
APRIL: A Processor Architecture for Multiprocessing 

Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz 

Laboratory for Computer Science 
Massachusetts Institute of Technology 

Cambridge, MA 02139 

Abstract 
Processors in large-scale multiprocessors must be able to tol- 
erate large communication latencies and synchronization de- 
lays. This paper describes the architectureof a rapid-context- 
switching processor called APRIL with support for fine-grain 
threads and synchronization. APRIL achieves high single- 
thread performance and supports virtual dynamic threads. 
A commercial RISC-based implementation of APRIL and a 
run-time software system that can switch contexts in about 10 
cycles is described. Measurements taken for several parallel 
applications on an APRIL simulator show that the overhead 
for supporting parallel tasks based on futures is reduced by 
a factor of two over a corresponding implementation on the 
Encore Multimax. The scalability of a muItiprocessor based 
on APRIL is explored using a performance model. We show 
that the SPARC-based implementation of APRIL can achieve 
close to 80% processor utilization with as few as three resident 
threads per processor in a large-scde cache-based machine 
with an average base network latency of 55 cycles. 

1 Introduction 

The requirements placed on a processor in a large-scale multi- 
processing environment are different from those in a unipro- 
cessing setting. A processor in a parallel machine must be 
able to tolerate high memory latencies and handle process 
synchronization efficiently [2]. This need increases as more 
processors are added to the system. 

Parallel applications impose processing and communica- 
tion bandwidth demands on the parallel machine. An efficient 
and cost-effective machine design achieves a balance between 
the processing power and the communication bandwidth pro- 
vided. An imbalance is created when an underutilized pro- 
cessor cannot fully exploit the available network bandwidth. 
When the network has bandwidth to spare, low processor 
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utilization can result from high network latency. An efficient 
processor design for multiprocessors provides a means for hid- 
ing latency. When sufficient parallelism exists, a processor 
that rapidly switches to an alternate thread of computation 
during a remote memory request can achieve high utilization. 

Processor utilization also diminishes due to synchroniz.a- 
tion latency. Spin lock accesses have a low overhead of mem- 
ory requests, but busy-waiting on a synchronization event 
wastes processor cycles. Synchronizati.on mechanisms that 
avoid busy-waiting through process blocking incur a high 
overhead. 

Full/empty bit synchronization [22] in a rapid context 
switching processor allows efficient fine-grain synchroniza- 
tion. This scheme associates synchronization information 
with objects at the granularity of a data word, allowing a 
low-overhead expression of maximum concurrency. Because 
the processor can rapidly switch to other threads, wasteful 
iterations in spin-wait loops are interleaved with useful work 
from other threads. This reduces the negative effects of syn- 
chronization on processor utilization. 

This paper describes the architecture of APRIL, a proces- 
sor designed for large-scale multiprocessing. APRIL builds 
on previous research on processors for parallel architectures 
such as HEP [22], MASA [8], P-RISC (1!3], [14], [15], and [18]. 
Most of these processors support fine-grain interleaving of in- 
struction streams from multiple threads, but suffer from poor 
single-thread performance. In the HEP, for example, instruc- 
tions from a single thread can only be executed once every 8 
cycles. Single-thread performance is important for efficiently 
running sections of applications with low parallelism. 

APRIL does not support cycle-by-cycle interleaving of 
threads. To optimize single-thread performance, APRIL ex- 
ecutes instructions from a given thread until it performs a 
remote memory request or fails in a synchronization attempt. 
We show that such coarse-grain multitlireading allows a sim- 
ple processor design with context switch overheads of 4-10 cy- 
cles, without significantly hurting overall system performance 
(although the pipeline design is complicated by the need to 
handle pipeline dependencies). In APRIL, thread scheduling 
is done in software, and unlimited virtual dynamic threads 
are supported. APRIL supports full/empty bit synchroniza- 
tion, and provides tag support for futures [9]. In this paper 
the terms process, thread, context, and task are used equiv- 
alently. 
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By taking a systems-level design approach that considers 
not only the processor, but also the compiler and run-time 
system, we were able to migrate several non-critical oper- 
ations into the software system, greatly simplifying proces- 
sor design. APRIL’s simplicity allows an implementation 
based on minor modifications to an existing RISC proces- 
sor design. We describe such an implementation based on 
Sun Microsystem’s SPARC processor [23]. A compiler for 
APRIL, a run-time system, and an APRIL simulator are op- 
erational. We present simulation results for several paral- 
lel applications on APRIL’s efficiency in handling fine-grain 
threads and assess the scalability of multiprocessors based on 
a coarse-grain multithreaded processor using an analytical 
model, Our SPARC-based processor supports four hardware 
contexts and can switch contexts in about 10 cycles, which 
yields roughly 80% processor utilization in a system with an 
average base network latency of 55 cycles. 

The rest of this paper is organized as follows. Section 2 
is an overview of our multiprocessor system architecture and 
the programming model. The architecture of APRIL is dis- 
cussed in Section 3, and its instruction set is described in Sec- 
tion 4. A SPARC-based implementation of APRIL is detailed 
in Section 5. Section 6 discusses the implementation and per- 
formance of the APRIL run-time system. Performance mea- 
surements of APRIL based on simulations are presented in 
Section 7. We evaluate the scalability of multithreaded pro- 
cessors in Section 8. 

2 The ALEWIFE System 

APRIL is the processing element of ALEWIFE, a large-scale 
multiprocessor being designed at MIT. ALEWIFE is a cache- 
coherent machine with distributed, globally-shared memory. 
Cache coherence is maintained using a directory-baaed proto- 
col [5] over a low-dimension direct network (201. The directory 
is distributed with the processing nodes. 

2.1 Hardware 

As shown in Figure 1, each ALEWIFE node consists of a 
processing element, floating-point unit, cache, main inem- 
ory, cache/directory controller and a network routing switch. 
Multiple nodes are connected via a direct, packet-switched 
network. 

The controller synthesizes a global shared memory space 
via messages to other nodes, and satisfies requests from other 
nodes directed to its local memory. It maintains strong cache 
coherence 171 for memory accesses. On exception conditions, 
such as cache misses and failed synchronization attempts, the 
controller can choose to trap the processor or to make the pro- 
cessor wait. A multithreaded processor reduces the ill effects 
of the long-latency acknowledgment messages resulting from 
a strong cache coherence protocol. To allow experimenta- 
tion with other programming models, the controller provides 
special mechanisms for bypassing the coherence protocol and 
facilities for preemptive interprocessor interrupts and block 
transfers. 

ALEWIFE MACHINE 

Figure I: ALEWIFE node. 

The ALEWIFE system uses a low-dimension direct net- 
work. Such networks scale easily and maintain high nearest- 
neighbor bandwidth. However, the longer expected latencies 
of low-dimension direct networks compared to indirect mul- 
tistage networks increase the need for processors that can 
tolerate long latencies. Furthermore, the lower bandwidth of 
direct networks over indirect networks with the same channel 
width introduces interesting design tradeoffs. 

In the ALEWIFE system, a context switch occurs when- 
ever the network must be used to satisfy a request, or on a 
failed synchronization attempt. Since caches reduce the net- 
work request rate, we can employ coarse-grain multithread- 
ing (context switch every 50-100 cycles) instead of fine-grain 
multithreading (context switch every cycle). This simpli- 
fies processor design considerably because context switches 
can be more expensive (4 to 10 cycles), and functionality 
such as scheduling can be migrated into run-time software. 
Single-thread performance is optimized, and techniques used 
in RISC processors for enhancing pipeline performance can 
be applied [lo]. Custom design of a processing element is 
not required in the ALEWIFE system; indeed, we are using 
a modified version of a commercial RISC processor for our 
first-round implementation. 

2.2 Programming Model 

Our experimental programming language for ALEWIFE is 
M&T [16], an extended version of Scheme. Mul-T’s basic 
mechanism for generating concurrent tasks is the future con- 
struct. The expression (future X), where X is an arbitrary 
expression, creates a task to evaluate X and also creates an 
object known as a f&tire to eventually hold the value of X. 
When created, the future is in an unresolved, or undeter- 
mined, state. When the value of X becomes known, the fu- 
ture resolves to that value, effectively mutating into the value 
of X. Concurrency arises because the expression (future 
X) returns the future as its value without waiting for the 
future to resolve. Thus, the computation containing (future 
X) can proceed concurrently with the evaluation of X. All 
tasks execute in a shared address-space. 

The result of supplying a future as an operand of some 

105 



operation depends on the nature of the operation. Non-strict 
operations, such as passing a parameter to a procedure, re- 
turning a result from a procedure, assigning a value to a vari- 
able, and storing a value into a field of a data structure, 
can treat a future just like any other kind of value. Strict 
operations such as addition and comparison, if applied to an 
unresolved future, are suspended until the future resolves and 
then proceed, using the value to which the future resolved as 
though that had been the original operand. 

The act of suspending if an object is an unresolved fu- 
ture and then proceeding when the future resolves is known 
as touching the object. The touches that automatically oc- 
cur when strict operations are attempted are referred to as 
implicit touches. Mul-T also includes an ezplicit touching or 
“strict” primitive (touch X> that touches the value of the 
expression X and then returns that value. 

Futures express control-level parallelism. In a large class 
of algorithms, data parallelism is more appropriate. Barriers 
are a useful means of synchronization for such applications 
on MIMD machines, but force unnecessary serialization. The 
same serialization occurs in SIMD machines. Implementing 
data-level parallelism in a MIMD machine that allows the 
expression of maximum concurrency requires cheap fine-grain 
synchronization associated with each data object. We provide 
this support in hardware with full/empty bits. 

We are augmenting Mul-T with constructs for data-level 
parallelism and primitives for placement of data and tasks. 
As an example, the programmer can use future-on which 
works just like a normal future but allows the specification 
of the node on which to schedule the future. Extending Mul- 
T in this way allows us to experiment with techniques for 
enhancing locality and to research language-level issues for 
programming parallel machines. 

3 Processor Architecture 

APRIL is a pipelined RISC processor extended with spe- 
cial mechanisms for multiprocessing. This section gives an 
overview of the APRIL architecture and focuses on its fea- 
tures that support multithreading, fine-grain synchroniza- 
tion, cheap futures, and other models of computation. 

The left half of Figure 2 depicts the user-visible proces- 
sor state comprising four sets of general purpose registers, 
and four sets of Program Counter (PC) chains and Proces- 
sor State Registers (PSR). The PC chain represents the in- 
struction addresses corresponding to a thread, and the PSR 
holds various pieces of process-specific state. Each register 
set, together with a single PC-chain and PSR, is conceptually 
grouped into a single entity called a task frame (using termi- 
nology from [8]). Only one task frame is active at a given time 
and is designated by a current frame pointer (FP). All register 
accesses are made to the active register set and instructions 
are fetched using the active PC-chain. Additionally, a set of 
8 global registers that are always accessible (regardless of the 
FP) is provided. 

Registers are 32 bits wide. The PSR is also a 32-bit reg- 
ister and can be read into and written from the general reg- 
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Figure 2: Processor State and Virtual Threads. 

isters. Special instructions can read and write the FP regis- 
ter. The PC-chain includes the Program Counter (PC) and 
next Program Counter (nPC) which are not directly acces- 
sible. This assumes a single-cycle branch delay slot. Condi- 
tion codes are set as a side effect of compute instructions. A 
longer branch delay might be necessary if the branch instruc- 
tion itself does a compare so that condition codes need not 
be saved [13]; in this case the PC chain is correspondingly 
longer. Words in memory have a 32 bit data field, and have 
an additional synchronization bit called the full/empty bit. 

Use of multiple register sets on the processor, as in the 
HEP, allows rapid context switching. A context switch is 
achieved by changing the frame pointer and emptying the 
pipeline. The cache controller forces a. context switch on the 
processor, typically on remote network requests, and on cer- 
tain unsuccessful full/empty bit synchronizations. 

APRIL implements futures using the trap mechanism. For 
our proposed experimental implementation based on SPARC, 
which does not have four separate PC and PSR frames, con- 
text switches are also caused thr0ug.h traps. Therefore, a 
fast trap mechanism is essential. When a trap is signalled 
in APRIL, the trap mechanism lets the pipeline empty and 
passes control to the trap handler. The trap handler executes 
in the same task frame as the thread that trapped so that it 
can access all of the thread’s registers. 

3.1 Coarse-Grain Multithreading 

In most processor designs to date (e.g. [8, 22, 19, Is]), multi- 
threading has involved cycle-by-cycle interleaving of threads. 
Such fine-grain multithreading has been used to hide memory 
latency and also to achieve high pipeline utilization. Pipeline 
dependencies are avoided by maintaining instructions from 
different threads in the pipeline, at the price of poor single- 
thread performance. 

In the ALEWIFE machine, we are primarily concerned 
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with the large latencies associated with cache misses that 
require a network access. Good single thread performance 
is also important,. Therefore APRIL continues executing a 
single thread until a memory operation involving a remote 
request (or an unsuccessful synchronization attempt,) is en- 
countered. The controller forces the processor to switch to 
another thread, while it services the request. This approach 
is called coarse-grain m&threading. Processors in message 
passing multicomputers [21, 27,6,4] have traditionally taken 
this approach to allow overlapping of communication with 
computation. 

Context switching in APRIL is achieved by changing the 
frame pointer. Since APRIL has four task frames, it can 
have up to four threads loaded. The thread that is being 
executed resides in the task frame pointed to by the FP. A 
context switch simply involves letting the processor pipeline 
empty while saving the PC-chain and then changing the FP 
to point to another task frame. 

Threads in ALEWIFE are virtual. Only a small subset of 
all threads can be physically resident on the processors; these 
threads are called loaded threads. The remaining threads are 
referred to as unloaded threads and live on various queues in 
memory, waiting their turn to be loaded. In a sense, the set 
of task frames acts like a cache on the virtual threads. This 
organization is illustrated in Figure 2. The scheduler tries 
to choose threads from the set of loaded threads for execu- 
tion to minimize the overhead of saving and restoring threads 
to and from memory. When control eventually passes back 
to the thread that suffered a remote request., the controller 
shouId have completed servicing the request, provided the 
other threads ran for enough cycles. By maximizing local 
cache and memory accesses, the need for context switching 
reduces to once every 50 or 100 cycles, which allows us to toI- 
erate latencies in the range of 150 to 300 cycles with 4 task 
frames (.&e Section 8). 

Rapid context switching is used to hide the latency en- 
countered in several other trap events, such as synchroniza- 
tion faults (or attempts to load from “empty” locations). 
These events can either cause’the processor to suspend execu- 
tion (wait) or to take a trap. In the former case, the controller 
holds the processor until the request is satisfied. This typi- 
cally happens on local memory cache misses, and on certain 
full/empty bit tests. If a trap is taken, the trap handling 
routine can respond by: 

1. spinning - immediately return from the trap and retry 
the trapping instruction. 

2. suritch spinning - context switch without unloading the 
trapped thread. 

3. blocking - unload the thread. 

The above alternatives must be considered with care be- 
cause incorrect choices can create or exacerbate starvation 
and thrashing problems. An extreme example of starvation 
is this: all loaded threads are spinning or switch spinning on 

an exception condition that an unloaded thread is responsi- 
ble for fulfilling. We are investigating several possible mecha- 
nisms to handle such problems, including a special controller 
‘initiated trap on certain failed synchronization tests, whose 
handler unloads the thread. 

An important aspect of the ALEWIFE system is its com- 
bination of caches and multithreading. While this combina- 
tion is advantageous, it also creates a unique class of thrash- 
ing and starvation problems. For example, forward progress 
can be halted if a context, executing on one processor is writ- 
ing to a location while a context on another processor is read- 
ing from it. These two contexts can easily play “cache tag”, 
since writes to a location force a context switch and inval- 
idation of other cached copies, while reads force a context 
switch and transform read-write copies into read-only copies. 
Another problem involves thrashing between an instruction 
and its data; a context will be blocked if it has a load in- 
struction mapped to the same cache line as the target of the 
load. ,These and related problems have been addressed with 
appropriate hardware interlock mechanisms. 

3.2 Support for Futures 

Executing a Mul-T program with futures incurs two types 
of overhead not present in sequential programs. First, strict 
operations must check their operands for availability before 
using them. Second, there is a cost associated with creating 
new threads. 

Detection of Futures Operand checks for futures done in 
software imply wasted cycles on every strict operation. Our 
measurements with Mul-T running on an Encore Multimax 
show that this is expensive. Even with clever compiler opti- 
mizations, there is close to a factor of two loss in performance 
over a purely sequential implementation (see Table 3). Our 
solution employs a tagging scheme with hardware-generated 
traps if an operand to a strict operator is a future. We be- 
lieve that this hardware support is necessary to make futures 
a viable construct for expressing parallelism. From an archi- 
tectural perspective, this mechanism is similar to dynamic 
type checking in Lisp. However, this mechanism is necessary 
even in a statically typed language in the presence of dynamic 
futures. 

APRIL uses a simple data type encoding scheme for auto- 
matically generating a trap when operands to strict operators 
are futures. This implementation (discussed in Section 5) ob- 
viates the need to explicitly inspect in software the operands 
to every compute instruction. This is important because we 
do not want to hurt the efficiency of all compute instructions 
because of the possibility an operand is a future. 

Lazy Task Creation Little can be done to reduce the cost, 
of task creation if future is taken as a command to create 
a new task. In many programs the possibility of creating an 
excessive number of fine-grain tasks exists. Our solution to 
this problem is called lazy task creation [17]. With lazy task 
creation a future expression does not create a new task, but 
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computes the expression as a local procedure call, leaving 
behind a marker indicating that a new task could have been 
created. The new task is created only when some processor 
becomes idle and looks for work, stealing the continuation of 
that procedure call. Thus, the user can specify the maximum 
p.ossible parallelism without the overhead of creating a large 
number of tasks. The race conditions are resolved using the 
fine-grain locking provided by the full/empty bits. 

3.3 Fine-grain synchronization 

Besides support for lazy task creation, efficient fine-grain syn- 
chronization is essential for large-scale parallel computing. 
Both the dataflow and data-parallel models of computation 
rely heavily on the availability of cheap fine-grain synchro- 
nization. The unnecessary serialization imposed by barri- 
ers in MIMD implementations of data-parallellism can be 
avoided by allowing fine-grain word-level synchronization in 
data structures. The traditional test&set based synchro- 
nization requires extra memory operations and separate data 
storage for the lock and for the associated data. Busy-waiting 
or blocking in conventional processors waste additional pro- 
cessor cycles. 

APRIL adopts the full/empty bit approach used in the 
HEP to reduce both the storage requirements and the num- 
ber of memory accesses. A bit associated with each memory 
word indicates the state of the word: full or empty. The 
load of an empty location or the store into a full location 
can trap the processor causing a context switch, which helps 
hide synchronization delay. Traps also obviate the additional 
software tests of the lock in test&set operations. A similar 
mechanism is used to implement I-structures in dataflow ma- 
chines (31, however APRIL is different in that it implements 
such synchronizations through software trap handlers. 

3.4 Multimode1 Support Mechanisms 

APRIL is designed primarily for a shared-memory multi- 
processor with strongly coherent caches. However, we are 
considering several additional mechanisms which will permit 
explicit management of caches and efficient use of network 
bandwidth. These mechanisms present different computa- 
tional models to the programmer. 

To allow software-enforced cache coherence, we have loads 
and stores that bypass the hardware coherence mechanism, 
and a flush operation that permits software writeback and 
invalidation of cache lines. A loaded context has a fence 
counter that is incremented for each dirty cache line that 
is flushed and decremented for each acknowledgement from 
memory. This fence counter may be examined to determine 
if all writebacks have completed. We are proposing a block- 
transfer mechanism for efficient transfer of large blocks of 
data. Finally, we are considering an interprocessor-interrupt 
mechanism (IPI) which permits preemptive messages to be 
sent to specific processors. IPIs offer reasonable alternatives 
to polling and, in conjunction with block-transfers, form a 
primitive for the message-passing computational model. 

Type Format 
Compute op si 82 d 
Memory Id type a d 

st type d 8 
Branch jcond offset 

I I I 1 PC+offset I 

1 imnl offset d f d + PC --l 

Table 1: Basic instruction set summary. 

Fixnum 

Other 

Cons 

Future 

Figure 3: Data Type Encodings. 

Although each of these mechanisms adds complexity to 
our cache controller, they are easily implemented in the pro- 
cessor through “out-of-band” instructions as discussed in Sec- 
tion 5. 

4 Instruction Set 

APRIL has a basic RISC instruction set augmented with spe- 
cial memory instructions for full/empty bit operations, mul- 
tithreading, and cache support. The attraction of an imple- 
mentation based on simple SPARC processor modifications 
has resulted in a basic SPARC-like design. All registers are 
addressed relative to a current frame pointer. Compute in- 
structions are 3-address register-to-register arithmetic/logic 
operations. Conditional branch instructions take an immedi- 
ate operand and may increment the I?C by the value of the 
immediate operand depending on the condition codes set by 
the arithmetic/logic operations. Memory instructions move 
data between memory and the registers, and also interact 
with the cache and the full/empty bits. The basic instruc- 
tion categories are summarized in Table 1. The remainder of 
this section describes features of APRIL instructions used for 
supporting multiprocessing. 

Data Type Formats APRIL supports tagged pointers for 
Mul-T, as in the Berkeley SPUR processor [12], by encod- 
ing the pointer type in the low order bits of a data word. 
Associating the type with the pointer has the advantage of 
saving an additional memory reference when accessing type 
information. Figure 3 lists the different type encodings. An 
important purpose of this type encoding scheme is to support 
hardware detection of futures. 
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Name Type Reset f/e bit EL’ trap CMa response 
ldtt 1 No Yes Trap 
ldett 2 Yes Yes Trap 
1dnt 3 No No Trap 
ldent 4 Yes No Trap 
1ChlW 5 No No wait 
ldenw 6 Yes No wait 
ldtw 7 No Yes wait 
ldetw 8 Yes Yes wait 
‘Empty location. %ache miss. 

Table 2: Load Instructions. 

Future Detection and Compute Instructions Since a 
compute instruction is a strict operation, special action has to 
be taken if either of its operands is a future. APRIL generates 
a trap if a future is encountered by a compute instruction. 
Future pointers are easily detected by their non-zero least 
significant bit. 

Memory Instructions Memory instructions are complex 
because they interact with the full/empty bits and the cache 
controller. On a memory access, two data exceptions can 
occur: the accessed location may not be in the cache (a cache 
miss), and the accessed location may be empty on a load or 
full on a store (a full/empty exception). On a cache miss, 
the cache/directory controller can trap the processor or make 
the processor wait until the data is available. On full/empty 
exceptions, the controller can trap the processor, or allow 
the processor to continue execution. Load instructions also 
have the option of setting the full/empty bit of the accessed 
location to empty while store instructions have the option of 
setting the bit to full. These options give rise to 8 kinds of 
loads and 8 kinds of stores. The load instructions are listed 
in Table 2. Store instructions are similar except that they 
trap on full locations instead of empty locations. 

A memory instruction also shares responsibility for detect- 
ing futures in either of its address operands. Like compute 
instructions, memory instructions also trap if the least sig- 
nificant bit of either of their address operands are non-zero. 
This introduces the restriction that objects in memory can- 
not be allocated at byte boundaries. This, however, is not a 
problem because object allocation at word boundaries is fa- 
vored for other reasons [ll]. This trap provides support for 
implicit future touches in oper*ators that dereference pointers, 
e.g., car in LISP. 

Full/Empty Bit Conditional Branch Instructions 
Non-trapping memory instructions allow testing of the 
full/empty bit by setting a condition bit indicating the state 
of the memory word’s full/empty bit. APRIL provides condi- 
tional branch instructions, Jfull and Jempty, that-dispatch 
on this condition bit. This provides a mechanism to explicitly 
control the action taken following a memory iristruction that 
would normally trap on a full/empty exception. 

F’rame Pointer Instructions Instructions are provided 
for manipulating the register frame pointer (FP). FP points 
to the register frame on which the currently executing thread 
resides. An INCFP instruction increments the FP to point 
to the next task frame while a DECFP instruction decrements 
it. The incrementing and decrementing is done modulo the 
number of task frames. RDFP reads the value of the FP into 
a register and STFP writes the contents of a register into the 
FP. 

Instructions for Other Mechanisms The special mech- 
anisms discussed in Section 3.4, such as FLUSH are made 
available through “out-of-band” instructions. Interprocessor- 
interrupts, block-transfers, and FENCE operations are initiated 
via memory-mapped I/O instructions (LDIO, STIO). 

5 An Implementation of APRIL 

An ALEWIFE node consists of several interacting subsys- 
tems: processor, floating-point unit, cache, memory, cache 
and directory controller, and network controller. For the hrst 
round implementation of the ALEWIFE system, we plan to 
use a modified SPARC processor and an unmodified SPARC 
floating-point unit.’ There are several reasons for this choice. 
First, we have chosen to devote our limited resource% to the 
design of a custom ALEWIFE cache and directory controller, 
rather than to processor design. Second, the register windows 
in the SPARC processor permit a simple implementation of 
coarse-grain multithreading. Third, most of the instructions 
envisioned for the original APRIL processor map directly to 
single or double instruction sequences on the SPARC. Soft- 
ware compatibility with a commercial processor allows easy 
access to a large body of software. Furthermore, use of a 
standard processor permits us to ride the technology curve; 
we can take advantage of new technology as it is developed. 

Rapid Context Switching on SPARC SPARC proces- 
sors contain an implementation-dependent number of over- 
lapping register windows for speeding up procedure calls. 
The current register window is altered via SPARC instruc- 
tions (SAVE and RESTORE) that modify the Current Window 
Pointer (CWP). Traps increment the CWP, while the trap 
return instruction (RETT) decrements it. SPARC’s register 
windows are suited for rapid context switching and rapid trap 
handling because most of the state of a process (i.e., its 24 
local registers) can be switched with a single-cycle instruc- 
tion. Although we are not using multiple register windows 
for procedure calls within a single thread, this should not 
significantly hurt performance [25, 241. 

To implement coarse-grain multithreading, we use two 
register windows per task frame - a user window and a trap 
window. The SPARC processor chosen for our implementa- 
tion has eight register windows, allowing a maximum of four 

‘The SPARGbased implementation effort is in collaboration with 
LSI Logic Corporation. 
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hardware task frames. Since the SPARC does not have mul- 
tiple program counter (PC) chains and processor status regis- 
ters (PSR), our trap code must explicitly save and restore the 
PSRs during context switches (the PC chain is saved by the 
trap itself). These values are saved in the trap window. Be- 
cause the SPARC has a minimum trap overhead of five cycles 
(for squashing the pipeline and computing the trap vector), 
context switches will take at least this long. See Section 6.1 
for further information. 

The SPARC floating-point unit does not support register 
windows, but has a single, 32-word register file. To retain 
rapid context switching ability for applications that require 
efficient floating point performance, we have divided the float- 
ing point register file into four sets of eight registers. This is 
achieved by modifying floating-point instructions in a context 
dependent fashion as they are loaded into the FPU and by 
maintaining four different sets of condition bits. A modifica- 
tion of the SPARC processor will make the CWP available 
externally to allow insertion into the FPU instruction. 

Support for Futures We detect futures on the SPARC 
via two separate mechanisms. Future pointers are tagged 
with their lowest bit set. Thus, direct use of a future pointer 
is flagged with a word-alignment trap. Furthermore, a strict 
operation, such as subtraction, applied to one or more future 
pointers is flagged with a modified non-/hum trap, that is 
triggered if a.n operand has its lowest bit set (as opposed to 
either one of the lowest two bits, in the SPARC specification). 

Implementation of Loads and Stores The SPARC def- 
inition includes the Alternate Space Indicator (ASI) fea- 
ture that permits a simple implementation of APRIL’s many 
load and store instructions (described in Section 4). The 
ASI is available externally as an eight-bit field. Normal 
memory accesses use four of the 256 AS1 values to indi- 
cate user/supervisor and instruction/data accesses. Special 
SPARC load and store instructions (LDASI and STASI) permit 
use of the other 252 AS1 values. Our first-round implementa- 
tion uses different AS1 values to distinguish between flavors 
of load and store instructions, special mechanisms, and I/O 
instructions. 

Interaction with the Cache Controller The Cache con- 
troller in the ALEWIFE system maintains strong cache co- 
herence, performs full/empty bit synchronization, and im- 
plements special mechanisms. By examining the processor’s 
AS1 bits during memory accesses, it can select between dif- 
ferent load/store and synchronization behavior, and can de- 
termine if special mechanisms should be employed. Through 
use of the Memoiy Exception (MEXC) line on SPARC, it 
can invoke synchronous traps corresponding to cache misses 
and synchronization (full/empty) mismatches. The controller 
can suspend processor execution using the MHOLD line. It 
passes condition information to the processor through the Co- 
processor Condition bits (CCCs), permitting the full/empty 
conditional branch instructions (Jfull and Jempty) to be im- 
plemented as coprocessor branch instructions. Asynchronous 

traps (IPI’s) are delivered via the SP.4RC’s asynchronous 
trap lines. 

6 Compiler and Run-Time System 

The compiler and run-time system are integral parts of the 
processor design effort. A Mul-T compiler for APRIL and 
a run-time system written partly in APRIL assembly code 
and partly in T have been implemented. Constructs for user- 
directed placement of data and processes have also been im- 
plemented. The run-time system includes the trap and sys- 
tem routines, Mul-T run-time support, a scheduler, and a 
system boot routine. 

Since a large portion of the support for multithreading, 
synchronization and futures is provided in software through 
traps and run-time routines, trap handling must be fast. Be- 
low, we describe the implementation and performance of the 
routines used for trap handling and context switching. 

6.1 Cache Miss and FW/Elmpty Traps 

Cache miss traps occur on cache misses that require a net- 
work request and cause the processor to context switch. 
Full/empty synchronization exceptions can occur on certain 
memory instructions described in Section 4. The processor 
can respond to these exceptions by spinning, switch spinning, 
or blocking the thread. In our current implementation, traps 
handle these exceptions by switch spinning, which involves a 
context switch to the next task frame. 

In our SPARC-based design of APRIL, we implement con- 
text switching through the trap mechanism using instructions 
that change the CWP. The following is a trap routine that 
context switches to the thread in the next task frame. 

rdpsr psrreg ; save PSR into a reserved reg. 
save ; increment the vindov pointer 
save ; by 2 
urpsr psrreg ; restore PSR for the nev contht 
jmpl r17 ; return from trap and 
rett r18 ; reexecute trapping instruction 

We count 5 cycles for the trap mechanism to allow the 
pipeline to empty and save relevant processor state before 
passing control to the trap handler. The above trap handler 
takes an additional 6 cycles for a total of 11 cycles to effect 
the context switch. In a custom APRIL implementation, the 
cycles lost due to PC saves in the hardware trap sequence, and 
those in calling the trap handler for the PSR saves/restores 
and double incrementing the frame pointer could be avoided, 
allowing a four-cycle context switch. 

6.2 Future Touch Trap 

When a future touch trap is signalled, the future that caused 
the trap will be in a register. The trap handler has to decode 
the trapping instruction to find that register. The future is 
resolved if the fuIl/empty bit of the future’s value slot is set 
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to full. If it is resolved, the future in the register is replaced 
with the resolved value; otherwise the trap routine can decide 
to switch spin or block the thread that trapped. Our future 
touch trap handler takes 23 cycles to execute if the future is 
resolved. 

If the trap handler decides to block the thread on an unre- 
solved future, the thread must be unloaded from the hardware 
task frame, and an alternate thread may be loaded. Loading 
a thread involves writing the state of the thread, including its 
general registers, its PC chain, and its PSR, into a hardware 
task frame on the processor, and unloading a thread involves 
saving the state of a thread out to memory. Loading and un- 
loading threads are expensive operations unless there is spe- 
cial hardware support for block movement of data between 
registers and memory. Since the scheduling mechanism favers 
processor-resident threads, loading and unloading of threads 
should be infrequent. However, this is an issue that is under 
investigation, 

7 Performance Measurements 

This section presents some results on APRIL’s performance in 
handling fine-grain tasks. We have implemented a simulator 
for the ALEWIFE system written in C and T. Figure 4 illus- 
trates the organization of the simulator. The Mul-T compiler 
produces APRIL code, which gets linked with the run-time 
system to yield an executable program. The instruction-level 
APRIL processor simulator interprets APRIL instructions. 
It is written in T and simulates 40,000 APRIL instructions 
per second when run on a SPARCServer 330. The processor 
simulator interacts with the cache and directory simulator 
(written in C) on memory instructions. The cache simula- 
tor,+ turn interacts with the network simulator (also written 
in C)’ when making remote memory operations. The simula- 
tor has proved to be a useful tool in evaluating system-wide 
architectural tradeoffs as it provides more accurate results 
than a trace driven simulation. The speed of the simulator 
has allowed US to execute lengthy parallel programs. As an 
example, in a run of speech (described below), the simulated 
program ran for 100 million simulated cycles before complet- 
ing. 

Evaluation of the ALEWIFE architecture through simu- 
lations is in progress. A sampling of our results on the perfor- 
mance of APRIL running parallel programs is presented here. 
Table 3 lists the execution times of four programs written in 
M&T: fib, factor, queens and speech. fib is the ubiq- 
uitous doubly recursive Fibonacci program with ‘future’s 
around each of its recursive calls, factor finds the largest 
prime factor of each number in a range of numbers and sums 
them up, queens finds all solutions to the n-queens chess 
problem for n = 8 and speech is a modified Viterbi graph 
search algorithm used in a connected speech recognition sys- 
tem called SUMMIT, developed by the Spoken Language Sys- 
tems Group at MIT. We ran each program on the Encore Mul- 
timax, on APRIL using normal task creation, and on APRIL 
using lazy task creation. For purposes of comparison, execu- 
tion time has been normalized to the time taken to execute a 
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Figure 4: Simulator Organization. 

sequential version of each program, i.e., with no futures and 
compiled with an optimizing T-compiler. 

The difference between running the same sequential code 
on T and on Mul-T on the Encore Multimax (columns “T 
seq” and “Mu1-T seq”) is due to the overhead of future detec- 
tion. Since the Encore does not support hardware detection 
of futures, an overhead of a factor of 2 is introduced, even 
though no futures are actually created. There is no overhead 
on APRIL, which demonstrates the advantage of tag support 
for futures. 

The difference between running sequential code on Mul- 
T and running pamlIe code on ML&T with one processor 
(“Mu1-T seq” and 1) is due to the overhead of thread creation 
and synchronization in a parallel program. This overhead is 
very large for the fib benchmark ‘on both the Encore and 
APRIL using normal task creation because of very fine-grain 
thread creation. This overhead accounts for approximately 
a factor of 28 in execution time. For APRIL with normal 
futures, this overhead accounts for a factor of 14. Lazy task 
creation on APRIL creates threads only when the machine 
has the resources to execute them, and performs much better 
because it has the effect of dynamically partitioning the pro- 
gram into coarser-grain threads and creating fewer futures. 
The overhead introduced is only a factor of 1.5. In all of the 
programs, APRIL consistently demonstrates lower overhead 
due to support for thread creation and synchronization over 
the Encore. 

Measurements for multiple processor executions on 
APRIL (2 - 16) used the processor simulator without the 
cache and network simulators, in effect simulating a shared- 
memory machine with no memory latency. The numbers 
demonstrate that APRIL and its run-time system allow par- 
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T Mul-T 
Program I Svstem seq sep 1 11 21 41 81 16 

we 1.0 1.8 1 28.9 1 16.3 I 9.2 I 5.1 I Enn 
flb APRIL 1.0 1.0 14.2 7.1 3.6 1.8 0.97 

Apr-lazy 1.0 1.0 1.5 0.78 0.44 0.29 0.19 

Encore 1.0 1.4 1.9 0.96 0.50 0.26 
factor APRIL 1.0 1.0 1.8 0.90 0.45 0.23 0.12 

Apr-lazy 1.0 1.0 1.0 0.52 0.26 0.14 0.09 
Encore 

1 

1.0 1.8 2.1 ,, 1.0 0.54 0.31 . 
.IL - 1.0 1.0 1.4 0.67 0.33 0.18 0.10 

Apr-lazy 1.0 1.0 1.0 0.51 0.26 0.13 0.07 
Encore 1.0 2.0 2.3 1.2 0.62 0.36 

speech APRIL 1.0 1.0 1.2 0.60 0.31 0.17 0.10 
Aor-lazv 1.0 1.0 1.0 0.52 0.27 0.16 0.09 

I queens lAPR 

Table 3: E xecution time for M&T benchmarks. “T seq” is T 
running sequential code, “Mu]-T seq” is Mul-T running sequential 
code, 1 to 16 denote number of processors running parallel code. 

allel program performance to scale when synchronization and 
task creation overheads are taken into account, but when 
memory latency is ignored. The effect of communication 
in large-scale machines depends on several factors such as 
scheduling, which are active areas of investigation. 

8 Scalability of Multi t hreaded 
Processor Systems 

Multithreading enhances processor efficiency by allowing ex- 
ecution to proceed on alternate threads while the memory 
requests of other threads are being satisfied. However, any 
new mechanism is useful only if it enhances overall system 
performance. This section analyzes the system performance 
of multithreaded processors. 

A multithreaded processor design must address the trade- 
off between reduced processor idle time and increased cache 
miss rates, network contention, and context management 
overhead. The private working sets of multiple contexta in- 
terfere in the cache. The added interference misses coupled 
with the higher average traffic generated by a higher utilized 
processor impose greater bandwidth demands on the inter- 
connection network. Context management instructions re- 
quired to switch the processor between threads also add to 
the overhead. Furthermore, the application must display suf- 
ficient parallelism to allow multiple thread assignment to each 
processor. 

What is a good performance metric to evaluate multi- 
threading? A good measure of system performance is system 
power, which is the product of the number of processors and 
the average processor utilization. Provided the computation 
of processor utilization takes into account the deleterious ef- 
fects of cache, network, and context-switching overhead, the 
proc&sor utilization is itself a good measure. 

We have developed a model for multithreaded processor 
utilization that includes the cache, network, and switching 

overhead effects. A detailed analysis is presented in [l]. This 
section will summarize the model and our chief results. Pro- 
cessor utilization U as a function of the number of threads 
resident on a processor p is derived as a function of the cache 
miss rate m(p), the network latency T(p), and the context 
switching overhead C: 

When the number of threads is small, complete overlap- 
ping of network latency is not possible. Processor utilization 
with one thread is l/(1 + m(l)T(l)). Ideally, with p threads 
available to overlap network delays, the utilization would in- 
crease p-fold. In practice, because the miss rate and network 
latency increase to m(p) and T(p), the utilization becomes 

P/(1 + 4P)W). 
When it is possible to completety overlap network latency, 

processor utilization is limited only by the context switching 
overhead paid on every miss (assuming a context switch hap- 
pens on a cache miss), and is given by l/(1 + n(p)C). 

The models for the cache and network terms have been 
validated through simulations. Both these terms are shown to 
be the sum of two components: one component independent 
of the number of threads p and the other linearly related to 
p (to fist order). Multithreading is shown to be useful when 
p is small enough that the fixed components dominate. 

Let us look at some results for the default set of system 
parameters given in Table 4. The analysis assumes 8000 pro- 
cessors arranged in a three dimensional array. In such a sys- 
tem, the average number of hbps between a random pair of 
nodes is nkJ3 = 20, where n denotes network dimension and 
k its radix. This yields an average round trip network la- 
tency of 55 cycles for an unloaded network, when memory 
latency and average packet size are taken into account. The 
fixed miss rate comprises first-time fetches of blocks into the 
cache, and the interference due to multiprocessor coherence 
invalidations. 

Parameter Value 
Memorv latencv 1 10 cycles 

Network dimension n - 3 
Network radix k 20 
Fixed miss rate 2% 

Average packet size 4 
Cache block size 16 bytes 

Thread working set size 250 blocks 
64 Kbytes 

Table 4: Default system parameters. 

ii 

Figure 5 displays processor utilifzation as a function of 
the number of threads resident on the processor when con- 
text switching overhead is 10 cycles. The degree to which 
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Figure 5: Relative sizes of the cache, network and overhead com- 
ponents that affect processor utilization. 

the cache, network, and overhead components impact overall 
processor utilization is also shown. The ideal curve shows the 
increase in processor utilization when both the cache miss rate 
and network contention correspond to that of a single process, 
and do not increase with the degree of multithreading p. 

We see that as few as three processes yield close to 
80% utilization for a ten-cycle context-switch overhead which 
corresponds to our initial SPARC-based implementation of 
APRIL. This result is similar to that reported by Weber and 
Gupta [26] for coarse-grain multithreaded processors. The 
main reason a low degree of multithreading is sufficient is 
that context switches are forced only on cache misses, which 
are expected to happen infrequently. The marginal benefits 
of additional processes is seen to decrease due to network and 
cache interference. 

Why is utilization limited to a maximum of about 0.80 
despite an ample supply of threads? The reason is that avail- 
able network bandwidth limits the mazimum rate at which 
computation can proceed. When available network bandwidth 
is used up, adding more processes will not improve processor 
utilization. On the contrary, more processes will degrade per- 
formance due to increased cache interference. In such a sit- 
uation, for better system performance, effort is best spent in 
increasing the network bandwidth, or in reducing the band- 
width requirement of each thread. 

The relatively large ten-cycle context switch overhead 
does not significantly impact performance for the default set 

of parameters because utilization depends on the product of 
context switching frequency and switching overhead, and the 
switching frequency is expected to be small in a cache-based 
system, This observation is important because it allows a 
simpler processor implementation, and is exploited in the de- 
sign of APRIL. 

A multithreaded processor requires larger caches to sus- 
tain the working sets of multiple processes, although cache 
interference is mitigated if the processes share code and data. 
For the default parameter set, we found that caches greater 
than 64 Kbytes comfortably sustain the working sets of four 
processes. Smaller caches suffer more interference and reduce 
the benefits of multithreading. 

9 Conclusions 

We described the architecture of APRIL - a coarse-grain mul- 
tithreaded processor to be used in a cache-coherent multipro- 
cessor called ALEWIFE. By rapidly switching to an alternate 
task, APRIL can hide communication and synchronization 
delays and achieve high processor utilization. The processor 
makes effective use of available network bandwidth because 
it is rarely idle. APRIL provides support for fine-gram task- 
ing and detection of futures. It achieves high single-thread 
performance by executing instructions from a given task until 
an exception condition like a synchronization fault or remote 
memory operation occurs. Coherent caches reduce the con- 
text switch rate to approximately once every 50-106 cycles. 
Therefore context switch overheads in the 4-10 cycle range 
are tolerable, significantly simplifying processor design. By 
providing hardware support only for performance-critical op- 
erations and migrating other functionality into the compiler 
and run-time system, we were able to simplify the processor 
design even further. 

We described a SPARC-based implementation of APRIL 
that uses the register windows of SPARC as task frames for 
multiple threads. A processor simulator and an APRIL com- 
piler and run-time system have been written. The SPARC- 
based implementation of APRIL switches contexts in 11 cy- 

cles. APRIL and its associated run-time system practically 
eliminate the overhead of fine-grain task creation and detec- 
tion of futures. For Mul-T, the overhead reduces from 100% 
on an Encore Multimax-based implementation to under 5% 
on APRIL. We evaluated the scalability of multithreaded 
processors in large-scale parallel machines using an analyt- 
ical model. For typical system parameters and a 10 cycle 
context-switch overhead, the processor can achieve close to 
80% utilization with 3 processor resident threads. 
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