
18-742 Fall 2012

Parallel Computer Architecture

Lecture 27: Main Memory Management III

Prof. Onur Mutlu

Carnegie Mellon University

11/16/2012

 1

2

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel H. Loh, Onur Mutlu

“Staged Memory Scheduling: Achieving High Performance and Scalability
in Heterogeneous Systems”

39th International Symposium on Computer Architecture (ISCA 2012),
Portland, OR, June 2012

Staged Memory Scheduling

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://www.microarch.org/micro44/
http://www.microarch.org/micro44/

Executive Summary

 Observation: Heterogeneous CPU-GPU systems require

memory schedulers with large request buffers

 Problem: Existing monolithic application-aware memory

scheduler designs are hard to scale to large request buffer sizes

 Solution: Staged Memory Scheduling (SMS)

decomposes the memory controller into three simple stages:

1) Batch formation: maintains row buffer locality

2) Batch scheduler: reduces interference between applications

3) DRAM command scheduler: issues requests to DRAM

 Compared to state-of-the-art memory schedulers:

 SMS is significantly simpler and more scalable

 SMS provides higher performance and fairness

 3

Outline

 Background

 Motivation

 Our Goal

 Observations

 Staged Memory Scheduling

1) Batch Formation

2) Batch Scheduler

3) DRAM Command Scheduler

 Results

 Conclusion

4

 All cores contend for limited off-chip bandwidth

 Inter-application interference degrades system performance

 The memory scheduler can help mitigate the problem

 How does the memory scheduler deliver good performance
and fairness?

Main Memory is a Bottleneck

5

Memory Scheduler

Core 1 Core 2 Core 3 Core 4

To DRAM

M
e
m

o
ry

 R
e
q
u
e
st

 B
u
ff
e
r

Req Req Req Req Req Req

Req

Data Data

Req Req

Currently open row

B

 Prioritize row-buffer-hit requests [Rixner+, ISCA’00]

 To maximize memory bandwidth

 Prioritize latency-sensitive applications [Kim+, HPCA’10]

 To maximize system throughput

 Ensure that no application is starved [Mutlu and Moscibroda,

MICRO’07]

 To minimize unfairness

Three Principles of Memory Scheduling

6

Req 1 Row A

Req 2 Row B

Req 3 Row C

Req 4 Row A

Req 5 Row B

Application Memory Intensity (MPKI)

1 5

2 1

3 2

4 10

Older

Newer

Outline

 Background

 Motivation: CPU-GPU Systems

 Our Goal

 Observations

 Staged Memory Scheduling

1) Batch Formation

2) Batch Scheduler

3) DRAM Command Scheduler

 Results

 Conclusion

7

Memory Scheduling for CPU-GPU Systems

 Current and future systems integrate a GPU along with
multiple cores

 GPU shares the main memory with the CPU cores

 GPU is much more (4x-20x) memory-intensive than CPU

 How should memory scheduling be done when GPU is
integrated on-chip?

8

 GPU occupies a significant portion of the request buffers

 Limits the MC’s visibility of the CPU applications’ differing
memory behavior can lead to a poor scheduling decision

Introducing the GPU into the System

9

Memory Scheduler

Core 1 Core 2 Core 3 Core 4

To DRAM

Req Req

GPU

Req Req Req Req Req Req Req

Req Req Req Req Req Req Req

Req Req Req Req Req Req Req

Req

Req

Naïve Solution: Large Monolithic Buffer

10

Memory Scheduler

To DRAM

Core 1 Core 2 Core 3 Core 4

Req Req Req Req Req Req Req Req

Req Req Req Req Req Req Req Req

Req Req Req Req Req Req Req Req

Req Req Req Req Req Req Req Req

Req Req Req Req Req Req Req Req

Req Req

GPU

 A large buffer requires more complicated logic to:

 Analyze memory requests (e.g., determine row buffer hits)

 Analyze application characteristics

 Assign and enforce priorities

 This leads to high complexity, high power, large die area

Problems with Large Monolithic Buffer

11

Memory Scheduler

Req

Req

Req

Req

Req

Req Req

Req Req Req

Req

Req

Req

Req Req

Req Req

Req Req Req

Req

Req Req

Req

Req

Req

Req

Req

Req Req

Req

Req

Req

Req

Req Req Req Req

Req Req

Req Req

More Complex Memory Scheduler

 Design a new memory scheduler that is:

 Scalable to accommodate a large number of requests

 Easy to implement

 Application-aware

 Able to provide high performance and fairness, especially in
heterogeneous CPU-GPU systems

Our Goal

12

Outline

 Background

 Motivation: CPU-GPU Systems

 Our Goal

 Observations

 Staged Memory Scheduling

1) Batch Formation

2) Batch Scheduler

3) DRAM Command Scheduler

 Results

 Conclusion

13

Key Functions of a Memory Controller

 Memory controller must consider three different things
concurrently when choosing the next request:

1) Maximize row buffer hits

 Maximize memory bandwidth

2) Manage contention between applications

 Maximize system throughput and fairness

3) Satisfy DRAM timing constraints

 Current systems use a centralized memory controller
design to accomplish these functions

 Complex, especially with large request buffers

14

Key Idea: Decouple Tasks into Stages

 Idea: Decouple the functional tasks of the memory controller

 Partition tasks across several simpler HW structures (stages)

1) Maximize row buffer hits

 Stage 1: Batch formation

 Within each application, groups requests to the same row into
batches

2) Manage contention between applications

 Stage 2: Batch scheduler

 Schedules batches from different applications

3) Satisfy DRAM timing constraints

 Stage 3: DRAM command scheduler

 Issues requests from the already-scheduled order to each bank

15

Outline

 Background

 Motivation: CPU-GPU Systems

 Our Goal

 Observations

 Staged Memory Scheduling

1) Batch Formation

2) Batch Scheduler

3) DRAM Command Scheduler

 Results

 Conclusion

16

SMS: Staged Memory Scheduling

17

Memory Scheduler

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req

Req

Req

Req

Req

Req Req

Req Req Req

Req Req Req

Req Req

Req Req

Req Req Req

Req

Req Req

Req

Req

Req

Req

Req Req

Req Req Req

Req Req Req Req Req Req

Req

Req

Req Req

Batch Scheduler

Stage 1

Stage 2

Stage 3

Req

M
o
n
o
lit

h
ic

 S
ch

e
d
u
le

r

Batch
Formation

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Stage 1

Stage 2

SMS: Staged Memory Scheduling

18

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req Req Batch Scheduler

Batch
Formation

Stage 3

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Stage 1: Batch Formation

 Goal: Maximize row buffer hits

 At each core, we want to batch requests that access the
same row within a limited time window

 A batch is ready to be scheduled under two conditions

1) When the next request accesses a different row

2) When the time window for batch formation expires

 Keep this stage simple by using per-core FIFOs

19

Core 1 Core 2 Core 3 Core 4

Stage 1: Batch Formation Example

20

Row A Row B Row B
Row C

Row D Row D Row E
Row F

Row E

Batch Boundary

To Stage 2 (Batch Scheduling)

Row A

Time
window
expires

Next request goes to a different row Stage 1

Batch
Formation

SMS: Staged Memory Scheduling

21

Stage 1

Stage 2

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req Req Batch Scheduler

Batch
Formation

Stage 3

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Stage 2: Batch Scheduler

 Goal: Minimize interference between applications

 Stage 1 forms batches within each application

 Stage 2 schedules batches from different applications

 Schedules the oldest batch from each application

 Question: Which application’s batch should be scheduled
next?

 Goal: Maximize system performance and fairness

 To achieve this goal, the batch scheduler chooses between
two different policies

22

Stage 2: Two Batch Scheduling Algorithms

 Shortest Job First (SJF)

 Prioritize the applications with the fewest outstanding memory
requests because they make fast forward progress

 Pro: Good system performance and fairness

 Con: GPU and memory-intensive applications get deprioritized

 Round-Robin (RR)

 Prioritize the applications in a round-robin manner to ensure
that memory-intensive applications can make progress

 Pro: GPU and memory-intensive applications are treated fairly

 Con: GPU and memory-intensive applications significantly
slow down others

23

Stage 2: Batch Scheduling Policy

 The importance of the GPU varies between systems and
over time Scheduling policy needs to adapt to this

 Solution: Hybrid Policy

 At every cycle:

 With probability p : Shortest Job First Benefits the CPU

 With probability 1-p : Round-Robin Benefits the GPU

 System software can configure p based on the
importance/weight of the GPU

 Higher GPU importance Lower p value

24

SMS: Staged Memory Scheduling

25

Stage 1

Stage 2

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req Req Batch Scheduler

Batch
Formation

Stage 3

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Stage 3: DRAM Command Scheduler

 High level policy decisions have already been made by:

 Stage 1: Maintains row buffer locality

 Stage 2: Minimizes inter-application interference

 Stage 3: No need for further scheduling

 Only goal: service requests while satisfying DRAM
timing constraints

 Implemented as simple per-bank FIFO queues

26

Batch Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Putting Everything Together

27

Core 1 Core 2 Core 3 Core 4

Stage 1:
Batch
Formation

Stage 3:
DRAM
Command
Scheduler

GPU

Stage 2:

Current Batch
Scheduling

Policy

SJF

Current Batch
Scheduling

Policy

RR

Batch Boundary

Complexity

 Compared to a row hit first scheduler, SMS consumes*

 66% less area

 46% less static power

 Reduction comes from:

 Monolithic scheduler stages of simpler schedulers

 Each stage has a simpler scheduler (considers fewer
properties at a time to make the scheduling decision)

 Each stage has simpler buffers (FIFO instead of out-of-order)

 Each stage has a portion of the total buffer size (buffering is
distributed across stages)

28 * Based on a Verilog model using 180nm library

Outline

 Background

 Motivation: CPU-GPU Systems

 Our Goal

 Observations

 Staged Memory Scheduling

1) Batch Formation

2) Batch Scheduler

3) DRAM Command Scheduler

 Results

 Conclusion

29

Methodology

 Simulation parameters

 16 OoO CPU cores, 1 GPU modeling AMD Radeon™ 5870

 DDR3-1600 DRAM 4 channels, 1 rank/channel, 8 banks/channel

 Workloads

 CPU: SPEC CPU 2006

 GPU: Recent games and GPU benchmarks

 7 workload categories based on the memory-intensity of CPU
applications

 Low memory-intensity (L)

 Medium memory-intensity (M)

 High memory-intensity (H)

30

Comparison to Previous Scheduling Algorithms

 FR-FCFS [Rixner+, ISCA’00]

 Prioritizes row buffer hits

 Maximizes DRAM throughput

 Low multi-core performance Application unaware

 ATLAS [Kim+, HPCA’10]

 Prioritizes latency-sensitive applications

 Good multi-core performance

 Low fairness Deprioritizes memory-intensive applications

 TCM [Kim+, MICRO’10]

 Clusters low and high-intensity applications and treats each
separately

 Good multi-core performance and fairness

 Not robust Misclassifies latency-sensitive applications

31

Evaluation Metrics

 CPU performance metric: Weighted speedup

 GPU performance metric: Frame rate speedup

 CPU-GPU system performance: CPU-GPU weighted speedup

32

Evaluated System Scenarios

 CPU-focused system

 GPU-focused system

33

Evaluated System Scenario: CPU Focused

 GPU has low weight (weight = 1)

 Configure SMS such that p, SJF probability, is set to 0.9

 Mostly uses SJF batch scheduling prioritizes latency-

sensitive applications (mainly CPU)

34

1

 SJF batch scheduling policy allows latency-sensitive
applications to get serviced as fast as possible

0

2

4

6

8

10

12

L ML M HL HML HM H Avg

C
G

W
S

 FR-FCFS

ATLAS

TCM

SMS_0.9

Performance: CPU-Focused System

35

+17.2% over ATLAS

SMS is much less complex than
previous schedulers p=0.9

Workload Categories

Evaluated System Scenario: GPU Focused

 GPU has high weight (weight = 1000)

 Configure SMS such that p, SJF probability, is set to 0

 Always uses round-robin batch scheduling prioritizes

memory-intensive applications (GPU)

36

1000

 Round-robin batch scheduling policy schedules GPU
requests more frequently

0

200

400

600

800

1000

L ML M HL HML HM H Avg

C
G

W
S

 FR-FCFS

ATLAS

TCM

SMS_0

Performance: GPU-Focused System

37

+1.6% over FR-FCFS

SMS is much less complex than
previous schedulers p=0

Workload Categories

Performance at Different GPU Weights

38

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e

GPUweight

Previous Best
Best Previous
Scheduler

ATLAS TCM FR-FCFS

 At every GPU weight, SMS outperforms the best previous
scheduling algorithm for that weight

Performance at Different GPU Weights

39

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e

GPUweight

Previous Best

SMSSMS

Best Previous
Scheduler

Additional Results in the Paper

 Fairness evaluation

 47.6% improvement over the best previous algorithms

 Individual CPU and GPU performance breakdowns

 CPU-only scenarios

 Competitive performance with previous algorithms

 Scalability results

 SMS’ performance and fairness scales better than previous
algorithms as the number of cores and memory channels
increases

 Analysis of SMS design parameters

40

Outline

 Background

 Motivation: CPU-GPU Systems

 Our Goal

 Observations

 Staged Memory Scheduling

1) Batch Formation

2) Batch Scheduler

3) DRAM Command Scheduler

 Results

 Conclusion

41

Conclusion

 Observation: Heterogeneous CPU-GPU systems require

memory schedulers with large request buffers

 Problem: Existing monolithic application-aware memory

scheduler designs are hard to scale to large request buffer size

 Solution: Staged Memory Scheduling (SMS)

decomposes the memory controller into three simple stages:

1) Batch formation: maintains row buffer locality

2) Batch scheduler: reduces interference between applications

3) DRAM command scheduler: issues requests to DRAM

 Compared to state-of-the-art memory schedulers:

 SMS is significantly simpler and more scalable

 SMS provides higher performance and fairness

42

43

Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, Yale N. Patt

“Coordinated Control of Multiple Prefetchers in Multi-Core Systems”
42nd International Symposium on Microarchitecture (HPCA 2009),

New York, NY, December 2009

Coordinated Control of Multiple

Prefetchers in Multi-Core Systems

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://www.microarch.org/micro44/
http://www.microarch.org/micro44/

44

Motivation

 Aggressive prefetching improves
memory latency tolerance of
many applications when they run alone

 Prefetching for concurrently-executing

applications on a CMP can lead to
 Significant system performance degradation and

bandwidth waste

 Problem:

Prefetcher-caused inter-core interference
 Prefetches of one application contend with

prefetches and demands of other applications

45

Potential Performance

 System performance improvement of ideally removing all
prefetcher-caused inter-core interference in shared resources

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2

W
L

1

W
L

2

W
L

3

W
L

4

W
L

5

W
L

6

W
L

7

W
L

8

W
L

9

W
L

1
0

W
L

1
1

W
L

1
2

W
L

1
3

W
L

1
4

G
m

e
a
n

-3
2

P
e
rf

.
N

o
rm

a
li
z
e
d

 t
o

 N
o

 T
h

ro
tt

li
n

g

56%

Exact workload combinations can be found in paper

46

Outline

 Background

 Shortcoming of Prior Approaches to
Prefetcher Control

 Hierarchical
Prefetcher Aggressiveness Control

 Evaluation

 Conclusion

47

Increasing Prefetcher Accuracy

 Increasing prefetcher accuracy can reduce
prefetcher-caused inter-core interference

 Single-core prefetcher aggressiveness
throttling (e.g., Srinath et al., HPCA ’07)

 Filtering inaccurate prefetches
(e.g., Zhuang and Lee, ICPP ’03)

 Dropping inaccurate prefetches at memory
controller (Lee et al., MICRO ’08)

 All such techniques operate independently on

the prefetches of each application

48

Feedback-Directed Prefetching (FDP)
(Srinath et al., HPCA ’07)

 Uses prefetcher feedback information local to the
prefetcher’s core
 Prefetch accuracy
 Prefetch timeliness
 Prefetch cache pollution

 Dynamically adapts the prefetcher’s aggressiveness
 Stream Prefetcher Aggressiveness

 Prefetch Distance
 Prefetch Degree

Access Stream

A

Prefetch Distance

P
+

1

Prefetch

 Degree A+1

P
+

2

P
+

3

P
+

4

P

Shown to perform better than and consume less bandwidth
than static aggressiveness configurations

49

Outline

 Background

 Shortcoming of Prior Approaches to
Prefetcher Control

 Hierarchical
Prefetcher Aggressiveness Control

 Evaluation

 Conclusion

50

DRAM

Memory Controller

High Interference caused by
Accurate Prefetchers

Core2 Core3 Core0

Dem 2
Addr:A

Dem 2
Addr:B

Pref 0 Dem 0

Miss

Shared Cache

Pref 1 Pref 3

Dem 2

Bank 0 Bank 1

Pref 3 Pref 1

Row
Buffers

Pref 1
Row Addr.

Pref 3
Row Addr.

Requests
Being

Serviced

Row
Buffer

Hit
…

Dem 2
Addr:A

Core1
Dem 1

In a CMP system, accurate prefetchers can
cause significant interference with
concurrently-executing applications

Dem X
Addr: Y

Demand Request
From Core X
For Addr Y

51

…

Set 2

…

Shortcoming of Per-Core (Local-Only)
Prefetcher Aggressiveness Control

Core 0 Core 1 Core 2 Core 3

Dem 2 Dem 2 Dem 3 Dem 3 Dem 2 Dem 2 Dem 3 Dem 3

Dem 3 Dem 3 Dem 2 Dem 2 Dem 3 Dem 3 Dem 3 Dem 3

Dem 2 Dem 2 Dem 2 Dem 2 Dem 3 Dem 3 Dem 3 Dem 3

Pref 0 Used_P Pref 0 Pref 1 Pref 1

Prefetcher
Degree:

Prefetcher
Degree:

Used_P Used_P Used_P

Pref 0 Pref 0 Pref 1 Pref 1 Used_P Used_P Used_P Used_P

FDP Throttle Up

2 4 2 4

Pref 0 Pref 0 Pref 0 Pref 0 Pref 1 Pref 1 Pref 1 Pref 1

Dem 2 Dem 3 Dem 2 Dem 3

Local-only prefetcher control techniques
have no mechanism to detect inter-core interference

Shared Cache

Set 0

Set 1

FDP Throttle Up

52

Shortcoming of Local-Only
Prefetcher Control

0

0.2

0.4

0.6

0.8

1

lb
m

_
0
6

s
w

im
_
0
0

c
ra

ft
y
_
0
0

b
z
ip

2
_
0
0

S
p

e
e
d

u
p

 o
v
e
r

A
lo

n
e
 R

u
n

No Prefetching
Pref. + No Throttling
Feedback-Directed Prefetching
HPAC

0

0.1

0.2

0.3

0.4

0.5

Hspeedup

Our Approach: Use both global and per-core feedback
to determine each prefetcher’s aggressiveness

4-core workload example: lbm_06 + swim_00 + crafty_00 + bzip2_00

53

Outline

 Background

 Shortcoming of Prior Approaches to
Prefetcher Control

 Hierarchical
Prefetcher Aggressiveness Control

 Evaluation

 Conclusion

54

Hierarchical
Prefetcher Aggressiveness Control (HPAC)

Memory Controller

Cache Pollution
Feedback

Accuracy

Bandwidth Feedback

Local control’s goal:
Maximize the
prefetching performance
of core i independently

Global control’s goal: Keep
track of and control
prefetcher-caused
inter-core interference in
shared memory system

Global
Control

Global Control: accepts or
overrides decisions made by
local control to improve
overall system performance

Core i

Local
Control

Pref. i

Shared Cache

Throttling Decision

Local
Throttling Decision

Final
Throttling Decision

55

Terminology

 Global feedback metrics used in our mechanism:
 For each core i:
 Core i’s prefetcher accuracy – Acc (i)

 Core i’s prefetcher caused inter-core cache pollution
Pol (i)
 Demand cache lines of other cores evicted by this core’s

prefetches that are requested subsequent to eviction

 Bandwidth consumed by core i - BW (i)
 Accounts for how long requests from this core tie up

DRAM banks

 Bandwidth needed by other cores j != i - BWNO (i)
 Accounts for how long requests from other cores have to

wait for DRAM banks because of requests from this core

56

Calculating Inter-Core Cache Pollution

0

0

0

0

Pollution
bit

Core
id

2

0

0

0

1

0

2

2

Hash
Function

.

.

.

Prefetch from core i, evicts a core j’s demand from shared cache

Evicted line’s
Address
From core j

1 j

Core j experiences a demand cache miss

Missing line’s
Address
From core j

Increment Pol (i)

Pollution Filter of core i

57

Hierarchical
Prefetcher Aggressiveness Control (HPAC)

Memory Controller

Pol (i)

Acc (i)

BW (i)
BWNO (i)

Global
Control

Core i

Local
Control

Pref. i

Shared Cache

Local
Throttling Decision

Final
Throttling Decision

High Acc (i)

Local
Throttle Up High Pol (i)

High BW (i)

High BWNO (i)

Pol. Filter i

- High accuracy
- High pollution
- High bandwidth consumed
while other cores need bandwidth

Enforce
Throttle Down

58

Heuristics for Global Control

 Classification of global control heuristics
based on interference severity
 Severe interference

 Action: Reduce the aggressiveness of
interfering prefetcher

 Borderline interference

 Action: Prevent prefetcher from transitioning
into severe interference:

 Allow local-control to only throttle-down

 No interference or moderate interference from
an accurate prefetcher

 Action: Allow local control to maximize
local benefits from prefetching

59

HPAC Control Policies

Causing Low

Pollution

Inaccurate

Highly

Accurate

Others’ low

BW need

throttle

down

Causing High

Pollution

Action Interference Class BWNO (i)

High BW

Consumption

Low BW

Consumption Others’ high

BW need

Others’ low

BW need

Inaccurate
throttle

down

Highly

Accurate

High BW

Consumption

Low BW

Consumption

Others’ low

BW need

Others’ high

BW need

Others’ low

BW need

Others’ high

BW need

throttle

down
Severe interference

Severe interference

Severe interference

Pol (i) Acc (i) BW (i)

60

Hardware Cost (4-Core System)

Total hardware cost local-control & global control 15.14 KB

Additional cost on top of FDP 1.55 KB

 Additional cost on top of FDP only 1.55 KB

 HPAC does not require any structures or logic
that are on the processor’s critical path

61

Outline

 Background

 Shortcoming of Prior Approaches to
Prefetcher Control

 Hierarchical
Prefetcher Aggressiveness Control

 Evaluation

 Conclusion

62

Evaluation Methodology

 x86 cycle accurate simulator

 Baseline processor configuration
 Per core

 4-wide issue, out-of-order, 256-entry ROB
 Stream prefetcher with 32 streams, prefetch degree:4,

prefetch distance:64
 Shared

 2MB, 16-way L2 cache (4MB, 32-way for 8-core)
 DDR3 1333Mhz
 8B wide core to memory bus
 128, 256 L2 MSHRs for 4-, 8-core
 Latency of 15ns per command (tRP, tRCD, CL)

 HPAC thresholds used

Acc BW Pol BWNO

0.6 50k 90 75k

63

Performance Results

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

W
L

1

W
L

2

W
L

3

W
L

4

W
L

5

W
L

6

W
L

7

W
L

8

W
L

9

W
L

1
0

W
L

1
1

W
L

1
2

W
L

1
3

W
L

1
4

A
V

G
-3

2

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e

N
o

rm
a
li
z
e
d

 t
o

 N
o

 T
h

ro
tt

li
n

g No Prefetching FDP HPAC

Class 1 Class 2 Class 3 Class 4

15%

Exact workload combinations can be found in paper

64

Summary of Other Results

 Further results and analysis are presented in
the paper
 Results with different types of memory controllers

 Prefetch-Aware DRAM Controllers (PADC)

 First-Ready First-Come-First-Served (FR-FCFS)

 Effect of HPAC on system fairness

 HPAC performance on 8-core systems

 Multiple types of prefetchers per core and
different local-control policies

 Sensitivity to system parameters

65

Conclusion

 Prefetcher-caused inter-core interference can destroy
potential performance of prefetching
 When prefetching for concurrently executing applications in

CMPs

 Did not exist in single-application environments

 Develop one low-cost hierarchical solution which
throttles different cores’ prefetchers in a
coordinated manner

 The key is to take global feedback into account to
determine aggressiveness of each core’s prefetcher
 Improves system performance by 15% compared to

no throttling on a 4-core system

 Enables performance improvement from prefetching that is
not possible without it on many workloads

66

Thank you!

 Questions?

Staged Memory Scheduling

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian,

Gabriel H. Loh*, Onur Mutlu

Carnegie Mellon University, *AMD Research

June 12th 2012

Backup Slides

68

Row Buffer Locality on Batch Formation

 OoO batch formation improves the performance of the
system by:

 ~3% when the batch scheduler uses SJF policy most of the
time

 ~7% when the batch scheduler uses RR most of the time

 However, OoO batch formation is more complex

 OoO buffering instead of FIFO queues

 Need to fine tune the time window of the batch formation
based on application characteristics (only 3%-5% performance
gain without fine tuning)

69

Row Buffer Locality on Batch Formation

70

0

1

2

3

4

5

6

CPU-WS

0
10
20
30
40
50
60
70
80
90

GPU-Frame Rate

Key Differences Between CPU and GPU

71

0

100

200

300

400

Memory Intensity

L
2
 M

P
K
I

Graphic Applications CPU Applications

~4x difference

MLP and RBL

 Key differences between a CPU application and a GPU
application

72

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Row Buffer Locality

0

1

2

3

4

5

6

Memory Level Parallelism

CPU-GPU Performance Tradeoff

73

0

10

20

30

40

50

60

70

80

90

1 0.5 0.1 0.05 0

F
ra

m
e

 R
a

te

SJF Probability

GPU Frame Rate

0

1

2

3

4

5

6

1 0.5 0.1 0.05 0

W
e

ig
h

te
d

 S
p

e
e

d
u

p

SJF Probability

CPU Performance

Dealing with Multi-Threaded Applications

 Batch formation: Groups requests from each application in
a per-thread FIFO

 Batch scheduler: Detects critical threads and prioritizes
them over non-critical threads

 Previous works have shown how to detect and schedule
critical threads

1) Bottleneck Identification and Scheduling in MT applications
[Joao+, ASPLOS’12]

2) Parallel Application Memory Scheduling

 [Ebrahimi, MICRO’11]

 DRAM command scheduler: Stays the same

74

Dealing with Prefetch Requests

 Previous works have proposed several solutions:

 Prefetch-Aware Shared-Resource Management for Multi-Core
Systems [Ebrahimi+, ISCA’11]

 Coordinated Control of Multiple Prefetchers in Multi-Core
Systems [Ebrahimi+, MICRO’09]

 Prefetch-aware DRAM Controller [Lee+, MICRO’08]

 Handling Prefetch Requests in SMS:

 SMS can handle prefetch requests before they enter the
memory controller (e.g., source throttling based on prefetch
accuracy)

 SMS can handle prefetch requests by prioritizing/deprioritizing
prefetch batch at the batch scheduler (based on prefetch
accuracy)

75

Fairness Evaluation

76

Unfairness (Lower is better)

Performance at Different Buffer Sizes

77

CPU and GPU Performance Breakdowns

78

CPU WS Frame Rate

CPU-Only Results

79

Scalability to Number of Cores

80

Scalability to Number of Memory Controllers

81

Detailed Simulation Methodology

Number of cores 16 GPU Max throughput 1600
ops/cycle

Number of GPU 1 GPU Texture/Z/Color
units

80/128/32

CPU reorder buffers 128 entries DRAM Bus 64
bits/channel

L1 (private) cache size 32KB,
4 ways

DRAM row buffer size 2KB

L2 (shared) cache size 8MB,
16 ways

MC Request buffer
size

300 entries

ROB Size 128 entries

82

Analysis to Different SMS Parameters

83

Global Bypass

 What if the system is lightly loaded?

 Batching will increase the latency of requests

 Global Bypass

 Disable the batch formation when the number of total
requests is lower than a threshold

84

