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Abstract

A thread executing on a simultaneous multithreading
(SMT) processor that experiences a long-latency load will
eventually stall while holding execution resources. [Exist-
ing long-latency load aware SMT fetch policies limit the
amount of resources allocated by a stalled thread by iden-
tifving long-latency loads and preventing the given thread
Sfrom fetching more instructions — and in some implemen-
tations, instructions beyond the long-latency load may even
be flushed which frees allocated resources.

This paper propoeses an SMT fetch policy that takes into
account the available memory-level parallelism (MLP) in
a thread. The key idea proposed in this paper is that
in case of an isolated long-latency load, i.e., there is no
MLPF, the thread should be prevented from allocating ad-
ditional resources. However, in case multiple independent
long-latency loads overlap, i.e., there is MLF, the thread
should allocate as many resources as needed in order o
Sully expose the available MLP. The proposed MLP-aware
Setch policy achieves better performance for MLP-intensive
threads on an SMT processor and achieves a better overall
balance between performance and fairness than previously
proposed fetch policies.

1 Introduction

A thread experiencing a long-latency load (a last cache
level miss or D-TLB miss) in a simultaneous multithread-
ing processor [22, 25, 26] will stall while holding execu-
tion resources without making progress. This affects the
performance of the co-scheduled thread(s) because the co-
scheduled thread(s) cannot make use of the resources allo-
cated by the stalled thread.

Tullsen and Brown [24] and Cazorla ef al. [2] recognized
this problem and proposed to limit the resources allocated
by threads that are stalled due to long-latency loads. In
fact, they detect or predict long-latency loads and as soon
as a long-latency load is detected or predicted, the fetching
of the given thread is stalled. In some of the implementa-
tions studied in [2, 24], instructions may even be flushed
in order to free execution resources allocated by the stalled
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thread such as reorder buffer space, instruction queue en-
tries, efc., in favor of the non-stalled threads. A limitation
of these long-latency aware fetch policies is that they do not
preserve the memory-level parallelism (long-latency loads
overlapping in time) being exposed by the stalled long-
latency thread. As a result, independent long-latency loads
no longer overlap but are serialized by the fetch policy.

This paper proposes a fetch policy for SMT processors
that takes into account memory-level parallelism for deter-
mining when to fetch stall or flush a thread executing a long-
latency load. More in particular, we predict the amount of
MLP for a given load and based on the predicted amount
of MLP, we decide to (i) fetch stall or flush the thread in
case there is no MLP or (ii) continue allocating resources
for the long-latency thread for as many instructions as pre-
dicted by the MLP predictor. The key idea is to fetch stall
or flush a thread only in case there is no MLP; in case of
MLP, we only allocate as many resources as required to ex-
pose the available memory-level parallelism. The end result
is that in the no-MLP case, the other thread(s) can allocate
all the available resources improving their performance. In
the MLP case, our MLP-driven fetch policy does not penal-
ize the MLP-sensitive thread as done by the previously pro-
posed long-latency aware fetch policies [2, 24]. Our exper-
imental results using SPEC CPU2000 show that the MILP-
aware fetch policy achieves an average 34.6% better perfor-
mance/fairness balance for MLP-intensive workloads com-
pared to the previously proposed load-latency aware [elch
policies [2, 24] and a 28.6% beller performance/laimess
balance compared to ICOUNT [25]. For mixed ILP/MLP-
intensive workloads, our MI.P-aware fetch policy achieves
an average 8.5% and 21% better performance/fairness bal-
ance compared to load-latency aware fetch policies and
ICOUNT, respectively.

This paper is organized as follows. We first re-
visit memory-level parallelism and quantify the amount of
memory-level parallelism available in our benchmarks (sec-
tion 2). We then discuss the impact of MLP on SMT per-
formance (section 3). These two sections motivate for the
MILP-aware fetch policy that we propose in detail in sec-
tion 4. After having detailed our experimental setup in sec-
tion 5, we then evaluate our MI.P-aware fetch policy in sec-
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Figure 1. Amount of MLP for all of the bench-

marks.

tion 6. Before concluding in section 8 we also detail on
related work in section 7.

2 Memory-Level Parallelism

We refer to a memory access as being long-latency in
case the out-of-order processors cannot hide (most of) its
penalty. In contemporary processors, this is typically the
case for accessing off-chip memory hierarchy structures
such as large off-chip caches or main memory. The penalty
of long-latency loads is typically quite large — on the or-
der of a hundred or more cycles. (Note that the term long-
latency load collectively relers o long-latency data cache
misses and data TLB misses.) Because of the long-latency,
in an out-of-order superscalar processor, the ROB typically
fills up on a long-latency load because the load blocks the
ROB head, then dispatch stops and eventually issue and
commit cease [9]. When the miss data returns from mem-
ory, instruction issuing resumes.

In contemporary superscalar processors though, multi-
ple long-latency loads can be outstanding at a given point
in time. This is made possible through various microarchi-
tecture techniques such as non-blocking caches, miss sta-
tus handling registers (MSHRS), efc. In fact, in an out-of-
order processor, long-latency loads that are relatively close
to each other in the dynamic instruction stream, overlap
with each other at execution time |9, 10]. The reason is
that as the first long-latency load blocks the ROB head,
the ROB will eventually fill up. As such, a long-latency
load that makes it into the ROB will overlap with the in-
dependent long-latency loads residing in the ROB as long
as there are enough MSHRs and associated structures avail-
able. In other words, in case multiple independent long-
latency loads occur within W instructions from each other,
with W being the size of the reorder buffer (ROB), their
penalties will overlap [5, 9]. This is called memory-level
parallelism (MLP) [8]; the latency from one long-latency
load is hidden by the latency from another long-latency
load.

Following this reasoning, we define the amount of
memory-level parallelism (MLP) in a particular program
as the average number of long-latency loads outstanding

benchmark | input LLL | MLP | MLP impact type

bzip2 program 0.7 173 840% | MLP
crafty rel 0.5 1.92 9.52% | MLP
eon rushmeier 0.0 1.33 0.01% ILP
gap ref 0.2 .02 0.15% ILP
gce 166 0.5 1.85 397% mn.p
ezip graphic 0.1 1.84 1.31% ILP
mef ref 64.1 2.81 54.68% | MLP
parser ref 0.9 1.29 4.73% ILP
perlbmk makerand 03 1.01 0.07% ILP
twolf ref 1.9 1.26 6.99% MLP
vortex ref2 1.6 1.56 13.25% | MLP
vpr route 25 1.26 892% | MLP
ammp ref 182 1.14 T11% MLP
applu ret’ 85 3.21 47.13% | MLP
apsi ref 12.1 8.95 069.99% MLP
art ref-110 1.1 1.09 2.27% ILP
equake ref 0.0 1 0.00% ILP
facerec ref 1.1 1.04 0.93% ILP
fma3d ref 0.0 1.1 0.00% ILP
galgel ref 169.7 | 22.79 95.24% | MLP
lucas ref 2.1 2.15 39.76% | MLP
mesa ref 0.1 1.19 0.72% Im.p
mgrid ref 59 1.72 25.00% | MLP
sixtrack ref 0.1 1.34 0.55% ILP
swim ref 40.6 6.46 79.39% | MLP
wupwise el 0.5 1.05 0.46% ILP

Table 1. The SPEC CPU2000 benchmarks,
their reference inputs, the number long-
latency loads per 1K instructions (LLL), the
amount of MLP, the impact of MLP on overall
performance and the type of the benchmarks.

when there is at least one long-latency load outstanding [5].

Figure 1 shows the amount of MLP in all of the SPEC

CPU2000 benchmarks. Table 1 (fourth column) shows the
average MLP per benchmark. (We refer to section 5 for a
detailed description on the experimental setup.) In these
MLP characterization experiments we consider a long-
latency load to be an .3 data cache load miss or a D-TLB
load miss. We observe that the amount of MLP varies across
the benchmarks. Some benchmarks exhibit almost no MLP
— a benchmark having an MLP close to 1 means there
is limited MLP. Example benchmarks are gap, perlomk,
equake and wupwise. Other benchmarks exhibit a fair
amount of MLP, see for example applu, apsi, swim and the
most notable example being galgel. The amount of MLP
for galgel is extremely high, namely 22.79. The reason for
this high MLP is the very large number of independent loads
that index very large arrays that span multiple pages which
results in a very large number of D-TLB misses. Note that
for most benchmarks the amount of MLP correlates well
with the number of long-latency loads; the latter is shown
in the third column in Table 1. This is to be expected in case
the long-latency loads are independent of each other. There
are some exceptions though, such as mef and ammp, that
show a large number of long-latency loads with a moderate
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amount of MLP. The reason is that the long-latency loads
are dependent on each other.

The second but last column in Table 1 shows the im-
pact MLP has on overall performance. More in particular,
it quantifies the amount of performance improvement due
to MLP, i.e., the reduction in overall execution time by en-
abling the parallel processing of independent long-latency
loads. For scveral benchmarks, the amount of MLP has
a substantial impact on overall performance with perfor-
mance improvements ranging from 10% up to 95%. For
apsi for example, ML reduces the execution time by al-
most 70%; for galgel, MLP even reduces the execution time
by 95%. Based on this observation we can classify the var-
ious benchmarks according to their memory behavior, see
the rightmost column in Table 1. We classify a benchmark
as an MLP-intensive benchmark in case the impact of the
MLP on overall performance is larger than 5%. The other
benchmarks are classified as ILLP-intensive benchmarks. We
will use this benchmark classification later in this paper
when evaluating the impact of our MLP-aware fetch poli-
cies on various mixes of workloads.

3 Impact of MLP on SMT Performance

When running multiple threads on an SMT processor,
there are two ways how cache behavior affects overall per-
formance. First, co-scheduled threads affect each other’s
cache behavior as they compete for the available resources
in the cache. In fact, one thread with poor cache behavior
may evict data from the cache detoriating the performance
of the other co-scheduled threads. Second, memory-bound
threads can hold critical execution resources while not mak-
ing any progress because of the long-latency memory ac-
cesses. More in particular, a long-latency load cannot be
committed as long as the miss is not resolved. In the mean-
while though, the fetch policy keeps on fetching instructions
from the blocking thread. As a result, the blocking thread
allocates execution resources without making any further
progress. This paper deals with the latter problem of long-
latency threads holding execution resources.

The ICOUNT fetch policy [25], which fetches instruc-
tions from the thread(s) least represented in the pipeline,
partially addresses this issue. ICOUNT tries to balance the
number of instructions in the pipeline among the various
threads so that all threads have an approximate equal num-
ber of instructions in the pipeline. As such, the ICOUNT
mechanism already limits the impact long-latency loads
have on overall performance — the stalled thread is most
likely to consume only a part of the resources; without
ICOUNT, the stalled thread is likely to allocate even more
resources.

Tullsen and Brown [24] recognize the problem of long-
latency loads and therefore propose two mechanisms to
free the allocated resources by the stalled thread. In the
first approach, they prevent the thread executing a long-

latency load to fetch any new instructions until the miss is
resolved. The second mechanism goes one step further and
also flushes instructions from the pipeline. These mech-
anisms allow the other thread(s) to allocate execution re-
sources while the long-latency load is being resolved; this
improves the performance of the non-stalled thread(s). Ca-
zorla et al. [2] improve the mechanism proposed by Tullsen
and Brown by predicting long-latency loads. When a load
is predicted to be long-latency, the thread is prevented from
fetching additional instructions.

The ICOUNT and long-latency aware fetch policies do
not completely solve the problem though, the fundamental
reason being that they do not take into account memory-
level parallelism. Upon a long-latency load, the thread exe-
cuting the long-latency load is prevented from fetching new
instructions and (in particular implementations) may even
be (partially) flushed. As a result, independent long-latency
loads that are close to each other in the dynamic instruction
stream cannot execute in parallel. In fact, they are serial-
ized by the fetch policy. This excludes memory-level par-
allelism from being exposed and thus penalizes threads that
show a large amount of MLP. The MLP-aware fetch policy,
which we discuss in great detail in the next section, alle-
viates this issue and results in improved performance for
MLP-intensive threads.

4 MLP-aware Fetch Policy for SMT Proces-
sors

The MLP-aware fetch policy that we propose in this pa-
per consists of three mechanisms. First, we need to iden-
tify long-latency loads, or alternatively, we need to predict
whether a given load is likely to be long-latency. Second,
once the long-latency load is identified or predicted, we
need to determine the amount of MLP associated with this
load. Third, we need to drive the fetch policy with the ob-
tained MLP information. These three mechanisms will now
be discussed in more detail in the following subsections.

4.1 Identifying Long-Latency Loads

We use two mechanisms for identifying long-latency
loads — these two mechanisms will be used in conjunction
with two different mechanisms for driving the fetch policy,
as will be discussed in section 4.3. The first mechanism
simply labels a load as a long-latency load in case the load
is found to be an 1.3 miss or a D-TLB miss.

The second mechanism is to predict whether a load is
going to be a long-latency load. The predictor is placed at
the pipeline frontend and long-latency loads are predicted
as they pass through the frontend pipeline. We use the miss
pattern predictor proposed in [12]. The miss pattern pre-
dictor consists of a table indexed by the load PC; each ta-
ble entry records (i) the number of load hits between the
two most recent long-latency loads, and (ii) the number of
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load hits since the last long-latency load. In case the lat-
ter matches the former, i.e., in case the number of load hits
since the last long-latency load equals the most recently ob-
served number of load hits between two long-latency loads,
the load is predicted to be long-latency. The predictor ta-
ble is updated when a load executes. The predictor used
in our experiments is a 2K-entry table; and we assume one
table per thread. During our experimental evaluation we ex-
plored a wide range of long-latency load predictors such as
a last value predictor and the 2-bit saturating counter load
miss predictor proposed by [7]. We concluded though that
the miss pattern predictor outperforms the other predictors
— this conclusion was also reached in [2]. Note that a
load hit/miss predictor has been implemented in commer-
cial processors as is the case in the Alpha 21264 micro-
processor [11] for predicting whether to speculatively issue
load-consumers.

4.2 Predicting MLP

Once a long-latency load is identified, either through the
observation of a long-latency cache miss or through pre-
diction, we need to predict whether the load is exhibiting
memory-level parallelism. The MLP predictor that we pro-
pose consists of a table indexed by the load PC. Each entry
in the table contains the number of instructions one needs to
2o down the dynamic instruction stream in order to observe
the maximum MLP for the given reorder buller size. We
assume one MLP predictor per thread.

Updating the MLP predictor is done using a structure
called the long-latency shift register (LL1L.SR) which, in our
implementation, has as many cntries as there are reorder
buffer entries divided by the number of threads. Upon com-
mitting an instruction from the reorder buffer, we shift the
LLLSR over one bit position from tail to head, and then in-
sert one bit at the tail of the LLSR. The bit being inserted
is a ‘17 in case the committed instruction is a long-latency
load and a *0" if not. Along with inserting a 0" ora *1” we
also keep track of the load PCs in the LLLLSR. In case a *1’
reaches the head of the LL.SR, we update the MLP predictor
table. This is done by computing the MLP distance whichis
the bit position of the last appearing “1” in the LLSR when
reading the LLLSR from head to tail. The MLP distance then
is the number of instructions one needs to go down the dy-
namic instruction stream in order to achieve the maximum
MLP for the given reorder buffer size. The MLP predictor
is updated by inserting the computed MLP distance in the
predictor table entry pointed to by the load PC.

Note that this MLP predictor is a fairly simple last value
predictor: the most recently observed MLP distance is
stored in the predictor table. According to our experimen-
tal results, this predictor performs well for our purpose. As
part of our future work, we plan to study more advanced
MLP predictors though.

4.3 MLP-Aware Fetch Policy

We consider two mechanisms for driving the MLP-
aware fetch policy, namely fetch stall and flush — these
two mechanisms are similar to the ones proposed by [24]
and [2], however, these previous approaches did not con-
sider memory-level parallelism.

In the fetch stall approach, we first predict in the frontend
pipeline whether a load is going to be a long-latency load.
In case of a predicted long-latency load, we then predict the
MLP distance, say m instructions. We then fetch stall after
having fetched m additional instructions.

The flush approach is slightly different. We first iden-
tify whether a load is a long-latency load. This is done
by observing whether the load is an 1.3 miss or a D-TLB
miss; there is no long-latency load prediction involved. For
a long-latency load, we then predict the MLP distance m. If
more than m instructions have been fetched since the long-
latency load, we flush the instructions after m instructions
since the long-latency load. If less than m instructions have
been fetched since the long-latency load, we continue fetch-
ing instructions until 77 instructions have been fetched. Note
that the flush mechanism requires that the microarchitec-
ture supports checkpointing. Commercial processors such
as the Alpha 21264 [11] effectively support checkpointing
at all instructions. If the microprocessor would only sup-
port checkpointing at branches, our flush mechanism could
continue fetching instructions until the next branch after the
m instructions.

Owr fetch policies of fetch stall and flush implement the
‘continue the oldest thread” (COT) mechanism proposed
in [2]. COT means that in case multiple threads stall be-
cause of a long-latency load, the thread that stalled first,
gets priority for allocating resources. The idea is that the
thread that stalled first will be the first thread to get the data
back from memory and continue execution.

Note also that our MLP-aware fetch policy resorts to the
ICOUNT fetch policy in the absence of long-latency loads.

5§ Experimental Setup

The processor model being simulated is the superscalar
out-of-order SMT processor as shown in Table 2. We use
the SMTSIM simulator [23] in all of our experiments. We
use the SPEC CPU2000 benchmarks in this paper with ref-
erence inputs, see Table 1. These benchmarks are compiled
for the Alpha ISA. For all of these benchmarks we fastfor-
ward the first 1B instructions and subsequently simulate the
next 300M instructions in detail. We consider various ILP-
intensive, ILP/MILP-intensive and MIP-intensive mixes of
two-thread and four-thread workloads.

We use two metrics in our evaluation. Our first metric is
the average weighted speedup compared to single-threaded
execution:

E" IPCMmr.
i=1 TPCsr.1

n

speedup =
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fetch width

pipeline depth

branch misprediction penalty
branch predictor

branch target buffer
active list entries
Tunctional units
instruction queues
rename registers

L1 instruction cache

.1 data cache

unified L2 cache

unified L3 cache

cache hierarchy latencies

8 instructions per cycle

8 stages

6 cycles

2K-entry gshare

256 entries, 4-way sel associative
256 per thread

6 int ALUs, 4 1d/st units and 3 FP units
64 entries in total (32 int and 32 fp)
100 integer and 100 Hoating-point
64KB, 2-way, 64-byte lines

64KB, 2-way, 64-byte lines
512KB, 2-way, 64-bvte lines

4MB, 2-way, 64-byte lines

L2 (10), L3 (20), MEM (100)

Table 2. The SMT processor model assumed

in the evaluation.

accuracy

-
g
]
E

Figure 2. The accuracy of the long-latency

load predictor.

with [ PCpyp; and IPCgr; being the IPC for thread
in multithreaded mode and single-threaded mode, respec-
tively, and n being the number of threads. The pitfall
with this metric is that it favors fetch policies that improve
overall performance at the expense of degrading the per-
formance of particular threads. Therefore, we also use a
second metric called hmean which 1s the harmonic average

speedup:
n
T IPCST’,; )
i=1 JPCJMT“'

hmean —
This metric balances performance and fairness [14].

6 Evaluation

The evaluation of the MLP-aware SMT fetch policy is
done in a number of steps. We first evaluate the predic-
tion accuracy of the long-latency load predictor. We sub-
sequently evaluale the prediction accuracy ol the MLP pre-
dictor. We then evaluate the effectiveness of the MLP-aware
fetch policy and compare it against prior work.

6.1 Long-latency load predictor

The MLP-aware fetch stall approach requires that we can
predict long-latency loads in the frontend stages of the pro-
cessor pipeline. Figure 2 shows the prediction accuracy for

[0 tusposive O tuenegative [ false positive W false negatve

[+%
H
= -

100%
90%
80%
T0%
60%
50%
40%
30%
20%
10%

Figure 3. Evaluating the accuracy of the MLP
predictor for predicting MLP.

Wupwis

Figure 4. Evaluating the accuracy of the MLP
predictor for predicting the MLP distance.

the long-latency load predictor. We observe that the accu-
racy achievedis very high, no less than 95% with an average
prediction accuracy of 98.9%.

6.2 MLP predictor

Figure 3 evaluates the ability of the MLP predictor for
predicting whether a long-latency load is going to expose
MLP. A true positive means the MLP predictor predicts
MLP in case there is MLP; a true negative means the MLP
predictor predicts no-MLP in case there is no MLP. The sum
of the fraction of true positives and true negatives is the pre-
diction accuracy of the MLP predictor in predicting MLP.
The average prediction accuracy equals 87.1%. The aver-
age fraction false negatives equals 6.5% and corresponds to
the case where the MLP predictor fails to predict MLP. This
case will lead to performance loss for the MLP-intensive
thread, i.e., the thread will be fetch stalled or flushed al-
though there is MLP. The average fraction false positives
equals 6.4% and corresponds to the case where the MLLP
predictor fails to predict there is no MLP. In this case, the
fetch policy will allow the thread to allocate additional re-
sources although there is no MLP to be exposed; this may
hurt the performance of the other thread(s).

Figure 4 further evaluates the MLP predictor and quan-
tifies the probability for the MLP predictor to predict a far
enough MLP distance. In other words, a prediction is clas-
sified as a misprediction if the predicted MLP distance is
smaller than the actual MLP distance, i.e., the maximum
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available MLP is not fully exposed by the MLP predictor.
A prediction is classified as a correct prediction if the pre-
dicted MLP distance is at least as large as the actual MLP
distance. The average MLP distance prediction accuracy
equals 81.8%.

6.3 MLP-aware fetch policy

We now evaluate our MLP-aware fetch policy in terms of
the speedup and hmean metrics. For doing so, we compare
the following SMT fetch policies:

e [COUNT which strives at having an equal number of
instructions from all threads in the pipeline. The fol-
lowing fetch policies extend upon the ICOUNT policy.

o The stall fetch approach proposed by Tullsen and
Brown [24], i.e., a thread that experiences a long-
latency load is fetch stalled unul the data returns from
memory.

o The predictive stall fetch approach, following [2], ex-
tends the above stall fetch policy by predicting long-
latency loads in the front-end pipeline. Predicted long-
latency loads trigger fetch stalling a thread.

e The MLP-aware stall fetch approach predicts long-
latency loads, predicts the amount of MLP for pre-
dicted long-latency loads and fetch stalls threads when
the number of instructions has been fetched as pre-
dicted by the MLP predictor.

e The flush approach proposed by Tullsen and
Brown [24] flushes on long-latency loads.  Our
implementation flushes when a long-latency load is
detected (this is the “TM’ or trigger on long-latency
miss in [24]) and flushes starting from the instruction
following the long-latency load (this is the ‘next’
approach in [24]).

e The MLP-aware flush approach predicts the amount of
MLP for a long-latency load, and fetch stalls or flushes
the thread after m instructions since the long-latency
load, with m the MLP distance predicted by the MLP
predictor.

6.3.1 Two-thread workloads

Figures 5 and 6 show the speedup and hmean metrics for
the various SMT fetch policies for the 2-thread workloads.
There are three graphs in Figure 6, one for the [LLP-intensive
workloads, one for the MLP-intensive workloads and one
for the mixed ILLP/MLP-intensive workloads. There are sev-
eral interesting observations to be made from these graphs.
First, the flush policies generally outperform the fetch stall
policies. This is in line with [24] and is explained by
the fact that the flush policy is able to free resources al-
located by a stalled thread. Second, the fetch policy does

not have a significant impact on performance and fairness
for ILP-intensive workloads. Third, MILP-aware fetch poli-
cies improve the hmean metric for the MLP-intensive work-
loads by an average 28.6% improvement over [ICOUNT and
an average 34.6% improvement over flush; speedup is im-
proved by 18.7% on average compared to [COUNT and by
17.1% on average compared to flush. Fourth, for mixed
ILP/MLP-intensive workloads, the MI.P-aware flush policy
improves speedup by 12.3% over ICOUNT on average and
by 2.7% over flush on average. Likewise, the MLP-aware
flush policy improves the hmean metric by 21.0% on av-
erage over ICOUNT and by 8.5% over flush. The bottom-
line is that an MLP-aware fetch policy improves the per-
formance of MLP-intensive threads. This is also illustrated
in Figures 7 and 8 where IPC stacks are shown for MLP-
intensive and mixed ILP/MILP-intensive workloads, respec-
tively. These graphs show that the MLP-intensive thread
typically achieves better performance under an MILP-aware
fetch policy. The improved MLP-intensive thread perfor-
mance leads to a better overall balance between perfor-
mance and fairness.

6.3.2 Four-thread workloads

Figures 9 and 10 shows the speedup and hmean metrics
for the various fetch policies for the 4-thread workloads.
Here we obtain fairly similar results as for the 2-thread
workloads. The MLP-aware fetch policies achieve better
hmean numbers than non-MIP-aware fetch policies. Es-
pecially, the MLP-aware flush policy achieves a better bal-
ance between performance and fairness: the average hmean
score for the MILP-aware flush policy is 9.0% better than for
ICOUNT and 13.6% better than for flush.

7 Related Work

There are four avenues of research related to this work:
(1) memory-level parallelism, (i1) SMT fetch policies and re-
source partitioning, (iii) coarse-grained multithreading and
(iv) prefetching.

7.1 Memory-Level Parallelism

Karkhanis and Smith [9, 10] propose an analytical model
that provides fundamental insight into how memory-level
parallelism affects overall performance. An isolated long-
latency load typically blocks the head of the reorder buffer
after which performance drops to zero; when the data re-
turns, performance ramps up again to steady-state perfor-
mance. The overall penalty for an isolated long-latency
load is approximately the access time to the next level in
the memory hierarchy. For independent long-latency loads
that occur within W instructions from each other in the dy-
namic instructions with W being the reorder buffer size, the
penalties completely overlap in time.

Chou et al. [5] study the impact of the microarchitec-
ture on the amount of memory-level parallelism. Therefore
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Figure 5. The speedup for the various SMT fetch policies compared to single-threaded execution for

the 2-thread workloads.
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they evaluate the effectiveness of various microarchitecture
techniques such as out-of-order execution, value predic-
tion [21, 28], runahead execution [16] on the amount of
MLP. Mutlu et al. [15] propose using MLP predictors to
improve the efficiency of runahead processors by not going
into runahead mode in case there is no MLP to be exploited.

Qureshi et al. [18] propose an MLLP-aware cache replace-
ment policy. They propose to augment traditional recency-
based cache replacement policies with MLP information.
The goal is to reduce the number of isolated cache misses
and if needed, to interchange isolated cache misses for over-
lapping cache misscs, thus exposing MLP and improving
overall performance.

MLP can also be exposed through compiler optimiza-
tions. Read miss clustering for example is a compiler tech-
nique proposed by Pai and Adve [17] that transforms the
code in order to increase the amount of MLP. Read miss
clustering strives at scheduling likely long-latency indepen-
dent memory accesses as close to each other as possible. At
execution time, these long-latency loads will then overlap
improving overall performance.

7.2 SMT Fetch Policies and Resource Partitioning

An important design issue for SMT processors is how to
partition the available resources such as the instruction issue
buffer and reorder buffer. One solution is (o statically par-
tition [19] the available resources. The downside of static
partitioning is the lack of flexibility. Static partitioning pre-
vents resources {rom a thread that does not require all of its
available resources to be used by another thread that may
benefit from the additional resources.

Dynamic partitioning on the other hand allows multiple
threads to share resources. In a dynamic partitioning, the
use of the common pool of resources is determined by the
fetch policy. The fetch policy determines from what thread
instructions need to be fetched in a given cycle. Several
fetch policies have been proposed in the recent literature,
ICOUNT [25] prioritizes threads with few instructions in
the pipeline. The limitation of ICOUNT is that in case of
a long-latency load, ICOUNT may continue allocating re-
sources that cannot be allocated by the other thread(s). In
response to this problem, Tullsen and Brown |24] proposed
two basic schemes for handling long-latency loads, namely
(i) fetch stall the thread executing the long-latency thread,
and (ii) flush instructions fetched passed the long-latency
load in order to deallocate resources. Cazorla ef al. [2]
improved upon the work done by Tullsen and Brown by
predicting long-latency loads along with the ‘continue the
oldest thread (COT)" mechanism that prioritizes the oldest
thread in case multiple threads wait for a long-latency load.

Other fetch policies have been proposed as well, how-
ever these fetch policies do not address the long-latency
load problem and are orthogonal to our MLP-aware fetch
policy. For example, El-Moursy and Albonesi [7] propose
to give fewer resources to threads that experience many data

cache misses. They propose two schemes for doing that,
namely data miss gating (DG) and predictive data miss gat-
ing (PDG). DG drives the fetching based on the number of
observed L1 data cache misses, i.e., by counting the number
of L1 data cache misses in the execute stage of the pipeline.
The more L1 data cache misses observed, the fewer re-
sources the thread can allocate. PDG strives at overcom-
ing the delay between observing the 1.1 data cache miss and
the actual fetch gating in the DG scheme by predicting 1.1
data cache misses in the {rontend pipeline stages. Another
scheme by Cazorla et al. |3] proposes to monitor the dy-
namic usage of resources by cach thread and strives at giv-
ing a fair share of the available resources to all the threads.
The input to their scheme consists of various usage counters
for the number of instructions in the instruction queues, the
number of allocated physical registers and the number of
observed 1.1 data cache misses. Choi and Yeung [4] go one
step further and use a learning-based resource partitioning
policy.

7.3 Coarse-Grained Multithreading

Coarse-Grained Multithreading (CGMT) [1, 20] is a
form of multithreaded execution that executes one thread
at a ime but can switch relatively quickly (on the order of
tens of cycles) to another thread. This makes CGMT suit-
able for hiding long-latency loads, i.e., a context switch is
performed when a long-latency load is observed. Tune et
al. [27] combined CGMT with SMT into Balanced Mul-
tithreading (BMT) in order to combine the best of both
worlds, i.e., the ability of SMT for hiding short latencies
versus the ability of CGMT for hiding long latencies. Tune
et al. provided the intuition that for some applications a con-
text switch should not be performed as soon as the long-
latency load is detected in order to exploit MLP. The in-
sights obtained here in this paper provide a way to further
develop this idea: a context switch should be performed at
isolated long-latency loads and at the last long-latency load
in a burst of long-latency loads that occur within a reorder
buffer size from each other. The MLP predictor proposed in
this paper can be used to drive this mechanism.

7.4 Prefetching

Prefetching [6, 13] 1s a technique that addresses the long-
latency load problem in a different way, namely by seek-
ing to eliminate the latency itself by bringing the miss data
ahead of time to the appropriate cache level. Prefetching
is orthogonal to the MILP-aware fetch policy proposed in
this paper, i.e., the MLP-aware fetch policy can be applied
on the long-latency loads that are not adequately handled
through prefetching.

8 Conclusion

Long-latency loads are particularly challenging in an
SMT processor because, in the absence of an adequate fetch
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policy, they cause the thread to allocate critical resources
without making forward progress. This limits the achiev-
able performance for the other thread(s). Previous work
proposed a number of SMT fetch policies for addressing
the long-latency load problem. However, none of this prior
work fully addresses the long-latency load problem. The
key notion lacking in these fetch policies is memory-level
parallelism.

This paper showed that being aware of the available
memory-level parallelism allows for improving SMT fetch
policies. The key insight from this paper is that in case
of an isolated long-latency load, the stalling thread should
indeed be fetch stalled or flushed as proposed by previous
work. However, in case multiple independent long-latency
loads overlap — there is MLP — the fetch policy should
not fetch stall or flush the thread. Instead, the fetch policy
should continue fetching instructions up to the point where
the maximum available MLP for the given ROB size can be
achieved. Our experimental results showed that an MLP-
aware fetch policy achieves better performance for MLP-
intensive threads, and a better overall balance between per-
formance and fairness.
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