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ABSTRACT
This paper presents Simultaneous Speculative Threading
(SST), which is a technique for creating high-performance
area- and power-efficient cores for chip multiprocessors. SST
hardware dynamically extracts two threads of execution from
a single sequential program (one consisting of a load miss
and its dependents, and the other consisting of the instruc-
tions that are independent of the load miss) and executes
them in parallel. SST uses an efficient checkpointing mecha-
nism to eliminate the need for complex and power-inefficient
structures such as register renaming logic, reorder buffers,
memory disambiguation buffers, and large issue windows.
Simulations of certain SST implementations show 18% bet-
ter per-thread performance on commercial benchmarks than
larger and higher-powered out-of-order cores. Sun Microsys-
tems’ ROCK processor, which is the first processor to use
SST cores, has been implemented and is scheduled to be
commercially available in 2009.

Categories and Subject Descriptors
C.1.0 [Computer Systems Organization]: PROCESSOR
ARCHITECTURES—General ; C.4 [Computer Systems

Organization]: PERFORMANCE OF SYSTEMS—Design
studies

General Terms
Design, Performance

Keywords
CMP, chip multiprocessor, processor architecture, instruction-
level parallelism, memory-level parallelism, hardware spec-
ulation, checkpoint-based architecture, SST

1. INTRODUCTION
Recent years have seen a rapid adoption of Chip Multipro-

cessors (CMPs) [3, 12, 18, 24], thus enabling dramatic in-
creases in throughput performance. The number of cores per
chip, and hence the throughput of the chip, is largely limited
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by the area and power of each core. As a result, in order to
maximize throughput, cores for CMPs should be area- and
power-efficient. One approach has been the use of simple, in-
order designs. However, this approach achieves throughput
gains at the expense of per-thread performance. Another ap-
proach consists of using complex out-of-order (OoO) cores
to provide good per-thread performance, but the area and
power consumed by such cores [19] limits the throughput
that can be achieved.

This paper introduces a new core architecture for CMPs,
called Simultaneous Speculative Threading (SST), which out-
performs an OoO core on commercial workloads while elim-
inating the need for power- and area-consuming structures
such as register renaming logic, reorder buffers, memory dis-
ambiguation buffers [8, 11], and large issue windows. Fur-
thermore, due to its greater ability to tolerate cache misses
and to extract memory-level parallelism (MLP), an aggres-
sive SST core outperforms a traditional OoO core on integer
applications in a CMP with a large core-to-cache ratio.

SST uses a pipeline similar to a traditional multithreaded
processor with an additional mechanism to checkpoint the
register file. SST implements two hardware threads to ex-
ecute a single program thread simultaneously at two differ-
ent points: an ahead thread which speculatively executes
under a cache miss and speculatively retires instructions
out of order, and a behind thread which executes instruc-
tions dependent on the cache miss. In addition to being
an efficient mechanism for achieving high per-thread perfor-
mance, SST’s threading logic lends itself to supporting mul-
tithreading where application parallelism is abundant, and
SST’s checkpointing logic lends itself to supporting hard-
ware transactional memory [10].

Sun Microsystems’ ROCK processor [5, 25] is a CMP
which supports SST, multithreading, and hardware transac-
tional memory. It is scheduled to be commercially available
in 2009. ROCK implements 16 cores in a 65nm process,
where each core (including its share of the L1 caches and
the fetch and floating point units) occupies approximately
14 mm2 and consumes approximately 10W at 2.3 GHz and
1.2V. By way of comparison, we know of no other commer-
cial general-purpose processor in a 65nm process with more
than 8 cores.
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Figure 1: Pipeline Augmented with SST Logic.

2. SIMULTANEOUS SPECULATIVE
THREADING

In order to support SST, each core is logically extended
with the hardware structures shaded in Figure 1. In an SST
implementation with N checkpoints per core (in the ROCK
implementation, N = 2), there are N deferred queues (DQs)
which hold decoded instructions and available operand val-
ues for instructions that could not be executed due (directly
or indirectly) to a cache miss or other long-latency instruc-
tion. In addition to the architectural register file, N spec-
ulative register files and a second working register file are
provided. Furthermore, each of these registers has an NA
bit which is set if the register’s value is “Not Available”. Ev-
ery instruction that is executed is classified as being either
“deferrable”or“retirable”. An instruction is deferrable if and
only if it is a long-latency instruction (such as a load which
misses in the L1 data cache, or a load or store which misses
in the translation lookaside buffer) or if at least one of its
operands is NA.

The core starts execution in a nonspeculative phase. In
such a phase, all instructions are retired in order and up-
date the architectural register file as well as a working reg-
ister file. The DQs and the speculative register files are not
used. When the first deferrable instruction is encountered,
the core takes a checkpoint of the architectural state (called
the “committed checkpoint”) and starts a speculative phase.
The deferrable instruction is placed in the first DQ and its
destination register is marked as NA. Subsequent deferrable
instructions are placed in a DQ and their destination reg-
isters are marked as NA. Subsequent retirable instructions
are executed and speculatively retired. The retirable in-
structions write their results to a working register file and a
speculative register file and clear the NA bits for the desti-
nation registers.

The core continues to execute instructions in this manner
until one of the deferred instructions can be retired (e.g.,
the data returns for a load miss). At this point, one thread
of execution, called the “ahead thread”, continues to fetch
and execute new instructions while a separate thread of
execution, called the “behind thread”, starts executing the
instructions from the first DQ. Each instruction executed
by the behind thread is again classified as being either de-
ferrable or retirable. Deferrable instructions are re-inserted
into the same DQ from which they were read and their des-
tination registers are marked as NA. Retirable instructions
write their results to a working register file and clear the
NA bits for the destination registers. In addition, certain

retirable instructions also update a speculative register file
and the corresponding NA bits (using rules defined in Sec-
tion 2.2.2).

At any given time, the ahead thread writes the results of
its retirable instructions to a current speculative register file
i and places its deferrable instructions in the correspond-
ing DQi. Based on policy decisions, the ahead thread can
choose to take a speculative checkpoint (if the hardware re-
sources are available) and start using the next speculative
register file and DQ at any time. For example, the ahead
thread could detect that DQi is nearly full and therefore
choose to take a speculative checkpoint i and start using
speculative register file i + 1 and DQi+1. In any case, the
ahead thread must take a speculative checkpoint i before the
behind thread can start executing instructions from DQi.

At any given time, the behind thread attempts to execute
instructions from the oldest DQ. In particular, assuming
that the oldest DQ is DQi, the behind thread waits until
at least one of the instructions in DQi can be retired, at
which point the behind thread executes all of the instruc-
tions from DQi, redeferring them as necessary. Once all of
the instructions in DQi have been speculatively retired, the
committed checkpoint is discarded, speculative register file
i becomes the new committed checkpoint, and speculative
register file i is freed (and can thus be used by the ahead
thread when needed). This operation will be referred to as a
“commit”. Next, the behind thread attempts to execute in-
structions from DQi+1, which is now the oldest DQ. At this
point, if the ahead thread is deferring instructions to DQi+1,
it takes a speculative checkpoint and starts using specula-
tive register file i + 2 and DQi+2 (this is done in order to
bound the number of instructions placed in DQi+1).

If at any time there are no deferred instructions (that is,
all DQ’s are empty), a “thread sync”operation is performed.
The thread sync operation ends the speculative phase and
starts a nonspeculative phase. The nonspeculative phase be-
gins execution from the program counter (PC) of the ahead
thread. For each register, if the ahead thread’s speculative
copy of the register was NA, the behind thread’s value for
the register (which is guaranteed to be available) is taken
as the architectural value. On the other hand, if the ahead
thread’s speculative copy of the register was available, the
ahead thread’s value for the register is taken as the architec-
tural value. In either case, the register’s NA bit is cleared.
Execution in the nonspeculative phase continues until the
next deferrable instruction is encountered.

During a speculative phase in which the ahead thread
is using speculative register file i and DQi, it is possible
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(a) mcf code

(b) mcf data

Figure 2: Example of mcf Code Fragment and Data Structures

that the ahead thread will run out of hardware resources or
encounter an instruction that cannot be executed specula-
tively. For example, it could exceed the capacity of the store
queue or DQ or it could encounter a non-cacheable instruc-
tion that could have a side-effect. At this point, the ahead
thread marks speculative checkpoint i as being not commit-
table, it stops placing instructions in DQi, and it continues
execution in order to prefetch data and instructions (that is,
it operates as a hardware scout thread [4]). When specula-
tive checkpoint i becomes the oldest speculative checkpoint,
the speculative phase ends and a nonspeculative phase be-
gins execution from the committed checkpoint.

Similarly, during a speculative phase in which the behind
thread is executing instructions from DQi, it is possible that
the behind thread is able to resolve a branch which was
unresolvable by the ahead thread when it was first executed
(because the condition code or register on which the branch
depends was NA). If the behind thread determines that the
branch was mispredicted, and thus that the ahead thread
executed on the wrong path, the speculative phase ends and
a nonspeculative phase begins execution from the committed
checkpoint.

In a speculative phase, the ahead thread always reads
and writes one working register file (denoted the “ahead

thread working register file”) and the behind thread always
reads and writes the other working register file (denoted the
“behind thread working register file”). In a nonspeculative
phase, all register reads and writes access the ahead thread
working register file.

2.1 Example of SST Execution
During a speculative phase, extensive instruction-level par-

allelism (ILP) is achieved by having the ahead thread and
the behind thread execute from separate points in the pro-
gram. In general, the behind thread executes a long-latency
instruction (such as a load that misses in the cache) and
its dependent instructions. While these instructions are be-
ing executed by the behind thread, the ahead thread is able
to execute and speculatively retire independent instructions.
Furthermore, the ahead thread is able to discover new cache
misses, thus providing MLP in addition to ILP.

Figure 2(a) shows a loop from the mcf benchmark in
SPEC INT 2006. Figure 2(b) shows the data structures
accessed by that code. Consecutive iterations of the loop
are denoted i, j, and k. Certain fields are denoted A − G

in order to relate them to their corresponding load opera-
tions in Figure 3. An example of an SST execution of this
code is given in Figure 3, where loop iterations i, j, and k
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Figure 3: Example mcf SST Execution.

of instructions 1 − 13 of the assembly code are shown. For
example, i10 denotes the execution of instruction 10 in it-
eration i. In the common case, the load of the child (E) by
instruction 11, and thus the successive loads of the orien-
tation (A) by instruction 1, basic arc (B) by instruction 4,
and pred (C) by instruction 5, all hit in the cache due to
a software prefetch by instruction 10 executed in an earlier
iteration. In addition, the load of potential (F ) from a pre-
decessor node by instruction 7 usually hits in the cache. In
contrast, the load of cost (G) by instruction 6 usually misses
in the cache.

In this example instruction i6 is a cache miss. Therefore, a
checkpoint is taken and instruction i6 and its dependents, i8
and i9, are placed in DQ1. Instructions i7, i10, i11, and i12
are independent of the load miss and thus are speculatively
retired to speculative register file 1 by the ahead thread. In
this example, the ahead thread chose to take a speculative
checkpoint on instruction i13. Next, the ahead thread spec-
ulatively retires instruction i13 and instructions 1 through
5 of iteration j by updating speculative register file 2. In-
struction j6 is a cache miss, so j6 and its dependents are
deferred to DQ2.

Next, data returns for instruction i6 which is then exe-
cuted from DQ1 by the behind thread. The behind thread
also executes deferred instructions i8 and i9, at which point
DQ1 becomes empty. As a result, speculative checkpoint 1
becomes the committed checkpoint. At this point, the ahead

thread takes a new speculative checkpoint and the behind
thread starts executing deferred instructions from DQ2. In-
structions j6 and k6 are cache hits when executed by the be-
hind thread, so all instructions from DQ2 are speculatively
retired and speculative checkpoint 2 is committed. The be-
hind thread continues by executing instructions from DQ3

and the ahead thread continues to execute new instructions.
Note that the ahead thread and the behind thread are

able to execute in parallel, thus extracting ILP. Further-
more, the performance of the ahead thread is unaffected by
cache misses. As long as the behind thread is able to success-
fully retire the deferred instructions, the overall performance
approaches that of a core with an infinite data cache.

2.2 Implementation

2.2.1 Registers
The above description of SST uses an architectural regis-

ter file, N speculative register files and two working register
files. In addition, in the description above, the operation of
taking a speculative checkpoint requires copying the ahead
thread’s working register file to a new speculative register
file and the operation of starting a nonspeculative phase
requires copying the committed checkpoint to the architec-
tural register file. In reality, it is possible to remove the
separate architectural register file, to eliminate the above
register file copy operations, and to implement most of the
register files in SRAM. In order to achieve these improve-
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Figure 4: SST Register Implementation.

ments, the behind thread’s working register file is split into
two.

Figure 4 shows a more efficient implementation of the reg-
ister files. Note that the separate architectural register file
has been eliminated. Instead, for each architectural regis-
ter j, ArchPtr[j] points to the SpecReg copy which holds
the architectural value for register j. Also, corresponding
to each set of speculative registers, SpecRegi (1 ≤ i ≤ N),
there is a set of speculatively written bits, SpecWri, and a
set of NA bits, SpecNAi. Whenever register j is written in
a nonspeculative phase, SpecRegk[j], where k = ArchPtr[j],
is written. Whenever SpecRegk[j] is written in a specula-
tive phase, SpecWrk[j] is set. Whenever a speculative phase
which uses speculative register file k commits, for each reg-
ister j, ArchPtr[j] := k if SpecWrk[j] is set and ArchPtr[j]
is unchanged otherwise. Then, SpecWrk[j] is cleared. As a
result, there is no need to copy the ahead thread’s working
register file to a new speculative register file when taking
a speculative checkpoint. Similarly, when starting a non-
speculative phase, there is no need to copy the committed
checkpoint to the architectural register file. Therefore, all
time-sensitive register copy operations have been eliminated
(it is still necessary to copy the committed checkpoint regis-
ters to a working register file when starting a nonspeculative
phase due to failed speculation; however, in this case the
pipeline has to be flushed and restarted from the committed
checkpoint PC, so there are many idle cycles in which this
can be done). Furthermore, note that all register reads are
from a working register file. Therefore, the speculative reg-
ister files can be single-ported and thus can be implemented
in an area-efficient manner using SRAM.

2.2.2 Removing Register Hazards
During a speculative phase, the ahead thread and behind

thread operate largely independently. In particular, no re-
sults are passed from the behind thread to the ahead thread.
The DQs are used to pass available operands of deferrable
instructions from the ahead thread to the behind thread.
No other values are ever passed from the ahead thread to
the behind thread. As a result, each thread has its own

scoreboard and no register bypasses are provided between
the two threads.

In order to remove register Read-After-Write (RAW) haz-
ards, two mechanisms are used. First, the per-thread score-
boards are used to block instruction issue until all operands
are guaranteed to be ready or marked as NA. Second, when-
ever an instruction has an NA operand, the instruction is
classified as being deferrable and will not become retirable
until all its operands are available.

Write-After-Read (WAR) hazards are eliminated similarly.
The per-thread scoreboard guarantees that between the is-
sue of the producer and consumer of a register, no later
instruction (in program order) which writes to the same reg-
ister is allowed to issue. Furthermore, when the producer of
the register first makes it available (as opposed to NA), the
consumer is either retirable (in which case it consumes the
provided value) or it is deferrable (in which case it stores the
provided value with the instruction in the DQ). As a result,
in either case the register is free to be overwritten.

The NA bits are used to remove Write-After-Write (WAW)
hazards as follows. The ahead thread always writes results
to both its working register file and the corresponding spec-
ulative register file. The first time that the behind thread
executes an instruction from a given DQi, it reads operands
that were not stored in DQi from the BehindFirstWork Reg-
ister file (BFWR) and writes its result to the BFWR and
updates the corresponding BehindFirstWork NA (BFWNA)
bit. In addition, it checks the SpecNAi bit for the destina-
tion register. If that bit is set, the destination register’s
value in speculative checkpoint i has not yet been produced,
so the instruction also writes its result to the destination
register in SpecRegi (but does not update the corresponding
SpecNAi). Once the behind thread has executed all instruc-
tions from DQi, it “merges” the SpecNAi and BFWNA bits
by setting each SpecNAi bit to the logical-AND of itself and
the corresponding BFWNA bit.

When and if the behind thread executes a given instruc-
tion for a successive (the second or any other subsequent)
time from a given DQi, it reads operands that were not
stored in DQi from the BehindSuccessiveWork Register file
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(BSWR) and writes its result to the BSWR and updates the
corresponding BehindSuccessiveWork NA (BSWNA) bit. In
addition, it checks the SpecNAi bit for the destination reg-
ister. If that bit is set, the destination register’s value in
speculative checkpoint i has not yet been produced, so the
instruction also writes its result to the destination register
in SpecRegi and in BFWR (for use by the behind thread
when it first executes instructions from DQi+1), updates
the corresponding BFWNA bit, but does not update the
corresponding SpecNAi bit. Each time the behind thread
completes executing all instructions from DQi, it “merges”
the SpecNAi and BFWNA bits as described above.

Intuitively, the above rules guarantee that once the young-
est writer within a speculative checkpoint i has written a
given register, that value cannot be overwritten. As a result,
when speculative checkpoint i commits, SpecRegi contains
the value produced by the youngest writer within checkpoint
i. Similarly, when speculative checkpoint i commits, the
BFWR contains all values that may be needed by the behind
thread when executing from DQi+1. Finally, the BSWR
contains all values that are passed from one instruction to
another in the second or later execution of instructions from
a DQ.

Note that a single working register file would not be suffi-
cient for the behind strand. For example, consider the execu-
tion shown in Figure 3 and now assume that during the first
replay of instructions from DQ2 that instruction j6 is a cache
miss while instruction k6 is a cache hit. In this case, instruc-
tions j6, j8, and j9 are all redeferred to DQ2. Instruction
k6 writes BFWR[5] and detects that SpecNA2[5] is set, and
therefore it writes to SpecReg2[5] and clears SpecNA2[5].
Next, when instruction j6 is replayed from DQ2 the second
time, assume that it is a cache hit. In this case, instruction
j6 now writes BSWR[5] and detects that SpecNA2[5] is not
set, and therefore it does not write to BFWR[5]. Next, in-
struction j8 obtains the value of its source register r5 from
instruction j6 via BSWR[5]. Then, instruction j9 executes
and is speculatively retired and speculative checkpoint 2 is
committed. The behind thread now executes instruction k8
from DQ3, which obtains the value of its source register r5
from instruction k6 via BFWR[5]. In this example, when
instruction j6 executes from DQ2 the second time, two ver-
sions of register r5 must be stored, one of which will be used
by instruction j8 and one of which will be used by instruc-
tion k8.

Given the above use of the NA bits, and the per-thread
scoreboard, the WAW hazards are prevented. In particular,
consider any register r that is written in SpecRegi and let
L denote the last instruction in program order which writes
this register. If L was retirable when it was first executed, r

is written by L and its corresponding SpecNAi bit is cleared,
so no other instruction can write to r in SpecRegi. On the
other hand, if L was deferrable when it was first executed,
the SpecNAi bit corresponding to r will remain set until L

becomes retirable, at which point L will update register r

in SpecRegi and the following “merge” operation will clear
the corresponding SpecNAi bit. As a result, all other in-
structions will be prevented from writing to register r in
SpecRegi.

Similarly, consider any register r that is written in BFWR
and let L denote the last instruction in program order which
writes this register. Note that L must have been deferrable
when it was first executed. As a result, the SpecNAi bit cor-

responding to r will remain set until L becomes retirable, at
which point L will update register r in BFWR and the fol-
lowing“merge”operation will clear the corresponding SpecNAi

bit. As a result, all other instructions will be prevented from
writing to register r in BFWR.

2.2.3 Store Queue
All stores are placed in the store queue in program order

by the nonspeculative or ahead thread (even if the value
and/or address of the store is NA). Each store in the store
queue has an NA bit for its address, an NA bit for its data,
a speculative bit (which is set if the store was executed in a
speculative phase and is cleared when the speculative phase
is committed), and the corresponding checkpoint number.
Stores for which the speculative bit is set in the store queue
are not allowed to update memory. If a store is executed
in a speculative checkpoint which never commits (due to a
speculation’s failure), the store is removed from the store
queue.

Because all stores are placed in the store queue in program
order, loads that are performed by the nonspeculative or
ahead thread will see the value of the most recent store pre-
ceding the load. Loads performed by the behind thread can
be executed when younger (in program order) stores have
already been placed in the store queue. As a result, each
load and store is assigned an “age” value in program order.
In particular, the age of a store gives the location of the store
in the store queue and the age of a load gives the location in
the store queue of the most recent store preceding the load
in program order. When the behind thread executes a load,
the load’s age is used to limit the RAW-bypasses provided
by the store queue to be from older stores only.

When a store has an NA bit set for its address or data,
the operands for the store were not available and thus the
store was classified as being deferrable. When a deferrable
store is executed from a DQ its age is used to update its
store queue entry by updating its address and data fields
and the corresponding NA bits. If a load receives a RAW-
bypass value from a store in the store queue for which the
NA bit is set for the store’s data, the load is classified as
being deferrable and its destination register’s NA bit is set.
However, when a load is executed after a store with an NA
address has been placed in the store queue, it is impossible to
determine whether or not that load should receive a RAW-
bypass from that store. As a result, the load is executed
assuming that no such RAW-bypass is required. If the load
is speculatively retired, a Memory Disambiguation Buffer
(MDB) can be used to track the address of the load and
to fail speculation if it is later determined that a RAW-
bypass was missed. Alternatively, if no MDB is used, the
speculative checkpoint containing the load must be marked
as being not committable and the ahead thread continues
execution as a hardware scout thread.

2.2.4 Load Ordering
During a speculative phase, loads can be speculatively re-

tired out of program order with respect to other loads. In
order to support a memory model such as Total Store Or-
der (TSO), it is necessary to make it appear as though the
loads were retired in program order. This is accomplished by
maintaining an array of N speculatively-loaded bits (called
“s-bits”) per each data cache entry. Whenever a load which
is part of speculative checkpoint i is speculatively retired,
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s-bit[i] of the cache line entry read is set. Upon invalidation
or victimization of a cache line from the data cache, if s-bit[i]
of the cache line is set, speculative checkpoint i is made to
fail. When a speculative checkpoint i either commits or fails,
s-bit[i] of every line in the data cache is cleared. Note that by
grouping speculative instructions into N distinct speculative
checkpoints, it is possible to use this simple s-bit mechanism
to track load reordering rather than using a more traditional
Content-Addressable Memory (CAM) structure.

2.2.5 Issue Logic
Because loads that miss in the cache can be executed

(by classifying them as deferrable) with the same latency
as loads that hit in the cache, it is possible to have a fixed
latency for every instruction. This greatly simplifies the is-
sue logic, as it enables each decoded instruction to have its
time of execution scheduled without waiting to determine
the latency of its producers. In particular, it is possible to
obtain a minimal load-use latency without having the issue
logic speculate on load hits and misses.

3. SIMULATION METHODOLOGY

3.1 Simulator Infrastructure
Results were produced by an in-house cycle-accurate sim-

ulator capable of simulating SST and the other architectures
studied in this paper. The simulator, when configured with
ROCK’s parameters, has been validated against ROCK’s
hardware implementation. A sampling approach similar to
the one described by Wenisch et al. [26] was used.

3.2 Simulated CMP
The simulations use several core-clusters (containing L1-

instruction and L1-data caches), a shared L2 cache, and four
on-chip memory controllers. The core-clusters and the L2
cache are connected with crossbar networks. A core-cluster
consists of four cores, each of which has its own L1-data
cache. Cores are grouped pairwise, where each pair shares
an instruction fetch unit (IFU) and an L1-instruction cache.
An IFU can fetch up to 16 instructions per cycle. The core
consists of five execution units (2 integer, 1 branch, 1 mem-
ory, and 1 floating point) and has a sustainable issue rate
of four instructions per cycle. The parameters used for the
cache hierarchy and branch predictors are shown in Table 1.

ROCK’s implementation of SST is similar to the default
configuration described above but does differ in a few key
areas. For example, ROCK has 16 SST threads (or, alterna-
tively, 32 non-SST threads), a 2 MB second-level cache, and
two checkpoints per core. In addition to the default param-
eters specified above, we also simulated configurations with
8 cores and with 2 to 16 checkpoints per core.

3.3 Benchmarks
Simulation results are given for three commercial server-

side benchmarks and the SPEC CPU2006 suite, all of which
were compiled with the SunStudio compiler. The commer-
cial benchmarks consist of OLTP, JBB, and SAP. OLTP is
an on-line transaction processing server-side database work-
load. The transactions include entering and delivering or-
ders, recording of payments, checking the status of orders,
and monitoring the level of stock at warehouses. JBB is the
SPECjbb2005 server-side Java benchmark that models a 3-
tier system, focusing on middle-ware server business logic

Feature SST OoO

Number of cores 32 (8 core clusters)
L1 i-cache 32KB/IFU, 4-way, 2 cycle,

next-line prefetch, 64B line
L1 d-cache 32KB/core, 4-way,

3 cycle, 64B line
L2 cache 4MB/chip, 8-way, 8 banks,

25 cycle, 64B line
Store queue 64 entries/core, 2 banks
Branch predictor 32K entries/IFU,

13 bits history, 13 cycles mispred
BTB 128 entries/IFU
RAS 8 entries/core
Memory latency 300 cycles
Trap / fail latency 24 cycles
Checkpoints 8 per core NA
DQ size 32 entries each NA
Checkpoint policy On every branch or NA

after 30 instructions
Issue window 2 entries/pipe 32 entries
Reorder buffer NA 128 entries

Table 1: Default Simulated CMP Parameters.

and object manipulation. SAP is a server-side “Sales and
Distribution” benchmark that covers a sell-from-stock sce-
nario.

4. PERFORMANCE RESULTS

4.1 SST Execution Analysis
As mentioned in Section 2, the core can be in a non-

speculative phase (NonSpeculative), a speculative phase in
which the ahead thread has not detected a failure condition
(Speculative), or a speculative phase in which the ahead
thread acts as a hardware scout (HWS) thread. Figure 5
shows the number of cycles spent in each of these phases for
the various benchmarks.

Note that high miss-rate applications (such as the com-
mercial benchmarks and mcf) spend almost all of their time
in a speculative phase, while lower miss-rate applications
(such as perlbench and sjeng) spend the majority of the
time in a non-speculative phase. A few of the benchmarks
(such as lbm and JBB) spend significant time in an HWS
phase.

Figure 6 shows the frequency of the three most common
types of speculation failure, namely DQ overflow, store queue
(SQ) overflow, and deferred mispredicted branches (Branch).
The frequency of other reasons for failure, such as non-
cacheable memory accesses, is negligible.

The figure shows that the largest source of failures for
OLTP is deferred mispredicted branches. This can be ex-
plained by its irregular branch pattern in combination with
a high cache miss rate. On the other hand, most of the
failures for gcc are due to store queue overflows which are
caused by numerous memory copy operations. Finally, a
significant source of failures for mcf is DQ overflow, which
is indicative of its high L2 cache miss rate.

Note that when the ahead thread causes a DQ or store
queue overflow, it continues execution in an HWS phase.
In contrast, when a deferred branch is determined to have
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Figure 5: SST Execution Mode Breakdown.

Figure 6: Speculation Failures per 1000 Instructions.

Figure 7: SST Performance Improvement from Eliminating Failures.

been mispredicted, speculation fails immediately and the
core starts a nonspeculative phase from the committed check-
point. As a result, benchmarks that have many DQ and/or
store queue overflows in Figure 6 tend to spend more cycles
in HWS phases as shown in Figure 5. In contrast, bench-
marks that have many deferred mispredicted branches do
NOT tend to spend more cycles in HWS phases.

In order to quantify the performance impact of each type
of speculation failure (and to bound any potential improve-
ment from corresponding architectural improvements), a limit
study shown in Figure 7 was performed.

In this study, the effect of deferred mispredicted branches
was quantified by modeling the performance gain provided
by an “oracle” that detects mispredictions of deferrable
branches when they are first executed. As can be seen in Fig-

ure 7, such an oracle would improve performance by nearly
20% on commercial benchmarks, so it is clear that a signif-
icant number of speculative cycles are lost due to deferred
mispredicted branches. While it is obviously impossible to
achieve the idealized results which depend on an oracle, the
results do highlight the value of any reduction in the mispre-
dict rate for deferred branches. Note that it would be possi-
ble to create a second branch predictor which only predicts
the outcome of deferrable branches (thus greatly limiting
the number of branches for which it makes predictions) and
which only needs to make its prediction at execution time
rather than instruction fetch time (thus greatly increasing
the time which can be spent in this predictor). As a result,
creating such specialized branch predictors is a promising
topic for future research. Another approach to reducing de-
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Figure 8: SST Performance vs. Number of Check-

points.

Figure 9: Commercial Performance.

ferred mispredicted branches would be to use predicated in-
structions to replace hard-to-predict branches that are often
deferred.

Figure 7 also shows the effect of increasing the size of
the store queue to 256 entries per core and the DQs to 512
entries per checkpoint. These sizes were chosen to virtu-
ally eliminate failures due to overflows. Increasing the store
queue size gives very limited performance gains overall but
for individual applications it can be significant (e.g. 5%
for gcc). Finally, increasing the DQ size gives significant
improvements for many applications (e.g. 26% for JBB).
However, additional simulations have shown that increas-
ing the DQ size is not effective unless failures from deferred
mispredicted branches are also reduced.

An important design decision to make for an SST architec-
ture is the number of checkpoints to support. Figure 8 shows
how performance varies with the number of checkpoints. For
all applications, there is a significant improvement when in-
creasing from two to eight checkpoints. For the commercial
workloads, performance continues to improve when doubling
the number to 16, while SPEC INT and SPEC FP see mod-
est improvements in that range. All simulation results ex-
cept for this sensitivity analysis were obtained with eight
checkpoints.

4.2 Comparison with other Architectures
A comparison of SST and other architectures is shown in

Figures 9, 10, and 11. The figures show the performance
for three different architectures in 8-core (left) and 32-core
(right) CMPs. All simulation results are normalized to in-

order stalling cores (STALL). The figures show the perfor-
mance of the stalling cores extended with Hardware Scout
(HWS) [4], cores that support SST, and traditional OoO
cores.

Starting with the commercial benchmarks in the 8-core
configuration, HWS improves performance by 22% over
STALL. This is primarily due to increased MLP since the
HWS processor does not overlap any computations while
waiting for a cache miss but only warms the caches and the
branch predictor. Since the commercial applications have
a high L2 miss-rate, this prefetching effect is significant.
OoO improves performance 28% over STALL (and 5% over
HWS). The gain for OoO compared to STALL consists of
both MLP and ILP. Note, however, that OoO extracts less
MLP than HWS does due to its limited issue window size,
while HWS does not require an issue window and thus does
not encounter such a limitation. Finally, like OoO, SST
also achieves both MLP (by executing speculatively under
a cache miss) and ILP (by executing the ahead and behind
threads in parallel). In fact, SST extracts even more MLP
than HWS due to the ability of the ahead thread to continue
execution while the behind thread consumes data that was
prefetched by the ahead thread. Consequently, SST is 21%
faster than HWS and 16% faster than OoO. Looking next
to the 32-core configuration, the benefit of SST over OoO
is even larger (18%) due to the greater L2 cache miss rate
and, hence, increased importance of MLP.

The SPEC INT benchmarks behave differently from the
commercial benchmarks due to their lower L2 cache miss
rates. As can be seen from Figure 10, the MLP extracted
by HWS provides very limited speedup over STALL. In fact,
in some cases HWS performs worse than STALL due to its
restart latency when data for the cache miss returns. In
contrast, SST and OoO both improve performance signifi-
cantly, due to their ability to extract ILP. In an 8-core CMP,
OoO is slightly better than SST (by 3%). This is because
OoO uses a fine-grained, CAM-based scheduler which is able
to select exactly those instructions which have all of their
operands available. In contrast, SST eliminates the need
for a CAM-based scheduler at the cost of executing some
instructions prior to their operands being available. In a 32-
core CMP, the results are reversed with SST slightly outper-
forming OoO (by 2%) as a result of the increased L2 cache
miss rate (and thus significance of MLP).

For the SPEC FP benchmarks, OoO shows a 3% improve-
ment over SST with both 8 and 32 cores. This is due to
extensive use of software prefetching (thus reducing the im-
pact of hardware-extracted MLP) and the importance of a
large issue window for extracting ILP. Because the SST con-
figuration uses a very small (2-instruction) issue window for
the floating-point pipeline while the OoO design uses a 32-
instruction issue window, the OoO design is able to reorder
instructions more efficiently.

4.3 Reliance on CAM-Based Structures
In the results above, it was assumed that both the SST

and OoO cores had a CAM-based MDB [8, 11] as well as
an unlimited number of physical registers used for renam-
ing (which also utilize CAMs in many implementations).
Such CAM-based structures are particularly undesirable in
a CMP as they require significant area and power. Figure 12
quantifies the extent to which the performance gains of SST
and OoO rely on these structures.
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Figure 10: Integer Performance.

Figure 11: Floating-Point Performance.

Figure 12: Performance Gains from MDB and Register Renaming for SST and OoO.

The results in Figure 12 are normalized to STALL. It is
clear from these results that OoO is far more dependent on
these expensive structures than is SST. In particular, when
the memory disambiguation buffer is not present, SST out-
performs OoO on commercial, integer, and floating point
benchmarks at both 8 and 32 cores per chip. Similarly, when
register renaming is not present, SST also outperforms OoO
on commercial, integer, and floating point benchmarks at
both 8 and 32 cores per chip. In fact, in a 32 core CMP,
SST without memory disambiguation and without register
renaming is 18% faster on commercial workloads and equal
on integer workloads compared to OoO with memory disam-
biguation and with register renaming. Comparing configu-
rations without either of these expensive structures, SST
outperforms OoO by 33% on commercial, 5% on integer,

and 18% on floating point benchmarks. Furthermore, the
SST configurations have a much smaller issue window and
no ROB.

SST’s lack of reliance on register renaming can be ex-
plained by considering the case of a load miss. In OoO
without register renaming, instructions that are dependent
(directly or indirectly) on a load miss, or which have a WAR
or WAW dependence (directly or indirectly) on the load,
cannot issue until the load completes. In SST without regis-
ter renaming, these instructions can issue once the load has
been determined to be a cache miss. Therefore, the instruc-
tions with WAR or WAW dependence on the load can issue
(and be made retirable) much earlier with SST. As can be
seen from Figure 12, SST virtually eliminates the need for
register renaming.
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Similarly, SST’s lack of reliance on memory disambigua-
tion can also be explained by considering the case of a load
miss. In OoO, a store that is dependent on a load miss
is blocked until the load completes. As a result, in OoO
without memory disambiguation, younger loads (and their
dependents) will be blocked until the original load miss com-
pletes. In contrast, in SST without memory disambiguation,
the store issues without waiting for the earlier load miss to
complete, thereby allowing younger loads to issue. In the
case of a store with NA data, SST continues execution by
deferring younger loads to the same address. In the case of
a store with an NA address, SST continues execution as a
hardware scout thread, thus extracting MLP. As can be seen
from the results in Figure 12, this eliminates the need for an
MDB with SST.

5. RELATED WORK
Lebeck et al. [14] use a waiting instruction buffer to re-

duce the size of the issue window in an OoO processor. The
waiting instruction buffer plays a role that is similar to the
DQs in SST. However, SST differs by eliminating the need
to retire instructions in order and thus is able to reclaim
those instructions’ resources earlier.

Checkpointing has been presented as a technique to ad-
dress scalability issues with structures that support OoO
execution [1, 6, 15]. KIP [6] uses checkpoints and a register
renaming mechanism to reduce the size of the issue win-
dow and reorder buffer (ROB) in an OoO core. CPR [1]
uses checkpoints and a register renaming mechanism to re-
duce the number of physical registers and to eliminate the
ROB. SST places known operands for deferred instructions
in an SRAM structure (DQ), while KIP and CPR keep such
operands (and registers that are part of a checkpoint) in a
multiported physical register file. In addition, SST differs
from CPR in that SST does not rely on a large issue win-
dow. Cherry [15] uses a single checkpoint in order to reduce
the number of physical registers and MDB entries in an OoO
core. In contrast, SST supports multiple checkpoints (thus
eliminating the need to periodically return to nonspeculative
execution) and SST speculatively retires instructions out-of-
order. Finally, SST differs from all of the above techniques
in that SST obtains ILP and MLP via multiple threads of
execution and thus does not require an OoO core with regis-
ter renaming, a large instruction issue window, or an MDB.
Furthermore, SST differs from all of those techniques in that
it has an ability to operate as a scout thread in the event
that resources overflow by using the NA bits in registers
to avoid generating memory addresses that are likely to be
incorrect.

Hardware scout execution has been proposed and evalu-
ated (under a variety of names) in both in-order and out-
of-order cores by several researchers [4, 7, 16, 17]. The key
difference between HWS execution and SST is that once
a speculative phase completes in an HWS architecture, all
speculatively produced results are discarded and have to be
re-executed, while an SST architecture does not need to re-
execute speculatively retired instructions.

The two architectures in the research literature that are
most similar to SST are the flea-flicker two-pass pipeline
proposed by Barnes et al. [2] and continual flow pipelines
by Srinivasan et al. [23]. The flea-flicker scheme has an
ahead and a behind thread where long-latency instructions
(and their dependents) are re-executed by the behind thread.

The flea-flicker scheme differs from SST in that it uses two
separate pipelines rather than executing both threads in
the same pipeline. Secondly, in flea-flicker the second pass
pipeline stalls execution if a deferred instruction has a cache
miss, while SST redefers the instruction and thereby clears
the issue window. Continual flow pipelines were also in-
troduced in the context of a checkpoint-based architecture.
The key difference between continual flow pipelines and SST
is that in continual flow pipelines re-execution of deferred
instructions is not performed in parallel with execution of
younger independent instructions. Finally, SST differs from
both techniques in its ability to exploit multiple checkpoints.

While other researchers have proposed combined hard-
ware/software approaches to extracting independent threads
of execution from a single program thread [9, 13, 20, 21, 22],
SST differs from these approaches by performing its paral-
lelization automatically in hardware.

6. DISCUSSION
As can be seen from the above performance results, SST

provides an efficient core architecture for CMPs. As the
first hardware implementation of SST, the ROCK processor
contains 16 cores with 2 checkpoints each. This design is
suitable for the 65nm process that was used and provides
a good balance between throughput and per-thread perfor-
mance. As can be seen from Figure 8, designs with 4 or
more checkpoints per core are also interesting to consider
for future implementations. The ROCK processor imple-
ments SST without an MDB, as SST performance has very
little reliance on this structure (see Figure 12).

In ROCK, the checkpointing mechanism used in SST was
leveraged to improve the efficiency of the issue logic. In par-
ticular, when operating in a nonspeculative phase, ROCK is
able to take a checkpoint on a branch instruction, thus caus-
ing all younger instructions to write to a speculative register
file. As a result, it is possible to execute instructions younger
than the branch before the branch, and to handle the mis-
prediction of such a branch as though it were a failure of
speculation.

7. CONCLUSIONS
This paper introduced Simultaneous Speculative Thread-

ing (SST), which was shown to be an effective architecture
for extracting both ILP and MLP. Furthermore, it is effi-
cient, as it requires only a very small (2-entry per execu-
tion pipeline) issue window, no reorder buffer, no register
renaming, and no memory disambiguation buffer. SST was
shown to deliver higher performance on commercial appli-
cations than a traditional OoO core in a CMP. Due to their
greater ability to extract MLP, certain SST configurations
also outperform OoO on integer applications as the number
of cores on the chip is increased. Sun’s ROCK processor im-
plemented 16 SST cores, with 2 checkpoints each, in a 65nm
process.
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