate or operate on a precise sequence of fetch 
addresses. We were certainly surprised that a seemingly straight- 
forward feature, added easily to our earlier SimpleScalar-based 
simulator, induced such complexities in this more realistic design. 

After incorporating the line prediction queue into our design, we 
found that the "slack fetch" mechanism of the original SRT design, 
described in Section 2.3, was not necessary. The inherent delay 
introduced by waiting for leading-thread retirement before 
initiating the corresponding trailing-thread fetch was more than 
adequate to provide the benefits of slack fetch. In fact, given the 
store-queue pressure discussed in Section 7.1, we found that the 
best performance was achieved by giving the trailing thread 
priority, and fetching based on the line prediction queue whenever 
a prediction was available. 

4.4.1 R e a d i n g  f r o m  the  Line Prediction Queue 
One set of line prediction queue challenges came about because 

the IBOX was not designed to expect a precise stream of line 
predictions. Specifically, as described in Section 3.1, the line 
predictor sends predictions to the address driver mux, but does not 
know whether the prediction is selected by the address driver or 
not. Even if the address driver selects the line predictor's output, 
the access may be a cache miss, requiring the prediction to be re- 
sent after the needed block is filled from the L2 cache. 

A conventional line predictor is happy to repeatedly predict the 
same next line, given the same input (e.g. from the thread chooser's 
stored prediction latch). However, the line prediction queue stores 
a precise sequence of chunk addresses; if a prediction is read from 
the line prediction queue but not used, a gap will appear in the 
trailing thread's instruction stream. 

We addressed this problem in two steps. First, we enhanced the 
protocol between the address driver and line predictor to include an 
acknowledgment signal. On a successful acceptance of a line 
prediction, the address driver acks the line predictor, which 
advances the head of the line prediction queue. Otherwise, the line 
prediction queue does not adjust the head, and resends the same 
line prediction on the subsequent cycle. 

Instruction cache misses require additional sophistication; in 
these cases, the address driver does accept a line prediction from 
the line prediction queue, but must reissue the same fetch after the 
miss is handled. To deal with this and similar situations, we 
provided the line prediction queue with two head pointers (Figure 
4). The active head is advanced by acks from the address driver, 
and indicates the next prediction to send. A second recover), head 
is advanced only when the corresponding instructions have been 
successfully fetched from the cache. Under certain circumstances, 
including cache misses, the IBOX control logic can request the line 
prediction queue to roll the active head back to the recovery head, 
and reissue a sequence of predictions. 

4.4.2 W r i t i n g  to the  Line Prediction Queue 
The tail end of the line prediction queue, where leading-thread 

instructions retiring from the QBOX generate predictions for the 
trailing thread, also presented some challenges. Each line 
prediction queue entry corresponds to a single fetch chunk, i.e., a 
contiguous group of up to eight instructions. To achieve reasonable 
fetch efficiency, the logic at the QBOX end of the line prediction 
queue must aggregate multiple retired instructions into a single 
chunk prediction. The key decision made by this logic is when to 
terminate a trailing-thread fetch chunk and actually record a 
prediction in the line prediction queue. 

Some chunk-termination situations are clear, such as when two 
retiring instructions have non-contiguous addresses, or when the 
eight-instruction chunk limit has been reached. However, other 
necessary criteria were more subtle, and resulted in deadlocks when 
they were ignored. For example, a memory barrier instruction is 
not eligible to retire until all preceding stores have flushed from the 
store queue. If a store precedes a memory barrier in the same 
leading-thread fetch chunk, the store will not flush until the 
corresponding trailing-thread store executes. However, this 
trailing-thread store will not be fetched until the chunk is termi- 
nated and its address is forwarded via the line prediction queue. 
Under normal circumstances (in non-SRT mode), we will not 
terminate the chunk until the memory barrier retires, as it is a 
contiguous instruction and can be added to the current chunk. To 
avoid this deadlock situation, however, we must force termination 
of the trailing-thread fetch chunk whenever the oldest leading- 
thread instruction is a memory barrier. 

A similar situation arises due to base processor's handling of 
partial data forwarding. For example, if a word load is preceded by 
a byte store to the same location, our base processor flushes the 
store from the store queue so that the load can pick up the full word 
from the data cache. If the store and load are in the same leading- 
thread fetch chunk, we must terminate the chunk at the store to 
allow the trailing-thread's store to be fetched. Then the store will 
be verified and exit the store queue, enabling the load to execute. 

Interestingly, the line prediction queue logic can occasionally 
create trailing-thread fetch chunks that are larger than those of the 
leading thread. For example, a predicted taken branch in the 
middle of a leading-thread fetch chunk will cause the chunk to be 
terminated. If the branch was mispredicted, and actually fell 
through, we can add the fall-through instructions to the trailing 
thread's fetch chunk. 

4.5 Improving Fault Coverage 
The original SRT proposal focuses on detection of transient 

faults, which only temporarily disrupt processor operation. For 
example, a cosmic ray may strike a latch and change its stored 
value; this fault will last only until the latch is next written, at 
which time it will again have a correct state. However, microproc- 
essors are also vulnerable to permanent faults, which can arise due 
to manufacturing defects or electromigration. A transient fault in a 
rarely written latch value (e.g., a mode bit written only at boot 
time) may also behave like a permanent fault. This section 
describes how we extended our SRT design to provide improved 
coverage of permanent faults with negligible performance impact. 

The original SRT design's vulnerability to permanent faults is 
due to the combination of space redundancy (where redundant 
instructions use physically distinct hardware resources) and time 
redundancy (where redundant instructions use the same hardware 
resource at different times). Note that the same pair of instructions 
can be covered by space redundancy in some portions of the 
pipeline and time redundancy in others. Time redundancy provides 
effective coverage for transient and some timing-dependent faults, 
but is not effective for detecting permanent hardware faults. 

We introduce a new technique, called preferential space redun- 
dancy, which simply biases an SRT processor to provide space 
redundancy rather than only time redundancy whenever the option 
exists. As a concrete example, we implemented preferential space 
redundancy for the QBOX instruction queue, providing extremely 
high coverage of permanent faults in this critical structure. We 
leverage our base processor's partitioning of the queue into upper 
and lower halves. When a leading-thread instruction executes, it 
records which half of the queue it traversed. We add the up- 
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Figure 5. CRT processor configuration. The arrows represent 
threads in the processors. A and B are logically distinct programs. 
Each program runs a redundant copy: a leading copy and a 
trailing copy in the physically distinct processor pipelines. Note 
that the leading thread o f  A is coupled with the trailing thread o f  
B and vice versa in the two processors. 

per/lower selection bits for all instructions in a fetch chunk to each 
line prediction queue entry as it is forwarded to the trailing thread's 
fetch stage. These bits are carried along to the QBOX, which then 
assigns the corresponding trailing-thread instructions to the 
opposite half of the queue relative to their leading-thread counter- 
parts. We thus guarantee that corresponding instructions are 
handled by distinct IQ entries. Section 7.1.1 will show that this 
technique virtually eliminates all time redundancy in the instruction 
queue and function units without any loss in performance. 

Preferential space redundancy applies only to situations in which 
there are multiple identical structures to provide space redundancy, 
such as queue entries or function units. Fortunately, the remaining 
structures that provide only time redundancy are primarily 
transmission lines, which can be protected from single permanent 
faults by the addition of parity bits. We therefore believe that an 
SRT processor can be designed to detect most, if not all, single 
permanent faults, in addition to the transient faults for which it was 
originally designed. 

5. C H I P - L E V E L  R E D U N D A N T  T H R E A D I N G  

In this section, we extend SRT techniques to the emerging class 
of chip multiprocessors (CMPs) to create a chip-level redundantly 
threaded (CRT) processor, achieving lockstepping's permanent 
fault coverage while maintaining SRT's low-overhead output 
comparison and efficiency optimizations. The basic idea of CRT is 
to generate logically redundant threads, as in SRT, but to run the 
leading and trailing threads on separate processor cores, as shown 
in Figure 5. 

The trailing threads' load value queues and line prediction queues 
now receive inputs from leading threads on the other processor. 
Similarly, the store comparator, which compares store instructions 
from redundant threads, receives retired stores from the leading 
thread on one processor and trailing thread on another processor. 
Clearly, to forward inputs to the load value queue, line prediction 
queue, and the store comparator, we need moderately wide 
datapaths between the processors. We believe that the processor 
cores can be laid out on the die such that such datapaths do not 
traverse long distances. These datapaths will be outside the sphere 
of replication and must be protected with some form of information 
redundancy, such as parity. 

CRT processors provide two advantages over lockstepped 
microprocessors. First, in lockstepped processors, all processor 
output signals must be compared for mismatch, including miss 
requests from the data and instruction caches. This comparison is 
in the critical path of the cache miss, and often adversely affects 
performance. More generally, the checker must interpose on every 
logical signal from the two processors, check for mismatch, and 

then forward the signal outside the sphere of replication. Of 
course, a CRT processor incurs latency to forward data to the line 
prediction queue, load value queue, or store comparator, but these 
queues serve to decouple the execution of the redundant threads 
and are not generally in the critical path of data accesses. 

Second, CRT processors can run multiple independent threads 
more efficiently than lockstepped processors. By pairing leading 
and trailing threads of different programs on the same processor, 
we maximize overall throughput. A trailing thread never misspecu- 
lates, freeing resources for the other application's leading thread. 
Additionally, in our implementation, trailing threads do not use the 
data cache or the load queue, freeing up additional resources for 
leading threads. 

Our evaluation, detailed in Section 7.2, shows that our CRT 
processor performs similarly to tockstepping for single-program 
runs, but outperforms lockstepping by 13% on average (with a 
maximum improvement of 22%) for multithreaded program runs. 

6. M E T H O D O L O G Y  

This section describes the performance model, benchmarks, 
target architecture parameters, and evaluation metric that we used 
for our evaluation. 

6.1 Asim: The  P e r f o r m a n c e  Mode l  F r a m e w o r k  
Asim [4] is a performance model framework, which was used to 

build an extremely detailed performance model of a modern, 
aggressive, dynamically scheduled, eight-wide SMT processor 
resembling the Alpha Arafia processor. This model provides cycle- 
by-cycle simulation of most of the components in this base 
processor. We modified this detailed base processor model written 
in Asim to create the SRT and the CRT processor models. 

6.2 B e n c h m a r k s  
For our evaluation with single programs, we used all the 18 

SPEC CPU95 benchmarks (http://www.spec.org). To get to the 
interesting portions of the benchmarks, we skipped between 250 
million and 2 billion instructions. Then, we warmed up the 
processor structures for one million instructions and executed 15 
million committed instructions for each program. 
For our evaluation with multiple programs, we combined a subset 
of the SPEC CPU95 programs. For runs with two programs, we 
combined two of gcc, go, fpppp, and swim. The four benchmarks 
generate a total of six pairs. Similarly, for our four-program runs, 
we combined four of gcc, go, ijpeg, fpppp, and swim to generate a 
total of 15 combinations. We ran 15 million committed instruc- 
tions for each program. Thus, our CRT processor running four 
logical threads executed a total of 120 million instructions (15 
million instructions per program x 4 programs x 2 redundant 
threads per program). 

We did not use the SPEC CPU2000 suite partly due to limitations 
in our simulation environment, and partly to allow us to compare 
our single-program SRT results with our earlier evaluation [15], 
which also used SPEC CPU95. 

6.3 Target  Archi tec ture  & Parameters  
We simulate four target architectures: the base processor, 

lockstepping, SRT, and CRT. We listed the basic processor's 
parameters in Table 1. 

For the lockstepped processor, we chose two configurations. The 
first one--Lock0--has  an ideal (but unrealistic) checker that 
executes in zero cycles. The second one---Lock8~is a more 
realistic checker that incurs an eight-cycle penalty to do the 
lockstep checking. We believe 8 cycles is realistic because of 
dense wiring to the centralized checker, wire delays, latency within 
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Figure 6. SMT-Efficiencies for  one logical thread for four single-processor configurations. Base2 = base processor running one logical 
thread with two redundant copies, but no input replication or output comparison. SRT +fitS,Q, = SRT with per-thread store queue (with 
each store queue having 64 entries). SRT + noSC = SRT with no Store Comparison. ' 1.0' on the vertical axis represents the SMT- 
Efficiency of  the base processor for  one logical thread (running the same program) with no redundant copies. 

the checker itself to do the comparisons, and the logic required to 
tolerate minor synchronization errors between processors. Many 
checkers allow processors to go out of lockstep briefly to tolerate 
non-deterministic timing, as can occur when one processor requires 
an extra cycle to address a correctable ECC fault in an internal 
structure such as the TLB. 

For the SRT architecture, we conservatively assumed 4 cycles to 
forward line predictions from the QBOX to IBOX and 2 cycles to 
forward load values from the QBOX to the MBOX. For the CRT 
architecture, we assumed an additional 4-cycle penalty to forward 
data from one processor to the other processor's line prediction 
queue, load value queue, and store comparator. 

6.4 E v a l u a t i o n  Metric 
Instructions per cycle (IPC) is not a useful metric to compare 

SMT architectures,even though it has proven to be quite useful for 
single-threaded machines [22][19]. An SMT architecture may 
improve its overall IPC by favoring a more efficient thread 
(perhaps one with fewer cache misses and branch mispredictions), 
simply avoiding the challenging part of the workload. 

Instead, we use SMT-Efficiency as a metric to evaluate the 
performance of our SRT, lockstepped, and CRT architectures. We 
compute SMT-Efficiency of an individual thread as the IPC of the 
thread in SMT mode (and running with other threads) divided by 
the IPC of the thread when it would run in single-thread mode 
through the same SMT machine. Then, we compute the SMT- 
Efficiency for all threads, as the arithmetic mean of the SMT- 
Efficiencies of individual threads. This arithmetic mean is the 
same as Snavely and Tullsen's weighted speedup metric [22]. 

7. R E S U L T S  

This section evaluates the performance of the SRT, lockstepping, 
and CRT techniques using one or more independent logical threads. 
A logical thread runs an independent program, such as gcc. 
Normally, without any fault detection, a logical thread maps to a 
single hardware thread. However, in redundant mode, a logical 
thread is further decomposed into two hardware threads, each 
running a redundant copy of the program. Section 7.1 examines the 
performance of our SRT design using one and two logical threads. 

This section also shows how preferential space redundancy can 
improve SRT's fault coverage. Section 7.2 compares the perform- 
ance of lockstepped and CRT processors using one, two, and four 
logical threads. 

7.1 S R T  

This section begins by analyzing the impact of preferential space 
redundancy, then evaluates the performance of our SRT design for 
one and two logical threads in detail. 

7.1.1 Preferential Space Redundancy 
This section examines the preferential space redundancy tech- 

nique described in Section 4.5. We changed the scheduling policy 
o f  the SRT processor to direct corresponding instructions from the 
redundant threads to different halves of the QBOX, thereby 
improving fault coverage. 

Figure 7 shows that, on average, without preferential space 
redundancy 65% of instructions go to the same functional unit. 
The fraction of corresponding instructions entering the same 
functional unit is higher than 50% because instructions are directed 
to a specific half of the queue based on their positions in the chunk 
forwarded to the QBOX. It is likely that instructions in both the 
leading and trailing threads will have instructions in similar 
positions of their chunks, which force them to go to the same half 
of the queue and, eventually, to the same functional unit. However, 
enabling preferential space redundancy reduces such instructions to 
0.06%, thereby dramatically improving the fault coverage of the 
processor. The number is non-zero because if a different half is not 
available for the trailing thread, then the scheduler is forced to issue 
it in the same half. This technique, however, provides no 
performance degradation (not shown here), and in a few cases, such 
as hydro2d, improves performance because of better load balancing 
on the QBOX halves. Our remaining results in this section use 
preferential space redundancy. 

7.1.2 One Logical Thread 
Figure 6 shows the performance of the SRT processor for one 

logical thread. SRT, on average, degrades performance over 
running just the single thread (without any redundant copies) by 
32%. However, SRT techniques improve performance over 
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Figure Z Percentage of  corresponding instructions from redun- 
dant threads in the SRT processor entering the same functional 
unit (for one logical thread) in the absence of preferential space 
redundancy. With preferential space redundancy (not shown), the 
fraction of  corresponding instructions entering the same fimctional 
unit is almost zero. 

running two redundant copies of the same program (without any 
input replication or output comparison)--base2 in the figure--by 
11%. This improvement is due to the positive effects of the load 
value queue and line prediction queue in the SRT processor. The 
load value queue reduces data-cache misses in two ways: the 
trailing thread cannot miss, as it never directly accesses the cache, 
and the leading thread thrashes less in "hot" cache sets because it 
does not compete with the trailing thread. We find that the SRT 
processor, on average, has 68% fewer data cache misses compared 
to the base processor running redundant copies of two threads. 

The store comparator is one of the key bottlenecks in the SRT 
design. As explained in Section 4.2, the store comparator increases 
the lifetime of a leading thread's stores, which must now wait for 
the corresponding stores from the trailing thread to show up, before 
they can retire. On average, for one logical thread, the store 
comparator increases the lifetime of a leading thread's store by 39 
cycles. Eighteen of these cycles represent the minimum latency, for 
the trailing-thread store to fetch and execute; the extra 21 cycles 
come from queuing delays in the line prediction queue and 
processor pipeline. 

Consequently, increasing the size of the store queue has signifi- 
cant impact on performance because this allows other stores from 
the leading thread to make progress. Using a per-thread store 
queue (with 64 entries per thread) improves the SMT-Efficiency by 
,4%, bringing the degradation to only roughly 30%. Completely 
eliminating the impact of the store comparator (SRT + noSCin  the 
figure), perhaps with an even bigger store queue, would improve 
performance by another 5% and reduce the performance degrada- 
tion to 26%. 

Our 30% performance degradation for an SRT processor (with 
the per-thread store queue) is higher than our prior work [15], 
which reported only 21% degradation. We believe this discrepancy 
arises because our base processor's structures are optimized 
primarily for uniprocessor performance, making its multithreaded 
performance relatively worse than that reported by our Simplesca- 
Iar/SMT model. 

7.1.3 Two Logical  T h r e a d s  

Interestingly, the per-thread store queue provides significantly 
greater benefits for two logical threads. Figure 8 shows results for 
the SRT processor variants for two logical threads. The overall 
degradation of the base SRT processor is 40% on average, about 
8% higher than experienced by one logical thread, due to the 
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Figure 8. Relative SMT-Efficiencies for  two logical threads for 
four single-processor configurations. The numbers are relative to 
SMT-Efficiencies for two logical threads running through our 
base processor without any redundancy. Base 2 = base processor 
running two logical threads, each with two redundant copies, but 
no input replication or output comparison. SRT + ptSQ = SRT 
with per-thread store queue (with each store queue having 64 " 
entries). SRT + noSC = SRT with no store comparator. 

greater resource pressures caused by the additional threads. 
However, adding a per-thread store queue significantly boosts the 
performance (by 15%) and reduces the degradation to only 32%, 
which is comparable to the 30% degradation experienced by one 
logical thread. The performance boost from the per-thread store 
queue is higher because the average lifetime of a leading thread's 
store goes up to 44 cycles with two logical threads (compared to 39 
cycles for one logical thread). Eliminating the store comparator 
entirely would provide only another 5% boost in performance, 
indicating that other resources are now the primary bottleneck. 

The per-thread store queue provides significantly greater im- 
provement in SMT-Efficiencies for gcc+fpppp, gcc+go, and 
gcc+swim compared to go+fpppp, go+swim, and swim+fpppp. 
Nevertheless, the overall IPC improvements of the SMT machines 
are comparable across all six benchmark configurations. The IPC 
improvements are 23%, 18%, 11%, 26%, 13%, and 9%, respec- 
tively for the six configurations. This suggests that the absence of 
the per-thread store queue penalizes the threads with low IPCs 
more than it penalizes threads with high IPCs, thereby decreasing 
the overall SMT-Efficiency. 

7.2 C R T  

This section compares the performance of our CRT processor 
with lockstepping for one, two, and four logical threads. We 
examine two versions of lockstepping--Lock0 and Lock8. Lock0 
is an unrealistic implementation with a zero-cycle penalty for the 
checker. Lock8 is a more realistic implementation with an eight- 
cycle penalty for the checker. 

7.2.1 O n e  Logica l  T h r e a d  

Figure 9 compares the performance of CRT variants with lock- 
stepping for one logical thread. For a single logical thread, a CRT 
processor performs similarly to Lock8 (about 2% better on 
average). This result is expected, because the CRT processor's 
leading thread, which behaves similarly to the threads in the 
lockstepped processor, dominates its performance. The slight 
improvement in performance arises because all L2 cache misses 
incur higher penalty in Lock8 due to the presence of the checker. 
The absence of the checker (as in Lock0, the base case for the 
figure) would improve Lock8's performance by about 5%. 
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Figure 9. Comparison o f  Relative SMT-Efficiencies o f  Lockstepped 
and CRT processors f o r  one logical thread. The numbers are 
relative to lockstepped processor with zero-cycle penalty f o r  the 
checker. Lock8 is the lockstepped processor with an eight-cycle 
penalty f o r  the checker. CRT is the Chip-Level Redundantly 
Threaded processor. CRT + noSC is the CRT processor with no 
store comparator (SC). 

7.2.2 Two logical threads 
Figure 10 compares CRT variants with lockstepping for two 

logical threads. On average, CRT outperforms Lock8 by 10% and 
Lock0 by about 2%. This performance improvement arises due to 
the cache and misspeculation effects of CRT. First, the presence of 
multiple threads creates cache contention in the lockstepped 
processors (where both threads contend in both caches) but not in 
the CRT processors (where the trailing threads get their data solely 
via the load value queue, leaving each leading thread with 
exclusive use of one cache). As a result, the CRT processor incurs 
61% fewer data cache misses. In addition, the larger number of 
misses in the lockstepped configuration increases the performance 
impact of the checker penalty. 

Second, CRT trailing threads do practically no misspeculation, 
unlike the lockstepped processors on which both threads misspecu- 
late equally. The CRT processor has 24% fewer squashed 
instructions compared to a lockstepped processor. The percentage 
is lower than 50% because the CRT leading thread does more 
misspeculation than a lockstepped processor thread. Relative to a 
lockstepped thread, the CRT trailing thread uses reduced resources, 
allowing the CRT leading thread to run faster and, thereby, 
misspeculate more. 

Adding the per-thread store queue to the CRT processor further 
improves the performance by 6%, making the CRT processor 13% 
better in performance than Lock8 on average, with a maximum 
improvement of 22%. The average lifetime of a store in a CRT 
processor goes up to 69 cycles (compared to 39 cycles for SRT and 
49 cycles for CRT with one logical thread), so clearly a bigger store 
queue helps. Eliminating the store comparator completely, as in 
the CRT + noSC configuration, would give it another boost of 6%. 

7.2.3 F o u r  Logica l  Threads 
Figure 11 compares the performance of CRT variants with 

lockstepping for four logical threads. Interestingly, unlike for two 
logical threads, CRT with a shared store queue performs similarly 
to LockS. This result occurs because of the smaller number of 
entries per thread in the store queue. Thus, adding the per-thread 
store queue makes the CRT processor 13% better than Lock8 in 
performance on average, with a maximum improvement of 22%, 
which is similar to the improvements for two logical threads. 
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Figure 10. Comparison o f  Relative SMT-Efficiencies o f  Lock- 
stepped and CRT processors f o r  two logical threads. The numbers 
are relative to lockstepped processor with zero-cycle penalty for  
the checker. Lock8 is the lockstepped processor with 8 cycle 
penalty for  the checker. CRT is the Chip-Level Redundantly 
Threaded processor. CRT + ptSQ =CRT with per-thread store 
queue. CRT + noSC is the CRT processor with no store compara- 
tor (SC). 

Eliminating the store comparator, however, would only improve 
performance by another 2%. 

8. RELATED WORK 
Section 8.1 and 8.2 discuss related work in detecting faults in a 

single processor and dual processor systems, respectively. Section 
8.3 discusses how our work relates to recent proposals for fault 
recovery. 
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Figure 11. Comparison o f  Relative SMT-Eff iciencies o] 
Lockstepped and CRT processors f o r  f o u r  logical threads. The 
numbers are relative to lockstepped processor  with zero-cycle 
penalty .for the checker. Lock8 is the lockstepped processor 
with 8 cycle penalty f o r  the checker. CRT is the Chip-Level 
Redundantly Threaded processor. CRT + ptSQ =CRT with 
per-thread store queue. CRT + noSC is the CRT processor  
with no store comparator (SC). 
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8.1 Fault Detection using a Single Processor 
Several researchers have proposed the use of RMT techniques in 

single-processor SMT devices to detect transient faults. Saxena 
and McCluskey [18] were the first to propose the use of SMT 
processors for transient fault detection. Subsequently, Rotenberg's 
AR-SMT [17] and our SRT design [15] expanded this idea and 
proposed mechanisms to efficiently implement RMT techniques on 
a single-processor SMT device. We improve upon this body of 
prior work in four ways. First, we uncovered subtle implementa- 
tion complexities by attempting to design a single-processor RMT 
processor based on a pre-existing SMT core resembling a 
commercial-grade microprocessor. For example, we had to replace 
the branch outcome queue--used both by AR-SMT and S R T- -  
with a line prediction queue to help replicate the instruction stream 
in the redundant threads. Similarly, we found subtleties in the 
implementations of the load value replieator and store instruction 
comparator. 

Second, we found that RMT techniques can incur a higher 
performance penalty for single-processor devices than previous 
studies on AR-SMT and SRT processors have demonstrated. 
Specifically, we find that the size of the store queue for the leading 
thread has a significant impact on the performance of single- 
processor RMT devices. This result led us to propose the use of 
per-thread store queues to enhance performance. 

Third, we provide the first characterization of the performance of 
RMT devices with multithreaded workloads. We found that, with 
multithreaded workloads, the store queue size has a significantly 
higher impact on the performance of single-processor RMT 
devices. Nevertheless, with the use of per-thread store queues, the 
performance penalty of multithreaded workloads is similar to that 
of single-threaded workloads. 

Finally, we demonstrated that even single-processor RMT 
devices could be modified effectively (e.g., with the use of 
preferential space redundancy) to significantly improve coverage of 
permanent faults, unlike prior work that only focused on transient 
fault detection for these devices. 

Several researchers (e.g., [3,4,6,7,9,11 ]) have proposed a host of 
other non-multithreaded techniques for fault detection for 
uniprocessors. 

8.2 Fault Detection using Two Processors 
Lockstepped dual processors--both on a single die and different 

dies--have long been used for fault detection. Commercial fault- 
tolerant computers used for mission-critical applications have 
typically employed two processors with cycle-by-cycle lockstep- 
ping, such as the IBM S/390 with the G5 processor [21] and the 
Compaq Himalaya system [30]. 

Recently, Mahmood and McCluskey [9], Austin [1], and Sunda- 
ramoorthy, et al. [26] proposed the use of RMT techniques on dual- 
processor CMP cores. Mahmood and McCluskey's design uses a 
main processor core and a watchdog processor that compares its 
outputs with the outputs of the main processor. Austin's DIVA 
processor employs two processor cores--an aggressive high- 
performance processor, resembling a leading thread, and a low- 
performance checker processor, resembling a trailing thread. 
Because the processor cores are different, Austin's DIVA processor 
can potentially detect design faults, in addition to transient and 
permanent faults. Sundaramoorthy, et al.'s Slipstream processor 
uses a variant of AR-SMT on CMP processors. Although a 
Slipstream processor improves fault coverage, it cannot detect all 
single transient or permanent faults because it does not replicate all 
instructions from the instruction stream. 

We improve upon this body of work on fault detection using dual 
processor cores in two ways. First, we show that the efficiency 
techniques of SRT can be extended to dual-processor CMPs. 
Second, we compared the performance of these CRT processors 
with on-chip lockstepping, using both single-threaded and 
multithreaded workloads. We demonstrated that CRT processors 
provide little advantage for single-threaded workloads, but perform 
significantly better than tockstepped processors for multithreaded 
workloads. 

8.3 Fault Recovery 
Recently, Vijaykumar et al. [29] proposed an architecture called 

SRTR, which extends SRT techniques to support transparent 
hardware recovery. SRTR compares instructions for faults before 
they retire and relies on the processor's intrinsic checkpointed state 
for recovery. Unlike SRTR, the RMT techniques in this paper 
assume that instructions are compared for faults after the instruc- 
tions retire and rely on explicit software checkpoints (e.g., as in 
Tandem systems [30]) or hardware checkpoints (e.g., [25], [13]) for 
recovery. 

9. C O N C L U S I O N S  

Exponential growth in the number of on-chip transistors, coupled 
with reductions in voltage levels, has made microprocessors 
extremely vulnerable to transient faults. In a multithreaded 
environment, we can detect these faults by running two copies of 
the same program as separate threads, feeding them identical 
inputs, and comparing their outputs, a technique we call Redundant 
Multithreading (RMT). 

This paper studied RMT techniques in the context of both single- 
and dual-processor simultaneous multithreaded (SMT) single-chip 
devices. Using a detailed, commercial-grade, SMT processor 
design we uncovered subtle RMT implementation complexities in 
the implementation of the load value queue, line prediction queue, 
and store comparator--structures that were necessary for efficient 
implementation of a single-processor RMT device. 

We found that RMT techniques may have a more significant 
performance impact on single-processor devices than prior studies 
indicated. RMT degraded performance on single-threaded and 
multithreaded workloads on a single processor on average by 30% 
and 32%, respectively, noticeably higher than prior studies 
indicated. We also found that the store queue size could have a 
significant impact on performance. Because simply increasing the 
store queue size is likely to impact the processor cycle time, we 
proposed the use of per-thread store queues to allow greater 
number of store queue entries per thread. 

We also demonstrated that a single-processor RMT device could 
not only cover transient faults, but could also significantly improve 
its permanent fault coverage by using a technique called preferen- 
tial space redundancy. Preferential space redundancy directs a 
processor to choose space over time redundancy, given a choice 
between the two. 

Although RMT techniques could be a significant performance 
burden for single-processor SMT devices, we found that a novel 
application of RMT techniques in a dual-processor device, which 
we term chip-level redundant threading (CRT), showed higher 
performance than lockstepping, especially on muitithreaded 
workloads. We demonstrated that a CRT dual processor outper- 
forms a pair of lockstepped CPUs by 13% on average (with a 
maximum improvement of 22%) on multithreaded workloads. This 
makes CRT a viable alternative for fault detection in upcoming 
dual-processor devices. 
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