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Abstract speculation. In data value speculation an attempt is made to pre-
dict the data value that an instruction is going to produce [15,19].
Data dependence speculation is used in instruction-level In data dependence speculation, no explicit attempt is made to pre-
parallel (ILP) processors to allow early execution of an dict data values. Instead, a prediction is made on whether the input
instruction before a logically preceding instruction on which it  data value of an instruction has been generated and stored in the
may be data dependent. If the instruction is independent, data corresponding named location (memory or register).
dependence speculation succeeds; if not, it fails, and the two
instructions must be synchronized. The modern dynamically
scheduled processors that use data dependence speculation do s
blindly (i.e., every load instruction with unresolved dependences is
speculated). In this paper, we demonstrate that as dynamic
instruction windows get larger, significant performance benefits
can result when intelligent decisions about data dependence
speculation are made. We propose dynamic data dependence
speculation techniques: (i) to predict if the execution of an
instruction is likely to result in a data dependence
mis-speculation, and (ii) to provide the synchronization needed to
avoid a mis-speculation. Experimental results evaluating the  In this paper, we argue that as dynamically-scheduled ILP pro-
effectiveness of the proposed techniques are presented within thecessors are able to establish wider instruction windows, the net

Most of the research on data dependence speculation has
ocused on ensuring correct execution while carrying out this form
f speculation [8,9,10,18] and on static dependence analysis
techniques [1,2,5,6,21]. So far, no attention has been given to
dynamic techniques to improve the accuracy of data dependence
speculation. This is because in the small instruction window sizes
of modern dynamically scheduled processors [12,11,14], the prob-
ability of a mis-speculation is small, and furthermore, the net per-
formance loss that is due to erroneous data dependence
speculation is small.

context of a Multiscalar processor. performance loss due to erroneous speculation can become signif-
) icant. Accordingly, we are concerned with dynamic techniques for
1 Introduction improving the accuracy of data dependence speculation while

maintaining the performance benefits of aggressive speculation.
We propose techniques that attempt: (i) to predict those instruc-
tions whose immediate execution is going to violate a true data
dependence, and (ii) to delay the execution of those instructions
only as long as is necessary to avoid the mis-speculation. A pre-
liminary evaluation of the ideas presented in this paper was first
reported in [17].

Speculative execution is an integral part of modern ILP proces-
sors, be they statically- or dynamically-scheduled designs. Specu-
lation may take two forms: control speculation and data
speculation. Control speculation implies the execution of an
instruction before the execution of a preceding instruction on
which it is control dependent. Data speculation implies the execu-

tion of an instruction before the execution of a preceding instruc- ] ) ] o ]
tion on which itmay beor is data dependent. The rest of this paper is organized as follows: First, in section 2

we review data dependence speculation and discuss how it affects
ILP execution. Then in section 3, we discuss the components of a
method for accurate and aggressive memory data dependence
speculation, while in section 4, we present an implementation
framework for this method. In section 5, we provide experimental

To date, much attention has been focused on control specula-
tion. This outlook is natural because control speculation is the first
step. Control speculation (or some equivalent basic block enlarge-
ment technique such as if-conversion with predicated execution) is
required if we want to consider instructions from more than one a5 on the dynamic behavior of memory dependences and present
basic block for possible issue. Given the sizes of basic blocks, the an evaluation of an implementation of the method we propose
need to go beyond a basic block became apparent some time agoy i the context of a Multiscalar processor [3,4,7,20]. Finally, in
and several techniques to permit control speculation were devel-

! h X section 6 we list what, in our opinion, are the contributions of this
oped,_ both in the context .Of statically- and dynamlcally-schedu_led work and offer concluding remarks. In the discussion that follows
machine models. Improving the accuracy of control speculation

iallv d ic techni ia th f better b h we are concerned with data dependence speculation; accordingly,
(especially dynamic techniques) via the use of better branch pre- ;e ;50 the terms data dependence speculation, data speculation,
diction has been the subject of intensive research recently; a pleth-

: ) e ' and speculation interchangeably.
ora of papers on dynamic and static branch prediction techniques P 9 4

have been published. 2 Data Dependence Speculation
Data speculation has not received as much attention as control

speculation. The two forms of data speculation that have received

some attention are datalue speculation and datependence

Programs are written with an implied, total order. As a program
executes, data values are produced and consumed by its instruc-
tions. These values are conveyed from the producer to the con-
sumer by binding the value to a named storage location, namely
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(b). Ideal dependence (c). Blind dependence (d). Selective dependence
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(a). Code sequence

Figure 1. Data dependence speculation examples. Arrows indicate dependences. Dependences through memory are marked with
diamonds. Dotted arrows indicate ambiguous dependences that are resolved to no dependence during execution.

partial order and the parallelism so obtained are heavily influencedin this environment, mis-speculations are extremely infrequent,
by the dependences that exist between the instructions in the totahnd the cost incurred on mis-speculation is low. Both phenomena
order. Dependences may be unambiguous (i.e., an instruction conare directly attributable to the window sizes that these processors
sumes a value that is known to be created by an instruction precedean establish (these are limited to a few tens of instructions in the
ing it in the total order) or ambiguous (i.e., an instruction best case). As window sizes grow larger, however, we argue that
consumes a value that may be produced by an instruction precedminimizing the net cost of mis-speculation becomes important.
ing it in the total order). During execution, an ambiguous depen- Under these new conditions, the mis-speculations become more
dence gets resolved to either a true dependence, or to ndrequent, and the cost of mis-speculations becomes relatively high.

dependence. To minimize the net cost of mis-speculation, while maintaining
To maintain program semantics, a producer/consumer instruc-the performance benefits of speculation, we may attempt: (i) to

tion pair that is linked via a true dependence has to be executed imminimize the amount of work that is lost on mis-speculation, (ii) to

the order implied by the program. However, any execution order is reduce the time required to redo the work that is lost on mis-specu-

permissible if the two instructions are linked via an ambiguous lation!, or (iii) to reduce the probability of mis-speculation (or, in

dependence that gets resolved to no dependence. This latter casgher words, to reduce the absolute number of mis-speculations).

represents an opportunity for parallelism and hence for higher per-In this work we pursue the third alternative. We elaborate on this in

formance. Unfortunately, the mere classification of a dependencethe next section.

as ambiguous implies the inability to determine whether a true .

dependence exists without actually executing the program. It is for3 Components of a Solution

this reason that ambiguous dependences may obscure some of the : . :

parallelism that is avagi,lable. Tth problem is m)(l)st acute in the case The ideal data dependence speculation mechanism not only

where the production and consumption of data is through rnemoryavoids mis-speculations completely, but also allows loads to exe-
Thus, in this paper, we restrict our discussion to memory depen-cme as early as possible. That is, loads with no true dependences

dences even though all the concepts we present could easily b Wl’ijhlnhthehlnstructlog Wlnc:jow) execute”W|th8ut delay, Wheqeasf
applied to the speculation of register dependences. oads that have true dependences are allowed to execute only after
the store (or the stores) that produces the necessary data has exe-
To expose the parallelism that is hindered by ambiguous depencuted. Equivalently, loads with true dependences are synchronized
dences, data dependence speculation may be used. In data depenith the store (or the stores) they depend upon. It is implied that
dence speculation, a load is allowed to execute before a store ofhe ideal data dependence speculation mechanism has perfect
which it is ambiguously dependent. If no true dependence is vio- knowledge of all the relevant data dependences.

lated in the resulting execution, the speculation is successful. If, . . i
however, a true dependence is violated, the speculation is errone: An example of how the ideal dependence speculation mecha

) . . nism affects execution is shown in figure 1. In part (b), we show
ous (i.e., a mis-speculation). In the latter case, the effects of th%ow the code sequence of part () may execute under ideal data

speculation must be undone. Consequently, some means arg . o
p : . ! : ependence speculation as compared to when speculation is used
required for detecting erroneous speculation and for ensuring cor- P P p P

. - . X - - blindly, part (c). The example code sequence includes two store
rect behavior. Several mechanisms that provide this functionality, instructions,ST.1 and ST2, that are followed by two load instruc-
in either software and/or hardware, have been

tions, LD-1 and LD-2. Ambiguous dependences exist among these
proposed [7,8,9,10,188]. four instructions as indicated by the diamond marked arrows. Dur-
Though data dependence speculation may improve performanceng execution, however, only the dependence betw&ehand
when it is successful, it may as well lead to performance degrada-.D-1 is resolved to a true dependence (as indicated by the continu-
tion because a penalty is typically incurred on mis-speculation. ous arrow). Under ideal dependence speculatibi is executed
Consequently, to gain the most out of data dependence speculatiowithout delay, whereaD-1 is forced to synchronize withF-1.
we would like to use it as aggressively as possible while keeping

the net cost of mis-speculation as low as possible. In contrast to what is ideally possible, in a real implementation,

_ the relevant data dependences are often unknown. Therefore, if we
The modern dynamically-scheduled processors that use dataare to mimic the ideal data dependence speculation mechanism,

dependence speculation [11,12,14] do so blindly (i.e., a load iswe have to attempt: (i) to predict whether the immediate execution

speculated whenever possible). No explicit attempt is made to

reduce the net cost of mis-speculation. The reasons are simply thatl,' One such technique is Dynamic Instruction Reuse [19].




of a load is likely to violate a true data dependence, and if so, (i) to
predict the store (or stores) the load depends upon, and, (iii) to

ever, since this scheme seems elaborate, it is only natural to
attempt to simplify it. One possible simplification is to sséec-

tive data dependence speculation, i.e., carry out only the first part Tond | Store @ Test
of the (ideal) 3-part operation. In this scheme the loads that are — , @ Continue
. . . Condition Variable ~ .-----. &
likely to cause mis-speculation are not speculated. Instead, they " Load

wait until the data addresses of all preceding stores, that have not (a)

yet executed, are known to be different; explicit synchronization is — —

not performed. (We use the teselective data dependence specu- F19uré 2. Synchronization example

lation to signify that we make a decision on whether a load should fteration nstacef

be speculated or not. Loads with dependences are not speculated at(i=0;i<n;i++) 0 5, STyeg SToicu0) 1 STy

all, whereas loads with no dependences can execute freely. In con- yi.q - afij + k 1/ . STa[m]%? sTa[mgalml 2 STy o+l
]

trast, in ideal dependence speculation, we make a decision on T/A \\LD ERANT. T C+L LDy o2

? LDa[c+0

when is the right time to speculate a load.) An example of how $ . : ae+1]

: : : H H e+l x LDa[c+1] LDa[c+1] c+2 LDa[c+1]
selective speculation may affect execution is shown in part (d) of
figure 1. In this exampld,D-2 is speculated, whereaf-1 is not, (@) () © @
since the prediction correctly indicates thB#2 has no true depen-  Figure 3. Example code sequence that illustrates that multiple
dences whildD-1 does. However, with this scheme, and due to the instances of the same static dependence can be active in
lack of explicit synchronization, a load may be delayed more than the current instruction window. In parts (b), (c), and (d),
necessaryLD-1 waits forST-2 also). In practice, and as we demon- the relevant store and load instructions from four
strate in the evaluation section, selective data dependence specula- iterations of the loop of part (a) are shown.

tion can lead to inferior performance when compared to blind
speculation (part (c) of figure 1) even when perfect prediction of
dependences is assumed. Even though other simplifications to th e - ) :
3-part ideal operation may be possible, in this paper we restrict ou €se means later in th'$ section). A.S s_hown in part .@)’ an e_arller
attention to dependence speculation schemes that attempt to mimifiS-SPeculation results in the association of a condition variable
the ideal data dependence speculation system. We do so becauddth @ subsequent dynamic instance of the offending store-load
our primary goal is to demonstrate the potential of dynamic depen_|nstruct|on pair. With the condition variable in place, consider the

dence speculation and synchronization mechanisms, rather than tﬁequence of events in the two possible execution sequences of the
perform a thorough evaluation of a variety of mechanisms. oad and store instructions. In part (b), the load is ready_to execute
before the store. However, before the load executes, it tests the

To mimic the ideal data dependence speculation system, wecondition variable; since the test of the condition variable fails, the
need to implement all the 3 components of the ideal system agoad waits. After the store executes, it sets the condition variable
described before. That is, we must: (i) dynamically identify the and signals the waiting load, which subsequently continues its exe-
store-load pairs that are likely to be data dependent (i.e., thecution as shown. No mis-speculation is observed, and the sequen-
dependences that are likely to cause mis-speculation), (i) assign aial order is preserved. In part (c), the order of execution is a store
synchronization mechanism to dynamic instances of these depenfollowed by a load. After the stores executes, it sets the condition
dences, and (iii) use this mechanism to synchronize the store angariable and records a signal for the load. Before the load executes,
the load instructions. it tests the condition variable; since the test of the condition vari-

Dynamically tracking all possible ambiguous store-load pairs is @ble succeeds, the load continues its execution as shown (the con-
not an option that we consider desirable, or even practical. Fortu-dition variable is reset at this point). One may wonder why
nately, our empirical observations suggest that the following phe- synchronization is provided even when the execution order follows
nomena existsthe static store-load instruction pairs that cause the program order (i.e., store followed by load). This scenario rep-
most of the dynamic data mis-speculations are relatively few andresents the case where the dependence prediction correctly indi-
exhibit temporal locality (we present empirical evidence in Cates that a dependence exists but fails to detect that the order of
section 5). That is, at any given time, different dynamic instances execution has changed (most likely in response to external events
of a few static store-load pairs, either operating repeatedly on thevhose behavior is not easy or desirable to track and predict, such
same memory location (scalar variable) or operating on different &S cache misses or resource conflicts). Synchronization is desirable
memory locations, account for the majority of the mis-specula- €ven in this case since, otherwise, the load will be delayed unnec-
tions. This observation suggests that we may use past history tgSsarily.
dynamically identify and track such store-load pairs, and cache Once condition variables are provided, some means are required
this information in a storage structure of reasonable size. Theto assign a condition variable to a dynamic instance of a store-load
remaining issue is by what means to synchronize the store-loadnstruction pair that has to be synchronized. If synchronization is
pair. to occur as planned, the mapping of condition variables to dynamic

An apt method of providing the required synchronization dependences has to be unique at any given point of time. One
dynamically is to build an association between the store-load@Pproach is to use just the address of the memory location
instruction pair. Suppose this (dynamic) association is a condition@ccessed by the store-load pair as a handle. This method provides
variable on which only two operations are defineait andsignal an indirect means o_f identifying the store and Io_ad instructions that
which test and set the condition variable respectively. These opera@r€ to be synchronized. Unless the store location is accessed only
tions may be logically incorporated into the dynamic actions of the Py the corresponding store-load pair, the assignment will not be
(dependent) load and store instructions to achieve the necessaryndue.
synchronization. Alternatively, we can use the dependence edge as a handle. The

The above concept is illustrated in the example of figure 2 dependence edge may be specified using the (full or part of)

where we assume that some means exist to dynamically associate
tore-load instruction pairs with condition variables (we discuss



instruction addresses (PCs) of the store-load pair in question.the proposed technique is better described when the support struc-
Unfortunately, as exemplified by the code sequence of figure 3tures are considered in this fashion. However, it is possible and
part (b), using this information may not be sufficient to capture the probably desirable in an actual implementation, to combine the
actual behavior of the dependence during execution; the pairprediction and the synchronization structures and/or to integrate
(PCsy, PG p) matches against all four edges shown even though them with other components of the processor. For example, a sim-
the dotted ones should not be synchronized. A static dependenc@le extension is to provide the synchronization functionality in the
between a given store-load pair may correspond to multiple data cache or some other similar storage structure, so that both the
dynamic dependences, which need to be tracked simultaneouslydata and the necessary synchronization are provided at the same
point. Later in this paper, we describe the implementation of a sin-

; ; le structure that provides both dependence prediction and syn-
same static dependence edge, a tag (preferably unique) could b hronization and discuss its advantages and its limitations
assigned to each instance. This tag, in addition to the inStrUCtionHowever since our goal is to demonstrate the utility of the pro-'
addresses of the store-load pair, can be used to specify the dynam| osed téchnique we do not consider further integration or any
dependence edge. In order to be of practical use, the tag must b ther implementa’tions
derived from information available during execution of the corre- ’
sponding instructions. A possible source of the tag for the depen4.1 MDPT
dent store and load instructions is the data address of the memory

location to be accessed, as shown in figure 3 part (c). An alternateVi dpér; e;trﬁgéiégin'wggtc;d\?vﬂtgt'ﬁzraosrtaﬁgt ds&g:geﬁgﬁt aorl]dngrr:i_c
way of generating instance tags is shown in figure 3 part (d), where. P - . que yha
stances of the corresponding static store-load pair will result in a

dynamic store and load instruction instances are numbered basell’ S . .
on their PC& The difference in the instance numbers of the mis-speculation (i.e., should the store and load instructions be syn-

: . : chronized). In particular, each entry of the MDPT consists of the
instructions which are dependent, referred to asddfendence 0 ino "fields: (1) valid flag (V), (2) load instruction address

distance may be used to tag dynamic instances of the static depen-, - . .
LDPC), (3) store instruction address (STPC), (4) dependence dis-
dence edg’é(as may be seen for the example code, a dependenc ance (DIST), and (5) optional prediction (not shown in any of the

edge between $Bnd LD, is tagged - in addition to the ; ; T - 4

nstruction PCs$- with th[iﬂ\j/';angidistggce) Though both tagging O'<Ng examples). The valid flag indicates if the entry is cur-
u ) : u - 1houg 99INg rently in use. The load and store instruction address fields hold the

schemes strive to provide unique tags, each may fall short of thisy o oram counter values of a pair of load and store instructions.

goal under some circumstances (for example, the dependence disryig compination of fields uniquely identifies ttatic instruction

tance may change in a way that we fail to predict, or the address,5i tor \which it has been allocated. The dependence distance
accessed may remain constant across all instances of the sal

cords the difference of the instance numbers of the store and load

dependence). instructions whose mis-speculation caused the allocation of the
Since, our primary goal in this paper, is to introduce and evalu- entry (if we were to use the data address to tag dependence
ate novel mechanisms (and not to carry out a thorough analysis ofnstances this field would not have been necessary). The purpose
a variety of options), we restrict our attention to the second schemeof the prediction field is to capture, in a reasonable way, the past

To distinguish between the different dynamic instances of the

where the dependence distance is used to tag dependences. behavior of mis-speculations for the instruction pair in order to aid
] in avoiding future mis-speculations or unnecessary delays. Many
4 Implementation Aspects options are possible for the prediction field (for example an

up-down counter or dependence history based schemes); a discus-
ion is postponed until later in this section. The prediction field is
ptional since, if omitted, we can always predict that synchroniza-
ion should take place.

As we discussed in the previous section, in order to improve the
accuracy of data dependence speculation, we attempt: (i) to predic
dynamically, based on the history of mis-speculations, whether
store-load pair is likely to be mis-speculated and if so, (ii) to syn-
chronize the two instructions. In this section, we describe an4.2 MDST
implementation framework for thi hnique. W rtition th . . .
suB;orte st'frlfjgture:1 iﬁto0 twoo inttersd::i‘)cendgﬁ;a tablleeg;e;;gryt © An entry of the MDST supplles. a condltlon \{arlable and the .
dependencerediction table (MDPT) and amemorydependence _mechamsm necessary to synchronize a dynamic instance of a static
synchronizationtable (MDST). The MDPT is used to identify, instruction pair (as pred_lcted by the MD_PT)._ In partlcula_r, each
through prediction, those instruction pairs that ought to be syn-entry of the M.DST consists of the following fields: (1).vaI|d flgg
chronized. The MDST provides a dynamic pool of condition vari- (V). (2) load instruction address (LDPC), (3) store instruction
ables and the mechanisms necessary to associate them wit ddress (ST.PC)’ (4) load identifier (LDID), (5) store identifier
dynamic store-load instruction pairs to be synchronized. In the dis-( TID). (6) instance tag (INSTANCE), and (7) fulllempty flag

cussion that follows, we first describe the support structures andl(JFs/eE)'Tpl—gelo\ﬁilIdari?%t?r%ﬁﬁﬁfug%?h:é dtrlj:sserfwigl):jf:sgrr\/:as tﬂgt’s,g:ne
then proceed to explain their operation by means of an example. : - . .
P P P y o P purpose as in the MDPT. The load and store identifiers have to
We present the support structures as separate, distinct compogniquely identify, within the current instruction window, a
nents of the processor. We do so, since we believe that the crux ofiynamic instance of a load or a store instruction respectively. The
exact encoding of this field depends on the implementation of the
2. Atthis point we are not concerned with mechanisms that implement this func- 000 QUt_'Qf'Qrder) execution eng'ne (f_or example, Ina sup(_ersca-
tionality. However, note that only the difference between the instance numbers is lar machine that uses reservation stations we can use the index of
relevant and not the absolute values. As we explain in the evaluation section, in  the reservation station that holds the instruction as its LDID or
Multiscalar we can approximate the instance numbers by using statically assigned STID) The instance tag field is used to distinguish between differ-
stage identifiers. In a superscalar environment we may use a small associative d ! . f th icd d d in th
pool of counters. Load and store instructions can then be numbered based on theilent _ynamlc Instances of the same static depen _ence edge (in the
PC as they are issued. To support invalidations due to mis-speculation, these ~ Working example that follows we show how to derive the value for

counters will have to be treated as registers. Alternatively, a load (store) that has this field). The fu||/empty flag provides the function of a condition
to synchronize, may perform a backward (forward) scan through the instruction variable.

window attempting to locate the appropriate store (load) instruction.

3. To aid understanding, this scheme can be viewed as a dynamic, run-time imple-
mentation of the linear recurrence dependence analysis done by compilers.
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Figure 4. Synchronization of memory dependences.
4.3 Working Example ber of LD3, and the LDID assigned to LD3 by the OoO core
. ) . (action 3, part (c)). At the same time, the full/lempty flag of the
The exact function and use of the fields in the MDPT and the yo1v aliocated entry is set to empty. Finally, the MDST returns
MDST are best understood by means of an example. In the discusg,o a4 identifier to the load/store pool indicating that the load
sion that follows we are using the working example of figure 4. For o\ it (action 4, part (c))
the working example, assume that execution takes place on a pro- ) ' ' ) o
cessor which: (i) issues multiple memory accesses per cycle from a When ST2 is ready to access the memory hierarchy, its instruc-
pool of load and store instructions and (i) provides a mechanismtion address and its instance number (which is 2) are sent to the
to detect and correct mis-speculations due to memory dependencMDPT (action 5, part (d)). (We do not show the STID since, as we
speculation. For the sake of clarity, we assume that once an entry i§ater explain, it is only needed to support control speculation.) The
allocated in the MDPT it will always cause a synchronization to be instruction address of ST2 is matched against the contents of all
predicted. store instruction address fields of the MDPT (shown in grey).
. . . . Since a match is found, the MDPT inspects the contents of the
Consider the memory operations for three iterations of the IOOp’entry and initiates a synchronization in the MDST. As a result, the
which constitute the active pool of load and store instructions asy;ppT aqds the contents of the DIST field to the instance number
shown in part (a) of the figure. Further, assume thit->parent of the store (that is, 2 + 1) to determine the instance number of the
points to Fhe same memory location for all _valnlaki_takes. The load that should be synchronized. It then uses this result, in combi-
dynamic instances of the load and store instructions are showny,qiiqn with the load instruction address and the store instruction
numbered, and the true dependences are indicated as dashedyiess to search through the MDST (action 6, part (d)), where it
arrows connecting the corresponding instructions in part @). Thefinds the allocated synchronization entry. Consequently, the
sequence of events that leads to the synchronization of they,empty field is set to full, and the MDST returns the load identi-
ST2-LD3 dependence is shown in parts (b) through (d) of the fig- o\ 1 the load/store pool to signal the waiting load (action 7, part
ure. Initially, both tables are empty. AS soon as a mls_-speculatlon(d)). At this point, LD3 is free to continue execution. Furthermore,
g?q-{il_tlr_]gzaggrr)::s;ncg‘) tlﬁecht)Ziitegﬁo? tl\k/lleDPs-lt—oregtri%sltsru?:ltli(c))(rflztegr’%nce the synchronization is complete, the entry in the MDST is
recorded (action 1, part (b)). The DIST field of the newly allocated otneeded and may be freed (acFlon 8, part (d)). o
entry is set to 1, which is the difference of the instance numbers of If ST2 accesses the memory hierarchy before LD3, it is unnec-
ST1 and LD2 (1 and 2 respectively). As a result of the mis-specu-€ssary for LD3 to be delayed. Accordingly, the synchronization
lation, instructions following the load are squashed and must bescheme allows LD3 to issue and execute without any delays. Con-
re-issued. We do not show the re-execution of LD2. sider the sequence of relevant events shown in parts (e) and (f) of
. . . figure 4. When ST2 is ready to access the memory hierarchy, it
As execution continues, assume that_the ?ddfess of LD3 is Cal'passes through the MDPT as before with a match found (action 2,
culated before the address of ST2. At this point, LD3 may specula-p, 1+ () Since a match is found, the MDPT inspects the contents
tively access the memory hierarchy. Before LD3 is allowed t0 do ¢ e entry and initiates a synchronization in the MDST. However,
S0, its instruction address, its instance number (which is 3), and itSho matching entry is found there since LD3 has yet to be seen.
assigned load identifieri (the exact value of LDID is immaterial) are Consequently, a new entry is allocated, and its fulllempty flag is
sent to the MDPT (action 2, part (c)). The instruction address of so4 + | (action 3, part (e)). Later, when LD3 is ready to access
LD3 is matched against the contents of all load instruction address.me memory hieraréhy, it passes thrbugh the MDPT and determines
fields of the MDPT (shown in grey). Since a match is found, the y,5; 5 synchronization is warranted as before (action 4, part (f)).
MDPT inspects the entry predictor to determine if a synchroniza- tpe \DPT searches the MDST, where it now finds an allocated
tion is warranted. Assuming the predwtor indicates a_synchromza—emry with the full/empty flag set to full (action 5, part (f)). At this
tion, the MDPT allocates an entry in the MDST using the load it ‘the MDST returns the load identifier to the load/store pool
instruction address, the store instruction address, the instance nu 5o the load may continue execution immediately (action 6, part




(). It also frees the MDST entry (action 7, part (f)). (ii) using a suitable encoding of the STID and LDID tags that
4.4 Issues would allow for the invalidation of_ a range of in_structions. For
: example, we can use as many bits as the maximum number of
We now discuss a few issues which relate to the implementationsimultaneously, unresolved control transfer instructions allowed.
we have described. This encoding allows us to invalidate at a basic block granularity
with an associative lookup.

Upon matching a MDPT entry, a determination must be made as4'4'4 Multiple Table Entry Matches

to whether the instruction pair in question warrants synchroniza- Although not illustrated in the examples, it is possible for a load

tion. The simplest approach is to assume that any matching entryor a store to match multiple entries of the MDPT and/or of the

ought to be synchronized (i.e., the predictor field is optional). MDST. This case represents multiple memory dependences

However, this approach may lead to unnecessary delays in caseivolving the same static load and/or store instructions (for exam-

where the store-load instruction pairs are mis-speculated onlyple in the codef (cond) store; M else store, M; load M, there are two

some of the time. Instead, a more intelligent approach may bedependencetore,, load) and(store,, load)). There are several ways

effective. Any of the plethora of known methods (counters, voting of addressing this issue.

schemes, adaptive predictors, etc.) used to provide the intelligent

prediction of control dependences may be applied, with appropri-

ate modifications, to the prediction of data dependences. Regard ; S ;

less of the actual choice of mechanism, the prediction method"esPect to both loads and stores is maintained in the tables. For
example, in the MDPT we may allow a new entry to be created

ought to exhibit the quality that it strengthens the prediction when - ; .
Anly after any pre-existing entries for the same static load or store

speculation succeeds and weakens the prediction when speculatio L9 . O
frfils P P are de-allocated. To maintain a uniqgue mapping in the MDST, we

may force a load or a store to stall and retry if there is another
4.4.2 Incomplete Synchronization entry for either of the instructions that have to synchronize (alter-
natively we may de-allocate the pre-existing entry). This approach
8s acceptable when: (i) multiple dependences per static load and
store are relatively uncommon or (i) when the dynamic depen-
Ndence pattern consists of long series during which only one of the
many dependences is active for the most part. In both cases, the
X : . - adaptive nature of the prediction mechanism is likely to discard all
ations are: (i) to avoid d_eac_jlock and_(n) to free the MDST entry but F?he most frequentpmis-speculations. If multipley dependences
allocated. for a;ynchronlzatlpr) that will never occur. The deadlock are relatively common, a more aggressive approach that evaluates
problem is easily solved, as it is re_asonable to assume that a load 'Fhultiple entries simultaneously is expedient. One approach is to
always free to execute once all prior stores are known to have exeéupport multiple stores per load or vice versa. This can be achieved

cuted. At that point, the load identifier has to be send to the MDST o - - :
where it is used to free the entry that was allocated for the particu-by modifying the entries MDPT and MDST to include multiple

lar load.The information recorded in the MDST entry can then be fields for store PCs per load (or the other way around).

used to locate update the corresponding prediction entry in the If multiple dependences are to be fully supported within the
MDPT implementation framework we presented in this section, the fol-
. . . lowing considerations must be addressed: (i) when multiple depen-
Under similar circumstances to thpse descrlbed above,. a stor ences are predicted from the MDPT, how to allocate multiple
may allqcate an MDST entry for Wh'Ch no _matchmg _Ioad IS eVeT antries, one per predicted dependence, in the MDST, (ii) when
seen. Since stores never delay their execution, there is no deadlocgnchronization happens on an MDST entry, how to determine

]E)robltehm "\r/]lég_?_ caste. I—l|J0vae\€er, Itt :S still necessta(;y thllevetntlJt%[ly whether the particular load has other entries it has to wait for, and
ree the entry. nfortunately, we cannot de-allocaté tis ;) \ynen a store synchronizes simultaneously with many loads in
entry when the store retires (recall that in section 3 we explalned,[he MDST, how to go about sending all the LDIDs. Again several
fjhatt. we V‘g.’”'? I'kteht(; syncrk]]ror:ldze a stq;et-rload palrt.whendthe gre_options exist. For the purposes of this paper, we address all three
|Ct|0_n||nt 'iﬁ ez a (\;"e S OUA ' eve_r;)ll el i.xeC‘.J |ct)n for er to.esconsiderations by combining the two tables into a single structure
n% Vio ? ﬁ/ € eﬁ()len _encez.t fp?lSS'h € solution 1s to ree end”%swhere each prediction entry carries with it a predefined number of
whose fulliempty flag Is set to full whenever an entry Is neede synchronization entries (note that in this organization, the PCs of
and no table entries are not in use. Another possible solution is tqpa g4 ctions need not be recorded in each synchronization
all<t)<_:ate entfrlesdusmg ragdgm or LRU replacement, in which Caseentry). We next explain how this organization addresses the afore-
entries are freed as needed. mentioned issues. Allocating multiple synchronization entries,
4.4.3 Mis-speculations each for a different prediction entry, is straightforward since the
] ) o ] prediction and synchronization entries are now physically adja-
In the event Of Control or data mIS-Specu|atIOﬂ, it is de5|rab|e, cent. To determine whether a load has other Synchronization
although not necessary, to invalidate any MDST entries that wereentries when a synchronization occurs, we do a second associative
a.”ocated to the instructions that are SquaShed. The LDID and tthokup using the load’s LDID. If no other entries are found the
STID fields can be used to identify the entries that have to be inval-jpad is allowed to continue execution. Finally, when multiple loads
idated. are simultaneously synchronized, we allow only up to a predefined
Typically, many instructions continuous in the program order, number of them to do so at any given cycle (selecting the loads to
are invalidated when a mis-speculation occurs. Thus, we may havévake up among those that have been signalled is no different than
to invalidate multiple MDST entries on mis-speculation. Fortu- Selecting the instructions to execute from those that are ready in an
nately, the MDST has to be notified only of those instructions that ©0O processor).
have entries allocated to them, which are typically going to be few. . g
To support multiple invalidations per cycle, several options exist 4.4.5 Centralized Versus Distributed Structures
such as (i) providing multiple ports to the STID and LDID tags, or ~ So far it has been assumed that the MDPT and the MDST are

4.4.1 Intelligent Prediction

A straightforward approach is to ensure, by means of the
replacement and allocation policies, that a unique mapping with

So far, it has been assumed that any load, that waits on th
full/lempty flag of an entry in the MDST, eventually sees a match-
ing store that signals to complete the synchronization. Since a
MDPT entry only provides a prediction, this expectation may not
always be fulfilled. If this situation arises, the two main consider-



centralized structures. However, as greater levels of instruc-program is partitioned into portions called tasks. These tasks may
tion-level parallelism are exploited, greater numbers of concurrentbe control and data dependent. A Multiscalar processor sequences
memory accesses must be sustained. Under such conditions, thiarough the CFG speculatively, a task at a time, without pausing to
support structures are likely to play a key role in execution. As a inspect any of the instructions within a task. A task is assigned to
consequence, it is important to assure that neither structureone of a collection of processing units for execution by passing the
becomes a bottleneck. The most straightforward way to meet thisinitial program counter of the task. Multiple tasks execute in paral-
demand is to multi-port the tables. While such an approach pro-lel on the processing units, resulting in an aggregate execution rate
vides the needed bandwidth, its access latency and area growf multiple instructions per cycle. In this organization, the instruc-
quickly as the number of ports is increased. It is also possible totion window is bounded by the first instruction in the earliest exe-
divide the table entries into banks indexed by the load and storecuting task and the last instruction in the latest executing task.
instruction addresses. This solution is likely to be inadequate sinceMore details of the Multiscalar model can be found in [3,4,7,8,20].
temporal and spatial locality in instruction reference patterns may

- In a Multiscalar processor, dependences may be characterized
cause many conflicting bank accesses.

as intra-task (within a task) orinter-task (between individual

An alternative approach is to actually distribute the structures, tasks). The results herein are all simulated executions in which
with identical copies of the MDPT and the MDST provided at each intra-task memory data dependences are not speculated, but
source of memory accesses (assuming multiple load/store queuesnter-task memory data dependences are freely speculated. That is,
multiple load/store reservation stations, etc.). Each source of mem-mis-speculations may only occur for store-load instruction pairs
ory accesses need only use its local copy of the two tables most ofvhose dependence edge crosses dynamic task boundaries. Further-
the time. As soon as a mis-speculation is detected, this fact ismore, the results reflect execution with no compiler supported dis-
broadcast to all copies of the MDPT, causing an entry to be allo-ambiguation of these memory dependences. This detail implies
cated in each copy as needed. A load instruction uses both tables ithat even in cases where an unambiguous memory dependence
the same manner as described earlier. A store instruction, on thexists, it is treated no differently than an ambiguous memory
other hand, behaves somewhat differently. In the event a match fodependence during execution. At first glance, the reader may be
a store is found in a local MDPT, all identifying information for tempted to conclude that the results of this section are not very
the entry is broadcast to all copies of the MDST. Each copy of theuseful since many dependences could be classified as unambigu-
MDST searches its entries to find any allocated synchronizationous, even with a rudimentary compiler. However, this conclusion is
entry. The outcomes with respect to whether a match is or is notnot necessarily correct, and we elaborate on this next.

found are similar to those described earlier. In addition, any pre- .4 goal of any 000 execution processor, be it superscalar or
diction upda_te to an entry of a local MDPT must be br_oadcast_ln Multiscalar, is to execute a sequential program in parallel. In doing
order to maintain a similar view among all of the copies of this g, “any hrocessor of this kind, dynamically converts the sequential
table. program order into a parallel execution order. In this environment,
: - the only condition that prevents the OoO execution of two instruc-

5 Experimental Evaluation tions is the existence of a dependence that the OoO execution

In this section we present experimental evidence in support ofengine can detect without executing the instructions. This implies
our observations on the dynamic behavior of memory depen-that even if the compiler knows that a particular memory depen-
dences, and we evaluate the utility of the mechanism we proposedlence exists, nothing prevents the dynamic speculation of the cor-
in the previous section. To do so, we require a processing modefesponding load instruction. Consequently, to prevent the
where dynamic data dependence speculation is heavily used angpeculation of a dependence, the compiler has to identify by some
where the dynamic window size is relatively large. One processingmeans (for example through ISA extensions) that a load should not
model that satisfies both requirements is the Multiscalar processbe speculated immediately and to enforce synchronization
ing model [7, 20]. Accordingly, we use various configurations of between unambiguously-dependent instructions (perhaps by using
Multiscalar processors for most of the experiments we perform. signal and wait operations on compiler generated synchronization
However, for some of our experiments we use an unrealistic OoOvariables or via full/empty bits). This is not a trivial task and futh-
execution model. We do so in order to demonstrate that our obserermore, a program in which synchronization has been inserted is
vations on the dynamic behavior of memory dependences are nofot a sequential program any more.
specific to the Multiscalar processing model. 5.1 Methodology

The unrealistic OoO execution model we use corresponds to a Th It th b lected imulator that
processor that is capable of establishing a perfect, continuous win-_.' 1€ resuits we present have been cofiected on a simulator tha

dow of a given size. Under this model and for a window size of faithfully represents a Multiscalar processor. The simulator
a load is always mis-speculated if a preceding store, on which it isaccepts annotated big endian MIPS instruction set binaries (with-

data dependent, appears within less tharstructions apart in the Ut architected delay slots of any kind) produced by the Multisca-
sequentFi)aI executigﬁ order. This model represents tFi:e worst casé?r compiler, a modified version of GNU GCC 2.5.8 compiler (the
scenario with respect to the number of mis-speculations that can b PEClnt_95 ben_chmarks were compiled with the newest Multisca-
observed at run-time since it assumes that every dependence that [&" COmpiler which was built on top of GCC 2.7.2). In order to pro-
visible from within the given instruction window is mis-specu- vide results which reflect reality with as much accuracy as
lated. We use this model not only to show that our observationsPossible, the simulator performs all of the operations of a Multi-
about the dynamic behavior of memory dependences hold eve calar processor and executes all .of the program code, except sys-
under these extreme conditions, but also, to provide some insight€™M calls, on a cycle-by-cycle basis. (System calls are handled by
on how the number of possible mis-speculations and dependencegapplng to the OS of the simulation host.)

varies as a function of the dynamic window size. We performed the bulk of our experimentation with programs

To demonstrate the utility of the proposed mechanisms, we Sim_taken from the SPECint92 benchmark suite (with inputs indicated

ulate various configurations of a Multiscalar processors. A Multi- IN Parenthesesgompresgin), espressdti.in), gec (integrate. i) sc

scalar processor relies on a combination of hardware and softwarél]?a?al)' anckllzp d(7tqléeens)d However, tc? (1_emonstrﬁ1te the u““tyl
to extract parallelism from ordinary (sequential) programs. In this ofthe proposed data dependence specuiation mechanism, we aiso

model of execution, the control flow graph (CFG) of a sequential report performance results (for one Multiscalar configuration) for



the SPECIint95 and SPECfp95 suite. However, in order to keep the [ oz Cydles | Scalar | Cycles | Floating-Point | Cycles
simulation time of the SPEC95 programs reasonable, we used

either the train or the test input data sets (which sometimes are in | A49/S4 1 | Store 1 | AddiSubSPIDP] 212
the order of a few billion instructions). We used the train data set | Shift/Logic 1| Load 1 | Multiply SP/DP 415
for the following programs:099.gq 129.compress132.ijpeg Multiply 4 | Branch 1 | Divide sP/DP 12/18
134.perl (jumble), 147.vortex 101.tomcaty110.apply 141.apsi Divide o

145.fpppp, and 146.wave5 For 124.m88ksim 126.gc¢ 130.lj,

102.swim 103.su2car 104.hydro2¢d 107.mgrid, and 125.turb3d, Table 2.Functional Unit Latencies (“SP/DP” stands for “Sin-
we used the test data set. All programs, except 101.tomcaty, gle/Double precision”).

125.turb3d, and 146.wave5, were ran to completion for the input
used. Tablel reports the dynamic, useful (i.e., committed),
instruction counts for the corresponding Multiscalar execution.
Only one version of a Multiscalar binary is created per benchmark
the same Multiscalar binary is used for all the Multiscalar configu-
rations in these experiments. The Multiscalar binaries are also
used by the unrealistic OoO execution model, however in this
case, the Multiscalar specific annotations are ignored.

of direct mapped data cache in 64 byte blocks with a 32 entry
address resolution buffer, for a total of 64 kilobytes and 128 kilo-
.bytes of banked data storage as well as 256 and 512 address reso-
"lution entries for 4-stage and 8-stage Multiscalar processors
respectively. (A data bank access returns 1 word in a hit time of 2
cycles, with an additional penalty of 10+3 cycles, plus any bus
contention, on a miss.) Both loads and stores are non-blocking.

5.3 Dynamic behavior of memory dependences

SPECint92 SPECint95 SPECfp95 ] ) ] )
compress 73m | 099,90 so5 v | Toitomeay | 280G . As we nqted in ;ectlon .3, the number of mls-specglafﬂons
increases with the window size. Furthermore, the vast majority of
espresso | 596 M | 124.m88ksim | 496 M | 102.swim 776 M the mis-speculations observed dynamically can be attributed to rel-
gce 73M | 126.gcc 1.6G | 103.su2cor | 1.4G atively few static dependences (store-load pairs) that exhibit tem-
o 420 M | 129.compress| 39M | 104hydrozd | 1.2G poral locality. In this section, we present experimental evidence in
support of these observations. To do so, we simdiatedepen-
xlisp 247.M | 130li 1.08 G | 107.mgrid 5.96 dencecachespr DDCs, of various sizes. A DDC of size records
132.ijpeg 1.58 G | 110.applu 675 M the data dependences that causedhthest recent mis-specula-
134.perl 237G | 125.urbad | 28G tions. We count two events, hits and misses. These we define as
- follows: whenever a mis-speculation occurs we search through the
147 vortex 304G | 14Lapsi 296 DDC using the instruction PCs of the offending store and load
145.fpppp 511 M instructions. If a matching entry is found, we count a hit, other-
146.waves 276G wise, we count a miss. A low data dependence cache miss rate
o . - implies that the relevant data dependences exhibit temporal local-
Table 1.Dynamic instruction count per benchmark (committed ity.
instructions).

_ ) In table 3, we report the number of mis-speculations observed
5.2 Configuration under the unrealistic O©0O model for various window sizes (WS
column). As it can be seen, moving from a window of 8 instruc-

coLr}i;tlfatSigﬁtslweV\Lljesgéviﬁ ghuer gf;i':?m?nigioﬂu&zcgﬁh&%C&isl‘g_r tions to a window of 32 instructions results in a dramatic increase
' in the number of mis-speculations. It is implied that most of the

lar pr r configurations of 4 an r in nit r - . h
scajar processor configurations o and 8 processing units (0 namic dependences are spread across several instructions

d
hich may include many unrelated stores). This observation pro-

stages) with a global sequencer to orchestrate task assignment. T?C-g%
sequencer maintains a 1024 entry 2-way set associative cache ides a hint to why selective data dependence speculation (i.e., not
speculating the loads with dependences within the current win-

task descriptors. The control flow predictor of the sequencer uses
:2? aﬁgg)hir?(fllﬁzg Ssgh&m; n?rssrgtll?%d alg (Jl[rless]é 'IS'?:CIEontrol flow predlc'dow) may cause performance degradation when compared to blind

' speculation; when a dependence is spread across several, unrelated

The pipeline structure of a processing unit is a traditional 5 stores, it is often the case that it takes more time to wait until all

stage pipeline (IF/ID/EX/MEM/WB) which is configured with  the unrelated stores are resolved than to incur a mis-speculation
2-way, out-of-order issue characteristics. (Thus the peak executionand re-execute the load and the instructions that follow it.
rate of a 4-unit configuration is 8 instructions per cycle). The
instructions are executed by a collection of pipelined functional
units (2 simple integer FU, 1 complex integer FU, 1 floating point
FU, 1 branch FU, and 1 memory FU) according to the class of the
particular instruction and with the latencies indicated in table 2. A

unidirectional, point-to-point ring connects the processing units to explains, for example, why inompressiewer dependences are

provide a communication path, with a 2 word width and 1 cycle responsible for the vast majority of mis-speculations when the
latency between adjacent processing units. All memory requestswindow increases from 8 to 16 or 8 to 32. Finally, in table 5 we

are handled by a single 4-word, split transaction memory bus'sthow the miss-rate of DDCs of 32, 128, and 512 entries. As it can

Each memory access requires a 10 cycle access latency for the fir; . g
4 words and 1 cycle for each additional 4 words, plus any bus con-%e seen, even when all the dynamic dependences (that are visible

; from within the given instruction window) are mis-speculated,
tention. ; > .
only a few static dependences cause most of the mis-speculations.

Each processing unit is configured with 32 kilobytes of 2-way Furthermore, DDCs of moderate size capture most of these depen-
set associative instruction cache in 64 byte blocks. (An instructiondences.
cache access returns 4 words in a hit time of 1 cycle, with an addi-
tional penalty of 10+3 cycles, plus any bus contention, on a miss.)fo
A crossbar interconnects the processing units to twice as many,.
interleaved data banks. Each data bank is configured as 8 kilobytes

In table 4, we show the number of static dependences that are
responsible for 99.9% of all dynamic mis-speculations. Note that
as the window size increases more static dependences are exposed.
These newly exposed dependences may be far more frequent than
the dependences observed when the window is smaller. This

For the Multiscalar model we use two configurations, one with
ur stages and one with eight stages. The number of mis-specula-
ons observed for these configurations are shown in table 6. As it



WS | compress espresso gce sc xlisp Cs compress espresso gce sc xlisp
8 33 47.45K| 276.08 K 2.99 MI 2.03 1 50.970 16.68 85.20) 73.74 68.2p
16 | 857.05K 1.01M| 60273 K| 6.09 M 5.35 N 2 31.470 11.18 75.59) 28.14 39.8p
32 2.46 M 1.41M 157 M 11.38 8.67 4 11.240 9.74 62.96 16.22 18.7f
64 3.74M 7.25M 251 M 13.73 13.85 8 0.660 4.28 45.84 14.45 4.4
128 431M 10.87 M 3.33 26.91 N 19.79 16 0.020 1.10 31.93 6.46 1.5
256 5.42 M 14.15M 4.26 32.18 N 23.93 32 0.002 0.36 18.05 2.96 0.3
512 6.05 M 17.19M 5.02 35.59 N 26.66 64 0.002 0.10 8.92 0.88 0.01
Table 3. Unrealistic OoO model: Number of dynamic memory 128 0.002 0.05 4.55 0.17 -0004
dependences observed as a function of window size (WS). 256 0.002 0.03 3.16 0.02 .0004
- 512 0.002 0.02 2.93 0.01] .0004
WS | compress | espresso gce sC xlisp
5 5 = | 25| 6 31 1024 0.002 0.02 2.40 0.01 .0004
16 2 104 | 704| 127 73 Table 7. 8-stage Multiscalar: DDC miss-rates (percentage) as a
= c 201 | 17531 250  10% function of the DDC size (“CS” stands for DDC size).
64 9 429 | 2067 | 380 167 configuration only (i.e., for this experiment we use the configura-
tion with the higher number of mis-speculations). As it can be
128 18 848 | 4446| 589| 266 ; o :
seen, even a DDC of 64 entries exhibits a miss rate of less than
256 25 1500 | 6083 | 722 333 10% for all benchmarks. Furthermore, a DDC with 1024 entries
512 26 2021 | 8001| 851 367 captures virtually all static dependences for all benchmarks except

gcc. For the Multiscalar model, we do not show measurements on
the number of static dependences that cause most of the mis-spec-
ulations. That these dependences are few is implied by the results
of the next section.

Table 4.Unrealistic OoO model: number of static dependences
responsible for 99.9% of all mis-speculations observed
("WS” stands for “window size”).

WS | CS | compress | espresso | gec < xlisp 5.4 Comparison of dependence speculation policies
8| 32| 181818| 01317 | 22430 08489  0.027f

In this section we: (i) demonstrate that selective speculation

8| 128| 1g1g18| 01194| 08645 0.0034 0.002F may lead to inferior performance when compared to blind specula-

tion and (ii) obtain an upper bound on the performance improve-

ment that is possible through the use of the data dependence
prediction and synchronization approach we described in

section 3.

8| 512| 1s1818| 01194 | o0.1252| 00034  0.002f

16 32 0.0028 0.3331| 18.3372 5.5208 1.55
16 | 128 0.0028 0.0190 1.5781 0.0445 0.003

7
6
16 | 512 0.0028 0.0178 0.7249 0,004k 0.00d6 T(_) do S0, we compare the fc_)_llowing four d_ata dependence_ spec-
- - ulation policies: (i) NEVER, (ii) ALWAYS, (ii)) WAIT, and (vi)

82| 82| 00020] 19247| 330023 6.6795 48947 PSYNC (for perfect synchronization). Under NEVER, no data
32 | 128 0.0020 0.1128| 43829  1.7359  0.0033 dependence speculation is performed. Under ALWAYS, depen-

8

2

2

8

32 | 512 0.0020 0.0343] 1017d 00046  0.003 dence speculation is used blindly (this is the policy used in the
ol = 50034 Saoa0] asasod 1110 1977 modern ILP processors that implement depend_enc_e speculation).
- : i . : Under policy WAIT, data dependence speculation is used selec-
64 | 128 0.0023 0.2453|  10.586( 3.3251  0.17¢ tively, that is loads with true dependences rwesynchronized,;
instead they are forced to wait until the addresses of all previous
stores are known to be different. Finally, under PSYNC, loads with
no dependences execute as early as possible, whereas loads with

64 | 512 0.0023 0.0142 1.2652 0.0062 0.003
128 32 0.0269 17.3775| 52.1914 215784  37.808

128 | 128] 0.0027| 0.6911) 20.5244  3.734p 26419 true dependences synchronize with the corresponding stores. Pol-
128 | 512 0.0027 0.0389|  2.2264 0.1043  0.0049 icy PSYNC provides an upper limit on the performance improve-
256 | 32 00274 | 208417| 56.0061 29.7778  55.95b6 ment that is possible through the use of the mechanisms we

presented in section 3. For PSYNC and WAIT we make use of per-

256 | 128 0.0026 3.5985| 27.4677 4.467 5.2390 fect dependence prediction

256 | 512 0.0026 0.1261 3.6096 0.3614 0.0034

oT

150%
Table 5.Unrealistic OoO model: Miss-Rate (percentage) of DDC 4-Stages 8-Stages
as a function of window size and DDC size. WS stands for 100%
“window size”, and CS stands for “DDC size”.
Stages | compress | espresso gce sC xlisp 50%
4 1.04M 2.38M 285 K 257M 2.18
8 1.99M 2.86 M 464 K 4.81M 2.76 0% 1.03 1.61 1.36 1.45 1.3% 1.13 1.63 1.40 154 1.3§
Table 6.Multiscalar model: number of mis-speculations observed. g 2 8§ 8 @ g 7 8§ @ g
o ] = Q ] =
. . o o
can be observed, mis-speculations are more frequent when the W ALWAYS O wAIT [0 PSYNC

window size is larger (8 stages as opposed to 4 stages). In table 7,

. . . Figure 5. Comparison of three data dependence speculation
we report the miss-rates of DDCs of various sizes for the 8-stage g P P P

policies. Speedups (%) are relative to policy NEVER.



In figure 5, we report (along the X-axis) the IPC of Multiscalar paper since the design space is vast, and the simulation method
processor configurations that do not use data dependence speculthat is necessary (instruction driven, timing simulation) is
tion (policy NEVER) and the speedups obtained when policies extremely time consuming.

ALWAY'S, WAIT, or PSYNC are used instead. Since the dynamic g0, though we do not attempt an exhaustive evaluation of the

window size is an important consideration we simulate Multiscalar design space, we do simulate two different dependence predictors
configurations of four and eight stages. It can be observed tha'which we refér to as (i) SYNC and (i) ESYNC (the “E” is for

even blind data dependence speculation (policy ALWAYS) signifi- gnpanced). SYNC is our baseline predictor that uses an up/down

cantly improves performance in all cases. Furthermore, in contrasty,y raiing’ counter (as described in the beginning of this section).
to Wh'.an dependgnc_e speculation is not used,_lncreasmg the WlnESYNC, in addition to the up/down counter, also records for each
dow size results in sizeable performance benefits. dependence the PC of the task that issued the corresponding store

Focusing on policy PSYNC, we can observe that it constantly instruction. Synchronization is enforced on a load that matches a
improves performance over policy ALWAYS, sometimes signifi- MDPT entry only if the task PC of the stage at distance DIST (as
cantly and furthermore, that the difference between PSYNC andrecorded in the MDST entry) matches the task PC recorded in the
ALWAYS becomes greater as the window size increases (8 stagepredictor. This enhancement targets loads that have multiple static
compared to 4 stages). In addition, under policy PSYNC, increas-dependences which occur via different execution paths. In this
ing the window size typically results in higher performance. The case, the load does not have to wait for all the dependences, only
results about policy PSYNC demonstrate that the technique wefor the dependence that lies on the proper execution path. How-
described in section 3 has the potential for performance improve-ever, since the task PC represents only minimal control path infor-
ments that are often significant (even when compared to blindmation, this predictor may fall short of its goal under some
speculation). Finally, selective data dependence speculation (pol-circumstances.

icy WAIT) generally outperforms blind speculation (policy In the rest of this section. we first ;
L ! , present and discuss results on
ALWAYS) and performs comparably to policy PSYNC in the 0 spECint92 programs. We report the accuracy of the depen-

4-stag_e configuration for three of the benchmarks (espresso, 9CCence prediction mechanism, the mis-speculation rate, and the per-
and xlisp). However, for compress and sc, it performs worse than ; !

X formance improvement obtained. The speedups reported are
both PSYNC and ALWAYS (the cause of this phenomenon we o |aiive 1o blind speculation (policy ALWAYS of section 5.4),
explained in section 3, figure 1). As we move to larger windows (8

f which is the policy currently implemented in several modern pro-
stages) the difference between PSYNC and WAIT becomes Moreeqsors. e later present and discuss results on the SPEC95 pro-
significant for all benchmarks except xlisp.

grams. For the latter programs, we report only performance
5.5 Evaluation of the proposed mechanism numbers (due to space limitations).

In the previous section we demonstrated the performance poten- " table 8, we report the breakdown of the dynamic dependence
tial of our data dependence speculation technique. In this sectiorPredictions for the SPECint92 programs. Since a load on which a
we evaluate an implementation of this technique. The implementa-dépendence prediction is made may not necessarily have a depen-
tion we simulate is based on the mechanism we detailed indénce, a single number cannot be used to describe the accuracy of
section 4. In this implementation, the MDPT and MDST are com- dependence prediction (in contrast to what is possible in control
bined into a single structure where each MDPT entry carries asprediction). Instead, a dependence prediction has to be classified
many MDST entries as there are stages. This implementationinto one of four possible categories depending on whether a depen-
allows us to support multiple dependences per static store or statidence is predicted and on whether a dependence actually exists. In
load as we explained in section 4. However, with this organization, the results shown, we count the dependence predictions done on
only a single synchronization entry is allowed per static depen- loads that were either committed or have been issued from tasks
dence and per stage. The simulated structure is a centralized, fulljhat were squashed as a result of a dependence mis-speculation
associative resource that provides as many ports as need for a pafve do not count _predlctlons on loads that were squashe_d for other
ticular Multiscalar processor configuration. For prediction pur- €asons). Predictions are recorded only once per dynamic load and
poses, each entry contains a 3-bit up-down saturating countei@t the time the load is ready to access the memory hlerarphy. Fur-
which takes on values 0 through 7. The predictor uses a thresholdh€rmore, for those loads on which a dependence is predicted, the
value of 3 for prediction; values less than the threshold predict noPrediction is recorded after we have checked the synchronization
dependence, and values greater than or equal predict dependen&&itries for the first time. That is, in the case when a dependence is
and consequent synchronization. We also maintain LRU informa- Predicted, we count a “no dependence” outcome if a pre-existing,
tion for purposes of replacement. An entry within the table may be matching, synchronization entry allows the“ load to contlpue execu-
allocated speculatively without cleanup if bogus, but updates to thetion without delay, otherwise we count a “dependence” outcome.
prediction mechanism within an entry only occur non-specula- A dependence prediction is correct when the predicted and the
tively when a stage commits. To distinguish between instances ofactual outcomes are the same (r6W&N” and*Y/Y”), otherwise
the same static dependence we use a variation of the instance di¢h€ prediction is incorrect (row/Y” and“Y/N"). An incorrect
tance scheme which we discussed in section 3. In this scheme wé€pendence prediction may result in mis-speculatify( ), or it
approximate the instance numbers via the use of stage identifiergN@y unnecessary delay the lo@@/l" ). We will refer to the latter
which are statically assigned to each stage. A load that is forced tPredictions asalse dependence predictions
synchronize on multiple dependences is allowed to execute only In table 9, we report how the mis-speculation frequency
after all of them are satisfied. All simulation runs are performed (defined as the number of mis-speculations geenmitted loads)
for the Multiscalar processor configurations described earlier, andimproves when the proposed mechanism is in place for 4 and 8
unless otherwise noted, the MDPT/MDST structure we simulate stage configurations. In nearly all cases, the proposed predic-
has 64 entries. tion/synchronization mechanism reduces the number of mis-spec-

The results presented in this section are in support of a new Ccm_ulations_ by an order of magnitude. Furthermore, mis-speculations
cept. Consequently, our primary goal is to demonstrate the utility @€ typically reduced to less than 1% of useful loads. However,
of the proposed mechanism. Though a thorough evaluation of thehote that a decrease in the number of mis-speculations does not

design space is highly desirable, it is not possible to include in thishecessarily translate directly into a proportionate increase in per-
formance (after all, if we did not use speculation, the mis-specula-
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Figure 7. Performance of our data dependence speculation mechanism for the SPEC95 programs. We simulate an 8-stage Multiscalar
processor and we report speedups relative to blind speculation (policy ALWAYS) for the ESYNC predictor and for perfect depen-

dence speculation (policy PSYNC). Along the X-axis we report the IPC obtained when the ESYNC predictor is in use.
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N/N 73.60 9552| 93.60 95.0d 94.9p Figure 6. Performance of our data dependence speculation
. ‘ 0
o [ 015 020 165 002 0.0 mec_hamsm on the SPECIint92 programs. Speedups (%) are
> relative to policy ALWAYS.
“ | YN 4.95 0.18 1.61 0.26 0.14 ) ) ] )
é vy - 200 315 a1l 27 nism with the ESYNC predictor, not only improves performance,
g i . . : ] but also performs close to what is ideally possible (PSYNC col-
S N/N 79.57 95.54| 94.85 9533  95.1p umns). The SYNC predictor also improves performance for most
21 Ny 0.07 0.05 1.48 0.66 0.0d of the programs. However the SYNC predictor never outperforms
< . ) ;
AR 0.00 007 0.09 004 o0l the ESYNC p(edlctor. The SYNC pr_edlctor also _offers virtually no
. performance improvement (over blind speculation) for compress
iy 20.37 4.34| 358 395 48 and sc in the 4-stage configuration. Furthermore, performance deg-
Table 8.Dependence prediction breakdown (%).“N” and “Y” radation is observed for compress on the 8-stage configuration.
stand for “No dependence” and “Dependence” respec- False dependence predictions (“YN” marked rows in table 8) are
tively, whereas “P/A” stands for “Predicted/Actual’”. responsible for this poor behavior. The counter based SYNC pre-
dictor fails to capture the data dependence patterns exhibited by
Policy | compress | espresso gce sc xlisp this program. The ESYNC predictor, however, is able to success-
o | ALWAYS| 007312| 002178] 00200] 002089 0.035k6 fully capture th(_ese patterns, since the dependences occur only via
=] | specific execution paths. There are two causes for the marked
@ | SYNC| 000083| 000016] 0.0065¢ 0.00271  0.000p5 improvement demonstrated for espresso: (i) the average, dynamic
Y| ESYNC| 000001| 000013 0.00434 0.00250 0.000p1 task size is about 100 instructions, and (ii) most of the mis-specu-
o | ALwAYys| 0.13567| 002613] 003162 00381 0.044p6 lations are the result of simple recurrences that occur most of the
2 svne | 000205 | 000137l 001428 000747  o0.000ko time (note however that the memory locations involved are often
2 . ' : : i accessed via pointers). Consequently, for this program, the cost of
ESYNC| 0.00004 | 0.00046| 0.01159  0.00698  0.000p2 mis-speculations is relatively high, whereas, even a simple
Table 9.Mis-speculations per committed load up/down counter based predictor can capture the dynamic behavior

of the most important dependences.

In figure 7, we report the performance results for the SPEC95
programs on an 8-stage Multiscalar processor. Along the X-axis
we report the IPC obtained when our data dependence specula-
tion/synchronization is used. The ESYNC bars represent the
gpeedup obtained relatively to blind speculation (policy ALWAYS
of section 5.4), whereas the PSYNC marked bars represent the
speedup possible when ideal speculation and synchronization is

In figure 6, we show how the performance varies when our ysed (policy PSYNC of section 5.4). Overall, our dependence
mechanism is in place, as compared to the base case Multiscalagpeculation/synchronization mechanism improves performance,

processor that speculates all loads as early as possible (policyften significantly, for almost all the programs studied. Further-
ALWAYS of figure 5). For almost all cases, the proposed mecha-

tion rate would be zero). The main cause is twofold. First, the
synchronized instructions may only represent a shift of cycles
from time lost due to mis-speculations, to stall time in the overall

picture of execution. That is, even though a load is not mis-specu-
lated, there may be little other work to do while the load is waiting

to synchronize. Second, false dependence predictions may impos
unnecessary delays.



more, our mechanism quite often performs close to what is ideally ~ key issues involved in designing such data dependence specu-
possible for the given configuration. lation structures.

For the SPECIint95 programs, the potential performance ® We describe a microarchitectural technique that can be used to
improvement is appreciable, ranging from 5% to almost 40%. For  implement dynamic data dependence prediction and synchro-
124.m88ksim, 129.compress, and 130.li, our mechanism performs  nization. Further, we demonstrate that for a specific OoO pro-
comparably to the ideal mechanism. Though the mechanism does cessor this technique can provide significant performance
not perform as well for 132.ijpeg, 134.perl, and 147.vortex, it does  improvements. We finally identify most of and address some of
capture a significant amount of the gain that is possible. Neverthe-  the key design issues.

Ipeasrsé db(ﬁ)h ?I?(?l?geglnd dépz)ghg dcecnfci” Ssrr])(c)erctucl)gtzglr? p_?:]‘zm'gé;:ngzr:ée Our experimental results confirm the efficacy of the technique

patterns of these programs are quite irregular and exhibit relativelywe propose. However, since this work mtrc_nduces a new_concept,
poor temporal locality as compared to the other programs. In par-We were not able to do a thc_)rough evaluation O_f the des_lgn_ space
ticular, the performance of 099.go is limited by poor control pre- and to explore many alternatlve§ and other_possmle appllcat_lorjs_ of
diction (even with the fairly sophisticated control prediction the proposed technique. We believe that this fact does not diminish
scheme used) and instruction supply. the importance of our results and observations. In our opinion, this

For the SPECfp95 programs, most of the dependences we cap‘!"ork represents only a first step towards improving the accuracy of

ture are loop recurrences. However, for 145.fpppp and 103.su2coidata dependence speculation and towards using dynamic depen-
our mechanism is unable to synchronize some of the dependenceélence speculation and synchronization. Several directions for
For these two programs, the size of the working set of dynamic future research exist in improving the mechanisms we presented,
dependences exceeds the capacity of our dependence prediction using the proposed technique in other processing models, and in
structures. Closer examination reveals that the instruction window using data dependence speculation in ways different than those we
established by 145.fpppp can grow to be as large as a few thousanfaye discussed.

instructions. (Most of the time is spent in a loop whose iterations )

execute each around 1000 instructions. With the greedy task parti- 1hough we have worked with memory dependences, the pro-
tioning policy currently used by the Multiscalar compiler, each P0Sed techniques are general and applicable to a range of other
iteration executes as a single task.) Tasks of similar size are als¢!S€S Of data speculation. Such uses include register dependences
experienced in part of 103.su2cor. With the given instruction win- (tis is mostly relevant to multiple program counter execution
dow size, it is no surprise that the working set of dependences ignodels such as Multiscalar) and value prediction (for example in a
quite large. Increasing the size of the dependence prediction strucdata speculation approach that uses value prediction only when
tures or breaking up each iteration to several tasks are two possibléependences are likely to exist). We also believe that exposing the
solutions. For 101.tomcatv and 110.applu, our mechanism per-dépendence prediction (MDPT) and/or the synchronization
forms very close to what is ideally possible. Our mechanism is (MDST) structures to the compiler (perhaps via ISA extensions)
also able to synchronize dependences that would otherwise caus@P€ns new possibilities for statically orchestrated dependence
performance degradation for 141.apsi and 146.wave5, but to aSPeculation. (For example the synchronization variables can be
lesser extent. It should be noted that we simulated the first 2.8 bil-allocated by the compiler to enforce synchronization of unambigu-
lion instructions for 101.tomcatv and 146.wave5. Performance OUS dependences, whereas the prediction can be probed by the pro-
improves when these programs are simulated to completion. Fordram during run-time to make on-the-fly decisions on when and
example, at 10 billion instructions, the IPC for 101.tomcatv with Which dependences to speculate.)

the ESYNC mechanism is 5.68, whereas the IPC for 146.wave5 at Even though in this work we considered fairly simple depen-
completion (6.4 billion instructions) is 3.79. For 102.swim, dence predictors, any of the plethora of predictors used for branch
104.hydro2d, 107.mgrid, and 125.turb3d, there is little to be prediction may be used, with appropriate modifications, to
gained from dependence speculation and synchronization for themprove the accuracy of dependence prediction. Further improve-
given configuration. For those programs, some other part of thement of our mechanisms may be possible by considering alterna-
processor (for example the functional units or the memory system)tive dependence tagging schemes and synchronization primitives.

is saturated. Furthermore, it would be interesting to consider integrating the
L . dependence prediction and synchronization structures with other
6 Implications and Conclusions components of the processor (for example, we may implement the

synchronization functionality in the data cache or in a similar

We make the following contributions in this paper: A
d L pap . structure so that both the data and the necessary synchronization
* We demonstrate that, as the dynamic window sizes get larger, 5ro provided from the same structure).

the net performance loss due to data dependence mis-specula- . . .
tions becomes significant. The techniques we proposed are applicable to processing mod-
. . ) o els other than Multiscalar. However, further study is necessary,

* We identify three possible directions that can be followed to  gince differences in the instruction window size and in the granu-

minimize this performance loss: (1) minimizing the work lost  |arity of checkpointing may influence the relative performance of

on mis-speculation, (2) minimizing the time required to redo  various dependence speculation and synchronization schemes. We

this work, and (3) improving the accuracy of speculation. maintain that as ILP processors continue to become more aggres-
* We observe that the static data dependences that are responsisive, the use of data speculation will become even more wide-

ble for the majority of mis-speculations are few and dynami-  spread, and techniques (especially dynamic ones) to improve the

cally exhibit temporal locality. The latter observation applies ~ accuracy of data dependence speculation, such as those proposed

even when all dependences visible from within the dynamic  in this paper, will become important.
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