
Single-Chip Heterogeneous Computing:

Does the Future Include Custom Logic, FPGAs, and GPGPUs?

Eric S. Chung, Peter A. Milder, James C. Hoe, and Ken Mai

Computer Architecture Laboratory (CALCM)

Carnegie Mellon University, Pittsburgh, PA 15213

{echung, pam, jhoe, kenmai}@ece.cmu.edu

Abstract

To extend the exponential performance scaling of future

chip multiprocessors, improving energy efficiency has become

a first-class priority. Single-chip heterogeneous computing

has the potential to achieve greater energy efficiency by

combining traditional processors with unconventional cores

(U-cores) such as custom logic, FPGAs, or GPGPUs. Al-

though U-cores are effective at increasing performance, their

benefits can also diminish given the scarcity of projected

bandwidth in the future. To understand the relative merits

between different approaches in the face of technology con-

straints, this work builds on prior modeling of heterogeneous

multicores to support U-cores. Unlike prior models that trade

performance, power, and area using well-known relationships

between simple and complex processors, our model must

consider the less-obvious relationships between conventional

processors and a diverse set of U-cores. Further, our model

supports speculation of future designs from scaling trends

predicted by the ITRS road map. The predictive power of

our model depends upon U-core-specific parameters derived

by measuring performance and power of tuned applications

on today’s state-of-the-art multicores, GPUs, FPGAs, and

ASICs. Our results reinforce some current-day understand-

ings of the potential and limitations of U-cores and also

provides new insights on their relative merits.

1. Introduction

Although transistor densities have grown exponentially

from continued innovations in process technology, the power

needed to switch each transistor has not decreased as expected

due to slowed reductions in the threshold voltage (Vth) [1,

2, 3]. Therefore, the primary determinant of performance

today is often power efficiency, not necessarily insufficient

area or frequency. In addition to power concerns, off-chip

bandwidth trends are also expected to have a major impact

on the scalability of future designs [4]. In particular, pin

counts have historically grown at about 10% per year—

in contrast to the doubling of transistor densities every 18

months [5]. In this era of bandwidth- and power-constrained

multicores, architects must explore new and unconventional

ways to improve scalability.

The use of “unconventional” architectures today offers a

promising path towards improved energy efficiency. One class

of solutions dedicates highly efficient custom-designed cores

for important computing tasks (e.g., [6, 7]). Another solution

includes general-purpose graphics processing units (GPG-

PUs) where programmable SIMD engines provide accelerated

computing performance [8, 9]. Lastly, applications on Field

Programmable Gate Arrays (FPGA) can also achieve high

energy efficiency relative to conventional processors [10].

Although energy efficiency plays a crucial role in increas-

ing peak theoretical performance, the projected scarcity of

bandwidth can also diminish the impact of simply maxing out

the energy efficiency. For designers of future heterogeneous

multicores, the selection of which unconventional approaches

to incorporate, if any, is a daunting task. They must address

questions such as: Are unconventional approaches worth the

gains? Will bandwidth constraints limit these approaches

regardless? When are (expensive) custom logic solutions

more favorable than flexible (but less-efficient) solutions?

With the wide range of choices and degrees of freedom in

this vast and little-explored design space, it is crucial to

investigate which approaches merit further study.

Building on the work of Hill and Marty [11], this paper

extends their model to consider the scalability, power, and

bandwidth implications of unconventional computing cores,

referred throughout this paper as U-cores. In the applica-

tion of our model, U-cores based on GPUs, FPGAs, and

custom logic are used to speed up parallelizable sections of

an application, while a conventional processor executes the

remaining serial sections. In a similar spirit to Hill and Marty,

the objectives of our model are not to pinpoint exact design

numbers but to identify important trends worthy of future

investigation and discussion.

To use our model effectively, various U-core-specific pa-

rameters must be calibrated beforehand. Unlike previous

models that relied upon better understood performance and

2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture

1072-4451/10 $26.00 © 2010 IEEE

DOI 10.1109/MICRO.2010.36

225

http://crossmark.crossref.org/dialog/?doi=10.1109%2FMICRO.2010.36&domain=pdf&date_stamp=2010-12-04

FastCore

L1-I

L2

L1-D

FastCore

L1-I

L2

L1-D

FastCore

L1-I

L2

L1-D

FastCore

L1-I

L2

L1-D

BCE

BCE

BCE

BCE

BCE BCE BCE

BCE

BCE

BCE BCE BCE

FastCore

L1-I

L2

L1-D

U-cores

FastCore

L1-I

L2

L1-D

Figure 1: Chip models:

(a) Symmetric, (b) Asymmetric, (c) Heterogeneous.

power relationships between simple and complex cores (e.g.,

[11, 12, 13]), the relationships between conventional cores

and U-cores are not as obvious. To obtain our U-core

parameters, we measured the performance and power of

tuned workloads targeting state-of-the-art CPUs, GPUs, and

FPGAs. We also obtained estimates based on synthesized

ASIC cores. Using our model, we study the trajectories

of various hypothetical heterogeneous multicores under the

constraints of area, power, and bandwidth as predicted by

the International Technology Roadmap for Semiconductors

(ITRS) [5]. Our results support several conclusions:

• U-cores in general do provide a significant benefit in

performance from improved energy efficiency despite the

scarcity of bandwidth. However, in all cases, effectively ex-

ploiting the performance gain of U-cores requires sufficient

parallelism in excess of 90%.

• Off-chip bandwidth trends have a first-order impact on

the relative merits of U-cores. Custom logic, in particu-

lar, reaches the bandwidth ceiling very quickly unless an

application possesses sufficient arithmetic intensity. This

allows more flexible U-cores such as FPGAs and GPUs to

keep up in these cases.

• Even when bandwidth is not a concern, U-cores such as

FPGAs and GPGPUs can still be competitive with custom

logic when parallelism is moderate to high (90%−99%).

• All U-cores, especially those based on custom logic, are

more broadly useful when power or energy reduction is

the goal rather than increased performance.

Outline. Section 2 provides background for the reader.

Section 3 presents our modeling of U-cores. Section 4 covers

the methods used for collecting performance and power.

Baseline results are presented in Section 5. Using a calibrated

model under ITRS scaling trends, the projections and key

results are given in Section 6. We offer conclusions and

directions for future work in Section 7.

2. Background

Our study of heterogeneous computing extends the analyti-

cal modeling for chip multiprocessors by Hill and Marty [11]

to include U-cores based on unconventional computing

paradigms such as custom logic, FPGAs, or GPUs. Figure 1

illustrates the chip models used in our study. The symmetric

multicore in (a) resembles the architecture of commercial

multicores today, consisting of identical high-performance

microprocessors coupled with private and lower-level shared

caches [14, 15, 16].

In (b), an asymmetric multicore consists of a single fast

microprocessor for sequential execution, while nearby mini-

mally sized baseline cores (we refer to these as Base-Core-

Equivalent—BCE as termed in [11]) are used to execute

parallel sections of code.

Finally, Figure 1 (c) illustrates a hypothetical heteroge-

neous multicore containing a conventional, sequential mi-

croprocessor coupled with a sea of U-cores. Although the

illustration shows U-cores as a distinct fabric, they can also be

viewed as being tightly coupled with processors themselves—

e.g., in the form of specialized functional units. Since our

studies focus on measurable technologies available today, we

do not present results for the “dynamic” multicore machine

model [11], which can hypothetically utilize all resources for

both serial and parallel sections of an application. This effect

is captured by our model if the resource in question is power

or bandwidth.

2.1. Review of “Amdahl’s Law for Multicore”

Before presenting the extensions of our model for single-

chip heterogeneous computing, we first review Amdahl’s

law [17] and the analytical multicore model presented by Hill

and Marty. Amdahl’s law calculates speedup based on the

original fraction of time f spent in sections of the program

that can be sped up by a factor S. Speedup = 1/(f
S
+1− f).

The extended forms of Amdahl’s Law for symmetric and

asymmetric multicore chip models by Hill and Marty are re-

printed below, which introduce two additional parameters, n

and r, to represent total resources available and those dedi-

cated towards sequential processing, respectively—in units of

BCE cores. (Note: all speedups are relative to the performance

of a single BCE core).

Speedupsymmetric (f ,n,r) =
1

1− f

per f seq(r)
+ f

(n/r)×per f seq(r)

Speedupasymmetric (f ,n,r) =
1

1− f

per f seq(r)
+ f

per f seq(r)+n−r

For all chip models, parallel work is assumed to be uniform,

infinitely divisible, and perfectly scheduled. In their initial

investigations [11], Hill and Marty use Pollack’s Law [12] as

input to their model, which observes that sequential process-

ing performance from microarchitecture alone grows roughly

with the square root of transistors used (per f seq (r) =
√

r).

2.2. U-cores in Heterogeneous Computing

The focus of our study is the modeling of unconventional

computing cores (U-cores) which were not considered previ-

ously. Our study covers three non-von-Neumann computing

approaches that have shown significant promise in terms

of energy-efficiency and performance: (1) custom logic,

226

(2) GPGPUs, and (3) FPGAs. Custom logic, in particular,

can provide the most energy-efficient form of computation

(typically 100-1000X improvement in either efficiency or

performance) through application-specific integrated circuits

(ASICs) customized to a specific task [18]. However, custom

logic is costly to develop and cannot be easily re-purposed

for new applications. Several proposals have suggested the

co-existence of custom logic along with general-purpose

processors in a single processing die (e.g., [6, 7]).

Flexible programmable accelerators such as GPGPUs have

also been shown to significantly outperform conventional

microprocessors in target applications [8, 9]. GPGPUs mainly

derive their capabilities through SIMD vectorization and

through multithreading to hide long latencies. In the space

of flexible accelerators, programmable fabrics such as field-

programmable gate arrays (FPGA) represent yet another

potential candidate in single-chip heterogeneous computing.

Unlike custom logic, FPGAs enable flexibility through pro-

grammable lookup tables (LUTs) that can be used to imple-

ment arbitrary logic circuits. In exchange for this flexibility, a

typical 10-100× gap in area and power exists between custom

logic and FPGAs [19].

2.3. Related Work

A substantial body of work has compared heterogeneous

options such as custom logic, GPUs, FPGAs, and multicores

(e.g., [20, 21, 22, 9]). However, most comparisons do not

factor out area/technology differences or platform-specific

limitations. Numerous projection studies based on ITRS have

been previously carried out, focusing mainly on the scalability

of chip multiprocessors (e.g., [23, 24, 25, 26, 4]). The grow-

ing body of research in single-chip asymmetric multicores is

also highly relevant to this work (e.g., [27, 28, 29]).

In addition to multicores, many other types of heteroge-

neous designs exist such as domain-specific processors for

digital signal processing [30], network off-loading [31], and

physics simulations [32]. Notable products and prototypes in-

clude the IBM Cell processor [33] that integrates a PowerPC

pipeline with multiple vector coprocessors, domain-specific

computing prototypes [34, 35], and emerging integrated CPU-

GPU architectures [36, 37].

Customization can also be facilitated through application-

specific instruction processors (ASIPs). For example, the

Xtensa tool from Tensilica [38] can generate custom ISAs,

register files, functional units, and other datapath components

that best “fit” an application. In the domain of reconfig-

urable computing, PipeRench [39] and RaPiD [40] were

early projects that developed reconfigurable fabrics for spe-

cialized streaming pipelined computations, while Garp [41],

Chameleon [42], PRISC [43], and Chimaera [44] combined

reconfigurable fabrics with conventional processor cores. Tar-

tan [45], CHIMPS [46], and other high-level synthesis tools

can also target high-level code to FPGAs.

Table 1: Bounds on area, power, and bandwidth.

Symmetric Asym-offload Heterogeneous

Area constraints n ≤ A n ≤ A n ≤ A

Parallel power bounds n ≤ P

rα/2−1 n ≤ P+ r n ≤ P
ϕ
+ r

Serial power bounds rα/2 ≤ P rα/2 ≤ P rα/2 ≤ P

Parallel bandwidth bounds n ≤ B
√

r n ≤ B+ r n ≤ B
µ + r

Serial bandwidth bounds r ≤ B2 r ≤ B2 r ≤ B2

Many extensions to Amdahl’s Law [17] have been pro-

posed. Gustafson’s model [47] revisits the fixed size input

assumption of Amdahl’s Law. Moncrieff et al. model varying

levels of parallelism and note the advantages of heterogeneous

systems [48]. Paul and Meyer revisit Amdahl’s assumptions

and develop sophisticted models for single chip systems [49].

Morad et al. study the power efficiency and scalability of

asymmetric chip multiprocessors [13]. Hill and Marty derive

corollaries for single-chip multicores and argue for the im-

portance of sequential processor performance [11]. Eyerman

et al.’s multicore model introduced critical sections [50].

Woo and Lee [51] consider energy, power, and other metrics

like performance per watt, while Cho and Melhem focus on

energy minimization and power-saving features [52].

3. Extending Hill and Marty

In this section, we present extensions to the model by Hill

and Marty to consider power and performance of single-

chip heterogeneous multicore designs based on U-cores.

In similar spirit to their investigations, our model is kept

deliberately simple and omits details such as memory hierar-

chy/interconnect and how U-cores communicate.

3.1. Extending the Model for Power

To extend our models to include the effects of power limi-

tations, we require a cost model that includes a power budget

that cannot be exceeded in either serial or parallel phases of

a workload. We first assume that a BCE core consumes an

active power of 1 while fully executing, which includes both

leakage and dynamic power. We assume that unused cores can

be powered off entirely without the overhead of static power.

To model a power budget, we introduce the parameter P,

which is defined relative to the active power of a BCE core.

To model power consumption of a sequential microprocessor

relative to a BCE core, a simple power law is used to capture

the super-linear relationship between performance and power

using powerseq (per f) = per f α where α was estimated to be

1.75 in [53]. Assuming Pollack’s Law (per f =
√

r) [12], the

power dissipation of the sequential core is related to the area

consumed through powerseq = per f α = (
√

r)
α
= rα/2.

Due to the higher power requirements of a sequential

core, the speedup formula we use in our study later is a

227

modified asymmetric model called asymmetric-offload, which

considers the case when the power-hungry sequential core is

powered off during parallel sections.

Speedupasymmetric−offload(f ,n,r) =
1

1− f

per f seq(r)
+ f

n−r

With our new parameters and assumptions in place, the first

three rows of Table 1 summarize how the original variables

from Hill and Marty, n and r, are now bounded together by

an area budget A (in units of BCE) and by power budget P.

The interpretation of a “bounded” n is simply the maximum

number of BCE resources that usefully contribute to overall

speedup. For example—if the n bounded by power is less than

the n bounded by area—power alone limits the number of

resources that can contribute to overall speedup. Similarly, the

serial power bounds shown in Table 1 also limit the amount of

resources (r) that can be allocated for sequential performance.

3.2. Model Extension for Bandwidth

Apart from power and area, limited off-chip bandwidth

is another concern that limits multicore scalability. We as-

sume that a BCE core (at least) consumes the compulsory

bandwidth of an application. We define this to be 1 for a

particular workload. This assumption optimistically assumes

that the working set size of an application or kernel can

fit within on-chip memories and ignores details such as

memory hierarchy organization. However, as we show later in

Section 5, tuned algorithms with inputs that can fit within on-

chip memories will typically achieve compulsory bandwidth

(as measured in our workloads in Section 5). (The bounds in

Table 1 can be easily modified if the application’s bandwidth

can be characterized as a function or constant factor of the

compulsory bandwidth.)

For each workload with its own bandwidth requirements,

a parameter B, in units of BCE compulsory bandwidth,

defines the maximum off-chip memory bandwidth available.

For bandwidth estimation of non-BCE processing cores, we

assume that bandwidth scales linearly with respect to BCE

performance—for example, a core twice as fast as a BCE core

consumes a bandwidth of 2. Table 1 (bottom) summarizes

how n and r are bounded to the maximum compulsory

bandwidth supported by the machine.

3.3. Modeling U-cores

With power and bandwidth in place, we now introduce

U-cores into our model. Recall from earlier that a U-core

represents an unconventional form of computing such as

custom logic, GPUs, or FPGAs. To model this, we begin

with the assumption that a BCE-sized U-core can be used

to execute exploitable parallel sections of code at a relative

performance of µ compared to a BCE core. In addition, an

actively executing U-core consumes a power of φ , which is

in units of BCE power. Together, µ and φ characterize a

design space for U-cores. For instance, a U-core with µ > 1

and φ = 1 can be viewed as an accelerator that consumes the

same level of power as before. Similarly, if µ = 1 but φ < 1,

the same level of performance is achieved as before but with

lower power. For heterogeneous multicores based on U-cores,

the new speedup formula is shown below:

Speedupheterogeneous =
1

1− f

per fseq(r)
+ f

µ(n−r)

We assume that the conventional microprocessor does not

contribute to speedup during parallel sections of execution.

Similar to Hill and Marty [11], we assume that parallel

performance scales linearly with the resources used to execute

parallel sections of code.

Table 1 (last column) shows how the n variable must also

be similarly constrained by the power and bandwidth require-

ments of U-cores. (Note how lower φ values diminish the

impact of power budget P, whereas higher µ values increase

bandwidth consumption.) With our model in place, the next

section describes the methodology used to obtain accurate

parameters in order to perform our single-chip heterogeneous

study using U-cores based on ASICs, FPGAs, and GPUs.

4. Methodology

To obtain reasonable U-core parameters (φ , µ), we mea-

sure performance and power of real systems. To satisfy the

assumption in our model that U-core performance scales

linearly with the amount of resources used, we ensured that

all measured applications on a given system are compute-

bound, such that performance increases would not be possible

without more chip area.

Table 2 summarizes the various devices selected in our

study. The Core i7-960 is a 4-way multicore from Intel [54]

that serves as a baseline for calibrating BCE parameters.

The GTX285 and GTX480 are two successive generations

of high-performance, programmable GPUs from Nvidia [55],

while the R5870 is a similarly-capable GPU from AMD [56].

The Virtex-6 LX760 is the largest FPGA available from

Xilinx [57], and 65nm commercial synthesis flows are used

to synthesize custom logic for each application.

In Table 2 we show the estimated area contribution from

core- and cache-only components, which will be used later

to estimate U-core parameters. For devices with available

die photos, we subtracted non-compute areas such as on-die

memory controllers and I/O. For the R5870 without a die

photo, we based our estimates assuming a non-compute over-

head of 25%. For the FPGA, we estimated the area per LUT

and associated overhead to be roughly .00191mm2, including

the amortized overhead of flip-flops, RAMs, multipliers, and

interconnect. To estimate areas for the ASIC cores, we used

Synopsys Design Compiler [58] targeting a commercial 65nm

standard cell library.

228

Table 2: Summary of devices.

Core i7-960 GTX285 GTX480 R5870 V6-LX760 ASIC

Technology

Year 2009 2008 2010 2009 2009 2007
Node Intel/45nm TSMC/55nm TSMC/40nm TSMC/40nm UMC/Samsung/40nm 65nm

Die area 263mm2 470mm2 529mm2 334mm2 - -

Core area 193mm2 338mm2 422mm2 - - -
Clock rate 3.2GHz 1.476GHz 1.4GHZ 1.476GHz - -
Voltage 0.8-1.375V 1.05-1.18V 0.96-1.025V 0.95-1.174V 0.9-1.0V 1.1V

Platform

System ASUS P6T XFX 285 eVGA 480 XFX 5870 - -
Memory 3GB DDR3 1GB GDDR3 1.5GB GDDR5 1GB GDDR5 -
Bandwidth 32GB/sec 159GB/sec 177.4GB/sec 153.6GB/sec - -

Table 3: Summary of workloads.

Core i7-960 GTX285 GTX480 R5870 LX760 ASIC

Dense Matrix Multiplication (MMM) MKL 10.2.3 CUBLAS 2.3 CUBLAS 3.0/3.1beta CAL++ Bluespec (by hand)
Fast Fourier Transform (FFT) Spiral CUFFT 2.3/3.0/3.1beta CUFFT 3.0/3.1beta – Verilog (Spiral-generated)
Black-Scholes (BS) PARSEC (modified) CUDA 2.3 CUDA 3.1 ref. – Verilog (generated)

4.1. Overview of Workloads

The algorithms and workloads we study are shown in

Table 3. Matrix-Matrix Multiplication (MMM), in particular,

is a kernel with high arithmetic intensity and simple memory

requirements. Fast Fourier Transform (FFT), on the other

hand, possesses complex dataflow and memory requirements,

while Black-Scholes (BS) was selected due its rich mixture of

arithmetic operators. To satisfy compute-bound requirements,

all kernels are assumed to be throughput-driven, i.e., many

independent inputs are being computed. In all cases, we

employed single-precision, IEEE-compliant floating point.

For the CPUs and GPUs, we used various tuned math

libraries for Matrix-Matrix Multiplication (MMM). To obtain

optimized FFT implementations for the Core i7, we utilized

the Spiral framework [59]. For the Nvidia-based GPUs, we

used the best results across three of the latest versions

of CUFFT [60]. For Black-Scholes on the GPU, we used

reference code from Nvidia. For the CPU, we used the

multithreaded version from PARSEC [61] and added addi-

tional SSE optimizations. We were unable to obtain optimized

FFT/BS for the R5870 and BS for the GTX480.

For the FPGA and ASIC, we developed an optimized im-

plementation of MMM by hand. For FFTs, we used the Spiral

framework to generate optimized synthesizable RTL [62].

Finally, for Black-Scholes, we developed a software tool to

automatically create hardware pipelines from a high-level

description of math operators. To ensure a fully-utilized

FPGA, designs were scaled until timing could no longer be

met. For the ASIC, we synthesized the same designs and

estimated results using Synopsys Design Compiler 2009-06-

SP5 configured with commercial 65nm standard cells. We

used Cacti [63] to model SRAM area and power for the ASIC.

4.2. Power Methodology

To collect power data, a current probe was used to measure

various devices while running applications in steady state.

For the Core i7, we measured the EATX12V power rail,

which only supplies power to the cores and private L1/L2

caches [64]. At time of publication, we did not possess

a platform with the LX760 FPGA, and instead, relied on

a smaller FPGA (LX240T/ML605) to perform our power

measurements.

Although beyond the scope of this work, a significant

amount of effort was placed into measuring GPU power

consumption, due to the numerous non-computing related

components (e.g., RAM). To achieve this, a set of mi-

crobenchmarks were designed to measure and subtract out

non-compute power dissipation from on-die memory con-

trollers and off-chip GDDR memory. Power results for the

ASIC were estimated from synthesis tools.

5. Baseline Performance and Power

In this section we present baseline performance and power

results. To explain how U-core parameters are derived, we

use FFT as a case study, and present the remaining results

for other workloads at the end. Starting with Figure 2 (top), all

device performances are plotted from input sizes 24 to 220.

However, without normalizing for die area, comparing any

two devices at face value would not be fair in the context of

designing a single chip multicore. Instead, Figure 2 (bottom)

normalizes all performances to die area in 40nm/45nm. As

expected, the ASIC FFT cores achieve nearly 100X im-

provement over the flexible cores (FPGA, GPU), and nearly

1000X improvement over the Core i7. Figure 3 shows the

total power consumption of devices. A similar normalization

step for comparing power is illustrated in Figure 4 (top). As

expected, the ASIC achieves nearly two orders of magnitude

improvement in power and 10X over the GPUs/FPGA.

A final step we took was to verify that the FFTs were

compute-bound. To achieve this, we used CPU and GPU

performance counters to measure off-chip bandwidth. A no-

table result for the GPU is shown in Figure 4 (bottom),

229

0

50

100

150

200

250

5 7 9 11 13 15 17 19 4 6 8 10 12 14 5 7 9 11 13 15 17 19 4 6 8 10 12 14 16 18 20 5 7 9 11 13

Core i7 LX760 GTX285 GTX480 ASIC

P
o

w
e

r
(w

)
FFT Power Consumption Breakdown (non-normalized)

Unknown Core Leakage Uncore Static Uncore Dynamic Core Dynamic

Figure 3: FFT Power Consumption (x-axis is FFT input size in log2 N).

100

1000

P
s

e
u

d
o

-G
F

L
O

P
/s

FFT Performance (non-normalized)

Core i7 LX760

GTX285 GTX480

ASIC
10

100

1000

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
s

e
u

d
o

-G
F

L
O

P
/s

Log2(N)

FFT Performance (non-normalized)

Core i7 LX760

GTX285 GTX480

ASIC

100

P
/s

 p
e

r

Area-normalized FFT Performance (40nm)

Core i7

LX760

GTX285

GTX480

0.1

1

10

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
s

e
u

d
o

-G
F

L
O

P
m

m
2

Log2(N)

GTX480

ASIC

Figure 2: FFT performance in pseudo-GFLOPS/s

(# FLOPS = 5N log2 N).

where the GTX285 consumes compulsory bandwidth for

input sizes until 212 when the data no longer fits in on-

chip memory. When data fits on-chip, the GTX285 does

not reach the peak bandwidth of 159GB/sec, which suggests

compute-bound performance. Interestingly, the GTX285 is

still compute-bound for input sizes ≥ 212 due to increasing

arithmetic intensity and efficient out-of-core algorithms being

employed. For the GTX480, we were unable to measure the

bandwidth counters—thus, our results may not necessarily

reflect compute-bound performance.

Summary of Results. The absolute performance and nor-

malized results for remaining workloads (MMM and BS)

are summarized in Table 4. For MMM, the R5870 GPU

performed the best, achieving nearly 1.5 TeraFLOPs of

performance. With a small die size, the R5870 achieves a

high area-normalized performance almost comparable to the

dedicated ASIC core (although still less energy-efficient).

We were surprised that the GTX480 only achieved a 27%

improvement in MMM over the GTX285 using the CUBLAS

10

100

s
 p

e
r

J

FFT Energy Efficiency (40nm)

Core i7

LX760

GTX285

GTX480

ASIC

0

1

10

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
s

e
u

d
o

-G
F

L
O

P
s

Log2(N)

ASIC

40

60

80

100

120

140

160
y
 B

a
n

d
w

id
th

 (
G

B
/s

e
c
) FFT Bandwidth

0

20

40

60

80

100

120

140

160

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
e
m

o
ry

 B
a
n

d
w

id
th

 (
G

B
/s

e
c
)

Log2(N)

FFT Bandwidth

FFT compulsory bandwidth (GTX285)
FFT measured bandwidth (GTX285)
FFT compulsory bandwidth (GTX480)

Figure 4: FFT energy efficiency and bandwidth.

library (we expected a doubling of throughput); it possible

that further software tuning is needed.

5.1. Deriving U-core Parameters

Recalling from Section 3.3, φ and µ are parameters that

characterize a BCE-sized U-core, where φ is the relative

power efficiency to a BCE core, and µ is the relative perfor-

mance. To determine parameters of the BCE core, we treat

the Core i7 as a fast core and derive BCE core parameters. To

determine “r” for the Core i7, we base our estimates on an

Intel Atom, which is a 26mm2 in-order processor in the 45nm

process [65] (we subtract 10% for non-compute area). An r

value of 2 roughly gives the equivalent size of a single Core

i7 (about 193mm2/(4 cores)). Based on formulas that relate

performance and power to area (per f =
√

r, power = rα/2),

we derive per f/mm2 and per f/W for the BCE core (we

assume α = 1.75 [53]). These derived metrics are then used

to compute φ and µ1 for various U-cores in Table 5.

1. µ = xucore

xcorei7
√

r
where xi=

per f

mm2 ; φ = µ×ecorei7

r(1−α)/2×eucore
where ei=

per f
watt

.

230

Table 4: Summary of results for MMM and BS.

GFLOP/s (GFLOP/s)/mm2 GFLOP/J

MMM

Core i7 96 0.50 1.14
GTX285 425 2.40 6.78
GTX480 541 1.28 3.52
R5870 1491 5.95 9.87
LX760 204 0.53 3.62
ASIC 694 19.28 50.73

Mopts/s (Mopts/s)/mm2 Mopts/J

Black-Scholes

Core i7 487 2.52 4.88
GTX285 10756 60.72 189
GTX480 - - -
R5870 - - -
LX760 7800 20.26 138
ASIC 25532 1719 642.5

Table 5: U-core parameters (φ = relative BCE power

efficiency, µ = relative BCE performance).

MMM BS FFT-64 FFT-1024 FFT-16384

GTX285
φ 0.74 0.57 0.59 0.63 0.89
µ 3.41 17.0 2.42 2.88 3.75

GTX480
φ 0.77 - 0.39 0.47 0.66
µ 1.83 - 1.56 2.20 2.83

R5870
φ 1.27 - - - -
µ 8.47 - - - -

LX760
φ 0.31 0.26 0.29 0.29 0.37
µ 0.75 5.68 2.81 2.02 3.02

ASIC
φ 0.79 4.75 5.34 4.96 6.38
µ 27.4 482 733 489 689

6. Scaling Projections

In this section, we apply our model using U-core param-

eters from Table 5 to project the performance of single-chip

heterogeneous computing devices based on the ITRS 2009

road map [5]. Figure 5 shows the long-term expected trends

for pin count, Vdd, and gate capacitance. Assuming that

clock frequencies do not increase, the reduction in power per

transistor is expected to drop only by a factor of 5X over the

next fifteen years (in contrast to the doubling of transistor

density with each additional technology node). An even more

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o

rm
a
li
z
e
d

 t
o

 2
0
1
1

ITRS 2009 Projections

Package pins

Vdd

Gate capacitance

Combined technology power reduction

Figure 5: ITRS 2009 Scaling Projections

(High-performance MPUs and ASICs [5]).

Table 6: Parameters assumed in technology scaling.

Year 2011 2013 2016 2019 2022

Technology node 40nm 32nm 22nm 16nm 11nm

Core die budget (mm2) 432 432 432 432 432
Core power budget (W) 100 100 100 100 100
Bandwidth (GB/s) 180 198 234 234 252
Max area (BCE units) 19 37 75 149 298
Rel. pwr per transistor 1X 0.75X 0.5X 0.36X 0.25X
Rel. bandwidth 1X 1.1X 1.3X 1.3X 1.4X

serious challenge is the slowing of bandwidth, as evidenced

by the gradual increases in projected pin counts (< 1.5X over

fifteen years).

With these challenges in mind, we pose several critical

questions: (1) under a bandwidth- and power-limited exis-

tence, would future single-chip multicores benefit signifi-

cantly from having custom logic, FPGAs, and GPUs? (2) for

the best possible performance, will custom logic always be

the right answer under a power- and bandwidth-dominated

regime? and (3) would our conclusions change if lowering

total energy is the primary objective instead of maximizing

performance?

To investigate these questions, we scale the performance

of heterogeneous and non-heterogeneous multicores based on

ITRS predictions. Table 6 summarizes various parameters and

assumptions. We allow a maximum die budget of 576mm2

(e.g., Power7 [66]) and reserve 25% area for non-compute

components (e.g., on-die memory controllers) [26]. A 100W

power budget was selected for core- and cache-only com-

ponents (not including power reserved for the non-compute

components). We assume that clock frequencies do not scale

further after 40nm.

For bandwidth, we assume that 180 GB/s can be opti-

mistically reached in 2011 based on state-of-the-art high-

end devices today (rounding up GTX480’s 177GB/s). To

estimate the compulsory bandwidth for FFT2, we assume

an input size of 1024, which gives 0.32
bytes
f lop

. For Black-

Scholes, the compulsory bandwidth is
10bytes
option

. To compute

compulsory bandwidth for MMM3, we assume square matrix

inputs blocked at N = 128, which gives 0.0313
bytes
f lop

. We

exclude the ASIC-based MMM core from this constraint,

since our design at 40nm can support N ≥ 2048.

6.1. Overview of Results

The scaling projections for all U-core-based heterogeneous

multicores (referred to as HET) and non-heterogeneous mul-

ticores (referred to as CMP) are shown starting with Figure 6.

In each figure, we vary the f parameter, which indicates the

fraction of time a particular kernel (e.g., FFT, MMM, BS)

is being sped up by U-cores. To determine the optimal size

of the sequential core, we sweep all values of r (sequential

2. FFT arithmetic intensity (32-bit) =
5N log2 N f lops

16×Nbytes
= 0.3125log2 N.

3. MMM arithmetic intensity (32-bit) =
2×N3 f lops

2×4N2bytes
= N/4.

231

 0

 1

 2

 3

 4

 5

 6

 7

 8

40nm 32nm 22nm 16nm 11nm

S
p
e
e
d
u
p

f=0.500

 0

 5

 10

 15

 20

 25

40nm 32nm 22nm 16nm 11nm

S
p
e
e
d
u
p

f=0.900

 0

 10

 20

 30

 40

 50

 60

40nm 32nm 22nm 16nm 11nm

S
p
e
e
d
u
p

f=0.990

 0

 10

 20

 30

 40

 50

 60

 70

40nm 32nm 22nm 16nm 11nm

S
p
e
e
d
u
p

f=0.999

(0) SymCMP
(1) AsymCMP

(2) LX760

(3) GTX285
(4) GTX480

(6) ASIC

Figure 6: FFT-1024 projection.

(Dashed lines = power-limited, solid = bandwidth-limited)

core size) up to 16 for each particular design point and report

the maximum speedup. All speedups are reported relative to

1 BCE core. To interpret the graphs, data points that are

connected by dashed lines indicate designs that cannot be

scaled any further due to power (i.e., the full area budget

cannot be utilized). Data points that are connected by solid

lines indicate bandwidth-limited designs. Finally, data points

that not connected by lines are limited only by area.

FFT. Beginning with FFT-1024 in Figure 6, four different

graphs are plotted with varying amounts of parallelism (f).

At all values of f , the ASIC achieves the highest level

of performance but cannot scale further due to bandwidth

limitations. At f = 0.5, the lack of sufficient parallelism

results in none of the HETs providing a significant perfor-

mance gain over the CMPs—despite being more energy-

efficient. The pronounced differences emerge when f ≥ 0.90.

Here, the HETs achieve more performance per unit power,

which only becomes beneficial with sufficient parallelism.

However, even with sufficient parallelism beyond f ≥ 0.99,

the lack of memory bandwidth limits any further speedup. It

 0
 1
 2
 3
 4
 5
 6
 7
 8

40nm 32nm 22nm 16nm 11nm

S
p
e
e
d
u
p

f=0.500

 0

 5

 10

 15

 20

 25

 30

 35

 40

40nm 32nm 22nm 16nm 11nm

S
p
e
e
d
u
p

f=0.900

 0

 50

 100

 150

 200

 250

 300

40nm 32nm 22nm 16nm 11nm

S
p
e
e
d
u
p

f=0.990

 0

 200

 400

 600

 800

 1000

40nm 32nm 22nm 16nm 11nm

S
p
e
e
d
u
p

f=0.999

(0) SymCMP
(1) AsymCMP

(2) LX760
(3) GTX285

(4) GTX480
(5) R5870

(6) ASIC

Figure 7: MMM projection.

(Dashed lines = power-limited, solid = bandwidth-limited)

is interesting to note that the FPGA design reaches ASIC-

like bandwidth-limited performance as early as 32nm—and

similarly for the GPU designs, around 22nm and 16nm.

MMM. Results for MMM are shown in Figure 7. Unlike

FFT, MMM possesses high arithmetic intensity and consumes

relatively low memory bandwidth. For all values of f , the

ASIC achieves the highest performance without becoming

bandwidth-limited. However, unless f ≥ 0.999, less-efficient

approaches based on GPUs or FPGAs can still achieve

speedups within a factor of two to five of the ASIC. It is also

interesting to see how most designs are initially area-limited

in 40nm and 32nm, but transition to becoming power-limited

22nm and after.

Black-Scholes. The results for Black-Scholes in Figure 8

are similar to FFT, where most HET designs quickly converge

towards becoming bandwidth-limited. However, without suf-

ficient parallelism (f ≤ 0.5), even the conventional CMPs

achieve speedups within a factor of two of the ASIC. Just

as we observed in FFT, sufficient parallelism must exist

232

 0
 1
 2
 3
 4
 5
 6
 7
 8

40nm 32nm 22nm 16nm 11nm

S
p
e
e
d
u
p

f=0.500

 0

 5

 10

 15

 20

 25

 30

 35

40nm 32nm 22nm 16nm 11nm

S
p
e
e
d
u
p

f=0.900

(0) SymCMP
(1) AsymCMP

(2) LX760

(3) GTX285
(6) ASIC

Figure 8: Black-Scholes projection.

(Dashed lines = power-limited, solid = bandwidth-limited)

(f ≥ 0.9) before the HETs can offer significant performance

benefits over the CMPs. It is interesting to note again that

the FPGAs and GPUs are also able to attain ASIC-like

bandwidth-limited performance.

6.2. Projections under Alternative Scenarios

To investigate other scaling scenarios, we vary the fol-

lowing inputs to our model: (1) reduce initial bandwidth (in

40nm) to 90 GB/s, (2) increase bandwidth to 1 TB/s, (3) halve

core-only area budget to 216mm2, (4) double power budget

to 200W , (5) decrease power to 10W , and (6) increase core

sequential power by setting α to 2.25. Below, we explain the

rationale for each scenario and discuss results qualitatively.

Scenarios 1 and 2 (bandwidth). A starting bandwidth

of 90 GB/s approximates a reduction in off-chip bandwidth

costs (i.e., about half of what can be built into the highest-end

designs in 40nm). We observe that FFT and BS on the FPGAs

and GPUs converge even faster to the ASIC’s performance

in earlier technology nodes (i.e., becoming bandwidth-limited

at 32nm). However, because of the low bandwidth ceiling

in FFT, the CMPs also achieve within a factor of two of

the ASICs at around 22nm (at any f). In BS, the large gap

between HETs and CMPs still exists because the CMPs are

unable to achieve close to bandwidth-limited performance.

To approximate disruptive technologies such as embedded

DRAMs or 3D-stacked memories [67], our next scenario

assumes a starting bandwidth of 1 TB/sec. For FFT, Figure 9

shows how most designs transition to becoming power-

limited, with the ASIC still being bandwidth-limited from

the start. At f = 0.9, all of the HETs provide further gains

over the CMPs (around 2-3X speedup). However, the ASIC

can only provide a significant speedup (about 2X) over the

other HET approaches when f ≥ 0.999.

 0
 1
 2
 3
 4
 5
 6
 7
 8

40nm 32nm 22nm 16nm 11nm

S
p
e
e
d
u
p

f=0.500

 0

 5

 10

 15

 20

 25

 30

 35

 40

40nm 32nm 22nm 16nm 11nm

S
p
e
e
d
u
p

f=0.900

 0

 50

 100

 150

 200

40nm 32nm 22nm 16nm 11nm

S
p
e
e
d
u
p

f=0.990

 0

 50

 100

 150

 200

 250

 300

 350

40nm 32nm 22nm 16nm 11nm

S
p
e
e
d
u
p

f=0.999

(0) SymCMP
(1) AsymCMP

(2) LX760

(3) GTX285
(4) GTX480

(6) ASIC

Figure 9: FFT-1024 projection given 1 TB/sec bandwidth.

(Dashed lines = power-limited, solid = bandwidth-limited)

Scenario 3 (area). Reducing the area budget approxi-

mates lower-cost manufacturing constraints (e.g., increasing

yield). In this scenario, HETs in the earlier nodes (40nm,

32nm) become area-limited and provide less speedup over the

CMPs. Surprisingly, in the later nodes (≤22nm), most designs

achieve similar performance to what was attained under the

original area budget. The explanation is that most designs

in the later nodes are limited by power to begin with, not

because of insufficient area.

Scenarios 4 and 5 (power budget). Doubling the power

budget to 200W approximates high-end systems with more

capable cooling and power solutions. Under a higher power

budget, the relative benefit of having energy-efficient HETs

diminishes since the less efficient CMPs are able to close

the gap in performance; this is especially noticeable in FFT

when most HETs become bandwidth-limited. On the other

hand, a 10W power budget approximates power-constrained

devices such as laptops and mobiles. Here, we observe that

only the ASIC-based HETs can ever approach bandwidth-

limited performance, giving them an significant advantage

233

over the power-constrained HETs and CMPs.

Scenario 6 (serial power). Our last scenario approximates

a sequential processor that consumes high power when scaled

in performance (setting α = 2.25). The trends are similar

to the original projections with one notable exception. At

low to moderate parallelism (f ≤ 0.9), the speedups decrease

significantly. Because the sequential processor’s size is con-

strained by the serial power budget (rα/2 ≤ P), the optimal

size of the core cannot be attained. Our results agree with Hill

and Marty [11]—that is, improving sequential performance

remains important. However, such performance cannot be

achieved without accompanying improvements in sequential

power efficiency.

6.3. Discussion

Our results show that the complex interplay between

bandwidth, power, and parallelism has tremendous impli-

cations for various heterogeneous and non-heterogeneous

computing approaches. To answer the first question—would

future multicores gain from having custom logic, FPGAs, and

GPGPUs?—our projections reveal that heterogeneous multi-

cores based on U-cores do achieve significant performance

gain over asymmetric and symmetric multicores—despite the

scarcity of bandwidth. This performance is achieved with the

increased power efficiency of U-cores and when sufficient

parallelism exists (f ≥ 0.90).

To answer the second question—if custom logic is always

the right answer—a recurring theme we observed throughout

was the impact of scarce bandwidth. Although custom logic

provided the best performance under all circumstances, less

efficient solutions such as GPUs and FPGAs were also able to

reach bandwidth-limited performance for FFT and BS. Even

in the case of MMM, which possessed the highest arithmetic

intensity, the ASIC did not show significant benefits over the

less efficient solutions unless f > 0.99.

Recalling the last question—if energy should be prioritized

over performance—we briefly show an example that justifies

why custom logic may be desirable even if parallelism is

low or if memory bandwidth is a limitation. In Figure 10,

the total energy consumed (normalized to BCE energy at

40nm) for various devices is plotted for MMM. Note that the

energy decreases across generations are partially attributed to

circuit improvements. At low levels of parallelism (f = 0.5),

the opportunity to reduce the energy consumed is limited

by the sequential core. However, at even moderate levels

of parallelism (f = 0.9 − 0.99), the ASIC still achieves a

significant reduction in energy relative to the other U-cores.

Although we do not quantify this in our study, custom

logic and other low-power U-cores could potentially be used

to reduce sequential power consumption or to efficiently

improve sequential processing performance. First, if the goal

is to achieve the same level of performance as a baseline

 0

 0.5

 1

 1.5

 2

 2.5

40nm 32nm 22nm 16nm 11nm

E
n
e
rg

y
 (

n
o
rm

a
liz

e
d
)

f=0.500

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

40nm 32nm 22nm 16nm 11nm

E
n
e
rg

y
 (

n
o
rm

a
liz

e
d
)

f=0.900

 0

 0.2

 0.4

 0.6

 0.8

 1

40nm 32nm 22nm 16nm 11nm

E
n
e
rg

y
 (

n
o
rm

a
liz

e
d
)

f=0.990

(0) SymCMP
(1) AsymCMP

(2) LX760
(3) GTX285

(4) GTX480
(5) R5870

(6) ASIC

Figure 10: MMM Energy Projections (normalized to BCE).

system with processors, a U-core can be used to speed

up parallel sections of an application while allowing the

sequential processor to slow down with a significant reduction

in power [1, 2]. Another previously proposed method [6]

allows a power-hungry sequential processor to offload sec-

tions of serial code to custom logic. While custom logic can

satisfy this role easily, reconfigurable fabrics such as FPGAs

could also be used to fulfill this objective (e.g., [45, 46]).

Finally, given the ability of custom logic and FPGA-like

fabrics to extract multiple degrees of parallelism, U-cores

based on these techniques may also be suitable for increasing

sequential processor performance at a lower energy cost.

Relative U-core merits. Although our studies compared

designs based on different U-cores, more compelling ap-

proaches would allow for mixing and matching. In our

study, a simplifying assumption we made is that all U-cores

and processors can expose identical levels of parallelism.

As seen in practice (e.g., [22, 20, 21, 20]), GPGPUs have

typically shown their strength for homogeneous data paral-

lel tasks, while custom logic and FPGAs can be used to

pipeline irregular data flows as well as data parallel tasks.

Furthermore, the FPGA results we present should be treated

conservatively given our selection of single-precision floating

point applications (FPGAs lack dedicated FPUs.) With the

abundance of area (but shortage of power) in the future, a

compelling prospect is to fabricate different U-cores that are

powered on-demand for suitable tasks. In similar spirit to

234

suggestions made by others such as Hardavellas [24] and

Venkatesh et al. [6], specialized cores could be mixed and

matched towards specific applications. For example, a high

arithmetic intensity kernel such as MMM could be fabricated

as custom logic alongside GPU- or FPGA-based U-cores used

to accelerate bandwidth-limited kernels such as FFTs.

Model validity and concerns. By no means is our model

infallible, nor our workloads universally representative. We

remind that the objectives of this work are not to pinpoint

exact design results, but to identify trends worthy of further

investigations. Our selection of workloads, although limited,

capture a spread of different characteristics. Our model,

although simple, captures the salient constraints that any

designer must be conscious of. The quality of our predictions

will depend on two assumptions: (1) microarchitectures based

on conventional CPUs, FPGAs, and GPGPUs do not change

substantially in the future, and (2) ITRS predictions are

correct. Obviously, the further we predict, the higher chance

that some predictions will go askew. To check the quality of

our predictions, we are pursuing further studies using older

devices; data already collected from 55nm/65nm devices

support the same conclusions from Section 6. Lastly, although

programmability is an often raised concern, we deliberately

excluded it from consideration. From our experience in de-

veloping high performance FFT libraries [59], the tuning of

high-valued kernels on GPGPUs, FPGAs, or even CPUs will

always require substantial investment.

7. Conclusions and Future Directions

To answer the question posed in the title of this paper—

whether the future should include custom logic, FPGAs, and

GPGPUs—the evidence from our measurements and from

the projections made in our model show a strong case that

the answer is yes. Our findings showed that: (1) sufficient

parallelism must exist before U-cores offer significant perfor-

mance gains, (2) off-chip bandwidth trends have a first-order

effect on the relative merits of various U-cores (i.e., flexible

U-cores can keep up with U-cores based on custom logic

if bandwidth is a limitation), (3) even when bandwidth is

not a concern, less efficient but more flexible U-cores based

on GPUs and FPGAs are competitive with custom logic if

parallelism is moderate to high (90%−99%), and (4) U-cores,

especially those based on custom logic, are more broadly

useful if reducing energy or power is the primary goal.

There are numerous future directions worth pursuing. First,

improved models and further case studies will be essential to

sorting out the complex maze of choices a heterogeneous

multicore designer must face. Models in the future should

attempt to incorporate varying degrees of parallelism in an

application, in order to capture how “suitable” certain types

of U-cores might be under a given parallelism profile. Second,

although significant research is underway for GPUs, little

work has been done on integrating FPGAs with conventional

multicores. Many issues require investigation such as how

FPGAs should be integrated into existing software stacks and

memory hierarchies. Finally, the most immediate challenge on

the horizon is how to attack memory bandwidth limitations.

While U-cores are effective at scaling the power wall, their

long-term impact will increase even further if the bandwidth

ceiling can be lifted through future innovations.

Acknowledgments

We thank the anonymous reviewers, members of CALCM,

and John Davis for their feedback and suggestions. We thank

Nikos Hardavellas for his influencing work on CMP scaling

projections. Eric Chung is supported by a Microsoft Research

Fellowship. We thank Spiral for providing FFT libraries and

support. We thank Xilinx for their FPGA and tool donations.

References

[1] T. Mudge, “Power: A First-Class Architectural Design Constraint,”
Computer, vol. 34, no. 4, pp. 52–58, 2001.

[2] S. Borkar, “Getting Gigascale Chips: Challenges and Opportunities in
Continuing Moore’s Law,” Queue, vol. 1, no. 7, pp. 26–33, 2003.

[3] M. Horowitz, “Scaling, Power and the Future of CMOS,” in Proceed-

ings of the 20th International Conference on VLSI Design held jointly

with 6th International Conference: Embedded Systems. Washington,
DC, USA: IEEE Computer Society, 2007, p. 23.

[4] B. M. Rogers et al., “Scaling the Bandwidth Wall: Challenges in and
Avenues for CMP Scaling,” in ISCA’09: Proceedings of the 36th Annual

International Symposium on Computer Architecture. New York, NY,
USA: ACM, 2009, pp. 371–382.

[5] International Technology Roadmap for Semiconductors. http://www.
itrs.net.

[6] G. Venkatesh et al., “Conservation Cores: Reducing the Energy of
Mature Computations,” in ASPLOS’10: Proceedings of the 15th In-

ternational Conference on Architectural Support for Programming

Languages and Operating Systems. New York, NY, USA: ACM,
2010, pp. 205–218.

[7] S. Yehia et al., “Reconciling Specialization and Flexibility Through
Compound Circuits,” in HPCA’09: Proceedings of the 15th Interna-

tional Symposium on High Performance Computer Architecture, 14-18
2009, pp. 277 –288.

[8] D. Luebke et al., “GPGPU: General Purpose Computation on Graphics
Hardware,” in SIGGRAPH ’04: ACM SIGGRAPH 2004 Course Notes.
New York, NY, USA: ACM, 2004, p. 33.

[9] V. W. Lee et al., “Debunking the 100X GPU vs. CPU Myth: An
Evaluation of Throughput Computing on CPU and GPU,” in ISCA’10:

Proceedings of the 37th Annual International Symposium on Computer

Architecture. New York, NY, USA: ACM, 2010, pp. 451–460.
[10] S. Hauck et al., Reconfigurable Computing: The Theory and Practice

of FPGA-Based Computing. Morgan Kaufmann, 2008.
[11] M. D. Hill et al., “Amdahl’s Law in the Multicore Era,” Computer,

vol. 41, pp. 33–38, 2008.
[12] F. J. Pollack, “New Microarchitecture Challenges in the Coming

Generations of CMOS Process Technologies (keynote address),” in
MICRO’99: Proceedings of the 32nd Annual ACM/IEEE International

Symposium on Microarchitecture. Washington, DC, USA: IEEE
Computer Society, 1999, p. 2.

[13] T. Y. Morad et al., “Performance, Power Efficiency and Scalability
of Asymmetric Cluster Chip Multiprocessors,” IEEE Comput. Archit.

Lett., vol. 5, no. 1, p. 4, 2006.
[14] Intel Inc. (2009) Intel Microarchitecture, Codenamed Nehalem.

http://www.intel.com/technology/architecture-silicon/nextgen.
[15] C. N. Keltcher et al., “The AMD Opteron Processor for Multiprocessor

Servers,” IEEE Micro, vol. 23, no. 2, pp. 66–76, 2003.

235

[16] D. Wentzlaff et al., “On-Chip Interconnection Architecture of the Tile
Processor,” IEEE Micro, vol. 27, no. 5, pp. 15–31, 2007.

[17] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in AFIPS’67 (Spring): Proceedings

of the April 18-20, 1967, spring joint computer conference. New York,
NY, USA: ACM, 1967, pp. 483–485.

[18] W. J. Dally et al., “Efficient Embedded Computing,” Computer, vol. 41,
no. 7, pp. 27–32, 2008.

[19] I. Kuon et al., “Measuring the Gap Between FPGAs and ASICs,” in
FPGA’06: Proceedings of the 2006 ACM/SIGDA 14th International

Symposium on Field Programmable Gate Arrays. New York, NY,
USA: ACM, 2006, pp. 21–30.

[20] S. Che et al., “Accelerating Compute-Intensive Applications with
GPUs and FPGAs,” in SASP’08: Proceedings of the 2008 Symposium

on Application Specific Processors. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 101–107.

[21] D. B. Thomas et al., “A Comparison of CPUs, GPUs, FPGAs, and
Massively Parallel Processor Arrays for Random Rumber Generation,”
in FPGA’09: Proceeding of the ACM/SIGDA International Symposium

on Field Programmable Gate Arrays. New York, NY, USA: ACM,
2009, pp. 63–72.

[22] N. Kapre et al., “Accelerating SPICE Model-Evaluation using FPGAs,”
Field-Programmable Custom Computing Machines, Annual IEEE Sym-

posium on, vol. 0, pp. 37–44, 2009.
[23] N. Hardavellas, “Chip-Multiprocessors for Server Workloads,” Ph.D.

dissertation, 2009, supervisors-Babak Falsafi and Anastasia Ailamaki.
[24] N. Hardavellas, “When Core Multiplicity Doesn’t Add Up (Keynote),”

in International Symposium on Parallel and Distributed Computing,
Istanbul, Turkey, July 2010.

[25] S. Li et al., “McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures,” in MICRO’09:

Proceedings of the 42nd Annual IEEE/ACM International Symposium

on Microarchitecture. New York, NY, USA: ACM, 2009, pp. 469–480.
[26] J. D. Davis et al., “Maximizing CMP Throughput with Mediocre

Cores,” in PACT’05: Proceedings of the 14th International Conference

on Parallel Architectures and Compilation Techniques. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 51–62.

[27] R. Kumar et al., “Heterogeneous Chip Multiprocessors,” Computer,
vol. 38, no. 11, pp. 32–38, 2005.

[28] E. Ipek et al., “Core Fusion: Accommodating Software Diversity in
Chip Multiprocessors,” in ISCA’07: Proceedings of the 34th Annual

International Symposium on Computer Architecture. New York, NY,
USA: ACM, 2007, pp. 186–197.

[29] M. A. Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multicore Architectures,” IEEE Micro, vol. 30, no. 1, pp.
60–70, 2010.

[30] Analog Devices. http://www.analog.com.
[31] Big Foot Networks, Inc. http://www.bigfootnetworks.com.
[32] Ageia. http://www.ageia.com.
[33] J. Kahle, “The Cell Processor Architecture,” in MICRO’05: Pro-

ceedings of the 38th Annual IEEE/ACM International Symposium on

Microarchitecture. Washington, DC, USA: IEEE Computer Society,
2005, p. 3.

[34] W. J. Dally et al., “Merrimac: Supercomputing with Streams,” in
SC’03: Proceedings of the 2003 ACM/IEEE conference on Supercom-

puting. Washington, DC, USA: IEEE Computer Society, 2003, p. 35.
[35] J. H. Ahn et al., “Evaluating the Imagine Stream Architecture,” in

ISCA’04: Proceedings of the 31st Annual International Symposium

on Computer Architecture. Washington, DC, USA: IEEE Computer
Society, 2004, p. 14.

[36] L. Seiler et al., “Larrabee: A Many-core x86 Architecture for Visual
Computing,” ACM Trans. Graph., vol. 27, no. 3, pp. 1–15, 2008.

[37] AMD, Inc. http://www.fusion.amd.com.
[38] Tensilica, Inc. http://www.tensilica.com.
[39] S. C. Goldstein et al., “PipeRench: A Coprocessor for Streaming

Multimedia Acceleration,” in ISCA’99: Proceedings of the 26th Annual

International Symposium on Computer Architecture. Washington, DC,
USA: IEEE Computer Society, 1999, pp. 28–39.

[40] C. Ebeling et al., “RaPiD - Reconfigurable Pipelined Datapath,” in
FPL’96: Proceedings of the 6th International Workshop on Field-

Programmable Logic, Smart Applications, New Paradigms and Com-

pilers. London, UK: Springer-Verlag, 1996, pp. 126–135.
[41] J. R. Hauser et al., “Garp: a MIPS processor with a reconfigurable

coprocessor,” in FCCM’97: Proceedings of the 5th IEEE Symposium on

FPGA-Based Custom Computing Machines. Washington, DC, USA:
IEEE Computer Society, 1997, p. 12.

[42] Drew Wilson. (2000, Oct) Chameleon takes on FPGAs, ASICs.
http://www.edn.com/article/CA50551.html?partner=enews.

[43] R. Razdan et al., “A High-Performance Microarchitecture with
Hardware-Programmable Functional Units,” in MICRO’94: Proceed-

ings of the 27th Annual International Symposium on Microarchitecture.
New York, NY, USA: ACM, 1994, pp. 172–180.

[44] Z. A. Ye et al., “CHIMAERA: A High-Performance Architecture
with a Tightly-Coupled Reconfigurable Functional Unit,” in ISCA’00:

Proceedings of the 27th Annual International Symposium on Computer

Architecture. New York, NY, USA: ACM, 2000, pp. 225–235.
[45] M. Mishra et al., “Tartan: Evaluating Spatial Computation for Whole

Program Execution,” in ASPLOS’06: Proceedings of the 12th In-

ternational Conference on Architectural Support for Programming

Languages and Operating Systems. New York, NY, USA: ACM,
2006, pp. 163–174.

[46] A. Putnam et al., “Performance and Power of Cache-Based Recon-
figurable Computing,” in ISCA’09: Proceedings of the 36th Annual

International Symposium on Computer Architecture. New York, NY,
USA: ACM, 2009, pp. 395–405.

[47] J. L. Gustafson, “Reevaluating Amdahl’s Law,” Commun. ACM,
vol. 31, no. 5, pp. 532–533, 1988.

[48] D. Moncrieff et al., “Heterogeneous computing machines and
Amdahl’s law,” Parallel Computing, vol. 22, no. 3, pp.
407 – 413, 1996. http://www.sciencedirect.com/science/article/
B6V12-3VS5J8D-5/2/2363475aa2ac8e332e5fa124c9a9c3a1.

[49] J. M. Paul et al., “Amdahl’s Law Revisited for Single Chip Systems,”
Int. J. Parallel Program., vol. 35, no. 2, pp. 101–123, 2007.

[50] S. Eyerman et al., “Modeling Critical Cections in Amdahl’s Law and
its Implications for Multicore Design,” in ISCA’10: Proceedings of the

37th Annual International Symposium on Computer Architecture. New
York, NY, USA: ACM, 2010, pp. 362–370.

[51] D. H. Woo et al., “Extending Amdahl’s Law for Energy-Efficient
Computing in the Many-Core Era,” Computer, vol. 41, no. 12, pp.
24–31, 2008.

[52] S. Cho et al., “On the Interplay of Parallelization, Program Perfor-
mance, and Energy Consumption,” IEEE Transactions on Parallel and

Distributed Systems, vol. 21, pp. 342–353, 2010.
[53] E. Grochowski et al., “Energy per Instruction Trends in Intel Micro-

processors,” in Technology@Intel Magazine, 2006.
[54] Intel, Inc. http://www.intel.com/products/processor/corei7/index.htm.
[55] Nvidia, Inc. http://www.nvidia.com.
[56] AMD Inc. http://www.amd.com.
[57] Xilinx, Inc. http://www.xilinx.com.
[58] Synopsys, Inc. http://www.synopsys.com.
[59] M. Puschel et al., “SPIRAL: Code Generation for DSP Transforms,”

Proceedings of the IEEE, vol. 93, no. 2, pp. 232 –275, feb. 2005.
[60] Nvidia. http://www.nvidia.com/object/cuda home new.html.
[61] C. Bienia et al., “The PARSEC Benchmark Suite: Characterization

and Architectural Implications,” in PACT’08: Proceedings of the 17th

International Conference on Parallel Architectures and Compilation

Techniques. New York, NY, USA: ACM, 2008, pp. 72–81.
[62] P. A. Milder et al., “Formal Datapath Representation and Manipula-

tion for Implementing DSP Transforms,” in Proc. Design Automation

Conference, 2008, pp. 385–390.
[63] D. T. S. Thoziyoor et al., “Cacti 4.0,” HP Labs, Tech. Rep. HPL-2006-

86, 2006.
[64] M. Schuette. (2008) Core i7 Power Plays. http://www.lostcircuits.com/

mamb.
[65] Intel, Inc. http://www.ark.intel.com/Product.aspx?id=35635.
[66] R. Kalla et al., “Power7: IBM’s Next-Generation Server Processor,”

IEEE Micro, vol. 30, no. 2, pp. 7–15, 2010.
[67] L. A. Polka et al., “Package Technology to Address the Memory

Bandwidth Challenge for Tera-scale Computing,” in Intel Technology

Journal, Volume 11, Issue 3, 2007.

236

