A

4““‘\\\\

Ay

LR

\\‘\\

-s\‘\\\\\

LI T BN

AT T N

‘\\\
u\\\\\\

* mattéh Tt
/toolis]® utt
. ./tiffltaols]l ut
sl .../tif¥/tool
sattéhermes|.../ti
tools]: satt@hermes
Jtiff/toolis]s matt
sl.../tiff/tools
Imattéhernes].../tif
p0is]? sa
It!ffftn.ls]l mat

ol.../tif¢/toois

ERCOMPY ,
u® ' N

W Danzel Hillis and Lewwis W Tucker

THE CM-5 CONNECTION
MACHINE: A SCALABLE
SUPERCOMPUTER

he CM-5 Connection
Machine is a scalable homogenecous multiprocessor designed for
large-scale scientific and business applications. In this article we
describe its architecture and implementation from the standpoint
of the programmer or user of parallel machines. In particular, we
emphasize three features of the Connection Machine architecture:
scalability, distributed memory/global addressing, and distributed
execution/global synchronization. We believe that architectures of
this type will replace most other forms of supercomputing in the
foreseeable future, * Examples of the current applications of the
machine are included, focusing particularly on the machine’s ability
to support a variety of programming models. The article is intended
to be a general overview appropriate to a user or programmer of
parallel machines, as opposed to a2 hardware designer. The latter may

prefer more detailed descriptions elsewhere [16, 23, 24].

1
Architecture vs. set. Object-code compatibility from
Implementation one generation of the machine to the
In describing the CM-5, it is useful to next is an important issue for many
distinguish between issues of archi- microprocessor applications. Super-
tecture and implementation. While computer applications, on the other
there is no hard line between the two, hand, are usually written in higher-
the architectural features of the ma- level languages, so the instruction set
chine are those features that are in- is not a necessary part of the archi-
tended to remain constant across tectural specification of the CM-5.
multiple implementations. In a mi- The architecture is defined by other
croprocessor, for example, one of issues, such as the addressability of
the most important features of the memory, the user-visible mechanisms
architecture is usually the instruction of synchronization, and the function-

COMMUMNICATIONS OF THE AcM November 1993/Vol.36, Na.ll 3'

ality of the communication and /O
systems.

We will describe both the architec-
ture of the CM-5 and its current im-
plemenuui()n. Figure 1, for example,

is the architectural block diagram of

the machine that is unlikely to
change. The specifications shown in
Table 1, on the other hand, are de-
scriptions of the current implemen-

tation, which are likely to change

from year to year as new versions of

the machine are introduced and
taster, denser chips become avail-
able.

Architectural Overview

The CM-5 is a coordinated homoge-
neous array of RISC mi(tr()pr()(fcs—
sors. We note that the acronym for
this description is CHARM. CHARM
architectures take advantage of high-
volume microprocessors and mem-
ory components to high-
performance supercomputers that
are capable of supporting a wide
range of applications and program-
ming styles. By CHARM we mean
any homogeneous collection of RISC
microprocessors that has the follow-
ing coordination mechanisms:

1. A low-latency, high-bandwidth
communications mechanism that al-
lows each processor to access data
stored in other processors

2. A fast global synchronization
mechanism that allows the entire
machine, including the network, to
be brought to a defined state at spe-
cific points in the course of a compu-
tation

These

build

coordinating mechanisims

support the efficient execution of

sequentially deterministic parallel
programs. Both mechanisms are
important for supporting the data-
parallel model of programming [14].
The CM-5 is a CHARM architecture
and we believe most of the massively
parallel machines currently on the
drawing boards in the U.S., Europe,
and Japan are also CHARMS,

The CM-5 consists of a large num-
ber of processing nodes connected by
a pair of networks, implementing the
coordination functions described
earlier. The number of processors
may vary from a few dozen to tens of
thousands. The number of proces-

sors in the machines currently in-
stalled ranges from 32 to 1,024. The
networks are similar to the back-
planes of conventional computers in
that the machine’s I/O and process-
ing can be expanded by plugging
more modules mto the networks.
Unlike a bus in a conventional com-
puter, the bandwidths of the net-
works increase in proportion to the
number of processors (see Figure 1).
The memory of the machine is lo-
cally distributed across the machine
for fast local access. Each processor
accesses data stored in remote mem-
ories of the processors via the net-
work.

One of the most important fea-
tures of the CM-5 is its scalability.
The current implementation, includ-
ing networks, clocking, /O system,
and software are designed to scale
reliably up to 16,384 processors. The
same application software runs all of
these machines. Because the machine
is constructed from modular compo-
nents, the number of processors,
amount of memory, and /O capacity
can be expanded on-site, without
requiring any change in application
software.

The Processor Node

Microprocessor technology changes
very rapidly and the CM-5 was de-
signed with the assumption that the
processing node would therefore
change from implementation to im-
plementation. This implies that the
system software, including compilers
and operating system, be written in a
way that is largely processor-inde-
pendent. It also requires, at the
hardware level, that the clocking sys-
tem of the network is decoupled
from that of the processor, so the
processor and network can be up-
graded independently.

The current implementation of
the CM-5 uses a SPARC-based pro-
cessing node, operating at a 32- or
40MHz clock rate, with 32MB of
memory per node. The SPARC is
augmented with auxiliary chips that
increase floating-point execution
rate and memory bandwidth. The
result is a 5-chip microprocessor with
performance characteristics similar
to that of single-chip microproces-
sors that will be widely available in a

32 Novemnber 1993/ Vol 36, No.ll COMMUNICATIONS OF THE ACM

few more years. The SPARC
chosen primarily for its wide base of
existing software. One drawback n

wds

using a standard microprocessor,
SPARC included, is that standard
RISC processors generally depend
on a data cache to increase the etfec-
tive memory bandwidth. These cach-
ing techniques do not perform as
well in a large parallel machine, be-
cause many applications reference
most of the data in memory on each
pass of an iteration. This results in
relatively little reuse of data cache
references, reducing the effective-
ness of the cache. In a parallel ma-
chine, the absolute uncached band-
width between the memory and
processor is an important parameter
tor performance.

In the current implementation of
the CM-5 we addressed the memory
bandwidth problem by adding fou:
floating-point data paths, each with
direct parallel access to main mem-
ory, to the standard SPARC micro-
processor. The four data paths have
an aggregate bandwidth to main
memory of 500MB/sec per process-
ing node, and 128MFLOPS peak
floating-point rate. This i1s enough
bandwidth to allow a single memory
reference for each multply and add
when all of the floating-point units
are operating at peak rate. A block
diagram of the node is shown in Fig-
ure 2. The data paths are capable of
performing scalar or vector opera-
tions on IEEE single- or double-
precision numbers,
including 64-bit integers. They also
support specialized operations such
as bit count. While the use of addi-
tional floating-point units with thei
own paths to memory is an important

floating-point

implementation feature of the cur-
rent CM-5, it i1s not generally visible
to users at the programming level.

The measured rate in a single
node is currently 64MFLOPS for
matrix multiply and 100MFLOPS on
matrix-vector multiplication. The
rate for the 500 x 500 Linpack
benchmark is 50MFLOPS. The sus-
tained rate for the node 8K-point
FFTs is 9OMFLOPS. In a typical ap-
plication, since much of the time is
spent in interprocessor communica-
tions, the peak execution rate of the
node is not usually a reliable predic-

tor of average performance on appli-
cations. In data parunel applications,
where the opportunities for parallel-
ism increase with the size of data,
performance increases almost lin-
early with an increasing number of
processors and dataset size. This
near-linear scaling is possible because
network bandwidth scales in propor-
tion to the number of processing

Data and control network

nodes. Benchmarks such as the large
matrix Linpack [5], in which the
problem size increases with the
amount of available memory, as

shown in Figure 3, are an example of

a problem with near-linear speedup.
Measurements on
CM-5s show Linpack benchmark
running with near-linear speedups at
rates of 45MFLOPS/node. A 16,000

\
Expansion \

N R

[

Processing Processing
nodes Disk nodes nodes LAN
To data To control
network network
3
|nStI'LE|g;ié)hn RISC Data Control
prograrﬁ microprocessor network network
control (SPARC) interface interface
64-bit bus
Instructions Data 1
Vector unit - -
Floating- g e s
oapl;li%t Vector unit - Memory
vector Vector unit - > (32MB)
processors sy =
Vector unit -
64-bit
data paths
50GFLOPS
1024
CM-5 performance Nodes
40GFLOPS |~ (Linpack benchmark) °
@
Q
® Lo
£ CM-5
= 30GFLOPS
S =
ke]
= 512
& 20GFLOPS |~ Nodes
2 | v-mP C90
(}"’ o 16 Procs. 256
10GFLOPS |- e Nodes
o 128 %’:kié
ap Nodes
0GFLOPs |- *Nodes | | | [E |
0 0.4 0.8 1.2 1.6 2.0 24 x10°
Problem size

COMMUNICATIONS OF THE AcM Novernber 1993/Vol 36, No.ll

various sizes of

processor CM-5 is expected to ex-
ceed 700GFLOP/sec in performance
on this benchmark.

Choosing the right balance be-
tween memory bandwidth, commu-
nication bandwidth, and floating-
point capacity is one of the major
design issues of a supercomputer. In
the past, when floating point units
were very expensive, designers mea-

Figure 1.
CM-5 Communications networks

The CM-5 consists of processing, con-
trol, and I/O nodes connected by two
scalable networks which handle com-
munication of data and control infor-
mation. Unlike a bus on a conventional
computer, the communications network
1s scalable in the sense that the band-
width of the network grows in propor-
tion to the number of nodes. Shown is
the expansion of the network that
results when additional processing and
[/O nodes are added.

Figure 2.
CM-5 processing node with vector
units

Each processing node of the current
implementation of the CM-5 consists of
a RISC microprocessor, 32MB of
memory, and an interface to the control
and data interconnection networks, The
processor also includes four indepen-
dent vector units, each with a direct
64-bit path to an 8MB bank of memory.
This gives a processing node with a
double-precision floating-point rate of
126MFLOPS, and a memory band-
width of 512MB/sec.

Figure 3.
Scalable performance

The performance of data parallel appli-
cations increases with the size of data
and available processing resources.
Shown is the measured performance of
the Linpack benchmark on the CM-5
for increasing problem size and number
of processors.

sured the efficiency of their machine
by the percentage utilization of the
floating-point units in a typical appli-
cation. This sometimes led to designs
that were inefficient at using an even
more precious resource, such as
memory bandwidth. Since applica-
tions vary in their floating-point-to-
memory reference ratio, no architec-
ture uses both of these resources at
100% capacity in every application.
Today, floating-point units represent
a relatively small portion of the total
cost, so optimizing the design around
their utilization makes little sense.
Instead, the design point chosen in

Table 1. CM-5specs

the hypercubes or grids. Specifically,
the network expands naturally as
new nodes are added, and the capac-
ity of network tratfic across the ma-
chine (bisection bandwidth) is pro-
portional to the number of nodes in
the machine. This is not the case with
grid-based networks. The fat-tree
topology also has good fault toler-
ance properties.

The data network uses a packet-
switched router which guarantees
deadlock-free delivery. The mes-
sage-routing system uses an adaptive
load-balancing algorithm to mini-
mize network congestion. Packets are

The specifications of the current implementation of the CM-5 are shown here. The
largest machine shipped to date is 1,024 processors, but the software networks clocking,
power distribution, and so forth are all designed to scale to the 16,000 processor system.

Processors 32 1024 16384
Network address 64 2048 32768
Number of data paths 128 4096 65536

Peak MFLOPS 4GFLOPS 128GFLOPS 2048GFLOPS
Memory 1GB 32GB 512GB
Memory bandwidth 16GB/sec 512GB/sec 8192GB/sec
Bisection bandwidth 320MB/sec 10GB/sec 160GB/sec
I/O bandwidth 320MB/sec 10GB/sec 160GB/sec
Global synch time 1.5 microsecs 3 microsecs 4 microsecs

the CM-5 was based on the balance
point calculated by the equal ratios
method [12], which takes the relative
cost and performance aspect into
account.

The Data Network

Like the CM-2, the CM-5 incorpo-
rates two important types of commu-
nication networks: one for point-to-
point communication of data, and a
second for broadcast and synchroni-
zation. As in the CM-2, the data net-
work is implemented as a packet-
switched logarithmic network. The
CM-5 uses a fat-tree topology (see
Figure 4) [15], which is a more gen-
eral and flexible structure than the
grid and hypercube used in the
CM-1 and CM-2. This topology of-
fers better scalability properties than

delivered at a rate of 20MB/sec to
nearby nodes. The bisection band-
width of a 1,024-node CM-5, that 1s,
the minimum bandwidth between
one-half of the machine and the
other, 1s 5GB/sec in each direction.
Network latencies across a 1k-proces-
sor machine are between 3 and 7
microseconds. This bandwidth 1s
achieved on regular or irregular
communications patterns. Bounds
checking hardware, error checking,
end-to-end counting of messages,
and rapid context switching of net-
work state protects users from inter-
ference in a time-shared, muluple-
partition configuration. As discussed
later, the data network, in conjunc-
tion with the run-time system soft-
ware, supports either a message-
passing or a global address space

BB November 1993/Vol 36 No.ll COMMUNICATIONS OF THE ACM

programming model.

The Control Network

The CM-5’s control network sup-
ports the broadcast, synchronization,
and data reduction operations neces-
sary to coordinate the processors.
The network can broadcast informa-
tion, such as blocks of instructions, to
all processors simultaneously or
within programmable segments.
This control network also imple-
ments global reduction operations,
such as computing the total of num-
bers posted by all processors, com-
puting global logical AND, global
MIN, and so forth. Also, the control
network implements global and seg-
mented reduction and parallel prefix
functions that have been shown to be
important building blocks for paral-
lel programming [3, 14].

Unlike the CM-2, the operations
of the individual CM-5 instructions
are not necessarily synchronized.
Each processor has its own program
counter, and fetches instructions
from a local instruction cache. Rapid
synchronization, however, is pro-
vided by the control network em-
ploying a barrier synchronization
mechanism. Each processor may
elect to wait for all the other proces-
sors to reach a defined point in the
program before proceeding. This
mechanism allows processors to de-
tect whether data network messages
are still in transit between processors
before establishing synchronization.
The details of this mechanism are
not normally visible to the applica-
tion programmer, since the appro-
priate synchronization commands
are typically generated by compilers
and run-ume libraries.

From the programmer’s stand-
point, the fast synchronization sup-
ports the sequential control flow re-
quired by the data parallel model.
The automatically inserted synchro-
nization barriers guarantee that each
data parallel operation is completed,
before the next begins. Such syn-
chronization events occur whenever
there are potential dependencies be-
tween the two parallel operations.

Input/Output
Many supercomputers spend much
of their time accessing and updating

Processors and I/O nodes

data stored externally to the proces-
sor. The most challenging part of
input/output is generally the transfer
of data to and from disk subsystems.
The CM-5 was designed with the as-
sumption that mass storage devices,
such as disk arrays, will continue to
increase in capacity and bandwidth.
One implication is that no fixed /O
channel capacity will remain appro-
priate for very long. The CM-5 /O
system is constructed in such a way as
to be connected directly into the pro-
cessor’s communication network.
I'he network bandwidth available to
a given /O device is determined by
the number of taps into the network.
For each I/O device, multiple net-
work taps are combined to form a
single I/O channel that operates at
whatever rate the device will allow.

On CM-5 systems, in addition to
processing nodes, there will typically
be a number of independent nodes
with attached disk drive units. These
“disk nodes” are configured by soft-
ware to form a completely scalable,
high-bandwidth RAID file system—

limited only by the aggregate band-
width of its individual drives. To an
application, the disks appear as a sin-
gle very-high-bandwidth mass stor-
age subsystem.

Unix Operating System
The CM-5 is normally operated as a
multiuser machine. The system sup-
ports a Unix-based operating system
capable of time-sharing multiple
users and a priority-based job queu-
ing system, compatible with NQS.
Tasks are fully protected from one
another through memory manage-
ment units and bounds checking
hardware in the network. The net-
work state is always accessible to the
operating system so messages in
transit can be “swapped out” during
the process switch from user to user.
In addition to normal time-shar-

ing, the CM-5 supports a form of

space sharing, called “partitioning.”
The CM-5 can be partitoned under
software control into several inde-
pendent sections. Each partition ef-
fectively works as an independent,

Data rout

Figure 4.
Data network topology

The data network uses a fat tree
topology. Each interior node connects
four children to two or more parents
(only two parents are shown). Process-
ing nodes form the leaf nodes of the
tree. As more processing nodes are
added, the number of levels of the tree
increases, allowing the total bandwidth
across the network to increase propor-
tionally to the number of processors.

COMMUNICATIONS OF THE AcM November 1993/Vol 36, Noll 35

aka]
—2#t— w e

For a 1-D array, compute the average of nearby neighbors.

Fortran 77 with automatic parallelization

integer size, i
parameter (size=1000)
double precision x(size), y(size)
do » - 2. girce-—|

Uil e (s (g ol B Rl gy A
enddo

High-performance Fortran (Fortran 90)

forall (i-2:5ize-1)
S(a) = octa) aedidl]) /2 0

C*

where (pcoord(0)>0 && pcoord(0)<SIZE-1)
v = ([o-1ix+] . +11x)/2.0;

Message passing

int nodesize = sive/nproc:

if (mvself = 0)
CMMD_send_noblock (myself-1,tag, &xI[0], len):

1f (myself <« (nproc-1) ¢{
CMMD_send_noblock (myself+l,tag, &x[nodesize-1]1, len):;
CMMD_receive (myself+l,tag,&right,len);
}

b nvealif o)
CMMD_receive (myself-1,tag,&left, len):

tor (i=1F 1 < nodesize; i++) vii]l = (x [di-11 +exli+]1)/2 0O
vl Ode = e bl doe F) D

vInodesize-1] = (x[nodesize-2] + right) /2.0

*Lisp

(Zif - (and (> (self-address!iy) @
(< (self-address!!) x size))
(*set v (f (+ (news!! b painawat b e a0 A

0)

Id

def relax x =
{ 1,10 = bounds x:

typeol x = vector *0:
1n { arrayil,u} of
bolal o= (xli=lTax[asd})f2.0 |13 = 4310 To u-1}

36 November 1993/Vol 36, No.ll COMMUMNICATIONS OF THE ACM

Figure 5.
Rosetta Stone

This example program fragment shows
the same function written in different
programming styles. All of these pro
g['?l]llﬁ ('('lll]}li](’ Eil'l[_l run (’,i‘f‘l('i(:llliy OI1
the CM-5. The program computes the
average of neighboring elements in a
nondimensional array.

time-shared, machine. Hardware in
the communication network isolates
these partitions in such a way that the
computations in one partition of the
machine have no effect on the com-
putations in another. Fach partition
appears to the software as a single
linear address space, although 1t may
map into physically discontinuous
sections of the machine. It i1s even

possible to power down a partition of

the machine for maintenance while
other partitions continue to operate.

Because the CM-5 is used in large-
scale, long-running applications re-
quiring very large datasets, the stan-
dard Unix file system has been ex-
tended to handle files with terabytes
of data. Checkpointing facilities, in-
voked either automatically or under
user control, have been added to the
operating system [22].

Relation of CM-5 to CM-2

The CM-5 1s the successor o the
CM-2 and CM-200. The CM-5 shares
with the CM-2 the two-network orga-
nization, the global address local
memory
broadcast and synchronize instruc-
tions, and special hardware support

structure, the ability o

for data parallel execution. Its archi-
tecture differs most dramatically
from the CM-2 in the ability of the
individual nodes to execute nstruc-
tions independently and in the orga-
nization of the I/O system. Also, the
CM-5 uses a larger-grained 64-bit
processor, instead of the single-bit
processors and 32-bit floating-point
paths of the CM-2. Most programs
written for the CM-2 only require
recompilation to run on the CM-5.

The important lesson
learned from the CM-2 was the im-
portance of the scalable data parallel
model which is used in most com-

most

mercial and saentfic applications of

massively parallel machines. As 1t
turned out, the strict pt:r—ins(rucLion

synchronization of the CM-2 was not
required to support this model. The
CM-5 15 a MIMD machine (muluple
instruction/multiple data), although
it incorporates many features that
are normally found only in SIMD
(single instruction/multiple data)
machines. The machine incorporates
several important architectural fea-
tures from message-passing
chines such as the Caltech Hyper-
cube [21]. The data network of fat
trees 1s based on work from MI'T [15]
and the New York University Ultra-
computer [20].

ma-

Support for Multiple
Programming Models

The CM-5 is particularly etfectuve at
executing data parallel programs,
but it was designed with the assump-
tion that no one model of parallel
programming will solve all users’
needs. The data parallel model,
which is embodied in languages such
as Fortran-90, *Lisp, and C*, has
proved extremely
broad classes of scientfic and engi-
neering applications. On the other
hand, this model does not seem to be
the best way to express a control
structured algorithm such as playing
chess by searching the game tree [8].
In this case, a message-passing model
is often more appropriate. Other
applications may be better suited by
process-based models, in which tasks
communicate via pipes or shared
variables, or by object-based models

successful — for

in which each processor executes a
different program, or even dataflow
models, such as those supported by
the language Id. Figure 5 shows a
“rosetta stone” of program frag-
ments performing a similar opera-
non in many different programming
languages. All of these languages
compile etticiently for the CM-5. For
this particular example, the data par-
allel languages oftfer the most concise
formulaton, but in other cases mes-
sage-passing-based approaches may
offer a more natural expression of an
algorithm.

Since the hardware re-
quired to support all of these pro-
gramming models is very similar, it is

actual

likely that most parallel machines of

the future will be designed to sup-
port all of these programming mod-

els. All that 1s required is a good com-
munication system, an efficient
global synchronization mechanism,
and a fast hardware broadcast and
reduction. With today’s technology,
this 1s relatvely inexpensive. This is
part of the charm of CHARM archi-
tectures.

Shared Memory vs. Shared
Address Space

Some of the most interesting issues in
computer architecture arise in re-
solving the conflicts between the
needs of the programmer and the
constraints of the hardware. Some-
times apparent conflicts are resolved
by careful separation of the actual
requirements. For example, consider
the shared vs. distributed memory
issue. Programmers would like all of
the data to be accessible from every
processor, which suggests the use of
a single central memory that is acces-
sible by all the processors. Hardware
constraints, on the other hand, make
this central memory approach costly
and inefficient. Local memory, dis-
tributed among the processors, 1s
much faster and less expensive.

It would seem at first glance that
the conflict is irresolvable, and that
the user will be forced to choose be-
tween convenience and efficency.
Fortunately, the choice is unneces-
sary. Itis possible to address both the
hardware and the software needs
simultaneously by distributing mem-
ories for fast local access and provid-
ing an additional mechanism for ac-
cessing all of the memory through a
network. This allows the compiler
and operating system to provide the
user with a shared address space,
without sacrificing the cost-effective-
ness, speed and efficiency of distrib-
uted memory. The CM-5 adopts this
combination of shared address space
and distributed memory. Hennessy
and Patterson have published a dis-

cussion of these two dimensions of
architecture [10]. Figure 6 shows one
of their tables with the addition of
the CM-5.

SIMD vs. MIMD

A similar analysis can be applied 10
the SIMD/MIMD issue. Program-
mers often find it most convenient to
specify programs in terms of a single

COMMUNICATIONS OF THE ACM MNoveimnber 1993/ Vol i, Noll 31

flow of control [2], using a sequential
or a data-parallel programming style.
This frees the programmer from is-
sues of synchronization, deadlock-
ing, stale access, nondeterministic
ordering, and so forth. Parallel com-
puters, on the other hand, can oper-
ate more efficiently executing inde-
pendent instruction streams in each
processor, since a sequential pro-
gram overspecifies the ordering and
synchronization. These two Issues
are resolved by providing a machine
with both independent instruction
streams, and the synchronization and
broadcast mechanisms necessary to
support a sequential programming
style. The program is guaranteed to
compute exactly the same results as it
would operating on a single proces-
sor, although the result is generally
computed more quickly.

If we take the classical SIMD ma-
chine to be one that is synchronized
on every instruction, and the classical
MIMD machine to be one in which
synchronization is left to the pro-
grammer, then the CM-5 normally
operates in the middle ground; that
is, synchronization occurs only as
often as necessary to guarantee get-
ting the same answer as the globally
synchronized machine. These invo-
cations of the hardware synchroniza-
tion operations are generated auto-
matically by the compiler. The
processors are free to operate inde-
pendently whenever such synchroni-
zation is unnecessary. Even applica-
tions that were originally written for
traditional MIMD machines have
been able to take good advantage of
these hardware synchronization
mechanisms. Of course, it is also pos-
sible to program the machine as a
standard MIMD machine, or for that
matter to force a synchronization on
every instruction execution, in which
case it operates as a SIMD machine.
This is illustrated in Figure 7.

Applications

When massively parallel computers
were first introduced, many ex-
pected that they would only achieve
good performance on a narrow
range of applications. Experience
has shown that, contrary to initial
expectations, most applications in-
volving large amounts of data can

take advantage of the computational
power of massively parallel machines
[9]. This is not to say that most exist-
ing applications, as currently written,
run well on massively parallel ma-
chines. They do not. Most existing
supercomputer applications were
designed with much smaller, non-
parallel machines in mind. The aver-
age application on Cray Y-MP at the
NCSA Supercomputer Center, for
example, runs at 70MFLOP/sec in
25MB of memory. Such small-scale
applications rarely have the inherent
parallelism to take advantage of mas-
sive parallelism. On the other hand,
large-scale applications that involve
many GBs of data can almost always
be written in a way that takes good
advantage of large-scale parallelism.
In a recent survey of the world’s most
powerful supercomputers, four out
of the top five systems reported were
Connection Machines [6].

Current applications of the Con-
nection Machine system include
high-energy physics, global climate
modeling and geophysics, astrophys-
ics, linear and nonlinear optimiza-
tion, computational fluid dynamics
and magnetohydrodynamics, elec-
tromagnetism, computational chem-
istry, computational electromagnet-
ics, computational structural
mechanics, materials modeling, evo-
lutionary modeling, neural model-
ing, and database search [19]. There
are many other examples. These
applications use a variety of numeri-
cal methods, including finite differ-
ence and finite element schemes, di-

rect methods, Monte Carlo
calculations, particle-in-cell methods,
n-body calculations, and spectral

methods [4].

Many applications that were origi-
nally developed for the CM-2 achieve
high rates of sustained performance
on the CM-5. For example, a rarefied
gas dynamics simulation, for model-
ing situations such as spacecraft re-
entry [17, 18], which runs at
8GFLOP/sec on the largest CM-2,
runs at a sustained rate of 64GFLOP/
sec on a 1,024 processor CM-5
(IGFLOP/sec is about the peak rate
of a single processor on a Y-MP C90).
Another example is the Global Cli-
mate Modeling software developed
by Los Alamos National Laboratory

38 November 1993/Vol.36, No.ll COMMUNICATIONS OF THE ACM

(see Figure 8). This simulation 1s de-
signed to model global climate warm-
ing due to the buildup of greenhouse
gases. The algorithm relies on a dy-
namically varying mesh of over
250,000 points and 1,200,000 tetra-
hedra to cover the Earth’'s atmo-
sphere. The application consists of
over 30,000 lines of Fortran. Dy-
namic rearrangement of the mesh
automatically adjusts local resolution
to resolve important details of the
flow, such as storm formations. Sim-
ulation of a six-week time period re-
quires about one hour of simulation
time on a 64K CM-2. When run on a
1,024 processor CM-5, this six-week
simulation completes in less than five
minutes.

Massively parallel machines are
also becoming increasingly impor-
tant in applications outside of science
and engineering. Many of these com-
mercial applications take advantage
of the scalable input/output capabil-
ity of the CM-5. For example, Ameri-
can Express corporation is using two
CM-5’s to process its large credit card
databases. Another example is the oil
industry, where companies such as
Mobil and Schlumberger use CM-5's
for large-scale seismic processing.

Because the CM-5 provides direct
user-level access to the network
hardware, it is also used as an experi-
mental platform for testing new ar-
chitectures. There is no operating
system software overhead between
the user and the network. Computer
scientists at the University of Califor-
nia, Berkeley are using this property
of the CM-5 to investigate a model ot
parallel computation based on what
they term a “Threaded Abstract
Machine” (TAM). This abstract ma-
chine is the compilation target for
parallel languages such as ID90. This
language, originally designed for
dataflow computers, relies on a fine-
grained, message-driven execution
model. They have taken advantage
of direct access to the data network to
implement an ultralight form of
remote procedure call, called active
messages [7].

At the University of Wisconsin,
investigators are also using their
CM-5 for virtual prototyping; that is,
they use the machine to simulate
other architectures to better under-

stand alternative architectural
choices. The CM-5 Wisconsin Wind
Tunnel prototyping system mimics
the operations of a large-scale, cache-
coherent, shared-memory machine.
Almost all application instructions
are directly executed by the hard-
ware. References to shared data that

are not locally cached, invoke com-
munication Lo retrieve memory
pages from the global address space.
The scalability and flexibility of the
CM-5 has allowed these researchers
to run full-sized applications on a
simulated architecture and study the

effects of various cache coherency

Addressing
Multiple Shared
e Cosmic Cube | CM-2, CM-5
Distributed IPSC/i860 IBM RP3
Physical nCUBE 2 Cedar
memory
location IBM 3090-600
i Multimax
Centralized YMP-8
Instruction stream
Single Multiple
Globally synchronous CSI?&%C CM-5
b Classic
Pair-wise synchronous MIMD

schemes [11].

Some of the applications of the
CM-5 really require even greater
computing power than is available
today. For example, a consortium of
particle physicists has formed to con-
struct a special version of the CM-5
for teraflops calculations in quantum

Figure 6.

Parallel processors according to
centralized versus distributed
memory and shared vs. mulitiple
addressing

Source: Patterson and Hennessy

The hardware notion of shared memory
is often confused with the software
notion of shared addressing. Machines
with locally distributed memory can be
designed to support a program model
on which the user sees all data in a
single address space. This allows the
machine to combine the hardware
efficiency of distributed memory with
the software convenience of a single
address space.

Figure 7.
Instruction stream

In a classical SIMD machine, global
synchronization is provided by a single
broadecast instruction stream. In a
classical MIMD machine, multiple
instruction streams are synchronized
via palrwise interactions; for example,
through messages or shared memory
references. The CM-5 is an example of
a coordinated MIMD machine, in which
multiple instruction streams are syn-
chronized whenever necessary through
global synchronization hardware.

Figure 8.
X3D—Massively parallel adaptive
advanced climate model

This global climate model simulation is
an example of a scientific application of
the CM-5. Lines represent an irregular
computational mesh of approximately
1,200,000 tetrahedra and 1s used to
compute Lagrangian hydrodynamics,
Monte Carlo Transport, and thermal
heat diffusion. Land masses are shown
in yellow. The goal of this application is
to better answer fundamental questions
about changes in the earth’s global
climate through computer simulation.
Credit: Harold Tiease (Los Alamos National
Laboratory)

November 1993/Vol 36, No.l 39

chromodynamics. These calculations
could potentially advance our under-
standing of the structure of atomic
particles [1]. Protein structure pre-
diction and global climate modeling
are other examples of problems that
will ultimately require teratlops per-
formance. These calculations have
tremendously large potential eco-

nomic impact. As a final example of

an application that will require even
greater performance, one of us
(W.D. Hillis) is using a Connection
Machine to design computer algo-
rithms by a process analogous to bio-
logical evolution [13]. Perhaps some
future version of the Connection
Machine will use circuits designed by
these evolutionary methods.

Summary

In summary, we believe the most
important features of the Connec-
ton Machine are its scalability, its
global access of locally distributed
memory, and its global coordination
of local executing processes. To-
gether, these features allow the CM-5
to support a variety of parallel pro-
gramming models and a wide range
of applications with good perfor-
mance. Because the cost of this uni-
versality is relatively low, we predict
that the architectures of this type,
using coordinated homogeneous ar-
rays of RISC microprocessors
(CHARM), will be the dominani
form of large-scale computing in the
1990s. @

References

1. Aoki, A, et al. Physics goals of the
QCD Teraflop project. J. Mod. Phys.
C, 2,4 (1991), 892-947.

2. Backus, J. Can programming be lib-
erated from the von Neumann style?
Commun. ACM 8 (1978).

3. Blelloch, G. Scan primitives and par-
allel vector models. Ph.D. thesis, Car-
negie-Mellon University, Jan. 1989.

4. Boghosian, B. Computational physics
on the Connection Machine. Comput.
Phys. 4, 1 (1990).

5. Dongarra, J.J. Performance of vari-
ous computers using standard linear
equations software.
Tennessee, Sept. 1992,

6. Dongarra, J.J. TOP500. Tech. Rep.
37831, Computer Science dept., Uni-
versity of Tennessee, July 1993.

7. Eicken, T., Culler, D., Goldstein, S.

University of

10.

11.

12,

13.

14.

15.

16.

17.

18.

19.

20.

21.

and Schauser, K. Active Messages: A
mechanism for integrated communi-
cation and computation. In Proceed-
ings of the Nineteenth International Sym-
posium on Computer Architecture. ACM
Press (May 1992).

. Fox, G.C. Parallel computing comes
of age: Supercomputer level parallel
computations at Caltech. Concurrency,
I, 1 (Sept. 1982).

. Fox, G.C.

pects for parallel computing. Concur

rency: Pract. Exp., 3, (1991), 725.

Hennessy,].I.. and Patterson, D.A.

Computer Architecture: A Quantitative

Approach, Morgan Kaufmann, 1990.

Hill, M., Larus, J., Reinhardt, S. and

Wood, D. Cooperative shared mem-

ory: Software and hardware for scal-

able multiprocessors. ‘Tech. Rep.

1096, Computer Science Dept., Uni-

versity of Wisconsin-Madison, July

1992,

Hillis, W.D. Balancing a Design. IEEE

Spectrum (May 1987).

Hillis, W.D. Co-Evolving parasites

improve simulated evolution as an

optimization procedure. Physica D 42

(1990),

Hillis, W.D. and Steele, G.1.. Data

parallel algorithms. Commun. ACM

29, 12 (Dec. 1986).

Leiserson, C.E. Fat-trees: Universal

networks for hardware-efficient su-

percomputing. [EEE Trans. Comput.

C-34, 10 (Oct. 1985).

Leiserson, C.E., et al. The network

architecture of the connection ma-

chine CM-5. In the Fourth Annual

ACM Symposium on Parallel Algorithms

and Architecture (June 1992).

Long, L.N., Kamon, M., Chyczewski,
I'S. and Myczkowski, J. A determin-

istic parallel algorithm to solve a

model Boltzmann equation (BGK).

Comput. Syst. Eng. 3, 1-4, (Dec. 1992),

337-345.

Long, L.N., Kamon, M., Myczkowski,

J. A massively parallel algorithm to

solve the Boltzmann (BGK) equation.

ATAA Rep. 92-0563, Jan. 1992.

Sabot, G., Tennies, L., Vasilevsky, A.

and Shapiro, R. In Scientific Applica-

tions of the Connection Machine, H.D.

Simon, Ed. World Scientific, River

Edge, N.J., Second ed., 1992, pp.

364-378.

Schwartz,]. Ultracomputers. ACM

Trans. Program. Lang. Syst. 2, 4 (Oct.

1980).

Seitz, C.L. The cosmic cube. Commun.

ACM 28, 1 (Jan. 1985).

Achievements and pros-

22. Thinking Machines Corporation.
CM-5 Software Sum., CMost Version
7.1, Jan. 1992.

23. Thinking Machines Corporation.

40 November 1993/ Vol 36, No.ll COMMUNICATIONS OF THE ACM

The Connection Machine CM-5
Tech. Sum. (Oct. 1991).

24. Wade, J- The vector COProcessor unit
(VU) for the CM-5. Symposium Rec-
ord: Hot Chips 1V, Stanford Univer-
sity, IEEE Computer Society, August
1992.

CR Categories and Subject Descrip-
tors: C.1.2 [Processor Architecturesj:
Multiple Data Stream Architectures—
connection machines, C.5.1 [Computer Sys-
tem Implementation]: Large and Me-
dium (“Mainframe”) Computers—super
(very large) computers

General Terms: Design, Performance

Additional Key Words and Phrases:
CM-5, Massively Parallel Systems

About the Authors:

W. DANIEL HILLIS is chief scientist and
cofounder of Thinking Machines Corp.
He is the architect of the Connection
Machine computer. His research interests
include parallel programming, evolution-
ary biology, computer architecture, and
the study of complex dynamical systems
with emergent behavior. His current re-
search is on evolution and parallel learn-
ing algorithms.

LEWIS W. TUCKER is director of pro-
gramming models at Thinking Machines
Corp., and is responsible for the CM-5s
message passing and scientific visualiza-
tion library development. His research
interests include parallel architecture de-
sign, scientific visualization, and com-
puter vision.

Authors’ Present Address: Thinking
Machines Corp., 245 First Sureet, Cam-
bridge, MA 02142; email: {danny, tucker}
(@think.com

Connection Machine is a registered trademark of
Thinking Machines Corp.

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publi-
cation and its date appear, and notice is give that
copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission

© ACM 0002-0782/93/1100-030 $1.50

