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Abstract 

Instruction window size is an important design parame- 
ter for  man), modern processors. Large instruction windows 
offer the potential advantage of  exposing.~large amounts o f  
instruction level parallelism. Unfortunately/. naively scal- 
ing conventional window designs can significantly degrade 
clock cycle time, undermining the benefits o f  increased par- 
allelism. 

This paper presents a new instruction:window design tar- 
geted at achieving the latency tolerance'of:large windows 
with the clock cycle time of  small windows: The key obser- 
vation is that instructions dependent ~ on a qong latency op- 
eration (e.g., cache miss) cannot execute until that source 
operation completes. These instructions are moved out of  
the conventional, small, issue queue to a much larger wait- 
ing instruction buffer (WIB). When the long latency opera- 
tion completes, the instructions are reinserted into the issue 
queue. In this paper, we focus specifically on load cache 
misses and their dependent instructions. Simulations reveal 
that, for  an 8-way processor, a 2K-entry WIB with a 32- 
entry issue queue can achieve speedups o f  20%, 84%, and 
50% over a conventional 32-entry issue queue for  a subset 
o f  the SPEC CINT2000, SPEC CFP2000, and Olden bench- 
marks, respectively. 

1 Introduction 

Many of today's  microprocessors achieve high perfor- 
mance by combining high clock rates with the ability to dy- 
namically process multiple instructions per cycle. Unfortu- 
nately, these two important components  of  performance are 
often at odds with one another. For example,  small hard- 
ware structures are usually required to achieve short clock 
cycle times, while larger structures are often necessary to 
identify and exploit instruction level parallelism (ILP). 

A particularly important structure is the issue window, 

which is examined each cycle to choose ready instructions 
for execution. A larger window can often expose a larger 
number of  independent instructions that can execute out-of- 
order. Unfortunately, the size of  the issue window is limited 
due to strict cycle time constraints. This conflict between 
cycle time and dynamically exploiting parallelism is exacer- 
bated by long latency operations such as data cache misses 
or even cross-chip communicat ion [ 1, 22]. The challenge is 
to develop microarchitectures that permit both short cycle 
times and large instruction windows. 

This paper introduces a new microarchitecture that rec- 
onciles the competing goals of  short cycle times and large 
instruction windows. We observe that instructions depen- 
dent on long latency operations cannot execute until the 
long latency operation completes.  This allows us to sepa- 
rate instructions into those that will execute in the near fu- 
ture and those that will execute in the distant future. The key 
to our design is that the entire chain of  instructions depen- 
dent on a long latency operation is removed from the issue 
window, placed in a waiting instruction buffer (WIB), and 
reinserted after the long latency operation completes. Fur- 
thermore, since all instructions in the dependence chain are 
candidates for reinsertion into the issue window, we only 
need to implement select logic rather than the full wakeup- 
select required by a conventional issue window. Tracking 
true dependencies (as done by the wakeup logic) is handled 
by the issue window when the instructions are reinserted. 

In this paper we focus on tolerating data cache misses, 
however we believe our technique could be extended to 
other operations where latency is difficult to determine at 
compile time. Specifically, our goal is to explore the design 
of  a microarchitecture with a large enough "effective" win- 
dow to tolerate DRAM accesses. We leverage existing tech- 
niques to provide a large register file [13, 34] and assume 
that a large active list J is possible since it is not on the crit- 
ical path [4] and techniques exist for keeping the active list 

i By active list, we refer to the hardware unit that maintains the state of 
in-flight instructions, often called the reorder buffer. 
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large while using relatively small hardware structures [31 ]. 
We explore several aspects of WIB design, including: 

detecting instructions dependent on long latency operations, 
inserting instructions into the WlB, banked vs. non-banked 
organization, policies for selecting among eligible instruc- 
tions to reinsert into the issue window, and total capacity. 
For an 8-way processor, we compare the committed in- 
structions per cycle (IPC) of a WlB-based design that has 
a 32-entry issue window, a 2048-entry banked WIB, and 
two-level register files (128 L1/2048 L2) to a conventional 
32-entry issue window with single-level register files (128 
registers). These simulations show WlB speedups over the 
conventional design of  20% for SPEC CINT2000, 84% for 
SPEC CFP2000, and 50% for Olden. These speedups are 
a significant fraction of  those achieved with a 2048-entry 
conventional issue window (35%, 140%, and 103%), even 
ignoring clock cycle time effects. 

The remainder of this paper is organized as follows. Sec- 
tion 2 provides background and motivation for this work. 
Our design is presented in Section 3 and we evalute its per- 
formance in Section 4. Section 5 discusses related work and 
Section 6 summarizes this work and presents future direc- 
tions. 

2 Background and Motivation 

2.1 Background 

Superscalar processors maximize serial program perfor- 
mance by issuing multiple instructions per cycle. One of 
the most important aspects of these systems is identifying 
independent instructions that can execute in parallel. To 
identify and exploit instruction level parallelism (ILP), most 
of today's processors employ dynamic scheduling, branch 
prediction, and speculative execution. Dynamic schedul- 
ing is an all hardware technique for identifying and issu- 
ing multiple independent instructions in a single cycle [32]. 
The hardware looks ahead by fetching instructions into a 
bu f f e r - - ca l l ed  a w i n d o w - - f r o m  which it selects instruc- 
tions to issue to the functional units. Instructions are issued 
only when all their operands are available, and independent 
instructions can execute out-of-order. Results of instruc- 
tions executed out-of-order are committed to the architec- 
tural state in program order. In other words, although in- 
structions within the window execute out-of-order, the win- 
dow entries are managed as a FIFO where instructions enter 
and depart in program order. 

The above simplified design assumes that all instructions 
in the window can be examined and selected for execution. 
We note that it is possible to separate the FIFO management 
(active list or reorder buffer) from the independent instruc- 
tion identification (issue queue) as described below. Re- 
gardless, there is a conflict between increasing the window 

(issue queue) size to expose more ILP and keeping clock 
cycle time low by using small structures [1, 22]. Histor- 
ically, smaller windows have dominated designs resulting 
in higher clock rates. Unfortunately, a small window can 
quickly fill up when there is a long latency operation. 

In particular, consider a long latency cache miss serviced 
from main memory. This latency can be so large, that by 
the time the load reaches the head of  the window, the data 
still has not arrived from memory. Unfortunately, this sig- 
nificantly degrades performance since the window does not 
contain any executing instructions: instructions in the load's 
dependence chain are stalled, and instructions independent 
of the load are finished, waiting to commit in program order. 
The only way to make progress is to bring new instructions 
into the window. This can be accomplished by using a larger 
window. 

2.2 Limit Study 

The remainder of this section evaluates the effect of win- 
dow size on program performance, ignoring clock cycle 
time effects. The goal is to determine the potential perfor- 
mance improvement that could be achieved by large instruc- 
tion windows. We begin with a description of  our processor 
model. This is followed by a short discussion of its perfor- 
mance for various instruction window sizes. 

2.2.1 Methodology 

For this study, we use a modified version of SimpleScalar 
(version 3.0b) [8] with the SPEC CPU2000 [17] and 
Olden [11] benchmark suites. Our SPEC CPU2000 bench- 
marks are pre-compiled binaries obtained from the Sim- 
pleScalar developers [33] that were generated with compiler 
flags as suggested at www.spec.org and the Olden binaries 
were generated with the Alpha compiler (cc) using opti- 
mization flag -02.  The SPEC benchmarks operate on their 
reference data sets and for the subset of  the Olden bench- 
marks we use, the inputs are: em3d  20,000 nodes, arity 10; 
mst 1024 nodes; perimeter 4Kx4K image; treeadd 
20 levels. We omit several benchmarks either because the 
L1 data cache miss ratios are below 1% or their IPCs are 
unreasonably low ( h e a l t h  and ammp are both less than 
0.1) for our base configuration. 

Our processor design is loosely based on the Alpha 
21264 microarchitecture [12, 14, 19]. We use the same 
seven stage pipeline, including speculative load execution 
and load-store wait prediction. We do not model the clus- 
tered design of the 21264. Instead, we assume a single inte- 
ger issue queue that can issue up to 8 instructions per cycle 
and a single floating point issue queue that can issue up to 4 
instructions per cycle. Table 1 lists the various parameters 
for our base machine. Note that both integer and floating 
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Active List 128, 128 Int Regs, 128 FP Regs 
Load/Store Queue 64 Load, 64 Store 
Issue Queue 32 Integer, 32 Floating Point 
Issue Width 12 (8 Integer, 4 Floating Point) 
Decode Width 8 
Commit Width 8 
Instruction Fetch Queue 8 
Functional Units 

Branch Prediction 

8 integer ALUs (1-cycle), 
2 integer multipliers (7-cycle), 
4 FP adders (4-cycle), 
2 FP multipliers (4-cycle), 
2 FP dividers (nonpipelined, 12- 
cycle), 2 FP square root units 
(nonpipelined, 24-cycle) 
Bimodal & two-level adaptive 
combined, with speculative up- 
date, 2-cycle penalty for direct 
jumps missed in BTB, 9-cycle for 
others 

Store-Wait Table 2048 entries, bits cleared every 
32768 cycles 

L1 Data Cache 32 KB, 4 Way 
L1 lnst Cache 32 KB, 4 Way 
L1 Latency 2 Cycles 
L2 Unified Cache 256 KB, 4 Way 
L2 Latency 10 Cycles 
Memory Latency 250 Cycles 
TLB 128-entry, 4-way associative, 

4 KB page size, 30-cycle penalty 

Table 1. Base Configuration 

point register files are as large as the active list. For the re- 
mainder of this paper we state a single value for the active 
list/register file size, this value applies to both the integer 
and floating point register files. 

The simulator was modified to support speculative up- 
date of  branch history with history-based fixup and return- 
address-stack repair with the pointer-and-data fixup mecha- 
nism [26, 27]. We also modified the simulator to warm up 
the instruction and data caches during an initial fast forward 
phase. For the SPEC benchmarks we skip the first four hun- 
dred million instructions, and then execute the next one hun- 
dred million instructions with the detailed performance sim- 
ulator. The Olden benchmarks execute for 400M instruc- 
tions or until completion. This approach is used throughout 
this paper. We note that our results are qualitatively similar 
when using a different instruction execution window [24]. 

2.2.2 Varying Window Size 

We performed simulations varying the issue queue size, 
from 32 (the base) in powers of  2, up to 4096. For issue 
queue sizes of  32, 64, and 128 we keep the active list fixed 
at 128 entries. For the remaining configurations, the ac- 

tive list, register files and issue queue are all equal size. 
The load and store queues are always set to one half the 
active list size, and are the only limit on the number of  out- 
standing requests unless otherwise stated. Figure 1 shows 
the committed instructions per cycle (IPC) of  various win- 
dow sizes normalized to the base 32-entry configuration 
(Speedup = IPCnew/IPCotd)  for the SPEC integer, float- 
ing point, and Olden benchmarks. Absolute IPC values for 
the base machine are provided in Section 4, the goal here 
is to examine the relative effects of  larger instruction win- 
dows. 

These simulations show there is an initial boost in the 
IPC as window size increases, up to 2K, for all three sets of  
benchmarks.  With the exception of  ms t ,  the effect plateaus 
beyond 2K entries, with IPC increasing only slightly. This 
matches our intuition since during a 250 cycle memory  la- 
tency 2000 instructions can be fetched in our 8-way proces- 
sor. Larger instruction windows beyond 2K provide only 
minimal benefits. Many floating point benchmarks achieve 
speedups over 2, with a r t  achieving a speedup over 5 for 
the 2K window. This speedup is because the larger win- 
dow can unroll loops many times, allowing overlap of  many 
cache misses. A similar phenomenon occurs for r e s t .  

The above results motivate the desire to create large in- 
struction windows. The challenge for architects is to ac- 
complish this without significant impact  on clock cycle 
time. The next section presents our proposed solution. 

3 A Large Window Design 

This section presents our technique for providing a large 
instruction window while maintaining the advantages of 
small structures on the critical path. We begin with an 
overview to convey the intuition behind the design. This 
is followed by a detailed description of  our particular de- 
sign. We conclude this section with a discussion of various 
design issues and alternative implementations. 

3.1 Overview 

In our base microarchitecture, only those instructions in 
the issue queue are examined for potential execution. The 
active list has a larger number of  entries than the issue queue 
(128 vs. 32), allowing completed but not yet committed 
instructions to release their issue queue entries. Since the 
active list is not on the critical path [4], we assume that 
we can increase its size without affecting clock cycle time. 
Nonetheless, in the face of  long latency operations, the issue 
queue could fill with instructions waiting for their operands 
and stall further execution. 

We make the observation that instructions dependent on 
long latency operations cannot execute until the long la- 
tency operation completes and thus do not need to be exam- 
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ined by the wakeup-select logic on the critical path. We note 
this same observation is exploited by Palacharla, et. al [22] 
and their technique of  examining only the head of the issue 
queues. However, the goal of our design is to remove these 
waiting instructions from the issue queue and place them in 
a waiting instruction buffer (WIB). When the long latency 
operation completes, the instructions are moved back into 
the issue queue for execution. In this design, instructions 
remain in the issue queue for a very short time. They either 
execute properly or they are removed due to dependence on 
a long latency operation. 

For this paper we focus specifically on instructions in 
the dependence chain of load cache misses. However, we 
believe our technique could be extended to other types of 

long latency operations. Figure 2 shows the pipeline for 
a WlB-based microarchitecture, based on the 21264 with 
two-level register files (described later). 

The fetch stage includes the I-cache, branch prediction 
and the instruction fetch queue. The slot stage directs in- 
structions to the integer or floating point pipeline based on 
their type. The instructions then go through register rename 
before entering the issue queue. Instructions are selected 
from the issue queue either to proceed with the register read, 
execution and memory/writeback stages or to move into the 
WlB during the register read stage. Once in the WlB, in- 
structions wait for the specific cache miss they depend on to 
complete. When this occurs, the instructions are reinserted 
into the issue queue and repeat the wakeup-select process, 
possibly moving back into the WIB if they are dependent on 
another cache miss. The remainder of this section provides 
details on WIB operation and organization. 

3.2 Detecting Dependent Instructions 

An important component of  our design is the ability to 
identify all instructions in the dependence chain of a load 
cache miss. To achieve this we leverage the existing issue 
queue wakeup-select logic. Under normal execution, the 
wakeup-select logic determines if an instruction is ready for 
execution (i.e., has all its operands available) and selects a 
subset of  the ready instructions according to the issue con- 
straints (e.g., structural hazards or age of instructions). 

To leverage this logic we add an additional s ignal- -  
called the wait bi t-- that  indicates the particular source 
operand (i.e., input register value) is "pretend ready". This 
signal is very similar to the ready bit used to synchronize 
true dependencies. It differs only in that it is used to indicate 
the particular source operand will not be available for an ex- 
tended period of time. An instruction is considered pretend 
ready if one or more of its operands are pretend ready and 
all the other operands are truly ready. Pretend ready instruc- 
tions participate in the normal issue request as if they were 
truly ready. When it is issued, instead of  being sent to the 
functional unit, the pretend ready instruction is placed in 
the WlB and its issue queue entry is subsequently freed by 
the issue logic as though it actually executed. We note that 
a potential optimization to our scheme would consider an 
instruction pretend ready as soon as one of  its operands is 
pretend ready. This would allow instructions to be moved to 
the WIB earlier, thus further reducing pressure on the issue 
queue resources. 

In our implementation, the wait bit of a physical register 
is initially set by a load cache miss. Dependent instructions 
observe this wait bit, are removed from the issue queue, and 
set the wait bit of their destination registers. This causes 
their dependent instructions to be removed from the issue 
queue and set the corresponding wait bits of their result 
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registers. Therefore, all instructions directly or indirectl2~ 
dependent on the load are identified.and removed from the 
issue queue. The load miss,signal is already generated in 
the Alpha 21264 since load', instructions are speculatively 
assumed to hit in the cache allowing the load and dependent 
instructions to execute in consecutive cycles. In the case of  
a cache miss in the Alpha ,  the-dependent instructions are 
retained in the issue queue until the load completes. In our 
case, these instructions move to the WIB. 

An instruction might enter the issue queue after the 
instructions producing its operands have exited the issue 
queue. The producer instructi0ns.could have either exe -  
cuted properly and the source operand is available or they,' 
could be in the WIB and this instruction should eventually ~ 
be moved to the WIB. Therefore, wait bits must be avail: 
able wherever conventional:ready bits are available. In this 
case, during register rename. Note that it may be possible 
to steer instructions to the WIB after the rename stage and 
before the issue stage, we plan to investigate this as future 
work. Our current design does not implement this, instead 
each instruction enters the issue queue and then is moved to 
the WIB if necessary. 

3.3 The Waiting Instruction Buffer 

The WIB contains all instructions directly or indirectly 
dependent on a load cache miss. The WIB must be designed 
to satisfy several important criteria. First, it must contain 
and differentiate between the dependent instructions of  in- 
dividual outstanding loads. Second, it must allow individual 
instructions to be dependent on multiple outstanding loads. 
Finally, it must permit fast "squashing" when a branch mis- 
predict or exception occurs. 

TO satisfy these requirements, we designed the WIB to 
operate in conjunction with the active list. Every instruc- 
tion, in the active list is allocated an entry in the WIB. Al- 
though this may allocate entries in the WlB that are never 
dependent on a load miss, it simplifies squashing on mispre- 
dicts. Whenever  active list entries are added or removed, the 
corresponding operations are performed on the WIB. This 
means WIB entries are allocated in program order. 

To link WlB entries to load misses we use a bit-vector 
to indicate which WIB locations are dependent on a spe- 
cific load. When an instruction is moved to the WlB, the 
appropriate bit is set. The bit-vectors are arranged in a two 
dimensional array. Each column is the bit-vector for a load 
cache miss. Bit-vectors are allocated when a load miss is 
detected, therefore for each outstanding load miss we store a 
pointer to its corresponding bit-vector. Note that the number 
of  bit-vectors is bounded by the number  of  outstanding load 
misses. However, it is possible to have fewer bit-vectors 
than outstanding misses. 

To link instructions with a specific load, we augment the 
operand wait bits with an index into the bit-vector table cor- 
responding to the load cache miss this instruction is depen- 
dent on. In the case where an instruction is dependent on 
multiple outstanding loads, we use a simple fixed ordering 
policy to examine the source operand wait bits and store 
the instruction in the WIB with the first outstanding load 
encountered. This requires propagating the bit-vector in- 
dex with the wait bits as described above. It is possible 
to store the bit-vector index in the physical register, since 
that space is available. However,  this requires instructions 
that are moved into the WlB to consume register ports. To 
reduce register pressure we assume the bit-vector index is 
stored in a separate structure with the wait bits. 
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Instructions in the WIB are reinserted in the issue queue 
when the corresponding load miss is resolved. Reinser- 
tion shares the same bandwidth (in our case, 8 instructions 
per cycle) with those newly arrived instructions that are de- 
coded and dispatched to the issue queue. The dispatch logic 
is modified to give priority to the instructions reinserted 
from the WIB to ensure forward progress. 

Note that some of the instructions reinserted in the is- 
sue queue by the completion of  one load may be dependent 
on another outstanding load. The issue queue logic detects 
that one of the instruction's remaining operands is unavail- 
able, due to a load miss, in the same way it detected the 
first load dependence. The instruction then sets the appro- 
priate bit in the new load's bit-vector, and is removed from 
the issue queue. This is a fundamental difference between 
the WIB and simply scaling the issue queue to larger en- 
tries. The larger queue issues instructions only once, when 
all their operands are available. In contrast, our technique 
could move an instruction between the issue queue and WIB 
many times. In the worst case, all active instructions are de- 
pendent on a single outstanding load. This requires each 
bit-vector to cover the entire active list. 

The number of  entries in the WIB is determined by the 
size of  the active list. The analysis in Section 2 indicates 
that 2048 entries is a good window size to achieve signif- 
icant speedups. Therefore, initially we assume a 2K-entry 
active list and 1K-entry load and store queues. Assuming 
each WIB entry is 8 bytes then the total WIB capacity is 
16KB. The bit-vectors can also consume a great deal of  
storage, but it is limited by the number of  outstanding re- 
quests supported. Section 4 explores the impact of  limiting 
the number of  bit-vectors below the load queue size. 

3.3.1 WIB Organization 

We assume a banked WIB organization and that one in- 
struction can be extracted from each bank every two cy- 
cles. These two cycles include determining the appropriate 
instruction and reading the appropriate WIB entry. There 
is a fixed instruction width between the WIB and the is- 
sue queue. We set the number of  banks equal to twice this 
width. Therefore, we can sustain reinsertion at full band- 
width by reading instructions from the WIB's  even banks in 
one cycle and from odd banks in the next cycle, if enough 
instructions are eligible in each set of banks. 

Recall, WIB entries are allocated in program order in 
conjunction with active list entries. We perform this allo- 
cation using round-robin across the banks, interleaving at 
the individual instruction granularity. Therefore, entries in 
each bank are also allocated and released in program or- 
der, and we can partition each load's bit-vector according 
to which bank the bits map to. In our case, a 2K entry 
WIB with a dispatch width to the issue queue of 8 would 

have 16 banks with 128 entries each. Each bank also stores 
its local head and tail pointers to reflect program order of  
instructions within the bank. Figure 3 shows the internal 
organization of the WIB. 

During a read access each bank in a set (even or odd) 
operates independently to select an instruction to reinsert 
to the issue queue by examining the appropriate 128 bits 
from each completed load. For each bank we create a sin- 
gle bit-vector that is the logical OR of the bit-vectors for 
all completed loads. The resulting bit-vector is examined to 
select the oldest active instruction in program order. There 
are many possible policies for selecting instructions. We 
examine a few simple policies later in this paper, but leave 
investigation of more sophisticated policies (e.g., data flow 
graph order or critical path [15]) as future work. Regard- 
less of  selection policy, the result is that one bit out of  the 
128 is set, which can then directly enable the output of  the 
corresponding WIB entry without the need to encode then 
decode the WIB index. The process is repeated with an up- 
dated bit-vector that clears the WIB entry for the access just 
completed and may include new eligible instructions if an- 
other load miss completed during the access. 

The above policies are similar to the select policies im- 
plemented by the issue queue logic. This highlights an im- 
portant difference between the WIB and a conventional is- 
sue queue. A conventional issue queue requires wakeup 
logic that broadcasts a register specifier to each entry. 
The WIB eliminates this broadcast by using the completed 
loads' bit-vectors to establish the candidate instructions for 
selection. The issue queue requires the register specifier 
broadcast to maintain true dependencies. In contrast, the 
WIB-based architecture leverages the much smaller issue 
queue for this task and the WIB can select instructions for 
reinsertion in any order. 

It is possible that there are not enough issue queue en- 
tries available to consume all instructions extracted from 
the WIB. In this case, one or more banks will stall for this 
access and wait for the next access (two cycles later) to at- 
tempt reinserting its instruction. To avoid potential livelock, 
on each access we change the starting bank for allocating 
the available issue queue slots. Furthermore, a bank remains 
at the highest priority if it has an instruction to reinsert but 
was not able to. A bank is assigned the lowest priority if it 
inserts an instruction or does not have an instruction to rein- 
sert. Livelock could occur in a fixed priority scheme since 
the instructions in the highest priority bank could be depen- 
dent on the instructions in the lower priority bank. This 
could produce a continuous stream of instructions moving 
from the WIB to the issue queue then back to the WIB since 
their producing instructions are not yet complete. The pro- 
ducing instructions will never complete since they are in the 
lower priority bank. Although this scenario seems unlikely 
it did occur in some of our benchmarks and thus we use 
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3.3.2 Squashing WIB Entries 

Squashing instructions requires clearing the appropriate 
bits in each bit-vector and reseting each banks' local tail 
pointer. The two-dimensional bit-vector organization sim- 
plifies the bit-vector clear operation since it is applied to the 
same bits for every bit-vector. Recall, each column corre- 
sponds to an outstanding load miss, thus we can clear the 
bits in the rows associated with the squashed instructions. 

3.4 Reg i s ter  File  Cons iderat ions  

To support many in-flight instructions, the number of  re- 
name registers must scale proportionally. There are several 
alternative designs for large register files, including multi- 
cycle access, multi-level [ 13,. 34], multiple banks [5, 13], or 
queue-based designs [6]. In this paper, we use a two-level 
register file [ 13, 34] that operates on principles similar to 
the cache hierarchy. Simulations of  a multi-banked register 
file show similar results. Further details on the register file 
designs and performance are available elsewhere [20]. 

3.5 Al ternat ive  WIB Des igns  

The above WlB organization is one of several alterna- 
tives. One alternative we considered is a large non-banked 
multicycle WlB. Although it may be possible to pipeline the 
WIB access, it would not produce a fully pipelined access 
and our simulations (see Section 4) indicate pipelining may 
not be necessary. 

Another alternative we considered is a pool-of-blocks 
structure for implementing the WIB. In this organziation, 
when a load misses in the cache it obtains a free block to 
buffer dependent instructions. A pointer to this block is 
stored with the load in the load queue (LQ) and is used to 

deposit dependent instructions in the WIB. When the load 
completes, all the instructions in the block are reinserted 
into the issue queue. Each block contains a fixed number of  
instruction slots and each slot holds information equivalent 
to issue queue entries. 

An important difference in this approach compared to 
the technique we use is that instructions are stored in de- 
pendence chain order, and blocks may need to be linked 
together to handle loads with long dependence chains. This 
complicates squashing since there is no program order as- 
sociated with the WlB entries. Although we could maintain 
information on program order, the list management of  each 
load's dependence chain becomes too complex and time 
consuming during a squash. Although the bit-vector ap- 
proach requires more space, it simplifies this management. 
The pool-of-blocks approach has the potential of deadlock 
if there are not enough WlB entries. We are continuing to 
investigate techniques to reduce the list management over- 
head and handle deadlock. 

3.6 S u m m a r y  

The WIB architecture effectively enlarges the instruction 
window by removing instructions dependent on load cache 
misses from the issue queue, and retaining them in the WlB 
while the misses are serviced. In achieving this, we leverage 
the existing processor issue logic without affecting the pro- 
cessor cycle time and circuit complexity. In the WIB archi- 
tecture, instructions stay in the issue queue only for a short 
period of  time, therefore new instructions can be brought 
into the instruction window much more rapidly than in the 
conventional architectures. The fundamental difference be- 
tween a WlB design and a design that simply scales up the 
issue queue is that scaling up the issue queue significantly 
complicates the wakeup logic, which in turn affects the pro- 
cessor cycle time [ 1, 22]. However, a WlB requires a very 
simple form of wakeup logic as all the instructions in the 
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dependence chain of a load miss are awakened when the 
miss is resolved. There is no need to broadcast and have all 
the instructions monitor the result buses. 

4 Eva lua t ion  

In this section we evaluate the WlB architecture. We 
begin by presenting the overall performance of  our WlB 
design compared to a conventional architecture. Next, we 
explore the impact of  various design choices on WlB per- 
formance.  This includes limiting the number  of  available 
bit-vectors, limited WIB capacity, policies for selecting in- 
structions for reinsertion into the issue queue, and multicy- 
cle non-banked WIB. 

These simulations reveal that WIB-based architectures 
can increase performance,  in terms of  IPC, for our set of  
benchmarks by an average of 20%, 84%, and 50% for SPEC 
INT, SPEC FP, and Olden, respectively. We also find that 
limiting the number of outstanding loads to 64 produces 
similar improvements  for the SPEC INT and Olden bench- 
marks, but reduces the average improvement  for the SPEC 
FP to 45%. A WlB capacity as low as 256 entries with 
a max imum of 64 outstanding loads still produces average 
speedups of 9%, 26%, and 14% for the respective bench- 
mark sets. 

4 .1  O v e r a l l  P e r f o r m a n c e  

We begin by presenting the overall performance im- 
provement  in IPC relative to a processor with a 32-entry 
issue queue and single cycle access to 128 registers, hence 
a 128-entry active list (32-IQ/128). Figure 4 shows the 
speedups (IPCne,o/IPCota) for various microarchitec- 
tures. Although we present results for an 8-issue processor, 
the overall results are qualitatively similar for a 4-issue pro- 
cessor. The WIB bar corresponds to a 32-entry issue queue 
with our banked WIB organization, a 2K-entry active list, 
and 2K registers, using a two-level register file with 128 
registers in the first level, 4 read ports and 4 write ports to 
the pipelined second level that has a 4-cycle latency. As- 
suming the 32-entry issue queue and 128 level one regis- 
ters set the clock cycle time, the WIB-based  design is ap- 
proximately clock cycle equivalent to the base architecture. 
For these experiments the number  of  outstanding loads (thus 
bit-vectors) is not limited, we explore this parameter  below. 
Table 2 shows the absolute IPC values for the base config- 
uration and our banked WIB design, along with the branch 
direction prediction rates, L1 data cache miss rates, and L2 
unified cache local miss rates for the base configuration. 

For comparison we also include two scaled versions of  
a conventional microarchitecture. Both configurations use 
a 2K-entry active list and single cycle access to 2K regis- 
ters. One retains the 32-entry issue queue (32-IQ/2K) while 

Benchmark Base Branch D L1 
IPC Dir Miss 

Pred Ratio 

bzip2 1.19 0.94 0.03 
gcc 1.34 0.94 0.01 
gzip 2.25 0.91 0.02 
parser 0.83 0.95 0.04 
perlbmk 0.96 0.99 0.01 
vortex 1.52 0.99 0.01 
vpr 0.49 0.90 0.04 
HM 1.00 - 

applu 4.17 0.98 0.10 
art 0.42 0.96 0.35 
facrec 1.47 0.99 0.05 
galgel 1.92 0.98 0.07 
mgdd 2.58 0.97 0 . 0 6  
swim 2.41 1.00 0.2i 
wupwise 3.38 1.00 0.03 
HM 1.42 

em3d 2.28 0.99 0.02 
mst 0.96 1.00 0.07 
perimeter 1.00 0.93 0.04 
treeadd 1.05 0.95 0.03 
HM 1.17 

UL2 Local 
Miss 
Ratio 

0.47 
0.09 
0.04 
0.22 
0.28 
0.06 
0.41 

0.26 
0.73 
0.48 
0.26 
0.42 
0.27 
0.25 

0.16 
0.49 
0.38 
0.33 

WIB 
IPC 

1.59 
1.38 
2.25 
0.95 
0.95 
1.68 
0.86 
1.24 

4.28 
1.64 
3.02 
3.97 
2.57 
3.98 
3.99 
3.02 

2.27 
2.51 
t.16 
1.28 
1.61 

Table 2. Benchmark Performance Statistics 

the other scales the issue queue to 2K entries (2K-IQ/2K).  
These configurations help isolate the issue queue f rom the 
active list and to provide an approximate upper bound on 
our expected performance.  

From the results shown in Figure 4, we make the follow- 
ing observations. First, the WIB design produces speedups 
over 10% for 12 of  the 18 benchmarks.  The average 
speedup is 20%, 84%, and 50% for SPEC INT, SPEC 
FP, and Olden, respectively. The harmonic mean of  IPCs 
(shown in Table 2) increases from 1.0 to 1.24 for SPEC INT, 
from 1.42 to 3.02 for SPEC FP, and f rom 1.17 to 1.61 for 
Olden. 

For most  programs with large speedups f rom the large 
2K issue queue, the WIB design is able to capture a signif- 
icant fraction of the available speedup. However, for a few 
programs the 2K issue queue produces large speedups when 
the WlB does not. r a g r i d  is the most  striking example  
where the WlB does not produce any speedup while the 2K 
issue queue yields a speedup of over two. This phenomenon 
is a result of  the WlB recycling instructions through the is- 
sue queue. This consumes issue bandwidth that the 2K issue 
queue uses only for instructions ready to execute. As evi- 
dence of  this we track the number of  times an instruction 
is inserted into the WlB.  In the banked implementation the 
average number  of  times an instruction is inserted into the 
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Figure 4. WIB Performance 

WIB is four with a max imum of  280. Investigations of  other 
insertion policies (see below) reduces these values to an av- 
erage insertion count of  one and a max imum of  9, producing 
a speedup of 17%. 

We also note that for several benchmarks just increasing 
the active list produces noticable speedups, in some cases 
even outperforming the WIB. This indicates the issue queue 
is not the bottleneck for these benchmarks.  However, over- 
all the WIB significantly outperforms an increased active 
list. 

Due to the size of  the WlB and larger register file, we 
also evaluated an alternative use of  that space by doubling 
the data cache size in the base configuration to 64KB. Sim- 
ulation results reveal less than 2% improvements  in per- 
formance for alI benchmarks,  except vortex that shows 
a 9% improvement,  over  the 3 2 K B  data cache, indicating 

integer FP Olden 

• 32-1Q/128 I 
1316 ] 
• 32 [ 

:=4 I 

Figure 5. Performance of Limited Bit-Vectors 

the WlB may be a better use of  this space. We explore this 
tradeoff more later in this section. 

We also performed two sensitivity studies by reducing 
the memory  latency from 250 cycles to 100 cycles and 
by increasing the unified L2 cache to 1MB. The results 
match our expectations. The shorter memory  latency re- 
duces WIB speedups to averages of  5%, 30%, and 17% for 
the SPEC INT, SPEC FP, and Olden benchmarks,  respec- 
tively. The larger L2 cache has a smaller impact on the 
speedups achieved with a WIB. The average speedups were 
5%, 61%, and 38% for the SPEC INT, SPEC FP, and Olden 
benchmarks,  respectively. The larger cache has the most 
impact  on the integer benchmarks,  which show a dramati- 
cally reduced local L2 miss ratio (from an average of 22% 
to 6%). Caches exploit locality in the program's  reference 
stream and can sometimes be sufficiently large to capture 
the program's  entire working set. In contrast, the WlB can 
expose parallelism for tolerating latency in programs with 
very large working sets or that lack locality. 

For the remainder of  this paper we present only the av- 
erage results for each benchmark suite. Detailed results for 
each benchmark are available elsewhere [20]. 

4.2 Limited Bit-Vectors 

The number  of  bit-vectors is important since each bit- 
vector must map the entire WlB and the area required can 
become excessive. To explore the effect of  limited bit- 
vectors (outstanding loads), we simulated a 2K-entry WlB 
with 16, 32, and 64 bit-vectors. Figure 5 shows the average 
speedups over the base machine, including the 1024 bit- 
vector configuration from above. These results show that 
even with only 16 bit-vectors the WlB can achieve average 
speedups of 16% for SPEC INT, 26% for S P E C  FP, and 
38% for the Olden benchmarks.  The SPEC FP programs 
(particularly a r t )  are affected the most  by the limited bit- 
vectors since they benefit f rom memory  level parallelism. 
With 64 bit-vectors (16KB) the WIB can achieve speedups 
of  19%, 45%, and 50% for the three sets of  benchmarks,  
respectively. 
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Figure 7. Non-Banked WIB Performance 

4.3 Limited WIB Capacity 

Reducing WlB area by limiting the number of bit-vectors 
is certainly a useful optimization. However, further de- 
creases in required area can be achieved by using a smaller 
capacity WIB. This section explores the performance im- 
pact of reducing the capacity of the WlB, active list and 
register file. 

Figure 6 shows the average speedups for WIB sizes rang- 
ing from 128 to 2048 with bit-vectors limited to 64. These 
results show that the 1024-entry WlB can achieve average 
speedups of  20% for the SPEC INT, 44% for SPEC FP, and 
44% for Olden. This configuration requires only 32KB ex- 
tra space (8KB for WlB entries, 8KB for bit-vectors, and 
8KB for each 1024-entry register file). This is roughly area 
equivalent to doubling the cache size to 64KB. As stated 
above, the 64KB L1 data cache did not produce noticable 
speedups for our benchmarks, and the WlB is a better use 
of the area. 

4.4 WIB to Issue Queue Instruction Selection 

Our WIB design implements a specific policy for se- 
lecting from eligible instructions to reinsert into the issue 
queue. The current policy chooses instructions from each 
bank in program order. Since the banks operate indepen- 
dently and on alternate cycles, they do not extract instruc- 
tions in true program order. To evaluate the impact of in- 
struction selection policy we use an idealized WIB that has 
single cycle access time to the entire structure. Within this 
design we evaluate the following instruction selection poli- 
cies: (1) the current banked scheme, (2) full program or- 
der from among eligible instructions, (3) round robin across 
completed loads with each load's instructions in program 
order, and (4) all instructions from the oldest completed 
load. 

Most programs show very little change in performance 
across selection policies, mgrid is the only one to show 
significant improvements. As mentioned above, m g r i d  
shows speedups over the banked WlB of  17%, 17%, and 

13% for each of  the three new policies, respectively. These 
speedups are due to better scheduling of  the actual depen- 
dence graph. However, in some cases the schedule can be 
worse. Three programs show slowdowns compared to the 
banked WIB for the oldest load policy (4): bz:i.p 11%, 
parser 15%, and facerec 5%. 

4.5 Non-Banked Multicycle WIB Access 

We now explore the benefits of  the banked organization 
versus a multicycle non-banked WIB organization. Figure 7 
shows the average speedups for the banked and non-banked 
organizations over the base architecture. Except the dif- 
ferent WIB access latencies, the 4-cycle and 6-cycle bars 
both assume a non-banked WIB with instruction extraction 
in full program order. These results show that the longer 
WIB access delay produces only slight reductions in perfor- 
mance compared to the banked scheme. This indicates that 
we may be able to implement more sophisticated selection 
policies and that pipelining WIB access is not necessary. 

5 Re la ted  W o r k  

Our limit study is similar to that performed by Skadron 
et al. [28]. Their results show that branch mispredictions 
limit the benefits of larger instruction windows, that better 
branch prediction and better instruction cache behavior have 
synergistic effects, and that the benefits of  larger instruction 
windows and larger data caches trade off and have overlap- 
ping effects. Their simulation assumes a very large 8MB L2 
cache and models a register update unit (RUU) [29], which 
is a unified active list, issue queue, and rename register file. 
In their study, only instruction window sizes up to 256 are 
examined. 

There has been extensive research on architecture de- 
signs for supporting large instruction windows. In the mul- 
tiscalar [30] and trace processors [23], one large central- 
ized instruction window is distributed into smaller windows 
among multiple parallel processing elements. Dynamic 
multithreading processors [2] deal with the complexity of a 
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large window by employing a hierarchy of instruction win- 
dows. Clustering provides another approach, where a col- 
lection of  small windows with associated functional units 
is used to approximate a wider and deeper instruction win- 
dow [22]. 

Recent research [7, 18] investigates issue logic designs 
that attemp to support large instruction windows with- 
out impeding improvements on clock rates. Michaud and 
Seznec [21] exploit the observation that instructions depen- 
dent on long latency operations unnecessarily occupy is- 
sue queue space for a long time, and address this problem 
by prescheduling instructions based on data dependencies. 
Other dependence-based issue queue designs are studied in 
[9, 10, 22]. Zilles et al. [35] and Balasubramonian et al. [4] 
attack the problem caused by long latency operations by uti- 
lizing a future thread that can use a portion of  the issue 
queue slots and physical registers to conduct precomputa- 
tion. As power consumption has become an important con- 
sideration in processor design, researchers have also studied 
low power instruction window design [3, 16]. 

6 Conclusion 

Two important components of overall execution time are 
the clock cycle time and the number of instructions com- 
mitted per cycle (IPC). High clock rates can be achieved 
by using a small instruction window, but this can limit IPC 
by reducing the ability to identify independent instructions. 
This tension between large instruction windows and short 
clock cycle times is an important aspect in modern proces- 
sor design. 

This paper presents a new technique for achieving the 
latency tolerance of  large windows while maintaining the 
high clock rates of small window designs. We accomplish 
this by removing instructions from the conventional issue 
queue if they are directly or indirectly dependent on a long 
latency operation. These instructions are placed into a wait- 
ing instruction buffer (WlB) and reinserted into the issue 
queue for execution when the long latency operation com- 
pletes. By moving these instructions out of the critical path, 
their previously occupied issue queue entries can be further 
utilized by the processor to look deep into the program for 
more ILP. An important difference between the WlB and 
scaled-up conventional issue queues is that the WIB imple- 
ments a simplified form of  wakeup-select. This is achieved 
by allowing all instructions in the dependence chain to be 
considered for reinsertion into the issue window. Compared 
to the full wakeup-select in conventional issue queues, the 
WlB only requires select logic for instruction reinsertion. 

Simulations of an 8-way processor with a 32-entry is- 
sue queue reveal that adding a 2K-entry WIB can produce 
speedups of  20%, 84%, and 50% for a subset of  the SPEC 
CINT2000, SPEC CFP2000, and Olden benchmarks, r e -  

spectively. We also explore several WIB design parameters 
and show that allocating chip area for the WIB produces 
signifcantly higher speedups than using the same area to 
increase the level one data cache capacity from 32KB to 
64KB. 

Our future work includes investigating the potential for 
executing the instructions from the WIB on a separate ex- 
ecution core, either a conventional core or perhaps a grid 
processor [25]. The policy space for selecting instructions 
is an area of current research. Finally, register file de- 
sign and management (e.g., virtual-physical, multi-banked, 
multi-cycle, prefetching in a two-level organization)require 
further investigation. 
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