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Executive Summary 

 Observation: Heterogeneous CPU-GPU systems require 

memory schedulers with large request buffers 
 

 Problem: Existing monolithic application-aware memory 

scheduler designs are hard to scale to large request buffer sizes 
 

 Solution: Staged Memory Scheduling (SMS)  

decomposes the memory controller into three simple stages: 

1) Batch formation: maintains row buffer locality 

2) Batch scheduler: reduces interference between applications 

3) DRAM command scheduler: issues requests to DRAM 
 

 Compared to state-of-the-art memory schedulers: 

 SMS is significantly simpler and more scalable 

 SMS provides higher performance and fairness 
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 All cores contend for limited off-chip bandwidth 

 Inter-application interference degrades system performance 

 The memory scheduler can help mitigate the problem 

 How does the memory scheduler deliver good performance 
and fairness? 

Main Memory is a Bottleneck 
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 Prioritize row-buffer-hit requests [Rixner+, ISCA’00] 

 To maximize memory bandwidth 

 

 Prioritize latency-sensitive applications [Kim+, HPCA’10] 

 To maximize system throughput 

 

 Ensure that no application is starved [Mutlu and Moscibroda, 

MICRO’07] 

 To minimize unfairness 

 

 

Three Principles of Memory Scheduling 
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Memory Scheduling for CPU-GPU Systems 

 Current and future systems integrate a GPU along with 
multiple cores 

 

 GPU shares the main memory with the CPU cores 

 

 GPU is much more (4x-20x) memory-intensive than CPU 

 

 How should memory scheduling be done when GPU is 
integrated on-chip? 
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 GPU occupies a significant portion of the request buffers 

 Limits the MC’s visibility of the CPU applications’ differing 
memory behavior  can lead to a poor scheduling decision 

Introducing the GPU into the System 
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Naïve Solution: Large Monolithic Buffer 
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 A large buffer requires more complicated logic to: 

 Analyze memory requests (e.g., determine row buffer hits) 

 Analyze application characteristics 

 Assign and enforce priorities  

 This leads to high complexity, high power, large die area 

Problems with Large Monolithic Buffer 

11 

Memory Scheduler 

Req 

Req 

Req 

Req 

Req 

Req Req 

Req Req Req 

Req 

Req 

Req 

Req Req 

Req Req 

Req Req Req 

Req 

Req Req 

Req 

Req 

Req 

Req 

Req 

Req Req 

Req 

Req 

Req 

Req 

Req Req Req Req 

Req Req 

Req Req 

 
 

More Complex Memory Scheduler 
 
 



 Design a new memory scheduler that is: 

 Scalable to accommodate a large number of requests 

 Easy to implement 

 Application-aware 

 Able to provide high performance and fairness, especially in 
heterogeneous CPU-GPU systems 

 

 

Our Goal 
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Key Functions of a Memory Controller 

 Memory controller must consider three different things 
concurrently when choosing the next request: 

 

1) Maximize row buffer hits 

 Maximize memory bandwidth 

2) Manage contention between applications 

 Maximize system throughput and fairness 

3) Satisfy DRAM timing constraints 

 

 Current systems use a centralized memory controller 
design to accomplish these functions  

 Complex, especially with large request buffers 
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Key Idea: Decouple Tasks into Stages 

 Idea: Decouple the functional tasks of the memory controller 

 Partition tasks across several simpler HW structures (stages) 
 

1) Maximize row buffer hits 

 Stage 1: Batch formation  

 Within each application, groups requests to the same row into 
batches 

2) Manage contention between applications 

 Stage 2: Batch scheduler  

 Schedules batches from different applications 

3) Satisfy DRAM timing constraints 

 Stage 3: DRAM command scheduler 

 Issues requests from the already-scheduled order to each bank 
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SMS: Staged Memory Scheduling 
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SMS: Staged Memory Scheduling 
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Stage 1: Batch Formation 

 Goal: Maximize row buffer hits 

 

 At each core, we want to batch requests that access the 
same row within a limited time window 

 

 A batch is ready to be scheduled under two conditions 

1) When the next request accesses a different row  

2) When the time window for batch formation expires 

 

 Keep this stage simple by using per-core FIFOs 
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SMS: Staged Memory Scheduling 
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Stage 2: Batch Scheduler 

 Goal: Minimize interference between applications 

 

 Stage 1 forms batches within each application 

 Stage 2 schedules batches from different applications 

 Schedules the oldest batch from each application 

 

 Question: Which application’s batch should be scheduled 
next? 

 Goal: Maximize system performance and fairness 

 To achieve this goal, the batch scheduler chooses between 
two different policies 
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Stage 2: Two Batch Scheduling Algorithms 

 Shortest Job First (SJF) 

 Prioritize the applications with the fewest outstanding memory 
requests because they make fast forward progress 

 Pro: Good system performance and fairness 

 Con: GPU and memory-intensive applications get deprioritized 

 

 

 Round-Robin (RR) 

 Prioritize the applications in a round-robin manner to ensure 
that memory-intensive applications can make progress 

 Pro: GPU and memory-intensive applications are treated fairly 

 Con: GPU and memory-intensive applications significantly 
slow down others 
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Stage 2: Batch Scheduling Policy 

 The importance of the GPU varies between systems and 
over time  Scheduling policy needs to adapt to this 

 

 Solution: Hybrid Policy 

 At every cycle: 

 With probability p : Shortest Job First  Benefits the CPU 

 With probability 1-p : Round-Robin  Benefits the GPU 

 

 System software can configure p based on the 
importance/weight of the GPU 

 Higher GPU importance  Lower p value 
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SMS: Staged Memory Scheduling 

25 

Stage 1 

Stage 2 

Core 1 Core 2 Core 3 Core 4 

To DRAM 

GPU 

Req Req Batch Scheduler 

Batch 
Formation 

Stage 3 

DRAM 
Command 
Scheduler 

Bank 1 Bank 2 Bank 3 Bank 4 



Stage 3: DRAM Command Scheduler 

 High level policy decisions have already been made by: 

 Stage 1: Maintains row buffer locality 

 Stage 2: Minimizes inter-application interference 

 

 Stage 3: No need for further scheduling 

 Only goal: service requests while satisfying DRAM 
timing constraints 

 

 Implemented as simple per-bank FIFO queues 
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Batch Scheduler 
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Putting Everything Together 
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Complexity 

 Compared to a row hit first scheduler, SMS consumes* 

 66% less area 

 46% less static power 

 

 

 Reduction comes from: 

 Monolithic scheduler  stages of simpler schedulers 

 Each stage has a simpler scheduler (considers fewer 
properties at a time to make the scheduling decision) 

 Each stage has simpler buffers (FIFO instead of out-of-order) 

 Each stage has a portion of the total buffer size (buffering is 
distributed across stages) 

28 * Based on a Verilog model using 180nm library 
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Methodology 

 Simulation parameters 

 16 OoO CPU cores, 1 GPU modeling AMD Radeon™ 5870 

 DDR3-1600 DRAM 4 channels, 1 rank/channel, 8 banks/channel 

 

 Workloads 

 CPU: SPEC CPU 2006 

 GPU: Recent games and GPU benchmarks 

 7 workload categories based on the memory-intensity of CPU 
applications 

 Low memory-intensity (L) 

 Medium memory-intensity (M)  

 High memory-intensity (H) 
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Comparison to Previous Scheduling Algorithms 

 FR-FCFS [Rixner+, ISCA’00] 

 Prioritizes row buffer hits 

 Maximizes DRAM throughput 

 Low multi-core performance  Application unaware 
 

 ATLAS [Kim+, HPCA’10] 

 Prioritizes latency-sensitive applications 

 Good multi-core performance 

 Low fairness  Deprioritizes memory-intensive applications 
 

 TCM [Kim+, MICRO’10] 

 Clusters low and high-intensity applications and treats each 
separately 

 Good multi-core performance and fairness 

 Not robust  Misclassifies latency-sensitive applications 
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Evaluation Metrics 

 CPU performance metric: Weighted speedup 

 

 

 

 GPU performance metric: Frame rate speedup 

 

 

 
 

 CPU-GPU system performance: CPU-GPU weighted speedup 
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Evaluated System Scenarios 

 CPU-focused system 

 

 GPU-focused system 
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Evaluated System Scenario: CPU Focused 

 GPU has low weight (weight = 1) 

 

 

 

 

 

 Configure SMS such that p, SJF probability, is set to 0.9 

 Mostly uses SJF batch scheduling  prioritizes latency-

sensitive applications (mainly CPU) 
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 SJF batch scheduling policy allows latency-sensitive 
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Evaluated System Scenario: GPU Focused 

 GPU has high weight (weight = 1000) 

 

 

 

 

 

 Configure SMS such that p, SJF probability, is set to 0 

 Always uses round-robin batch scheduling  prioritizes 

memory-intensive applications (GPU) 
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 Round-robin batch scheduling policy schedules GPU 
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+1.6% over FR-FCFS 

SMS is much less complex than 
previous schedulers p=0 
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Performance at Different GPU Weights 
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 At every GPU weight, SMS outperforms the best previous 
scheduling algorithm for that weight 

Performance at Different GPU Weights 
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Additional Results in the Paper 

 Fairness evaluation 

 47.6% improvement over the best previous algorithms 
 

 Individual CPU and GPU performance breakdowns 
 

 CPU-only scenarios 

 Competitive performance with previous algorithms 
 

 Scalability results 

 SMS’ performance and fairness scales better than previous 
algorithms as the number of cores and memory channels 
increases 

 

 Analysis of SMS design parameters 
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Conclusion 

 Observation: Heterogeneous CPU-GPU systems require 

memory schedulers with large request buffers 
 

 Problem: Existing monolithic application-aware memory 

scheduler designs are hard to scale to large request buffer size 
 

 Solution: Staged Memory Scheduling (SMS)  

decomposes the memory controller into three simple stages: 

1) Batch formation: maintains row buffer locality 

2) Batch scheduler: reduces interference between applications 

3) DRAM command scheduler: issues requests to DRAM 
 

 Compared to state-of-the-art memory schedulers: 

 SMS is significantly simpler and more scalable 

 SMS provides higher performance and fairness 
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Motivation 

 Aggressive prefetching improves  
memory latency tolerance of  
many applications when they run alone 

 
 Prefetching for concurrently-executing 

applications on a CMP can lead to 
 Significant system performance degradation and 

bandwidth waste 

 
 Problem: 

Prefetcher-caused inter-core interference 
 Prefetches of one application contend with 

prefetches and demands of other applications 

 
 



45 

Potential Performance 

 System performance improvement of ideally removing all 
prefetcher-caused inter-core interference in shared resources 
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Exact workload combinations can be found in paper 
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Increasing Prefetcher Accuracy 

 Increasing prefetcher accuracy can reduce 
prefetcher-caused inter-core interference  

 Single-core prefetcher aggressiveness 
throttling (e.g., Srinath et al., HPCA ’07) 

 Filtering inaccurate prefetches  
(e.g., Zhuang and Lee, ICPP ’03) 

 Dropping inaccurate prefetches at memory 
controller (Lee et al., MICRO ’08) 

 
   All such techniques operate independently on 

the prefetches of each application 
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Feedback-Directed Prefetching (FDP) 
(Srinath et al., HPCA ’07) 

 Uses prefetcher feedback information local to the 
prefetcher’s core 
 Prefetch accuracy 
 Prefetch timeliness 
 Prefetch cache pollution 

 Dynamically adapts the prefetcher’s aggressiveness 
 Stream Prefetcher Aggressiveness 
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than static aggressiveness configurations 
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Shortcoming of Per-Core (Local-Only)  
Prefetcher Aggressiveness Control 
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Shortcoming of Local-Only 
Prefetcher Control 
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Hierarchical  
Prefetcher Aggressiveness Control (HPAC) 
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Terminology 

 Global feedback metrics used in our mechanism: 
 For each core i: 
 Core i’s prefetcher accuracy – Acc (i) 

 

 Core i’s prefetcher caused inter-core cache pollution  
Pol (i) 
 Demand cache lines of other cores evicted by this core’s 

prefetches that are requested subsequent to eviction 

 

 Bandwidth consumed by core i - BW (i) 
 Accounts for how long requests from this core tie up 

DRAM banks 

 

 Bandwidth needed by other cores j != i  - BWNO (i)  
 Accounts for how long requests from other cores have to 

wait for DRAM banks because of requests from this core 
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Calculating Inter-Core Cache Pollution 
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Hierarchical  
Prefetcher Aggressiveness Control (HPAC) 
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Heuristics for Global Control 

 Classification of global control heuristics 
based on interference severity 
 Severe interference 

 Action: Reduce the aggressiveness of 
interfering prefetcher 

 Borderline interference 

 Action: Prevent prefetcher from transitioning 
into severe interference: 

 Allow local-control to only throttle-down  

 No interference or moderate interference from 
an accurate prefetcher 

 Action: Allow local control to maximize  
local benefits from prefetching 
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HPAC Control Policies 
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Hardware Cost (4-Core System) 

Total hardware cost local-control & global control  15.14 KB 

Additional cost on top of FDP 1.55 KB 

 Additional cost on top of FDP only 1.55 KB 

 

 HPAC does not require any structures or logic 
that are on the processor’s critical path 
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Evaluation Methodology 

 x86 cycle accurate simulator 
 

 Baseline processor configuration  
 Per core 

 4-wide issue, out-of-order, 256-entry ROB  
 Stream prefetcher with 32 streams, prefetch degree:4,  

prefetch distance:64 
 Shared 

 2MB, 16-way L2 cache  (4MB, 32-way for 8-core) 
 DDR3 1333Mhz 
 8B wide core to memory bus 
 128, 256  L2 MSHRs for 4-, 8-core 
 Latency of 15ns per command (tRP, tRCD, CL) 
 

 HPAC thresholds used 

Acc BW Pol BWNO 

0.6 50k 90 75k 
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Performance Results 
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Summary of Other Results 

 Further results and analysis are presented in 
the paper 
 Results with different types of memory controllers 

 Prefetch-Aware DRAM Controllers (PADC) 

 First-Ready First-Come-First-Served (FR-FCFS) 

 

 Effect of HPAC on system fairness 

 

 HPAC performance on 8-core systems 

 

 Multiple types of prefetchers per core and  
different local-control policies 

 

 Sensitivity to system parameters 
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Conclusion 

 Prefetcher-caused inter-core interference can destroy 
potential performance of prefetching 
 When prefetching for concurrently executing applications in 

CMPs 

 Did not exist in single-application environments 

 

 Develop one low-cost hierarchical solution which 
throttles different cores’ prefetchers in a  
coordinated manner 

 

 The key is to take global feedback into account to 
determine aggressiveness of each core’s prefetcher 
 Improves system performance by 15% compared to  

no throttling on a 4-core system 

 Enables performance improvement from prefetching that is 
not possible without it on many workloads 
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Thank you! 
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Row Buffer Locality on Batch Formation 

 OoO batch formation improves the performance of the 
system by: 

 ~3% when the batch scheduler uses SJF policy most of the 
time 

 ~7% when the batch scheduler uses RR most of the time 

 

 However, OoO batch formation is more complex 

 OoO buffering instead of FIFO queues 

 Need to fine tune the time window of the batch formation 
based on application characteristics (only 3%-5% performance 
gain without fine tuning)  
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Row Buffer Locality on Batch Formation 
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MLP and RBL 

 Key differences between a CPU application and a GPU 
application 
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Dealing with Multi-Threaded Applications 

 Batch formation: Groups requests from each application in 
a per-thread FIFO 

 

 Batch scheduler: Detects critical threads and prioritizes 
them over non-critical threads 

 Previous works have shown how to detect and schedule 
critical threads 

1) Bottleneck Identification and Scheduling in MT applications 
[Joao+, ASPLOS’12] 

2) Parallel Application Memory Scheduling  

 [Ebrahimi, MICRO’11] 

 

 DRAM command scheduler: Stays the same 
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Dealing with Prefetch Requests  

 Previous works have proposed several solutions: 

 Prefetch-Aware Shared-Resource Management for Multi-Core 
Systems [Ebrahimi+, ISCA’11] 

 Coordinated Control of Multiple Prefetchers in Multi-Core 
Systems [Ebrahimi+, MICRO’09] 

 Prefetch-aware DRAM Controller [Lee+, MICRO’08] 

 

 Handling Prefetch Requests in SMS: 

 SMS can handle prefetch requests before they enter the 
memory controller (e.g., source throttling based on prefetch 
accuracy) 

 SMS can handle prefetch requests by prioritizing/deprioritizing 
prefetch batch at the batch scheduler (based on prefetch 
accuracy) 
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Fairness Evaluation 
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Unfairness (Lower is better) 



Performance at Different Buffer Sizes 
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CPU and GPU Performance Breakdowns 
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CPU-Only Results 
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Scalability to Number of Cores 
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Scalability to Number of Memory Controllers 
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Detailed Simulation Methodology 

Number of cores 16 GPU Max throughput 1600 
ops/cycle 

Number of GPU 1 GPU Texture/Z/Color 
units 

80/128/32 

CPU reorder buffers 128 entries DRAM Bus 64 
bits/channel 

L1 (private) cache size 32KB,  
4 ways 

DRAM row buffer size 2KB 

L2 (shared) cache size 8MB,  
16 ways 

MC Request buffer 
size 

300 entries 

ROB Size 128 entries 
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Analysis to Different SMS Parameters 
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Global Bypass 

 What if the system is lightly loaded? 

 Batching will increase the latency of requests 

 

 Global Bypass 

 Disable the batch formation when the number of total 
requests is lower than a threshold 
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