
PDRAM: A Hybrid PRAM and DRAM Main Memory System

Gaurav Dhiman
gdhiman@cs.ucsd.edu

Raid Ayoub
rayoub@cs.ucsd.edu

Tajana Rosing
tajana@ucsd.edu

Department of Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093-0404

ABSTRACT
In this paper, we propose PDRAM, a novel energy efficient main
memory architecture based on phase change random access mem-
ory (PRAM) and DRAM. The paper explores the challenges in-
volved in incorporating PRAM into the main memory hierarchy of
computing systems, and proposes a low overhead hybrid hardware-
software solution for managing it. Our experimental results in-
dicate that our solution is able to achieve average energy savings
of 30% at negligible overhead over conventional memory architec-
tures.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Memory Technologies

General Terms
Design, Experimentation, Performance

Keywords
Phase Change Memory, Energy Efficiency, Memory management

1. INTRODUCTION
Power consumption is a major concern in the design of modern

systems. Most of the recent research in power management has fo-
cused more on dynamic management of CPU power consumption,
assuming it to be the most dominant contributor to system power
consumption. However, recent studies [1] have shown that in mod-
ern systems CPU is no longer the primary energy consumer. Main
memory has become a significant energy consumer, contributing to
as much as 30-40% of total consumption on modern server systems.

In this paper, we propose a new approach for tackling the high
levels of energy dissipation in main memory while minimizing the
impact on performance. We introduce a new heterogeneous orga-
nization for main memory that is composed of DRAM and PRAM
memories. The properties of PRAM that we leverage are its lower
read access and standby power compared to DRAM while having
a comparable throughput. However, the primary challenges in us-
ing PRAM include its lower write endurance (typical mean time to

failure in the range of 109 − 1012 cycles), and the higher power
cost of write accesses compared to DRAM. These properties moti-
vate the use of a heterogeneous memory architecture consisting of
both DRAM and PRAM, which we refer to as PDRAM, enabling
exploitation of positive aspects of the respective memories.

To manage the PDRAM memory organization, we propose a hy-
brid hardware/software solution. In order to maintain reliability for
PRAM (because of write endurance problem), we introduce a cost
efficient book keeping hardware technique that stores the frequency
of writes to PRAM at a page level granularity. On the software
side, we propose an efficient operating system (OS) level page man-
ager that utilizes the write frequency information provided by the
hardware to perform uniform wear leveling across all the PRAM
pages. Wear leveling refers to the process of prolonging the lifetime
of erasable storage devices with endurance problems (like Flash,
PRAM etc) by ensuring uniform usage/utilization of all the storage
blocks/pages of the device. Furthermore, the page manager intel-
ligently allocates/migrates pages across DRAM/PRAM in order to
minimize the impact of wear leveling on performance. The benefits
of using such a hybrid approach is that the hardware can maintain
and track page level accesses at a very low cost, while the soft-
ware (OS) can leverage the high level observability and policies
for management of free pages across DRAM/PRAM. We experi-
ment across benchmarks with varying memory access characteris-
tics, and show that using the PDRAM organization, we can achieve
as high as 37% energy savings at negligible performance overhead
over comparable DRAM organizations. Furthermore, we show that
it achieves better energy and performance efficiency compared to
homogeneous PRAM based memory systems as well.

Overall, the primary contributions of our work are: 1) We outline
and evaluate the challenges in incorporating PRAM as an alterna-
tive main memory technology. 2) We propose an architecture and
system policies for managing a PRAM/DRAM based main mem-
ory system. 3) We present a thorough evaluation and discussion of
the system’s performance, benefits and overhead.

The rest of the paper is organized as follows. In Section 2, we
provide an overview of the related work. In Section 3, we explain
our memory organization and the solution to manage it for higher
energy efficiency, reliability and performance. In Section 4, we
describe the experimental evaluation and results before concluding
in Section 5.

2. RELATED WORK
Existing memory power management research has primarily fo-

cused on DRAM based systems. In [12], the authors propose power
aware page allocation algorithms for DRAM power management.
They assume support in memory controller for fine grained bank
level power control, and show that their allocation algorithms give

39.3

664

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC’09, July 26-31, 2009, San Francisco, California, USA
Copyright 2009 ACM 978-1-60558-497-3/09/07....10.00

Top Electrode

Bottom Electrode

GST

HeaterActive
Region

(a)

BL

WL

(b)

Figure 1: PRAM cell (a) and transistor (b)

greater opportunities for placing memory in low power modes. In
[5, 9], the authors propose an OS level approach, where the OS
maintains tables that map processes onto the memory banks they
have their memory allocated in. This allows the OS to dynamically
move unutilized DRAM banks into low power modes.

The possible use of alternative memory technology for improv-
ing energy efficiency has also been explored before. The authors
in [10] propose NAND flash based page cache, which reduces the
amount of DRAM required for system memory. This results in en-
ergy efficiency due to lower power consumption and higher density
of NAND flash compared to DRAM. However, this approach is
beneficial for more disk intensive applications, since flash is used
only for page cache. In addition, flash also has endurance prob-
lems in terms of number of write cycles, which is tackled using
wear leveling in the flash translation layer [14].

PRAM is an attractive alternative to flash, since: 1) Its endurance
is higher by several orders of magnitude, 2) It is a RAM, and hence
does not require an overhead of an erase before a write. In [13], the
authors evaluate the challenges involved in architecting PRAM as
a DRAM alternative. The authors in [15] propose a hybrid cache,
that is composed of PRAM and SRAM for power savings. To solve
the endurance problem of PRAM, they set a threshold on number
of writes to the PRAM cache lines, beyond which they do not use
those lines. However, the concern is that the typical level of con-
flicts and activity in cache could create reliability problems very
soon on such a configuration. Extensive research has been done in
modeling and understanding the basic characteristics of this tech-
nology [8, 11, 17–19].

3. DESIGN

3.1 PRAM/DRAM Background
The DRAM memory is organized as a grid of rows and columns,

where each bit is stored in the form of charge in a small capaci-
tor. As the charge can get exhausted due to leakage and frequent
accesses, DRAM requires a consistent refresh operation to sustain
its data. This results in a constant power consumption referred to
as the refresh power. DRAM further consumes power for setting
up its row and column for a physical address accessed, and also
for closing a row if some other row needs to be accessed. This
is referred to as the activation/precharge power. Additionally, it
consumes power for the actual read/write accesses, and consistent
standby power due to leakage and clock supply.

Unlike DRAM, PRAM is designed to retain its data even when
the power is turned off. A PRAM cell stores information perma-
nently in the form of the cell material state, which can be amor-
phous (low electrical conductivity) or crystalline (high electrical
conductivity). A PRAM cell typically comprises of a chalcogenide
alloy material (eg. Ge2Sb2Te5 (GST)) and a small heater as shown

in Figure 1a. The cell can be addressed using a selection transistor
(MOS or BJT) that is connected to the word-lines (WL) and bit-
lines (BL) as illustrated in Figure 1b. To write to a PRAM cell,
the GST state needs to be altered by injecting a large but fast cur-
rent pulse (few 100ns) to heat up the GST active region. Conse-
quently, PRAM write power is high compared to DRAM. For read-
ing a PRAM cell, the power consumption is much lower, since no
heating is involved. It is also lower than DRAM cell read power
based on the measurements shown in [17]. Besides, PRAM con-
sumes no refresh power, as it retains its information permanently,
and [17] shows that it consumes much lower standby power due
to its negligible leakage. However, PRAM has limited write en-
durance (109−1012 cycles), which poses a reliability problem. Re-
garding access times, the access latency of random reads/writes on
PRAM is slower compared to DRAM, although their read through-
put is comparable. Thus considering all of these factors, PRAM is
a promising candidate for energy savings because of its low read
and standby power compared to DRAM.

3.2 Architecture
Based on the PRAM/DRAM characteristics described above, we

observe that both the technologies have their respective pros and
cons. This motivates us to propose a hybrid memory architecture,
which consists of both DRAM and PRAM (PDRAM), for achiev-
ing higher energy efficiency. While PRAM provides low read and
standby power, DRAM provides higher write endurance and lower
write power.

The primary design challenge in managing a PDRAM system
is to manage efficient wear leveling of PRAM pages to ensure its
longer lifetime. For this purpose, we provide a hybrid hardware-
software based solution. The hardware portion is based in the
memory controller and manages the access information to different
PRAM pages. The software portion is part of the operating system
(OS) memory manager (referred to as the page manager), which
performs the wear leveling by page swapping/migration. The com-
ponents of the solution are described in detail below.

3.2.1 Memory controller
Figure 2 illustrates the various components and interactions of

the PDRAM memory controller. The memory controller is aware
of the partitioning of system memory between DRAM and PRAM.
Based on the address being accessed, it is able to route requests to
the required memory. To help wear leveling the PRAM, it main-
tains a map (access map in Figure 2) of the number of write ac-
cesses to it. This information is kept at a page level granularity,
which is a function of the processor being used. For instance, the
page size is 4KB for x86, 8KB for Alpha etc. We use page level
granularity, since it is the unit of memory management, i.e. allo-
cation and deallocation in the OS. If the number of writes to any
PRAM page exceed a given threshold, then the controller gener-
ates a ‘page swap’ interrupt to the processor, and provides the page
address. The OS then assumes the responsibility of handling this
interrupt and performing page swapping as described in the next
sub-section. The controller stores the map in the PRAM, for which
it reserves space during bootup. The access map is maintained for
the lifetime of the system, and after the first page swap interrupt,
future interrupts are generated whenever the write access count be-
comes a multiple of the threshold. To maintain the map across
reboots, it is stored on disk before the shutdown, and copied back
into PRAM during the startup. To protect this data against crashes,
it is synced with the disk periodically. If the write count for a page
reaches the endurance limit (109 in the worst case), the controller
generates a ‘bad-page’ interrupt for that page. This interrupt is also

665

Page Addr
0x1001
0x10ff

500
77

Access Map Cache

CommandsDATA DATA

CPU

Memory Request * Page Swap/Bad Page Interrupt
* DATA

Write Count

Memory Controller

DRAM PRAM
Access Map

Figure 2: PDRAM Memory controller

handled by the page manager as described in the next section.
The enhancement of the controller incurs energy and memory

overhead: 1) time and energy for updating PRAM access map;
this involves extra accesses to PRAM, which causes extra power
consumption. To avoid this overhead we introduce a small SRAM
based cache in the controller (see Figure 2), which caches the up-
dates to the map, hence reducing the consequent number of PRAM
accesses. 2) memory overhead for storing the access map; the
amount of memory required is proportional to the size of the PRAM
used, and the size of the entry stored for each physical page in the
access map. For instance, if the PRAM used is 4GB in size and the
page size is 8K, the memory required for the access map would be
around 4MB (each entry = 8 bytes). This is fairly small for modern
systems, which have multiple GBs of memory.

3.2.2 Page Manager
The page manager is the OS level entity responsible for man-

aging memory pages across PRAM/DRAM. It consists of two key
subsystems, described below in detail, which help it perform its key
tasks: Memory Allocator (page allocation/deallocation) and Page
Swapper (uniform wear leveling of PRAM).

Memory Allocator. The goal of the OS memory allocator is to
serve the memory allocation requests from the OS and the user
processes. A list of free pages is maintained by typical allocators,
from which the page request is fulfilled. Traditional memory al-
locators instantly mark the pages released by applications as free,
and may immediately allocate them on subsequent requests. Such
an approach can create hot spots of pages in memory, where the ac-
tivity (reads/writes) is significantly higher compared to rest of the
pages. This is fine for memories (like DRAM) that do not face en-
durance problems, but for memories like PRAM, it is a problem,
as it may render some pages unusable very soon. To get around it,
we make the PRAM memory allocator aware of these issues. The
PRAM allocator maintains three lists of free pages: free, used-free
and threshold-free list. At the startup time, all PRAM pages are in
the free list, and the allocation requests from the applications are
served from it. When the pages are freed, they go to the used-free
list rather than the free list. If an allocated page is written to a lot
by an application, and if the number of writes crosses a ‘threshold’,
then as described before, the memory controller generates a page
swap interrupt for that page. At this point, the page swapper (de-
scribed below) handles the interrupt, and releases this page, which
goes to the threshold-free list.

When the free-list becomes exhausted, or it lacks sufficient pages

to service a request, it is merged with the used-free list, which is
then used as the source of page allocation. The user-free list will get
exhausted only when all the free PRAM pages have been written to
at least a ‘threshold’ number of times. When this happens, the free
and threshold-free list pointers are swapped to move all the free
pages from the threshold-free list to the original free list. Such an
approach tries to achieve wear leveling across all the PRAM pages
by ensuring that all the free pages have been written to at least
‘threshold’ times before getting reused. We assume that there is
a separate allocator for DRAM memory, which does not need any
such changes.

Page Swapper. The page swapper is responsible for managing the
page swap and bad-page interrupts generated by the memory con-
troller. It handles the page-swap interrupt by doing the following:
1) Allocates a new page from the memory allocator. The new page
could be either from the PRAM or DRAM. 2) Finds the page table
entry/entries (PTE/PTEs) of the physical page for which the in-
terrupt is generated. This can be accomplished in modern systems
such as Linux using the reverse mapping (RMAP), which maintains
a linked list containing pointers to the page table entries (PTEs) of
every process currently mapping a given physical page. 3) Copies
the contents of the old page to the new one using their virtual ad-
dresses. The advantage of using virtual address for the copy as
opposed to something like DMA is that it results in coherent copy-
ing of data, which ensures that the new page gets the latest data.
4) Updates the PTE/PTEs derived from the RMAP with the new
physical page address. 5) Replaces the TLB entries corresponding
to the old PTE/PTEs. 6) Releases the old physical page. If it is a
PRAM page, it goes to the threshold-free list as described above.

The key decision for the swapper is in selection of the new page
for replacing the old PRAM page, for which interrupt is generated.
We implement two policies for this decision:
Uniform memory policy: This policy allocates the new page from
the PRAM allocator. We introduce this as our baseline policy,
which can be used in a PRAM only memory configuration as well,
since it allocates only PRAM pages. This policy exploits the wear
leveling mechanism of page swapping to extend PRAM endurance,
but does not benefit from the memory heterogeneity of a PDRAM
system.
Hybrid memory policy: This policy allocates new page from the
DRAM allocator. The motivation to do so is based on the fact that
there is a high probability of the page, for which page swap inter-
rupt got generated, being very write intensive. As we show later,
this has a two fold advantage: a) It reduces number of page swap
interrupts, which is good for performance; b) It reduces number of
writes in PRAM, which is good from perspective of both reliability
and power, since PRAM writes consume higher power than DRAM
writes. This policy exploits the heterogeneity of the PDRAM sys-
tem, hence the name hybrid memory policy.

For the bad-page interrupt, the page swapper does exactly the
same things as it does for the page-swap interrupt, except that it
moves the page off its free lists and moves it into a bad-page list.
The pages in the bad-page list are discarded and not used for fu-
ture allocations. The list is stored reliably in a known location on
PRAM.

3.3 Endurance Analysis
In this section, we analyze PRAM reliability with and without

our wear leveling policies. Lets assume a system with pages of
size 4K (eg. x86 systems) and 4GB of PRAM, implying there are
Np=1M pages available for allocation. We assume an application,
which consistently writes to two different addresses in PRAM, that

666

map to different PRAM rows in the same memory bank. This en-
sures that each row is consistently written back to the PRAM cells
with alternative writes, because at a time only one row in a bank
can be open. Typical latencies for such writes in PRAM is around
150ns (Tw). We assume that this application writes to these two
addresses every 150ns or Tw in an alternative fashion to generate
the worst case from endurance perspective. Note that this is unre-
alistic, since there are caches and write buffers between the CPU
and memory, which will throttle the rate of writes. However, the
analysis will allow us to estimate PRAM reliability under extreme
cases. Lets refer to the write endurance of PRAM (109 write cy-
cles in worst case) as Nw . If we do not take any wear leveling into
account, then such an application can cause row failure in the page
containing these addresses in 2Nw writes or Tw × 2Nw = 300s.
This is a very low time scale, and hence not acceptable for a real
system deployment.

Now we analyze the case with our uniform memory wear level-
ing policy. Let the threshold of writes, at which the memory con-
troller generates a page swap interrupt, to be Nt (where Nt �
Nw), and the % of free PRAM pages in the system be α%. Lets
assume, that the PRAM rows containing the two addresses being
written to by the application map to the same physical page. Now as
soon as the application writes Nt times, the page swapper will swap
the physical page mapping these two addresses to a new PRAM
page, which will correspond to different rows in the PRAM. The
old physical page will then be moved into the threshold-free list.
From our discussion in the previous section, we know that the ap-
plication will not be able to write to the freed physical page (and
its corresponding PRAM rows) again until both the free and used-
free lists become empty and the threshold-free and free list pointers
are swapped. For this to happen, the application will have to write
at least Nt times to every free PRAM page (αNpNt writes) be-
fore it can access the old physical page again. In other words, to
write 2Nt times to the old physical page, the application will do
αNpNt + 2Nt writes, i.e.:

2Nt → αNpNt + 2Nt

3Nt → 2αNpNt + 3Nt

βNt → (β − 1)αNpNt + βNt (1)

This means that for doing Nw writes (βNt = Nw in equation 1):

Nw → (
Nw

Nt
− 1)αNpNt + (

Nw

Nt
)Nt

Nw → αNwNp + Nw ≈ αNwNp (Nw � Nt ; αNwNp � Nw)
(2)

Based on this analysis, our application will have to do approxi-
mately αNwNp = α1015 writes in order to perform Nw writes to
a given physical page. This means, to write Nw times to a PRAM
row, it will have to perform 2Nw writes. Using Tw as 150ns (see
the paragraph above) and α = 50%, this translates to around 2.4
years. Thus, with our wear leveling scheme the bounds go from
order of seconds to years. It must be noted that this analysis has
been done assuming an application which bypasses cache and write
buffers to perform just writes. If we assume a conservative assump-
tion of 50% cache hit for writes, the PRAM lifetime would increase
to about 4.8 years. As the quality of PRAM is expected to increase
to 1012 cycles and beyond, the bounds will be much higher. For the
hybrid memory policy, the expected bounds would be even higher
since the write intensive pages are moved to DRAM, where en-
durance is not an issue. In our experiments, we use Nt=1000 as a
good trade-off between endurance and swapping cost.

Parameter DRAM PRAM

Power Characteristics

Row read power 210 mW 78 mW
Row write power 195 mW 773 mW

Act Power 75 mW 25 mW
Standby Power 90 mW 45 mW
Refresh Power 4 mW 0 mW

Timing Characteristics

Initial row read latency 15 ns 28 ns
Row write latency 22 ns 150 ns

Same row read/write latency 15 ns 15 ns

Table 1: DRAM and PRAM Characteristics (1Gb memory chip)

4. EVALUATION

4.1 Methodology
For our experimental evaluation we use the M5 architecture sim-

ulator [4]. M5 has a detailed DRAM based memory model, which
we significantly enhance to model timing and power of a state of
the art modern DDR3 SDRAM based on the data sheet of a Micron
x8 1Gb DDR3 SDRAM running at 667MHz [7]. We implement a
similar model for PRAM based on timing and power characteristics
described in [13, 17–19]. We assume PRAM cells to be arranged
in a grid of rows and columns just like DRAM. Such configuration
of PRAM has been practically implemented and demonstrated by
Intel [17].

The power parameters used for DRAM and PRAM are listed in
Table 1. The DRAM parameters are based on 78nm technology [7].
The read-write power values for PRAM are obtained from the re-
sults in [2, 3, 13, 17]. For a fair comparison, the values are down
scaled for 78nm technology based on the rules described in [16].
We can observe that read power of PRAM is around three times
lower compared to DRAM, while write power is around four times
more. This suggests that PRAM is not very attractive for write in-
tensive applications both from the perspective of reliability as well
as energy efficiency. The third parameter in Table 1 (Act) refers
to the activation/precharge power, which is consumed in opening
and closing a row in the memory array. It is higher for DRAM,
since it has to refresh the row data before closing a row, which
can be avoided in PRAM due to its non-volatility. The standby
power, which the memory consumes when it is idle, is also lower
for PRAM due to its negligible leakage power consumption. Fi-
nally, DRAM consumes refresh power for supplying sustained re-
fresh cycles for it to retain its data. This is not required in PRAM,
since it is non-volatile.

For timing, we use the Micron data sheet to get the detailed pa-
rameters for DRAM. For PRAM, we use the results in [2] to obtain
the read-write latency values for 180nm technology. We scale down
the read latency for 78nm, but maintain the same value for write as
a conservative assumption, since the write latency is a function of
the material property. Table 1 shows these values. We can observe,
that for an initial read, PRAM requires almost twice the amount
of time as compared to DRAM. This happens due to the higher
row activation time of PRAM. Similarly, writing back or closing
an open row in PRAM is around seven times more expensive than
for DRAM. However, reads/writes on an open row have latency
values similar to DRAM.

Besides this, we further extend M5 for incorporating the memory
controller and page manager as described in section 3. We imple-
ment the access map cache in the memory controller (see section 3)
as a 32 entry (each entry = 8 bytes) fully associative cache. For the
page manager, we implement both the uniform and hybrid memory

667

Benchmark rpi (%) wpi (%) # of pages

applu 1.94 0.93 24435
bzip2 0.12 0.08 24600

facerec 0.6 0.5 2240
gcc 0.15 0.06 2781

sixtrack 0.01 0.008 7601

Table 2: Benchmark Characteristics

policies as described in section 3.
For our experiments, we assume a baseline system with 4GB of

DDR3 SDRAM, which we refer to as DRAM. The 4GB memory
consists of four 1GB ranks, where each rank is made up of eight x8
1Gb chips with characteristics described in Table 1. We evaluate it
against two experimental systems: 1) Hybrid system: It comprises
of 1GB DDR3 SDRAM and 3GB of PRAM, and employs hybrid
memory policy for managing page swap requests. 2) Uniform sys-
tem: It comprises of 4GB of PRAM, and employs uniform memory
policy for managing page swap requests. The motivation of the
comparison is to show how heterogeneity in memory organization
can result in better overall performance and energy efficiency.

For workloads, we use benchmarks from the SPECCPU2000
suite, which we execute on M5 using a detailed out-of-order exe-
cution ALPHA processor running at 2.66GHz. The simulated pro-
cessor has two levels of caches: 64KB of data and instruction L1
caches, and 4MB of L2 cache. We use benchmarks described in
Table 2, and simulate the first five billion instructions. Table 2 il-
lustrates the memory access characteristics of these benchmarks in
terms of rpi (reads per instruction), wpi (writes per instruction), and
number of pages (total number of pages allocated). We can see that
they have varying memory access characteristics. For instance, six-
track has very low rpi (0.01%) and wpi (0.008%), while for applu
it is an order of magnitude higher (1.94% and 0.93%); facerec has
high rpi (0.6%) and wpi (0.5%), while gcc and bzip2 have medium
rpi and low wpi. Similarly, the working set of these benchmarks in
terms of the number of pages allocated also varies from just 2240
(facerec) to as high as 24600 (bzip2).

4.2 Results

Energy Savings and Performance Overhead
Figure 3 shows the results of the hybrid and uniform memory sys-
tems baselined against the DRAM system for all the benchmarks.
Figure 3b shows the overhead incurred in terms of execution time
by these systems, while Figure 3a shows the reduction in memory
energy consumption. Please note that the %overhead and %energy
numbers in these figures include the energy and time overhead due
to page migrations and accesses to the access map in the memory
controller and the PRAM. We describe the details of the overhead
in the following sections.

We can see in Figure 3, that on average, the hybrid system achieves
around 30% energy savings for just 6% performance overhead across
all the benchmarks. In contrast, the uniform system gets 30% en-
ergy savings at the cost of 31% overhead. For sixtrack, which has
low rpi and wpi, the impact on performance is negligible since
there are not enough accesses to expose the slower access times
of PRAM. Both systems achieve high energy savings due to the
lower standby power consumption of PRAM compared to DRAM
(see Table 1). The energy savings for the uniform system is higher
(around 49%) than hybrid system (37%) since the uniform system
comprises exclusively of PRAM, while the hybrid system contains
1GB of DRAM as described in section 4.1. For gcc and bzip2,
the performance overhead is higher for the uniform system (around
6%). This happens due to the relatively higher rpi and wpi of these

(a) Energy Savings

(b) Performance Overhead

Figure 3: Energy Savings and Performance Overhead Results

benchmarks compared to sixtrack (see Table 2), which exposes the
slower access times of the PRAM. The overhead is lower for the
hybrid system (2%), since it migrates the write intensive pages to
DRAM. The energy savings is higher again for the uniform system
due to the lower standby power of PRAM.

In contrast, for applu and facerec, the performance overhead of
the uniform system is significantly high (57% and 82% respec-
tively). This happens due to the higher wpi and rpi of both these
benchmarks (see Table 2). The overhead for facerec is higher than
applu (despite its lower rpi and wpi) due to its higher IPC (60%
more than applu). This implies, facerec is more sensitive to higher
memory access latencies, which results in the poor performance
of the uniform system due to slower access times of PRAM. The
high overhead nullifies the lower power consumption of PRAM and
results in negligible energy savings. In contrast, the performance
overhead of the hybrid system is very low (4%). This happens
because facerec has a very high locality of read and writes to its
pages, and the hybrid system migrates them to DRAM. This results
in much higher energy savings as well (26%). For applu, the en-
ergy savings for the uniform system is low (around 10%) due to
its high performance overhead. For the hybrid system as well, the
overhead is high (around 18%) because of low locality of reads and
writes. However, the energy savings is still higher (20%) compared
to uniform system.

Thus, the results indicate, that in terms of comparison between
the systems, the hybrid system is clearly more beneficial. It is able
to exploit the read-friendliness of PRAM as well as the write friend-
liness of DRAM, and hence achieves better overall performance
and energy efficiency.

668

Figure 4: Access Map Cache Hit Rate (%)

Benchmark Uniform Hybrid % Reduction

applu 29000 18000 38
bzip2 2400 635 74

facerec 24600 1500 94
gcc 1350 320 77

sixtrack 0 0 0

Table 3: Page Swap Interrupts

System Overhead
In this discussion, we analyze the sources of system overhead and
their impact in terms of performance and energy in detail. We focus
on the overhead due to accesses to the access map and its cache, and
page swapping.

Access Map

As described in section 3, the access map is used to store write ac-
cess information to PRAM pages. The updates to the access map
and its memory controller cache thus add energy overhead in the
system in terms of extra accesses to PRAM and the power con-
sumption of the cache itself.

For understanding the extra accesses to PRAM, Figure 4 shows
the hit rate of the access map cache. The hit rate was almost the
same for both the hybrid and uniform systems. We can see that the
hit rate is fairly high across all the benchmarks (average around
90%). This indicates that the overhead is very low, since extra
PRAM accesses are done only for 10% of writes. From Table 2,
we know that wpi of most of the benchmarks is fairly low, so in the
context of overall time frame, the impact is negligible.

For the access map cache, we estimate the power consumption
to be around 78mW per access using CACTI 4.1 [6]. Since the
cache is accessed only for writes, in the overall time-frame, the
extra energy consumption due to it is also very low. It must be noted
that the extra energy consumption due to accesses to the access map
and its cache is included in the results in Figure 3.

Page Swapping

The second source of overhead is page swapping interrupts and
the consequent page swaps. Table 3 shows the statistics related
to page swap interrupts for the uniform and hybrid system. We can
observe that for most of the benchmarks, the number of interrupts
drop significantly for the hybrid system. For instance, for facerec,
it drops down by as much as 94%. This happens due to its high
wpi and significant locality in its reads and writes to a small set of
addresses. In the uniform system, when the pages mapping these
addresses reach the threshold, they get mapped to a new PRAM
page. However, sustained writes to these addresses generate further
page swap interrupts. In contrast, with the hybrid system, once
the pages mapping these addresses reach the threshold, they are
mapped to DRAM pages, where they no longer generate any further

page swap interrupts. For applu, the reduction is smaller (37%) due
to its bigger working set, and relatively lower lack of locality of
reads-writes.

In terms of time overhead of a page swap, it is fairly low since it
is a quick software operation of allocating and copying the page,
and modifying the page table entries. We assume it to be 5μs,
which is based on the estimate of timer interrupt overhead in mod-
ern systems that get generated as frequently as 1ms. Hence, overall
the page swapping overhead is also minimal in terms of perfor-
mance and energy. Note, the page swap overhead is also included
in the results in Figure 3.

5. CONCLUSION
In this paper we propose PDRAM, a novel, energy efficient hy-

brid main memory system based on PRAM and DRAM. We high-
light the challenges involved in managing such a system, and pro-
vide a hardware/software based solution for it. We evaluate the
system using benchmarks with varying memory access characteris-
tics and demonstrate that the system can achieve up to 37% energy
savings at negligible overhead. Furthermore, we show that it pro-
vides better overall energy and performance efficiency compared to
homogeneous PRAM based memory systems as well.

6. REFERENCES
[1] L. A. Barroso et al. The case for energy-proportional computing.

Computer, 40(12):33–37, 2007.
[2] F. Bedeschi et al. An 8Mb demonstrator for high-density 1.8V

phase-change memories. In Symposium on VLSI Circuits, pages
442–445, 2004.

[3] F. Bedeschi et al. A multi-level-cell bipolar-selected phase-change
memory. Proc ISSCC’08, pages 427–429, 2008.

[4] N. L. Binkert et al. The m5 simulator: Modeling networked systems.
IEEE Micro, 26(4):52–60, 2006.

[5] V. Delaluz et al. Scheduler-based dram energy management. In Proc
DAC’02, pages 697–702, 2002.

[6] http://www.hpl.hp.com/research/cacti/.
[7] http://www.micron.com/products/dram/ddr3/.
[8] http://www.numonyx.com/Documents/WhitePapers.
[9] H. Huang et al. Design and implementation of power-aware virtual

memory. In Proc ATEC’03, 2003.
[10] T. Kgil et al. Improving nand flash based disk caches. In Proc ISCA

’08, pages 327–338, 2008.
[11] A. Lacaita et al. Status and challenges of pcm modeling. Solid State

Device Research Conference, 2007. ESSDERC 2007. 37th European,
pages 214–221, Sept. 2007.

[12] A. R. Lebeck et al. Power aware page allocation. SIGOPS Oper. Syst.
Rev., 34(5):105–116, 2000.

[13] B. Lee et al. Architecting phase change memory as a scalable dram
alternative. Proc ISCA’09, 2009.

[14] H.-L. Li et al. Energy-aware flash memory management in virtual
memory system. IEEE Trans. Very Large Scale Integr. Syst.,
16(8):952–964, 2008.

[15] P. Mangalagiri et al. A low-power phase change memory based
hybrid cache architecture. In Proc. GLSVLSI ’08, pages 395–398,
2008.

[16] A. Pirovano et al. Scaling analysis of phase-change memory
technology. Proc IEDM’08, pages 29.6.1– 29.6.4, 2003.

[17] A. Pirovano et al. Phase-change memory technology with
self-aligned μtrench cell architecture for 90nm node and beyond.
Solid-State Electronics, 52(9):1467 – 1472, 2008.

[18] N. Takaura et al. A GeSbTe phase-change memory cell featuring a
tungsten heater electrode for low-power, highly stable, and
short-read-cycle operations. Electron Devices Meeting, 2003. IEDM
’03 Technical Digest. IEEE International, pages 37.2.1–37.2.4, Dec.
2003.

[19] B. Yu et al. Chalcogenide-nanowire-based phase chnage memory.
IEEE Transactions on Nanotechnology, 7(4), 2008.

669

