
18-742 Fall 2012

Parallel Computer Architecture

Lecture 26: Memory Interference Mitigation

Prof. Onur Mutlu

Carnegie Mellon University

11/14/2012

1

Designing QoS-Aware Memory Systems: Approaches

 Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07]

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11,
MICRO’11] [Ausavarungnirun+, ISCA’12]

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09,

ISCA’11, Top Picks ’12]

 QoS-aware caches

 Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10,

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10]

 QoS-aware thread scheduling to cores

 2

Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda,

"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning”

 44th International Symposium on Microarchitecture (MICRO),
Porto Alegre, Brazil, December 2011. Slides (pptx)

MCP Micro 2011 Talk 3

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/subramanian_micro11_talk.pptx

Outline

4

Goal:
Mitigate

Inter-Application Interference

Previous Approach:
Application-Aware Memory

Request Scheduling

Our First Approach:
Application-Aware Memory

Channel Partitioning

Our Second Approach:
Integrated Memory

Partitioning and Scheduling

Background: Main Memory

5

Row
Buffer

Bank 0 Bank 1 Bank 2 Bank 3

Row
Buffer

Row
Buffer

Row
Buffer

R
o
w

s

Columns

 FR-FCFS memory scheduling policy [Zuravleff et al., US Patent ‘97; Rixner et al., ISCA ‘00]

 Row-buffer hit first

 Oldest request first

 Unaware of inter-application interference

 Channel
Memory

Controller

Bank 0 Bank 1 Bank 2 Bank 3

Row
Buffer

Previous Approach

6

Previous Approach:
Application-Aware Memory

Request Scheduling

Our First Approach:
Application-Aware Memory

Channel Partitioning

Our Second Approach:
Integrated Memory

Partitioning and Scheduling

Previous Approach:
Application-Aware Memory

Request Scheduling

Goal:
Mitigate

Inter-Application Interference

Application-Aware Memory Request Scheduling

 Monitor application memory access
characteristics

 Rank applications based on memory access
characteristics

 Prioritize requests at the memory controller,
based on ranking

7

thread

Threads in the

system

thread

thread

thread

thread

thread

thread

Non-
intensive
cluster

Intensive cluster

thread

thread

thread

Memory-non-intensive

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput

Fairness

An Example: Thread Cluster Memory Scheduling

Figure: Kim et al., MICRO 2010

8

Application-Aware Memory Request Scheduling

9

Advantages

 Reduces interference between applications by

 request reordering

 Improves system performance

Disadvantages

 Requires modifications to memory scheduling logic for

 Ranking

 Prioritization

 Cannot completely eliminate interference by request

reordering

Our Approach

10

Previous Approach:
Application-Aware Memory

Request Scheduling

Our First Approach:
Application-Aware Memory

Channel Partitioning

Our Second Approach:
Integrated Memory

Partitioning and Scheduling

Our First Approach:
Application-Aware Memory

Channel Partitioning

Goal:
Mitigate

Inter-Application Interference

Observation: Modern Systems Have Multiple Channels

A new degree of freedom

Mapping data across multiple channels

11

Channel 0 Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Data Mapping in Current Systems

12

Channel 0 Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Causes interference between applications’

requests

Page

Partitioning Channels Between Applications

13

Channel 0 Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Page

Eliminates interference between applications’

requests

Overview: Memory Channel Partitioning (MCP)

 Goal

 Eliminate harmful interference between applications

 Basic Idea

 Map the data of badly-interfering applications to different
channels

 Key Principles

 Separate low and high memory-intensity applications

 Separate low and high row-buffer locality applications

14

Key Insight 1: Separate by Memory Intensity

High memory-intensity applications interfere with low
memory-intensity applications in shared memory channels

15

Map data of low and high memory-intensity applications
to different channels

1 2 3 4 5
Channel 0

Bank 1

Channel 1

Bank 0

Conventional Page Mapping

Red
App

Blue
App

Time Units

Core

Core

Bank 1

Bank 0

Channel Partitioning

Red
App

Blue
App

Channel 0
Time Units

1 2 3 4 5

Channel 1

Core

Core

Bank 1

Bank 0

Bank 1

Bank 0

Saved Cycles

Saved Cycles

Key Insight 2: Separate by Row-Buffer Locality

16

High row-buffer locality applications interfere with low

row-buffer locality applications in shared memory channels

Conventional Page Mapping

Channel 0

Bank 1

Channel 1

Bank 0 R1

R0 R2 R3 R0

R4

Request Buffer

State

Bank 1

Bank 0

Channel 1

Channel 0

R0 R0

Service Order

1 2 3 4 5 6

R2 R3

R4

R1

Time

units

Bank 1

Bank 0

Bank 1

Bank 0

Channel 1

Channel 0

R0 R0

Service Order

1 2 3 4 5 6

R2 R3

R4 R1

Time

units

Bank 1

Bank 0

Bank 1

Bank 0

R0

Channel 0

R1

R2 R3

R0

R4

Request Buffer

State

Channel Partitioning

Bank 1

Bank 0

Bank 1

Bank 0

Channel 1

Saved

Cycles Map data of low and high row-buffer locality applications
to different channels

Memory Channel Partitioning (MCP) Mechanism

1. Profile applications

2. Classify applications into groups

3. Partition channels between application groups

4. Assign a preferred channel to each application

5. Allocate application pages to preferred channel

17

Hardware

System

Software

1. Profile Applications

18

 Hardware counters collect application memory
access characteristics

 Memory access characteristics

 Memory intensity:

 Last level cache Misses Per Kilo Instruction (MPKI)

 Row-buffer locality:

 Row-buffer Hit Rate (RBH) - percentage of

accesses that hit in the row buffer

2. Classify Applications

19

Test MPKI

High Intensity

High Low

Low Intensity

Test RBH

High Intensity
Low Row-Buffer

Locality

Low

High Intensity
High Row-Buffer

Locality

High

3. Partition Channels Among Groups: Step 1

20

Channel 1

Assign number of channels

proportional to number of

applications in group
.

.

.

High Intensity
Low Row-Buffer

Locality

Low Intensity

Channel 2

Channel N-1

Channel N

Channel 3

High Intensity
High Row-Buffer

Locality

3. Partition Channels Among Groups: Step 2

21

Channel 1

High Intensity
Low Row-Buffer

Locality

High Intensity
High Row-Buffer

Locality

Low Intensity

Channel 2

Channel N-1

Channel N

.

.

. Assign number of channels

proportional to bandwidth

demand of group

Channel 3

Channel 1

.

.

High Intensity
Low Row-Buffer

Locality

High Intensity
High Row-Buffer

Locality

Low Intensity

Channel 2

Channel N-1

Channel N

Channel N-1

Channel N

Channel 3

.

.

.

4. Assign Preferred Channel to Application

22

Channel 1

Low Intensity

Channel 2

MPKI: 1

MPKI: 3

MPKI: 4

MPKI: 1

MPKI: 3

MPKI: 4

 Assign each application a preferred channel from
its group’s allocated channels

 Distribute applications to channels such that
group’s bandwidth demand is balanced across its
channels

5. Allocate Page to Preferred Channel

 Enforce channel preferences
computed in the previous step

 On a page fault, the operating system

 allocates page to preferred channel if free page
available in preferred channel

 if free page not available, replacement policy tries to
allocate page to preferred channel

 if it fails, allocate page to another channel

23

Interval Based Operation

24

time

Current Interval Next Interval

1. Profile applications

2. Classify applications into groups

3. Partition channels between groups

4. Assign preferred channel to applications

5. Enforce channel preferences

Integrating Partitioning and Scheduling

25

Previous Approach:
Application-Aware Memory

Request Scheduling

Our First Approach:
Application-Aware Memory

Channel Partitioning

Our Second Approach:
Integrated Memory

Partitioning and Scheduling

Goal:
Mitigate

Inter-Application Interference

Observations

 Applications with very low memory-intensity rarely
access memory
 Dedicating channels to them results in precious
memory bandwidth waste

 They have the most potential to keep their cores busy
 We would really like to prioritize them

 They interfere minimally with other applications
 Prioritizing them does not hurt others

26

Integrated Memory Partitioning and Scheduling (IMPS)

 Always prioritize very low memory-intensity
applications in the memory scheduler

 Use memory channel partitioning to mitigate
interference between other applications

27

Hardware Cost

 Memory Channel Partitioning (MCP)

 Only profiling counters in hardware

 No modifications to memory scheduling logic

 1.5 KB storage cost for a 24-core, 4-channel system

 Integrated Memory Partitioning and Scheduling (IMPS)

 A single bit per request

 Scheduler prioritizes based on this single bit

28

Methodology

 Simulation Model

 24 cores, 4 channels, 4 banks/channel

 Core Model

 Out-of-order, 128-entry instruction window

 512 KB L2 cache/core

 Memory Model – DDR2

 Workloads

 240 SPEC CPU 2006 multiprogrammed workloads
(categorized based on memory intensity)

 Metrics

 System Performance

29

i

alone

i

shared

i

IPC

IPC
SpeedupWeighted

Previous Work on Memory Scheduling

 FR-FCFS [Zuravleff et al., US Patent 1997, Rixner et al., ISCA 2000]

 Prioritizes row-buffer hits and older requests

 Application-unaware

 ATLAS [Kim et al., HPCA 2010]

 Prioritizes applications with low memory-intensity

 TCM [Kim et al., MICRO 2010]

 Always prioritizes low memory-intensity applications

 Shuffles request priorities of high memory-intensity applications

30

Comparison to Previous Scheduling Policies

31

1%

5%

0.9

0.95

1

1.05

1.1

1.15

N
o

rm
al

iz
e

d

Sy
st

e
m

 P
e

rf
o

rm
an

ce

FRFCFS

ATLAS

TCM

MCP

IMPS

7%

11%

Significant performance improvement over baseline FRFCFS
Better system performance than the best previous scheduler

at lower hardware cost

Averaged over 240 workloads

32

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

FRFCFS ATLAS TCM

N
o

rm
al

iz
e

d

Sy
st

e
m

 P
e

rf
o

rm
an

ce

No IMPS

IMPS

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

FRFCFS ATLAS TCM

N
o

rm
al

iz
e

d

Sy
st

e
m

 P
e

rf
o

rm
an

ce

No IMPS

IMPS improves performance regardless of scheduling policy
Highest improvement over FRFCFS as IMPS designed for FRFCFS

Interaction with Memory Scheduling

Averaged over 240 workloads

Summary

 Uncontrolled inter-application interference in main memory
degrades system performance

 Application-aware memory channel partitioning (MCP)

 Separates the data of badly-interfering applications
to different channels, eliminating interference

 Integrated memory partitioning and scheduling (IMPS)

 Prioritizes very low memory-intensity applications in scheduler

 Handles other applications’ interference by partitioning

 MCP/IMPS provide better performance than application-
aware memory request scheduling at lower hardware cost

33

Designing QoS-Aware Memory Systems: Approaches

 Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07]

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11,
MICRO’11] [Ausavarungnirun+, ISCA’12]

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09,

ISCA’11, Top Picks ’12]

 QoS-aware caches

 Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10,

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10]

 QoS-aware thread scheduling to cores

 34

Fairness via Source Throttling

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-Performance

Fairness Substrate for Multi-Core Memory Systems"
15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS),

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)

FST ASPLOS 2010 Talk 35

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/ebrahimi_asplos10_talk.pdf

Many Shared Resources

Core 0 Core 1 Core 2 Core N

Shared Cache

Memory Controller

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

... DRAM
Bank K

...

Shared Memory
Resources

Chip Boundary
On-chip

Off-chip

36
36

The Problem with “Smart Resources”

 Independent interference control mechanisms in
caches, interconnect, and memory can contradict
each other

 Explicitly coordinating mechanisms for different
resources requires complex implementation

 How do we enable fair sharing of the entire
memory system by controlling interference in a
coordinated manner?

37

An Alternative Approach: Source Throttling

 Manage inter-thread interference at the cores, not at the
shared resources

 Dynamically estimate unfairness in the memory system

 Feed back this information into a controller

 Throttle cores’ memory access rates accordingly

 Whom to throttle and by how much depends on performance
target (throughput, fairness, per-thread QoS, etc)

 E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

 Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12.

38

A4

B1

A1

A2

A3

Oldest ⎧

⎪

⎪

⎩

Shared Memory

Resources

A: Compute
Stall on

A1

Stall on

A2

Stall on

A3

Stall on

A4

Compute Stall waiting for shared resources
Stall on

B1
B:

 Request Generation Order:

A1, A2, A3, A4, B1

Unmanaged

Interference

Core A’s stall time

Core B’s stall time

A4

B1

A1

A2

A3

⎧

⎪

⎪

⎩

Shared Memory

Resources

A: Compute
Stall on

A1

Stall on

A2

Compute Stall wait.
Stall on

B1
B:

Dynamically detect application A’s interference

for application B and throttle down application A

Core A’s stall time

Core B’s stall time

Fair Source

Throttling

Stall wait.

Request Generation Order

A1, A2, A3, A4, B1 B1, A2, A3, A4

queue of requests to

shared resources

queue of requests to

shared resources

Saved Cycles Core B
Oldest

Intensive application A generates many requests and

causes long stall times for less intensive application B

Throttled

Requests

Stall on

A4

Stall on

A3
Extra Cycles

Core A

39

Fairness via Source Throttling (FST)

 Two components (interval-based)

 Run-time unfairness evaluation (in hardware)

 Dynamically estimates the unfairness in the memory system

 Estimates which application is slowing down which other

 Dynamic request throttling (hardware/software)

 Adjusts how aggressively each core makes requests to the
shared resources

 Throttles down request rates of cores causing unfairness

 Limit miss buffers, limit injection rate

40

41

Runtime

Unfairness

Evaluation

Dynamic

Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
 1-Throttle down App-interfering
 2-Throttle up App-slowest
}

FST

Unfairness Estimate

App-slowest

App-interfering

⎪

⎨

⎪

⎧

⎩

Slowdown

Estimation

Time
Interval 1 Interval 2 Interval 3

Runtime

Unfairness

Evaluation

Dynamic

Request Throttling

Fairness via Source Throttling (FST)

41

42

Runtime

Unfairness

Evaluation

Dynamic

Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
 1-Throttle down App-interfering
 2-Throttle up App-slowest
}

FST

Unfairness Estimate

App-slowest

App-interfering

⎪

⎨

⎪

⎧

⎩

Slowdown

Estimation

Time
Interval 1 Interval 2 Interval 3

Runtime

Unfairness

Evaluation

Dynamic

Request Throttling

Fairness via Source Throttling (FST)

42

Estimating System Unfairness

 Unfairness =

 Slowdown of application i =

 How can be estimated in shared mode?

 is the number of extra cycles it takes
application i to execute due to interference

43

Max{Slowdown i} over all applications i

Min{Slowdown i} over all applications i

Shared
Ti

Ti
Alone

Ti
Alone

Ti
Excess

Ti
Shared

= Ti
Alone

- Ti
Excess

Tracking Inter-Core Interference

44

0 0 0 0

Interference per core

bit vector

Core # 0 1 2 3

Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7
...

Memory Controller

Shared Cache

Three interference sources:
1. Shared Cache
2. DRAM bus and bank
3. DRAM row-buffers

FST hardware

Bank 2

Row

Row A

Tracking DRAM Row-Buffer Interference

45

Core 0 Core 1

Bank
0

Bank
1

Bank
2

Bank
7

…

Shadow Row Address Register

(SRAR) Core 1:

Shadow Row Address Register

(SRAR) Core 0:

Queue of requests to bank 2 0 0

Row B

Row A

Row A

Row B

Row B

Interference

per core bit vector
Row Conflict Row Hit

Interference

induced row conflict

1

Row A

Tracking Inter-Core Interference

46

0 0 0 0

Interference per core

bit vector

Core # 0 1 2 3

0

0

0

0

Excess Cycles

Counters per core

1

T Cycle Count T+1

1

T+2

2

FST hardware

1

T+3

3

1

Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7
...

Memory Controller

Shared Cache

Ti
Excess

⎪

⎪

Ti
Shared

= Ti
Alone

- Ti
Excess

Runtime

Unfairness

Evaluation

Dynamic

Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
 1-Throttle down App-interfering
 2-Throttle up App-slowest
}

FST

Unfairness Estimate

App-slowest

App-interfering

47

Fairness via Source Throttling (FST)

47

Tracking Inter-Core Interference

 To identify App-interfering, for each core i

 FST separately tracks interference caused by each core j
(j ≠ i)

48

Cnt 3 Cnt 2 Cnt 1 Cnt 0 0

0 0 0 -

Interference per core

bit vector

Core # 0 1 2 3
-

Cnt 1,0

Cnt 2,0

Cnt 3,0

Excess Cycles

Counters per core

0 0 - 0

0 - 0 0

- 0 0 0

⎪

⎨

⎪

⎧

⎩

⎪
⎨
⎪
⎧

⎩

Interfered with core

Interfering

core

Cnt 0,1

-

Cnt 2,1

Cnt 3,1

Cnt 0,2

Cnt 1,2

-

Cnt 3,2

Cnt 0,3

Cnt 1,3

Cnt 2,3

-

1
core 2

interfered

with

core 1

Cnt 2,1+

0
1
2
3

Row with largest count

determines App-interfering

App-slowest = 2

Pairwise interference

bit matrix

Pairwise excess cycles

matrix

Fairness via Source Throttling (FST)

49

Runtime

Unfairness

Evaluation

Dynamic

Request Throttling

1- Estimating system unfairness

2- Find app. with the highest slowdown

(App-slowest)

3- Find app. causing most interference

for App-slowest

(App-interfering)

if (Unfairness Estimate >Target)

{

 1-Throttle down App-interfering

 2-Throttle up App-slowest

}

FST

Unfairness Estimate

App-slowest

App-interfering

Dynamic Request Throttling

 Goal: Adjust how aggressively each core makes requests to

the shared memory system

 Mechanisms:

 Miss Status Holding Register (MSHR) quota

 Controls the number of concurrent requests accessing shared
resources from each application

 Request injection frequency

 Controls how often memory requests are issued to the last level
cache from the MSHRs

50

Dynamic Request Throttling

 Throttling level assigned to each core determines both

MSHR quota and request injection rate

51

Throttling level MSHR quota Request Injection Rate

100% 128 Every cycle

50% 64 Every other cycle

25% 32 Once every 4 cycles

10% 12 Once every 10 cycles

5% 6 Once every 20 cycles

4% 5 Once every 25 cycles

3% 3 Once every 30 cycles

2% 2 Once every 50 cycles Total # of

MSHRs: 128

FST at Work

52

Time
Interval i Interval i+1 Interval i+2

Runtime Unfairness

Evaluation

Dynamic

Request Throttling

FST

Unfairness Estimate

App-slowest

App-interfering

Throttling Levels

Core 0 Core 1 Core 3
50% 100% 10% 100%

25% 100% 25% 100%
25% 50% 50% 100%

Interval i

Interval i + 1
Interval i + 2

3

Core 2

Core 0

Core 0 Core 2

Throttle down Throttle up

2.5

Core 2

Core 1

Throttle down Throttle up

System software

fairness goal: 1.4

Slowdown

Estimation

⎪

⎨

⎪

⎧

⎩

Slowdown

Estimation

⎪

⎨

⎪

⎧

⎩

System Software Support

 Different fairness objectives can be configured by

system software

 Estimated Unfairness > Target Unfairness

 Keep maximum slowdown in check

 Estimated Max Slowdown < Target Max Slowdown

 Keep slowdown of particular applications in check to achieve a
particular performance target

 Estimated Slowdown(i) < Target Slowdown(i)

 Support for thread priorities

 Weighted Slowdown(i) =
 Estimated Slowdown(i) x Weight(i)

53

FST Hardware Cost

 Total storage cost required for 4 cores is ~12KB

 FST does not require any structures or logic that are on the
processor’s critical path

54

FST Evaluation Methodology

 x86 cycle accurate simulator

 Baseline processor configuration

 Per-core

 4-wide issue, out-of-order, 256 entry ROB

 Shared (4-core system)

 128 MSHRs

 2 MB, 16-way L2 cache

 Main Memory

 DDR3 1333 MHz

 Latency of 15ns per command (tRP, tRCD, CL)

 8B wide core to memory bus

55

FST: System Unfairness Results

56

44.4%

36%

FST: System Performance Results

57 57

25.6

%

14%

57

Source Throttling Results: Takeaways

 Source throttling alone provides better performance than a
combination of “smart” memory scheduling and fair caching

 Decisions made at the memory scheduler and the cache
sometimes contradict each other

 Neither source throttling alone nor “smart resources” alone
provides the best performance

 Combined approaches are even more powerful

 Source throttling and resource-based interference control

58

FST ASPLOS 2010 Talk

//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/ebrahimi_asplos10_talk.pdf

Summary: Memory QoS Approaches and Techniques

 Approaches: Smart vs. dumb resources

 Smart resources: QoS-aware memory scheduling

 Dumb resources: Source throttling; channel partitioning

 Both approaches are effective in reducing interference

 No single best approach for all workloads

 Techniques: Request scheduling, source throttling, memory
partitioning

 All approaches are effective in reducing interference

 Can be applied at different levels: hardware vs. software

 No single best technique for all workloads

 Combined approaches and techniques are the most powerful

 Integrated Memory Channel Partitioning and Scheduling [MICRO’11]

59

Smart Resources vs. Source Throttling

 Advantages of “smart resources”
 Each resource is designed to be as efficient as possible

more efficient design using custom techniques for each resource

 No need for estimating interference across the entire system
(to feed a throttling algorithm).

 Does not lose throughput by possibly overthrottling

 Advantages of source throttling

 Prevents overloading of any or all resources (if employed well)

 Can keep each resource simple; no need to redesign each resource

 Provides prioritization of threads in the entire memory system;

 instead of per resource

 Eliminates conflicting decision making between resources

60

QoS Work So Far

 Major Goals

 System performance

 Fairness

 New challenge in today’s clouds, clusters

 Need for guarantees on performance

 Need for accurate performance prediction

 Fairness via Source Throttling

 A step in the direction of performance (slowdown) prediction

 But, slowdown estimates not very accurate

61

MISE: Providing Performance Predictability

in Shared Main Memory Systems

62

Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, Onur Mutlu

“MISE: Providing Performance Predictability and Fairness
in Shared Main Memory Systems”

 19th International Symposium on High Performance Computer Architecture (HPCA) ,
Shen Zhen, China, February 2013

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/

Shared Resource Interference is a Problem

 Lavanya

Subramanian ©

October 12

http://www.pdl.cmu.ed

u/ 63

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Main

Memory

 Shared

Cache

Unpredictable Slowdowns

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.

64

Need for Predictable Performance

 Billing in a cloud

 Billing by time?

 More interference Longer runtime Pay more

 Knowledge of slowdown enables smarter billing

 Server consolidation

 Multiple applications consolidated on a server

 Need to provide bounded performance

65

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Main

Memory

 Shared

Cache

Towards a Predictable Performance Substrate

Memory Interference-induced Slowdown Estimation (MISE)

66

Outline

 Introduction and Motivation

 Slowdown Estimation Model

 Comparison to Prior Work

 An Application of Our Model

67

Key Observation 1

For a memory bound application,
Performance α Request service rate

(SRSR) Rate ServiceRequest Shared

(ARSR) Rate ServiceRequest Alone
Slowdown

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

Normalized
Request Service Rate

omnetpp

mcf

astar

68

time Request Buffer

Request Buffer time

Request Buffer time

Run Alone

Run along with another application

When given highest priority

Key Observation 2

Key Observation 2

Alone Request Service Rate of an application can be measured
by giving the application highest priority in accessing

memory

Highest priority Little interference

Key Observation 3

 Memory-bound applications

 Spend significant time stalling for memory

 Non-memory-bound applications

 Spend significant time in compute phase

 Compute phase length unchanged by request service rate
variation

SRSR

ARSR
) - (1 Slowdown

α – fraction of time in memory phase

Interval Based Implementation

 Divide execution time into intervals

 Slowdown is estimated at end of each interval

 To estimate slowdown: Measure/estimate three major

components at the end of each interval

 Alone Request Service Rate (ARSR)

 Shared Request Service Rate (SRSR)

 Memory Phase Fraction (α)

Measuring SRSR and α

 Shared Request Service Rate (SRSR)

 Per-core counter to track number of requests serviced of each
core

 At the end of each interval, measure

 Memory Phase Fraction (α)

 Count number of stall cycles at the core

 Compute fraction of cycles stalled for memory

Length Interval

Serviced Requests ofNumber
 SRSR

ARSR Estimation Mechanism

 Divide each interval into shorter epochs

 At the beginning of each epoch

 Randomly pick a highest priority application

 Probability of picking an application is proportional to
its bandwidth allocation

 At the end of an interval, for each application, estimate

CyclesEpoch Priority High ofNumber

RequestsEpoch Priority High ofNumber
ARSR

Tackling Inaccuracy in ARSR Estimation

 When an application has highest priority

 Little Interference

 Not Zero Interference

Request Buffer time

Interference

Cycles

Tackling Inaccuracy in ARSR Estimation

 Solution: Factor out interference cycles

 A cycle is an interference cycle

 if a request from the highest priority application is waiting
in the request buffer and

 another application’s request was issued previously

Cycles ceInterferen - CyclesEpoch Priority High ofNumber

RequestsEpoch Priority High ofNumber
ARSR

Putting it all Together

 Divide execution time into intervals

 Measure/estimate three major components at the end
of each interval

 Alone Request Service Rate (ARSR)

 Shared Request Service Rate (SRSR)

 Memory Phase Fraction (α)

 Estimate slowdown as
SRSR

ARSR
) - (1 Slowdown

MISE Hardware Cost

 Total storage cost required for 4 cores is ~96 bytes

 Simple changes to memory scheduler

78

Outline

 Introduction and Motivation

 Slowdown Estimation Model

 Comparison to Prior Work

 An Application of Our Model

Previous Work on Slowdown Estimation

 Major previous work on slowdown estimation

 STFM (Mutlu+, MICRO 2007)

 FST (Ebrahimi+, ASPLOS 2010)

 Basic Idea:

 Estimate slowdown as ratio of uninterfered to interfered
memory stall cycles

 Interfered stall cycles - easy to measure

 Uninterfered stall cycles - estimated by factoring out stall
cycles due to interference

Two Major Advantages of MISE Over STFM

 Advantage 1:

 STFM tries to estimate uninterfered stall time in the presence
of interference

 MISE eliminates significant portion of interference by giving
highest priority

 Advantage 2:

 STFM’s slowdown estimation mechanism is inaccurate for low
intensity applications

 MISE accounts for compute phase providing better accuracy

Methodology

 Configuration of our simulated system

 4 cores

 1 channel

 DDR3 1066 DRAM

 512 KB private cache/core

 Data interleaving policy: row interleaving

 Thread unaware memory scheduling policy

 Workloads

 300 multiprogrammed workloads

 Built using SPEC CPU2006 benchmarks

Quantitative Comparison

1

1.5

2

2.5

3

3.5

4

0 50 100
Sl

o
w

d
o

w
n

Million Cycles

Actual

STFM

MISE

1

1.5

2

2.5

3

3.5

4

0 50 100

Sl
o

w
d

o
w

n

Million Cycles

1

1.5

2

2.5

3

3.5

4

0 50 100
Sl

o
w

d
o

w
n

Million Cycles

Actual

STFM

1

1.5

2

2.5

3

3.5

4

0 50 100
Sl

o
w

d
o

w
n

Million Cycles

Actual

1

1.5

2

2.5

3

3.5

4

0 50 100

Sl
o

w
d

o
w

n

Million Cycles

1

1.5

2

2.5

3

3.5

4

0 50 100

Sl
o

w
d

o
w

n

Million Cycles

SPEC CPU 2006 application

leslie3d

Average error of MISE: 8.8%

Average error of STFM/FST: 35.4%

(across 300 multiprogrammed workloads)

SPEC CPU 2006 application

hmmer

Outline

 Introduction and Motivation

 Slowdown Estimation Model

 Comparison to Prior Work

 An Application of Our Model

Providing “Soft” Slowdown Guarantees

 Goal

 Ensure QoS-critical applications meet a prescribed
slowdown bound

 Maximize system performance for other applications

 Basic Idea

 Allocate just enough bandwidth to QoS-critical application

 Assign remaining bandwidth to other applications

Mechanism to Provide Soft QoS

(For One QoS-Critical Application)

 Estimate slowdown of QoS-critical application

 At the end of each interval

 If slowdown > bound B, increase bandwidth allocation

 If slowdown < bound B, decrease bandwidth allocation

 When slowdown bound not met

 Notify the OS

A Sample Workload
QoS-Critical vs Non-QoS-Critical Application Performance

0

0.5

1

1.5

2

2.5

3

leslie3d hmmer lbm omnetpp

S
lo

w
d

o
w

n
 Always Prioritize

MISE-QoS-1

MISE-QoS-3

MISE-QoS-5

MISE-QoS-7

MISE-QoS-9

0

0.5

1

1.5

2

2.5

3

leslie3d hmmer lbm omnetpp

S
lo

w
d

o
w

n
 Always Prioritize

Lower slowdowns for non-QoS-critical applications QoS-Critical application’s slowdown decreases as
the bound becomes tighter

Effectiveness of MISE in Enforcing QoS

Only for 2.2% of workloads is a violated bound predicted as met

Predicted Right Predicted Wrong

QoS Bound Met 78.8% 12.1%

QoS Bound Not Met 6.9% 2.2%

Performance of Non-QoS-Critical Applications

0

0.5

1

1.5

2

2.5

1 2 3 Avg

A
v
e

ra
g

e
 S

lo
w

d
o

w
n

Number of Memory Intensive Benchmarks
in Workload

AlwaysPrioritize

MISE-QoS-1

MISE-QoS-3

MISE-QoS-5

MISE-QoS-7

MISE-QoS-9

Lower average slowdown when bound is loose

MISE-QoS-3 has 10% lower average slowdown
than Always Prioritize

Case Study with Two QoS-Critical Applications

 Two comparison points

 Always prioritize both applications

 Prioritize each application 50% of time

0

1

2

3

4

5

6

7

8

9

10

qos-1 qos-2 non-qos-1 non-qos-2

S
lo

w
d

o
w

n

AlwaysPrioritize

EqualBandwidthPartitioning

MISE-QoS-1

MISE-QoS-2

MISE-QoS-3

MISE-QoS-4

MISE-QoS-5

MISE-QoS can achieve a lower slowdown bound
for both applications

MISE-QoS provides much lower slowdowns for non-
QoS-critical applications

Future Work

 Exploiting slowdown information in software

 Admission control

 Migration policies

 Billing policies

 Building a comprehensive model

 Performance predictability with other shared resources

 Performance predictability in heterogeneous systems

Summary

 Problem

 Memory interference slows down different applications to
different degrees

 Need to provide predictable performance in the presence of
memory interference

 Solution

 New slowdown estimation model

 Accurate slowdown estimates: 8.8% error

 Our model enables better QoS-enforcement policies

 We presented one application of our model

 Providing soft “QoS” guarantees

Research Topics in Main Memory Management

 Abundant

 Interference reduction via different techniques

 Distributed memory controller management

 Co-design with on-chip interconnects and caches

 Reducing waste, minimizing energy, minimizing cost

 Enabling new memory technologies

 Die stacking

 Non-volatile memory

 Latency tolerance

93

