
Thread Criticality Predictors for Dynamic Performance,
Power, and Resource Management in Chip Multiprocessors

Abhishek Bhattacharjee, Margaret Martonosi
Dept. of Electrical Engineering

Princeton University
{abhattac, mrm}@@princeton.edu

ABSTRACT
With the shift towards chip multiprocessors (CMPs), ex-
ploiting and managing parallelism has become a central prob-
lem in computer systems. Many issues of parallelism man-
agement boil down to discerning which running threads or
processes are critical, or slowest, versus which are non-critical.
If one can accurately predict critical threads in a parallel
program, then one can respond in a variety of ways. Possibil-
ities include running the critical thread at a faster clock rate,
performing load balancing techniques to offload work onto
currently non-critical threads, or giving the critical thread
more on-chip resources to execute faster.

This paper proposes and evaluates simple but effective
thread criticality predictors for parallel applications. We
show that accurate predictors can be built using counters
that are typically already available on-chip. Our predictor,
based on memory hierarchy statistics, identifies thread crit-
icality with an average accuracy of 93% across a range of
architectures.

We also demonstrate two applications of our predictor.
First, we show how Intel’s Threading Building Blocks (TBB)
parallel runtime system can benefit from task stealing tech-
niques that use our criticality predictor to reduce load im-
balance. Using criticality prediction to guide TBB’s task-
stealing decisions improves performance by 13-32% for TBB-
based PARSEC benchmarks running on a 32-core CMP. As
a second application, criticality prediction guides dynamic
energy optimizations in barrier-based applications. By run-
ning the predicted critical thread at the full clock rate and
frequency-scaling non-critical threads, this approach achieves
average energy savings of 15% while negligibly degrading
performance for SPLASH-2 and PARSEC benchmarks.

Categories and Subject Descriptors
C.1 [Processor Architectures]: Parallel Architectures;
C.4 [Performance of Systems]: Design Studies

General Terms
Design, Performance

Keywords
Thread Criticality Prediction, Parallel Processing, Intel TBB,
DVFS, Caches

1. INTRODUCTION
While chip multiprocessors (CMPs) already dominate com-

puter systems, key research issues remain in exposing and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’09, June 20–24, 2009, Austin, Texas, USA.
Copyright 2009 ACM 978-1-60558-526-0/09/06 ...$5.00.

managing the parallelism required to fully exploit them. In
particular, good performance for a parallel application re-
quires reducing load imbalance and ensuring that processor
resources (functional units, cache space, power/energy bud-
get and others) are used efficiently. As a result, the ability
to accurately predict criticality in a computation is a fun-
damental research problem. If the system can accurately
gauge the critical, or slowest, threads of a parallel program,
this information can be used for a variety of techniques in-
cluding load rebalancing, energy optimization, and capacity
management on constrained resources.

Predicting thread criticality accurately can lead to sub-
stantial performance and energy improvements. Consider,
for example, the extreme case of a load-imbalanced paral-
lel program in which one thread runs twice as long as the
others. If this thread’s work could be redistributed among
all the other threads, performance would improve by up to
2×. If one instead focuses on energy improvements, then the
other threads could be frequency-scaled or power-gated to
save energy during their prolonged wait time. While this ex-
ample is extreme, Section 2 shows that significant real-world
opportunities exist in a range of benchmarks. The key chal-
lenge, however, is that one must accurately and confidently
predict the critical thread, or else large performance and
energy degradations can arise from responses to incorrect
predictions.

This work focuses on low-overhead and general thread
criticality prediction schemes that harness counters and met-
rics mostly available on-chip. Having tested a range of tech-
niques based on instruction counts and other possibilities, we
find that per-core memory hierarchy statistics offer the best
accuracy for criticality prediction. Our work shows how to
form memory statistics into useful thread criticality predic-
tors (TCPs). We also explore pairing them with confidence
estimators that gauge the likelihood of correct predictions
and reduce the high-cost responses to incorrect ones.

To demonstrate its generality, we also apply our TCP
hardware to two possible uses. First, we study how TCP
can assist Intel Threading Building Blocks (TBB) [1] in
improving task-stealing decisions for load balancing among
threads. By identifying the critical thread in an accurate
and lightweight manner, threads with empty task queues
can “steal” work from the most critical thread and shorten
program runtimes. In the second application study, we fo-
cus on barrier-based applications and use TCP to guide dy-
namic voltage and frequency scaling (DVFS) decisions. Here
we show that gauging the degree of criticality of different
threads can also be useful. By determining which threads
are non-critical (and by how much) we can choose to run
the most critical thread at a high clock rate, while operat-
ing other threads on cores that are frequency-scaled to be
more energy efficient.

Overall, this paper both describes the implementation is-
sues for TCP and also evaluates methods for using it. The
key contributions of this work are:

1. We demonstrate that accurate predictions of thread
criticality can be built out of relatively-accessible on-chip

290

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1555815.1555792&domain=pdf&date_stamp=2009-06-20

�

�

���

���

���

���

�

���

���

� � � 	 � � � 	 � � � 	

�
�
�
��
�
�
�	

�
��

��
��
�
��
�
��
��
��
�
�
��

�
��
�

������
�����

������ � ��� �������� �

������������

���������� ���

���������

������

�����
������

���� ����� ����

���������!"#������

��� ������

����
������

Figure 1: Blackscholes uses thread criticality predictors for
TBB task stealing, outperforming the random task stealer.

information such as memory hierarchy statistics. We de-
scribe our proposed TCP hardware and then test it on both
in-order and out-of-order machines to show its effectiveness
across different microarchitectures. Despite TCP’s simple
design, it attains an average prediction accuracy of 93% on
SPLASH-2 [33] and PARSEC [4] workloads.

2. In our first usage scenario, we apply TCP to task-
stealing in Intel TBB. Here, our predictions improve the per-
formance of PARSEC benchmarks ported to TBB by 13% to
32% on a 32-core CMP. While our results are demonstrated
with TBB, similar approaches could be built for other envi-
ronments based on dynamic parallelism.

3. In our second usage scenario, TCP techniques guide
DVFS settings. In particular, we identify threads that are
confidently non-critical and DVFS them to save energy. In
this scenario, TCP achieves an average energy savings of
15% for a 4-core CMP running SPLASH-2 and PARSEC
workloads. Our approach to barrier energy reductions offers
potentially higher payoffs with lower hardware overheads
than prior proposals.

Beyond the two application scenarios evaluated in this
paper, thread criticality prediction can be applied to many
other parallelism management problems. For example, TCP
could shape how constrained in-core resources like issue width
or execution units are apportioned among parallel tasks. It
can also help guide the allocation of more global resources
such as bus and interconnect bandwidth.

This paper is structured as follows. Section 2 offers quan-
titative motivations for TCPs and our specific design objec-
tives. After describing methodology in Section 3, Section
4 evaluates the possible architectural metrics for predicting
criticality, quantifying the link between cache misses and
thread criticality. Section 5 proposes a base TCP design,
and Section 6 elaborates on this for the TBB task stealing
application. Section 7 then details and evaluates TCPs for
barrier energy optimizations. Finally, Section 8 addresses
related work and Section 9 offers our conclusions.

2. OUR MOTIVATION AND OBJECTIVES
2.1 The Case for Criticality Predictors

Fundamentally, criticality prediction is aimed at estimat-
ing load imbalance in parallel programs. To explore the po-
tential benefits of approaches using criticality prediction, we
characterized the load imbalance for SPLASH-2 and PAR-
SEC applications with the data-sets listed in Table 2 on a
cycle-accurate CMP simulator described in Section 3. For
example, LU, Volrend, Fluidanimate and Water-Nsq have
at least one core stalling for 10% of the execution time at
4 cores, worsening to an average of 25% at 32 cores. These
stall cycles arise from wait times at barriers and on shared
locks, the former dominating in barrier-based applications.
Already substantial, we expect load imbalance to worsen
as future CMPs expose more performance variations due to
technology issues and thermal emergencies [8, 13].

�

�

����

���

����

���

����

���

����

���

����

���

� � � � � � � �

�
�
�
��
�
��
	

��

�
�
��
�
��

��
�
�
�
�
�
��
�
�

�
�
��
��

��
�
�
�
�
��
�
�
��
�
�

�������	�����

�������������� ���������������������� !"#

�	�
 ����������������������

�������� �������

Figure 2: Blackscholes uses thread criticality predictors to
DVFS threads, saving 49% energy without performance loss.

Since imbalance degrades performance and energy effi-
ciency, it is useful to predict thread criticality and react
accordingly. Figure 1 shows potential performance improve-
ments for barrier 2 of Blackscholes. The first four bars plot
thread compute and stall times (light and dark portions)
normalized to critical thread 2. These show large thread
stall times, with a worst-case stall time of 55% of runtime
for thread 1. In response, a TBB version of this application
can split work into small tasks and insert them into per-core
task queues. When one thread runs out of work, it steals
tasks; however TBB currently steals from randomly-chosen
cores and the middle bars of Figure 1 shows that this only
modestly improves performance. In contrast, the right set
of bars show the potential of TCP-guided prediction. These
bars depict an oracle criticality prediction, in which tasks are
stolen from the slowest thread, for a much higher speedup
of 1.4×.

As a second approach, Figure 2 sketches the potential en-
ergy benefits of TCPs. The first four bars plot per-thread
energy normalized to the total energy across the cores for un-
balanced Blackscholes whose per-thread performance has
already been given on the left-hand-side of Figure 1. The
relative performance of non-critical threads 0, 1, and 3 in-
dicate that they could ideally be slowed down to 0.78, 0.45,
and 0.63 of the nominal frequency to eliminate barrier stalls
without performance degradation. The second set of bars in
Figure 2 shows that as much as 49% of the total initial en-
ergy could be saved using this TCP-guided approach. The
key challenge here lies, however, in identifying non-critical
threads, gauging their relative non-criticality to set clock
rates appropriately, and balancing the benefits of dynamic
energy savings against the potential extra leakage energy
and switching overhead costs. We address these issues in
the TCP design detailed in the following sections.

2.2 Goals of our Predictor Design
Before detailing the criticality predictor hardware, we first

state the particular goals of our TCP and differentiate them
from important related work.

First, our TCP needs to be highly accurate. Since the
TCP will be used to either redistribute work among threads
for higher performance or to frequency-scale threads for energy-
efficiency, we need to minimize TCP inaccuracy, which can
give rise to performance and energy degradations.

Second, our TCP design should be low-overhead. If, for
example, the TCP relies on complex software analysis, over-
all system performance may be adversely affected. On the
other hand, if the TCP is designed with complex hardware,
it may scale poorly for future CMPs. Therefore, we strike
a balance by avoiding software-only TCPs that involve high
performance overheads and using simple and scalable hard-
ware. We do however allow software-guided policies to be
built on top of the hardware if necessary.

Third, the TCP is designed for versatility across a range of

291

������������	
������������
������������
�����������	��

���������	
�������������������������
���������
����

���������	���
� �� ����
��������
��

��� �������

�������� ������� ��������
�������

����
� ������� �������

������� �����������

������������������

����������������������

�����

���������������������

����

�	
��� ��
������
��������� � � ��
����������!�������	"����

������#�
����$
���$�

������#� %&�

��
������
��������

'���(��"
"��
���

�

�������������)��
�����*���+���,-./�

0!!���*��1�+��231��-./�

0!!���*1�2�+��'11��-./�

0!!���*1���+��331��-./�

)��4+5	���"��
�
#�)��
�����*���+���,-./�

0!!����*��1�+��231��-./�

0!!����*1�2�+��'11��-./�

0!!����*1���+��331��-./�

�����������

��
�������

��6&����$�#������#��

�
����

��6&����$�#������#���
���� �6&����$�#������#���

�
����

�����������

��
�������

��6&����$�#������#��

�
����

��6&����$�#������#���
���� 26&����$�#������#��

�
����

����������

����
������� �����

��&�)7���

�2�$�#������#���
����

�8(�������#�9�1����:�

��&�)7���

2�$�#������#���
����

�8(�������#�9��1�����

)����

!����! ��	
�� �8(�������#�9��11����:� �8(�������#�9��11��� �8(�������#�9��11���:�

"���#�$��%	
&� �������
������
�(� � ������
����
������
�(� ��&������"
�(�����

'��)���� 5����	����
���1� 5����;
��<�����

(�)�*��+��������� �����������#�	��
���

�&&�	��
���

�����������#�	��
��� 4+5	�	��
���

applications with different parallelization characteristics and
applicable to a number of resource management issues. In
this work, we address TCP’s role in improving TBB perfor-
mance and minimizing barrier-induced energy waste; how-
ever, the TCP has many other uses such as shared last-level
cache management [17, 18, 30], SMT priority schemes [9,
25, 31], and memory controller priority schemes [15, 22, 27],
just to name a few.

In the context of these goals, it is important to review
prior work. While instruction criticality has been explored
for superscalars [14, 32], interest in thread criticality pre-
diction has been a more recent phenomenon. Consider, for
example, the thrifty barrier [21], in which faster cores tran-
sition into low-power modes after they reach a barrier in
order to reduce energy waste. The thrifty barrier uses bar-
rier stall time prediction to choose among sleep states with
different transition times. While considerable energy savings
are achieved, this technique runs all threads at the nominal
frequency until the barrier. In contrast, we predict critical-
ity before the barrier, offering more flexibility in response.

In response to the thrifty barrier, Cai et al. propose meet-
ing points to gauge thread criticality in order to save energy
by frequency scaling non-critical threads [9]. While this does
result in even greater energy savings than the thrifty bar-
rier, it is intended for parallel loops. These loops are instru-
mented with specialized instructions to count the number of
iterations completed by each core. The counter values are
then periodically broadcast, allowing each core to predict
thread progress and DVFS accordingly.

In contrast, our TCP is aimed at a range of paralleliza-
tion schemes beyond parallel loops. We will show that our
approach works well even for benchmarks like LU, which in-
clude loops with variable iteration times.

3. METHODOLOGY
The following sections present our methodology choices

and setups.

3.1 TCP Accuracy Evaluation
Table 1 shows the two software simulators used to evaluate

the accuracy of our TCP hardware. As shown, for evalua-
tions on architectures representative of the high-performance
domain (out-of-order execution, wide-issue etc.), we use Sim-
ics/GEMS [26]. We load both Ruby and Opal to simulate a
16 core cache-coherent CMP running Solaris 10. This config-
uration enjoys particularly high prediction accuracy because
dynamic instruction reordering enables stable predictions.
However, in-order microarchitectures, representative of the
embedded space, see IPC and other metrics vary more in
short periods of time. To compare these, we evaluate TCPs
on the ARM CMP simulator using in-order cores.

3.2 TCP-Aided TBB Performance Evaluations
The ARM CMP shown in Table 1 is also used to evaluate

the performance benefits of TCP-guided task stealing in In-

������ ��	
 ����
 �������
���
 ���
���������

������

��� �������	�
�	�
�	����������

��������������

�����

���� �� �������	� �!��!"��#������ �� �����

���� �$� �������	� % �$� ����

&� ��� �������	� !
���!
��'��$� �����

��(� �������	� ��
)��"���$����#������ �����

*%�� ��+� �������	� ��),&� �����

-�$�� �������	� .��"..����.���� ' ��� �����

/ �� ��0�1� �������	� ��)����� �2� �� �����

/ �� ���#� �������	� ��)����� �2� �� �����

�������%�� �� ��-�3*�
��".!�4���� $�2�5� ������(���

��� ����2�� �� ��-�3*� .
)	�#������# ��������

4���� $�2�5�

������(���

�6�#������ ��-�3*� "	��6�#�������!����

���2��������4���� $�2�5�

(���

��2�$������ � ��-�3*� !�7��� ���
��8�#������ ��

4���� $�2�5�

(���

�

(��� �	9��������	���$���-�3*�6������$��2� $�����2����2$� �,�

tel’s TBB. We choose this infrastructure due to the availabil-
ity of TBB-ported benchmarks for the ARM ISA [12]. We
have not evaluated our TBB improvements on the GEMS
infrastructure due to the difficulty of procuring a Sparc port
of the TBB benchmarks at the time of writing the paper.
Note however, that since the ARM simulator uses in-order
cores that are harder to build robust TCPs for, we expect
our results to hold across the easier case of out-of-order ar-
chitectures.

3.3 TCP-Guided DVFS Energy Evaluations
Finally, Table 1 shows the FPGA-based emulator used to

assess energy savings from TCP-guided DVFS. Our emu-
lator is extended from [3] to support per-core DVFS with
voltage/frequency levels similar to those in [9, 16]. Like
our ARM simulator, the cores are in-order, representative
of embedded systems. The emulator speed (35× speedup
over GEMS/Ruby for a subset of Spec 2006) allows per-
formance and power modeling of CMPs running Linux 2.6.
The power models assume a 0.13µm technology and achieve
under 8% error compared to gate-level simulations from Syn-
opsys PrimeTime. Despite the negligible leakage of this
technology, we use projections from the International Tech-
nology Roadmap for Semiconductors to assume a forward-
looking fixed leakage cost of 50% of total energy [10, 24].
Since our DVFS optimization targets dynamic energy, this
assumption leads to conservative (pessimistic) energy sav-
ings estimates.

3.4 Benchmarks
Table 2 shows the workloads used in our studies. The

right-most column shows the TCP experiments that the
benchmark is used for (TBB, DVFS, or both). While we
use all the benchmarks to assess TCP accuracy, only the
four PARSEC workloads that have been ported to TBB
are used for our TBB studies [12]. We use the SPLASH-
2 benchmarks, Blackscholes, and Streamcluster for our
DVFS studies as they contain barriers.

Since the reference inputs for the SPLASH-2 suite are con-
sidered out of date, we use the enhanced inputs provided by
Bienia et al. [5]. These inputs are derived using a com-
bination of profiling and timing on real machines and have
computational demands similar to the PARSEC inputs.

3.5 Details of Our Approach
Our investigation of TCP design and its uses is accom-

plished in the following steps.
1. We investigate architectural events that have high cor-

relation with thread criticality. We carry out this analysis
using both software simulators for metrics such as instruc-
tion count, cache misses, and others.

2. We introduce the TCP hardware details based on the
architectural metric correlating most with thread criticality.

3. We then apply our TCP design to TBB’s task stealer
and assess the resulting performance improvements.

4. Finally, we apply our TCP for energy-efficiency in
barrier-based parallel programs.

292

�

�

���

���

���

���

�

���

� � � 	 �
 � � �

�
�
��

��
�
��

	
�

�
	
�

��
�
	
��
�
��
�	
�
��
�
��
�

� �	�����	����������	��
����	����

���� ��� ���

Figure 3: Ocean’s criticality varies with barrier iteration.

�

�

���

���

���

���

�

���

���

���

� � � 	 �
 �

�
�
��

��
�
�
	

�
��

�
	�
��
�
��
��
��
��
�
��
�
�
��
�

� ��������������
����������������

�� ������������

�����������������

����������� ���������������

������������ ��!�� ��������������

"��������������� ���!�� ��������������

Figure 4: Cache misses track thread criticality most accurately
for all threads in barrier 8 of Ocean.

4. ARCHITECTURAL METRICS
IMPACTING THREAD CRITICALITY

Having motivated TCPs, we now consider simple but ef-
fective methods for implementing them. We first study the
viability of simple, history-based TCPs local to each core.
We then study inter-core TCP metrics such as instruction
counts, cache misses, control flow changes and TLB misses.

4.1 History-Based Local TCPs
If thread criticality and barrier stall times were repetitive

and predictable, threads could use simple fully-local TCPs.
The thrifty barrier uses this insight for its predictions [21].
While our initial studies on GEMS show promise in this di-
rection, in-order pipelines (not considered in [21]) can show
great variation in thread criticality through application run-
time. This is because in-order pipelines cannot reorder in-
structions to hide stall latencies. As an example, Figure 3
shows a snapshot of Ocean on the ARM simulator. Each
bar indicates the execution time for thread 2 on the first 9
iterations of barrier 8, normalized to iteration 0. The lower
portion of the bar corresponds to the compute time while the
upper portion represents stall time at the barrier. Clearly,
barrier compute and stall times are highly variant.

We therefore conclude that a TCP using thread compar-
ative information might fare better on both in-order and
out-of-order CPUs, since the criticality of a single thread is
intrinsically relative to others.

4.2 Impact of Instruction Count on Criticality
We first consider the correlation between instruction count

and thread criticality. Figure 4 plots the behavior of 7 of
the 16 threads from the first iteration of barrier 8 of Ocean
(ARM simulator). To assess the accuracy of a metric in
tracking criticality, we normalize thread compute time (the
first bar) and the metric against the critical thread (in this
case, thread 6) and then compare. In this example, instruc-
tion count (the second bar) is a poor indicator of thread crit-
icality, exhibiting little variation. Figure 5 shows this trend

�

�

��

��

��

��

��

��

	�

�

��

���

�

�
��

�
�
�

�
�
�
��

�
�
��
��
�
�

�
�
��
�

�

�
�
��
��
!
"#

$
�
�
�
"

%
&�
�

'(

�
)
�
�
"�

�
�*
��
�
�

$
��
&+
"&
�

�
��
�
�
,
�

�-'.�/�� -.��0�

�
��
��
�
��
��
��
�	

�
��
�
�
�
�
�
�
��
��
��

�

1 �������1 "��*&��� ���* � 1 �������'��2 ���&������1 "�

1 �������'��1�3 �2 ���&������1 "� 1 �������'��3 �'����&������1 "�

% *���4�% �����'��3 �'����&������1 "�

Figure 5: Combined cache misses (I and D L1 misses and L2
misses) tracks thread criticality most accurately.

across other benchmarks by plotting the error between the
normalized thread criticality and normalized metric in ques-
tion. For barrier-based benchmarks, the graphed error is
calculated by averaging the error from all barrier iterations.
In the absence of barriers (eg. for example, in Swaptions
and Fluidanimate), we split the execution time into 10%
windows across which we calculate an average error. This
periodic tracking of metric correlation yields a consistently
accurate criticality indicator through execution.

Figure 5 shows that although instruction count may track
criticality for LU, it is inaccurate for other benchmarks. This
is because most benchmarks employ threads with similar in-
struction counts, typical of the single program, multiple data
(SPMD) style used in parallel programming [21]. Therefore,
instruction count is a poor indicator of thread criticality and
we need to consider alternate metrics.

4.3 Impact of Cache Misses on Criticality
We find that cache misses intrinsically affect thread crit-

icality. For example, Figure 4 shows that L1 data cache
misses per instruction are a much better indicator of thread
criticality for Ocean. Similarly, Figure 5 shows that this is
true for other benchmarks as well, especially for Cholesky
and FFT, which enjoy under 8% error (ARM simulator). De-
spite significant improvement however, benchmarks such as
Ocean and LU still suffer from over 25% error.

In response, we consider all L1 cache misses (instruction
and data). Figure 4 shows that Ocean’s criticality is much
more accurate with this change, especially for threads 0, 2,
and 4. Figure 5 also shows that all benchmarks benefit from
this approach, especially Water-Sp, Water-Nsq, and LU. This
is because instruction cache misses capture the impact of
variable instruction counts and control flow changes, which
affect these three benchmarks.

To tackle the remaining 22% error for Ocean, we integrate
L2 cache misses. Since these experience 10× the latency of
L1 misses on average in our simulators, L2 misses are scaled
commensurately. Figure 4 demonstrates that this metric is
indeed most accurate in tracking criticality for Ocean. Fig-
ure 5 shows improvements for other benchmarks too, par-
ticularly for memory-intensive applications like Ocean, Vol-
rend, Radix, and the PARSEC workloads.

Finally, we gauge accuracy across other microarchitec-
tures by testing the data cache misses per instruction met-
ric on the out-of-order GEMS simulator. Figure 5 shows
marginal error increases of 3% on GEMS. Benchmarks with
larger working sets like Radix, Volrend, Ocean and the PAR-
SEC workloads are least impacted by the microarchitectural
change. This bodes well for our results as PARSEC mirrors
future memory-heavy workloads. Moreover, our metric is
robust to OS effects since GEMS boots a full version of So-
laris 10. We therefore conclude from these observations that

293

�

�

��

��

��

��

���

�
	

��

�

�
�
�
��

�
�
��
��
�
�

�

��
�
�
�

�
�
��
��
�
��

�
��
�
�

!
"�
�
�

#$

�
%
�
�
��

�&
��
�
�

��
"'
�"
�

�
��
�
�
(
�

�)#*�+��)*��,�

�
��
��
�
��
��
��
�	
�

��
��
�
��

��
��
��
�
�
��
��
��
��
�	
��
��
�
�

�
�
��
	

��
�
�
�
�
��
��
��

�
��
�
�
��
�
��
�
�

�
��

Figure 6: Combined I and D TLB misses have low correlation
with thread criticality.

cache misses represent a simple yet accurate means of pre-
dicting thread criticality.

4.4 Impact of Control Flow Changes and TLB
Misses on Criticality

Apart from cache statistics, one may consider the impact
of control flow and branch mispredictions on thread critical-
ity. Fortunately, we find that instruction cache misses, which
we have already accounted for, capture much of this behav-
ior. This is unsurprising since more instructions and con-
trol flow changes typically lead to greater instruction cache
misses.

Finally, Figure 6 considers the impact of TLB misses on
thread criticality. Each bar presents the % error between
combined instruction and data TLB misses per instruction
and criticality on the out-of-order GEMS setup. As shown,
TLB misses are a poor indicator of thread criticality; this is
because multiple threads usually cooperate to process ele-
ments of a larger data set, accessing the same pages. There-
fore, they tend to experience similar TLB misses. As a re-
sult, our predictor is agnostic to TLB statistics. However,
should future workloads require it, a weighted TLB miss
contribution can easily be made.

5. BASIC DESIGN OF OUR TCP
Based on our goals and chosen metric, we now present

the details of our TCP hardware. Figure 7 details a high-
level view of the design. The TCP hardware is located at
the shared, unified L2 cache where all cache miss informa-
tion is centrally available. Our proposed hardware includes
Criticality Counters, which count L1 and L2 cache misses
resulting from each core’s references. As cache misses de-
fine thread progress, these counters track thread critical-
ities, with larger ones indicative of slower, poorly cached
threads. Since individual L1 cache misses contribute less to
thread stall times and criticality than individual L2 misses
and beyond, we propose a weighted combination of L1 in-
struction, L1 data, and L2 cache misses, and others when
needed. Currently, our weighted criticality counter values
may be expressed by:

N(Crit.Count.) = N(L1miss) +
(L1L2penalty)×N(L1L2miss)

L1penalty

(1)
In this equation, N(Crit.Count.) represents the value of

the criticality counter, while N(L1miss) and N(L1L2miss)
are equal to the number of L1 misses that hit in the L2
cache and the L1 misses that also miss in the L2 cache.
Thus, since L2 misses incur a larger penalty, their weight is
proportionately higher.

The counters are controlled by light-weight Predictor Con-
trol Logic, developed in subsequent sections. An Interval

�

�������

��	
����� ��	������

�������

��	
����� ��	������

����
�����������������������

�

�

��������������

���	������ ! �

"���������#��������

"��	�����

�������$��%�����������

����&�$�

������

��'������

"���������

������$���'���

Figure 7: High-level predictor design with per-core Criticality
Counters placed with the shared L2 cache, Interval Bound Regis-
ter, and Prediction Control Logic. Hardware units are not drawn
to scale.

Bound Register, which is incremented on every clock cycle,
ensures that criticality predictions are based on relatively re-
cent application behavior. This is accomplished by resetting
all Criticality Counters whenever the Interval Bound Regis-
ter reaches a pre-defined threshold M. We will investigate
values for M in subsequent sections.

The TCP hardware we propose is simple and scalable.
First, a simple state machine suffices in incrementing the
counters instead of an adder. Unlike meeting points, counter
information is in a unified location, eliminating redundancy.
More cores are readily accommodated by adding counters.
Furthermore, additional network messages are unnecessary
as the L2 cache controller may be trivially modified to notify
the predictor of relevant cache misses.

Our hardware is also applicable to alternate designs. For
example, more cache levels and rare split L2 caches can
be handled with trivial hardware and message overhead.
For both these cases, the TCP hardware counters would
need to be distributed among multiple cache controllers and
would need to communicate with centralized prediction con-
trol logic. Furthermore, while distributed caches with mul-
tiple controllers are uncommon, if necessary we could ac-
commodate messages to our counters on inter-controller co-
herence traffic. This would, however, still constitute low
message overhead.

6. USING TCP TO IMPROVE TBB
TASK STEALING

We now showcase the power and generality of TCP by
applying it to two uses. We first study TCP-guided task
stealing policies in Intel TBB and achieve significant perfor-
mance improvements.

The Intel TBB library has been designed to promote portable
parallel C++ code, with particular support for dynamic,
fine-grained parallelism. Given its growing importance, it
is a useful platform for studying critical thread prediction,
although our techniques will likely apply to other environ-
ments as well [6]. We investigate the benefits of TCP-aware
TBB in the following steps:

1. We study the TBB scheduler to better understand how
our TCP mechanisms may be used to augment it.

2. We present our proposed TCP hardware for TBB task
stealing.

3. Finally, we show performance results from our TCP-
guided TBB task stealing and compare them with TBB’s
default random task stealer for the 4 PARSEC benchmarks.

6.1 Introduction to the TBB Task Scheduler
TBB programs express concurrency in parallel tasks rather

than threads. TBB relies on a dynamic scheduler, hidden
from the programmer, to store and distribute parallelism.
On initialization, the scheduler is given control of a set of
slave worker threads and a master thread (the caller of the
initialization). Each thread is associated with its own soft-
ware task queue, into which tasks are enqueued directly by

294

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

������������	
��� ������ ��������� ��

���� � � ������	����	������	��������������������������	�	
��� �������

���� ��

���� ��� �������!�������� ����������

"��� � 	�������	����	������	����������������
��� �#�� �� �$�����

%��� � &������	����' ��
�
�(
���	����	������	�������$������������$�	��� �

)�� ��

*��������+ ��(������	����(���������� �$�	��� �����������		�������

,�� � &����	����	������	������������������

�-� �� �

�����������������. �� ���������	���/ �0����$���1�����������2�2�����-������

����� � &��������	����	������	�������

Figure 8: Our TCP-guided task stealing algorithm improves vic-
tim selection by choosing the core with the largest Criticality
Counter value as the steal victim.

�

�

�

�

��

��

��

��

��

��

��

��

� � �	�� � � �	�� � � �	�� � � �	��

��������� ��������� ��� �� ������� ������ �

�
��
��
�
��
�
	�

��
�
�
�
�

����������

������ �������������������

������ ��������������� �!���"�������

Figure 9: Random stealing prompts a large false negatives con-
tribution, leading to poor performance.

the programmer. Task dequeuing is performed implicitly by
the runtime system in its main scheduling loop.

If possible, threads dequeue work locally from their task
queues. In the absence of local work, task stealing tries
to maximize concurrency by keeping all threads busy. The
TBB scheduler randomly chooses a victim thread, whose
task queue is then examined. If a task can be stolen, it is
extracted and executed by the stealing thread. If the victim
queue is empty, stealing fails and the stealer thread backs
off for a pre-determined time before retrying.

While random task stealing is fast and easy to implement,
it does not scale well. As the number of potential victims
increases, the probability of selecting the best victim de-
creases. This is particularly true under load imbalance when
few threads shoulder most of the work. As such, our TCP
design can help by identifying critical threads, which are
ideal steal candidates. Subsequent sections detail the per-
formance benefits of such a TCP-guided stealing approach.

6.2 Developing Predictor Hardware to Improve
TBB Task Stealing

Figure 8 details our predictor algorithm applied to task
stealing. Cache misses are recorded by the Criticality Coun-
ters. When the TBB scheduler informs the predictor of a
steal attempt, the TCP scans its criticality counters for the
maximum value and replies to the stealer core that this max-
imum counter’s corresponding core number should be the
steal victim. If the steal is unsuccessful, the stealer sends a
message to the TCP to reset the victim counter, minimizing
further incorrect victim prediction. As before, the Criticality
Counters are reset every Interval so that stealing decisions
are based on recent application behavior. As such, this al-
gorithm may be mapped readily to the basic TCP hardware
presented in Figure 7, with the Predictor Control Logic in
charge of scanning for the largest Criticality Counter.

Our experiments indicate an Interval Bound value of 100K
cycles and 14-bit Criticality Counters as sufficient to show-

�

�

��

��

��

��

��

��

��

� � ���� � � ���� � � ���� � � ����

	
������
�� �
������� ��� �� ������� ������ �

�
��
��
�
��
�
	�

��
�
�
�
�

����������

������������

��
��� �!���"�������

Figure 10: Our thread criticality-guided task stealing cuts the
false negatives rate under 8% for all benchmarks.

�

��

��

��

��

��

� � �� �� � � �� �� � � �� �� � � �� ��

	
������
�� �
������� ��� �� ������� ������ �

�
�
�
��
��
�
��
�
�
	

�
�
��
�
�
�
��
��

�
��
�
�
��

�
�
��
��
�
��
�
�
�
�
�
��
�
��
��
��
�
�

�
	

����������

� �������� !����"#�������

$������
��� !����"#�������

#%&�"'� ���%��"�(")$*"�%��"+����� ",��"�����-"."����"/

#%&�"'� ���%��"�(")$*"�%��"� �����",��"�����-"."����"/

Figure 11: TCP-guided stealing yields up to 32% performance
gains against random task stealing and regularly outperforms
occupancy-guided stealing.

case our performance benefits. Hence, a 64-core CMP re-
quires merely 114 bytes for the Criticality Counters and In-
terval Bound Register, in addition to comparators. Never-
theless, should comparator complexity become an issue, the
predictor can be implemented in software. We believe that
any performance overhead from this would be trivial due to
the simple manipulations of the Criticality Counters.

Our experiments also account for the latency overhead
in accessing the TCP hardware. Since the TCP is placed
with the L2 cache, we assume that a TCP access costs an
additional delay equivalent to the L2 latency. This is in
contrast with the random task stealer, which makes purely
local decisions and is not charged this delay.

6.3 Results
We now study the performance of TCP-guided task steal-

ing across the four PARSEC benchmarks (Fluidanimate,
Swaptions, Blackscholes, and Streamcluster) ported to
TBB. We compare to the random task stealing implemented
in TBB version 2.0 (release tbb20 010oss), but our results
remain valid for newer TBB releases because random task
stealing is still employed. We also compare our results against
the occupancy-based TBB task stealer proposed in [12].

6.3.1 TBB with Random Task Stealing
As a baseline, Figure 9 characterizes random task stealing

with two metrics. The success rate (light bar) is the ratio
of successful steals to attempted steals. The false negatives
rate (dark bar) indicates how often a steal is unsuccessful
because its chosen target has no work, despite the presence
of a stealable task elsewhere in the system. The latter arises
from the randomness in choosing a steal victim. Unsur-
prisingly, random stealing deteriorates (decreasing success

295

rate) as core counts rise. This occurs despite the presence
of stealable tasks, indicated by higher false negatives rate at
greater core counts. Even at low core counts, random task
stealing performs poorly for Blackscholes and Streamclus-
ter (above 15% false negatives). This is because just a few
threads operate on many longer tasks and random stealing
does not successfully select these as steal victims.

6.3.2 TBB with TCP-Guided Task Stealing
Figure 10 shows the improvements of modifying the TBB

task stealer to be criticality-aware by plotting the success
rate and false negatives rate of our TCP-guided stealing.
Compared to random stealing, false negatives fall drasti-
cally and remain under 8% for all benchmarks. The benefits
are immense especially at higher core counts. For exam-
ple, the success rate for Streamcluster improves from 5%
to around 37% at 32 cores. We also see that the success
rate increases with higher core counts, contrary to the ran-
dom stealing results. This is because increased core counts
raise the availability of stealable tasks, which we now exploit
through reliable stealing predictions.

6.3.3 TCP-Guided TBB Performance Improvements
While Figure 10 does indicate the benefits of our TCP-

based task stealing, we still need to investigate how this
translates into raw performance numbers. In order to study
performance improvements, we again use the ARM CMP
simulator. As previously noted, our TCP-aware TBB task
stealer includes the extra delay of accessing the criticality
counters as an additional L2 access due to their proximity
to the L2 cache. This is in contrast with the random stealing
approach which is fully-local and not charged this delay.

Apart from studying the performance improvements of
the TCP approach against random task stealing, we also
compare our results against the occupancy-based task stealer.
As detailed in [12], occupancy-based stealing keeps track, in
software, of the number of elements in each core’s task queue
and selects the core with the maximum number as the next
stealing victim. Since this results in higher performance
than random task stealing, we need to check whether TCP-
guided task stealing provides any further benefits.

Figure 11 plots the performance improvements of TCP-
guided task stealing (parallel region of the benchmarks only)
against TBB’s random task stealing in the dark bars. Fur-
thermore, we also plot the performance improvements of the
occupancy-based approach, again versus random stealing in
the light bars. As shown, criticality-guided stealing offers
significant performance improvements over random stealing,
particularly at higher core counts (average of 21.6% at 32
cores). Moreover, we also improve upon the occupancy-
based stealing results. This is because occupancy-based
techniques only count the number of tasks in each queue,
but do not gauge their relative complexity or expected ex-
ecution time. In contrast, TCP-based approaches can bet-
ter account for the relative work in each task, by tracking
cache miss behavior. This generally improves performance,
especially at higher core counts (13.8% at 32 cores). The
only exception is Streamcluster where a few threads hold a
large number of stealable tasks of similar duration. In such
a scenario, thread criticality yields little benefit over simple
occupancy statistics. Generally however, the performance
benefits of our approach are evident.

7. USING TCP TO SAVE ENERGY IN
BARRIER-BASED APPLICATIONS

While Section 6 focused on TCP-guided TBB performance,
we now use the predictor to save energy in barrier-based pro-
grams. Our analysis is conducted as follows:

1. We describe our prediction algorithm for TCP-guided
per-core DVFS and show how this maps to hardware.

2. We then study predictor accuracy on both the in-order
and out-of-order simulators to ensure that our TCP design
is robust across microarchitectures and applications.

�

������������	
����������	������� �������������������	�
���
����
�������	��������������
���

���� � � �������
��	����	������	�����������	��������������	�	
������������

�

� � �������
���������
�������������
����� �������������
�
���
�
����������������������

���� � �������������	���	����	������	������� �!��������

"�� � � � ������#����	����� �� ����		��
�
�
��
������������
�
���
�����������
	��

�

��������	�������
���	������	���������������
�������������	���
��������� ����

$�� � � � � %��&����	����	����	������	����������������''!����������������������������

(�� � � � �)������	
����''!�����������	������������������	�����������������	������������

*�� � � � � � � '+ ��	
,�������	�,���������-�!���.� ���������
���������
���!"#���

�

� � � � � �������������!"#���������
	���	��$��� �
������
����
����
���
���������������!"#�����

/�� � � � � ����'+ ��	
,�������	,���������-�-��!����� �

�

0�� � � � � � � � ������'�!��������������
��	���������	�����������
����������

�������	�1�����������	�������������	������������
���

�2��� � � � � � ������3�	������������������	�������������������������������

����� � � � � � � '+ ��	
�������������	�4����������������567'�!���

�

����� � � � 8������� � � � � � � � ���%�������	����	����������!"#�&���������$���

����� � � � � � ������'�!��������������
��	���������	�����������
��	�������

�������	�1�����������	�������������	������������
���

�"���� � � 8�

�$��� � � 9��������	����	������	�������

�(���� 8�

�*����������: �����������	���; �)����#���<�������-�-�2���������������������	�������

�/���� 9��������	����	������	������� � � � � � ����������	��������������
	�����

Figure 12: Our TCP-guided DVFS algorithm tracks cache miss
patterns to set threads to appropriate frequencies.

3. Finally, we present the energy savings from our ap-
proach on the FPGA-based emulator.

7.1 Algorithm and Proposed Hardware
The goal of our energy-efficient algorithm is to predict

thread criticality and DVFS accordingly so as to minimize
barrier wait-time. Though energy is the primary concern,
accurate prediction is essential to reduce the performance
impact of DVFS, by clock-scaling only non-critical threads.
An effective TCP must also use confidence from past behav-
ior to reduce the number of “wrong answers” it provides.

Figure 12 details our prediction algorithm, highlighting
the TCP components required for DVFS. On an L1 instruc-
tion cache, L1 data cache, or L2 cache miss, the Criticality
Counter corresponding to the relevant core is updated. If
the core’s counter value is now above a pre-defined thresh-
old T and it is currently running at the nominal (fastest)
frequency f0, thread criticality calculations commence.

The first step uses the Switching Suggestion Table (SST)
to translate Criticality Counter values into thread critical-
ities and suggest potential frequency switches. The SST
is row-indexed with the current DVFS setting. Every row
holds pre-calculated values corresponding to criticality counts
required to switch to potential target frequencies. Each col-
umn thus corresponds to a different target frequency. Ev-
ery core’s relative criticality is determined by row-indexing
the SST with the current DVFS setting and comparing its
criticality counter value against the row SST entries. The
matching SST entry’s column index then indicates the tar-
get frequency. If this is different from the current DVFS
setting, the SST suggests a frequency switch. If the critical-
ity count falls between two SST entries, we err on the side of
performance by picking the entry for the higher frequency.

The second step in our algorithm feeds the suggested tar-
get frequency from the SST to the Suggestion Confidence
Table (SCT). The SCT minimizes the impact of fast-changing,
spurious program behavior which can lead to criticality mis-
predictions. The latter can degrade performance either by
sufficiently slowing non-critical threads to make them criti-
cal or by further slowing down critical threads. To combat
this, the SCT assesses confidence on the SST’s DVFS sug-
gestion and permits switches only for consistently-observed
criticality behavior. The SCT contains per-core registers
maintaining a set of saturating counters, one for each DVFS
level. At system initialization, the f0 counter is set to its

296

�

�����������	

�
�����	

������
�	�
���
�	�
���	

������	

����	����	

�������
�	�
������	����	

���������	�������
�	����	�����		

������	

�������

������	

���� ��	

!
���	

"�����	

�
�	#	 �

�����	�������	������	

�
�	$	

����	������	#�% ��	

Figure 13: Our TCP hardware includes the Criticality Counters,
SST, SCT, Current DVFS Tags, and Interval Bound Register; for
a 16-core CMP with 4 DVFS levels and a threshold T of 1024, we
use 71 bytes of storage overhead.

maximum value while the others are zero. Now, when the
SST suggests a frequency switch for a particular core, that
core’s SCT register is checked. The register’s saturating
counter for the suggested target frequency is then incre-
mented while the other counters are decremented. An ac-
tual frequency switch is initiated only if the counter with the
largest (most confident) SCT value corresponds to a DVFS
setting different from the current one.

Our algorithm also uses the Interval Bound Register to
periodically reset the Criticality Counters to ensure that
predictions are based on recent thread behavior. For our
results, this is set to 100K cycles.

Figure 13 shows the structure of the described hardware in
more detail. The predictor control logic includes the SST,
SCT, and Current DVFS tags. SST entries are preset by
scaling a threshold T by the potential DVFS levels. For
example, in our DVFS environment with four levels, the SST
row corresponding to f0 would hold 0.85T, 0.70T, and 0.55T
as the values required to scale to 0.85f0, 0.70f0 and 0.55f0
respectively. These values are calculated with the insight
that higher Criticality Counter values imply slower, poorly-
cached threads; therefore, if a core holds a criticality count
of T while another holds 0.55T, the latter is non-critical and
its frequency can be proportionately scaled down.

Our TCP design is clearly low-overhead and scalable. Based
on our chosen TCP parameters, a 16-core CMP requires only
71 bytes of storage aside from comparators. At 64 cores,
assuming the same TCP parameters, the required storage
increases to merely 215 bytes, making for a scalable design.

Our algorithm requires modest inter-core communication;
this however, only occurs when a core needs to DVFS. We
have reduced communication requirements by housing the
TCP state at the L2 cache controller, where counted events
will be observed anyways. As such, this is lower overhead
than meeting points, which requires frequent broadcasts.
This allows for fast criticality predictions.

Having detailed our hardware structures, we now focus
on tuning the structure parameters for optimal predictor
accuracy, starting with the threshold T, which determines
how often we consider clock-scaling threads.

7.2 Criticality Counter Threshold:
How Often to Consider Switching?

Selecting an appropriate threshold parameter T involves
balancing predictor speed and accuracy. While a low T pro-
vides the opportunity for fine-grained DVFS, it may increase
susceptibility to temporal noise. Without good suggestion
confidence, this results in too many frequency changes and
excessive performance overhead.

We begin by measuring T’s effect on prediction accuracy
using the ARM simulator with 16 cores and DVFS. To iso-
late the effect of T, we temporarily ignore the SCT and
DVFS transition overheads; all suggested SST frequency

�

�

��

��

��

��

���

���

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

	
 ����� ������ � ���� ��� ����� ����� � !"�# � !$% ����&��� $ ' �

�
��
��
��
�	

�
��
	

�

������
������ 	��
����������	
���
��	�����

"���� 	�����(���� �
��������������� ��� !�"�#$��%�

��

Figure 14: While prediction accuracy typically increases with T,
prediction noise is a dominant problem.

�

��

��

��

��

���

���

� � � � � � � � � � �

�� 	
��� ������

�
��
�
�
��
�	

�
��
	

�
�

� ��� �
�����

� � � � � � � � � � � � � � �

������ � �
� ��� ����� �
���

�	��������������	����
������	�����

�
����� ������ ��������������

� � � � � � � � � � � � � � � �

�
��� ! ��"

� �#

! ��"$% 	�
�&��� $��'�

�	��������������	����
������	�����

��������������� ����	���������

� � �

$��'�

� �

Figure 15: Suggestion confidence mitigates noise with an average
accuracy of 92.68% with 2 bits.

switches are actually executed without going through the
SCT or incurring voltage rail switching penalties.

To assess TCP accuracy, we first profile the benchmarks
without TCP. We record thread compute and stall times
across barriers and then use them to pre-calculate the thread
frequencies required to minimize barrier stalling. A highly
accurate criticality predictor would DVFS threads into these
pre-calculated settings. We then integrate our TCP and
study how closely we track the pre-calculated frequencies.

Figure 14 shows the accuracy with which TCP tracks the
pre-calculated frequency settings. The lowest bar compo-
nent represents time spent in the pre-calculated or correct
state, averaged across all barrier instances. The central bar
component shows the learning time taken until the correct
DVFS state is first reached. Finally, the upper portion shows
prediction noise or time in spent in erroneous DVFS after
having arrived at the correct one.

Figure 14 shows how prediction accuracy varies with bench-
mark. While Radix and Barnes enjoy above 90% accuracy,
Cholesky does poorly at 40%. In general, increasing T bol-
sters prediction accuracy though Cholesky actually gradu-
ally deteriorates. One reason for this is the learning time
taken to study application behavior before predicting fu-
ture thread criticality. While a perfect predictor eliminates
learning time, the time taken to reach T limits us in prac-
tice. Typically, a larger T increases learning time. Figure 14
shows this, particularly for Blackscholes and Streamclus-
ter. Longer learning times, however, usually provide more
reliable predictions.

Figure 14 also shows that though learning time contributes
to predictor inaccuracy, prediction noise from fast-changing
program behavior is far more harmful, causing excessive fre-
quency switching. For example, Cholesky and Streamclus-
ter suffer particularly from this behavior. This inaccuracy
can result in severe performance degradation.

Therefore, TCP noise must be eliminated for higher ac-
curacy. We investigate mechanisms for doing this with the
Suggestion Confidence Table in the following sections. These
investigations will assume a T of 1024 since Figure 14 shows
that this has the highest average accuracy.

7.3 Suggestion Confidence Table Design
Suggestion confidence can reduce noise-induced mispre-

dictions by requiring that a thread’s behavior be consistent

297

� � �� �� �� �� �� �� ��
�

���

�

���

�

�	
����������������

��
�
��
�
��
�
�

�
��
�
��
��

�

��������� !���"#$	%�#���

�������� !���"#$	%�#���&�'"��"#$	%�#���

�������� !��'"��"#$	%�#���

� � �� �� �� �� �� �� ��
��

(�

)�

���

�	
����������������

�
�
�
�
�
�$
�*
�
+
�
��

��
��
�
�

�
��
�
��
��

�

�

'"��"#$	%�#��

�"#$	%�#��

Figure 16: Temporal noise in barrier 4 of Streamcluster causes
incorrect slowdown of critical thread 1, degrading overall perfor-
mance; confidence estimation prevents this problem.

over a longer time-frame before making a prediction. Figure
15 demonstrates the benefits of this by varying the bit-width
of the counters in each entry of the Suggestion Confidence
Table. Clearly, even 2 bits of confidence particularly improve
LU, Volrend, Streamcluster, and Cholesky accuracy.

However, Figure 15 also shows that while confidence es-
timation mitigates noise, learning time tends to rise. This
is because even correct frequency switches now take longer
to predict. This is why the accuracy of Barnes, Cholesky,
and Radix degrades as the number of confidence bits rises.
From now, we therefore assume 2 bits per SCT saturating
counter as this presents the best results.

To further investigate how confidence estimation removes
erroneous frequency transitions, Figure 16 shows a snapshot
of Streamcluster on the ARM simulator. The upper sub-
graph plots IPC profiles for thread 1 and 2 in the presence
and absence of confidence estimation. The lower sub-graph
plots thread 1’s DVFS setting through runtime with and
without confidence estimation.

We begin by considering the thread 1 and 2 IPC profiles
without confidence estimation. Thread 1 is critical, usually
maintaining an IPC lower than thread 2. However, thread
1’s IPC does have occasional surges (100k - 120k and 320k
- 350k cycles), unrepresentative of its general behavior. Un-
fortunately, at these points, our TCP without confidence es-
timation would infer that thread 1 is non-critical, scaling
down its frequency. Indeed, the lower graph of Figure 16
shows the incorrect prediction around 110k cycles, causing
a switch to 0.70f0. The resulting thread 1 IPC therefore
decreases, degrading performance. Although the predictor
eventually reorients at 155k cycles, critical thread 1 is now
slowed down. Furthermore, another TCP misprediction is
made around 340k cycles, when thread 1’s IPC again surges.

Figure 16 shows that with confidence estimation, these
incorrect frequency switches are prevented. The upper sub-
graph shows that thread 1’s IPC with confidence estimation
again surges at 100K and 320k cycles. This time, however,
there are no frequency switches and the resulting thread 1
IPC profile (Confidence case) is not degraded.

7.4 Prediction Accuracy in the Presence of Out-
of-Order Pipeline and Memory Parallelism

Our goal is to provide general TCPs that work well across
a range of microarchitectures. Therefore, we need to evalu-
ate our techniques on both in-order and out-of-order scenar-
ios. Thus far, our results have assumed an in-order pipeline
and blocking caches. We now consider the effect of out-of-
order pipelines and non-blocking caches.

�

��

��

��

��

���

���

���

��
	

��

� � �

�
�

��
	

��

� � �

�
�

��
	

��

� � �

�� ����� �
����

�
��
��
��
�	

�
��
	

�
��

��
�

�
�
	�
��
��
�
�
�

������
��� ��������	���	��� ��

�
� �����

���������

�
�� !

� �
�
�

��
	

��

� � �

�
�

��
	

��

� � �

�
�

��
	

��

� � �

�
�

��
	

��

� �

�
���� " �� ��# ��
�� $���%

������
��� ��������	���	��� ���
��

&'���& (��)�* ���+ ,�$��!�)�-�.�����/

&'���& (��)�* ���+ ,�$��!����-��.�01�/

&'���& (��)�* ����+ ,�$��!����-�����0�/

� �
�
�

��
	

��

� � �

�
�

��
	

��

� � �

�
�

��
	

��

� � �

�
�

��
	

��

� �

$���% 2 !�	3�� 2 !�	,4 ��� 5� � ,!�6�

�� �������� �� ��!	�������

&'���& (��)�* ���+ ,�$��!�)�-�.�����/

&'���& (��)�* ���+ ,�$��!����-��.�01�/

&'���& (��)�* ����+ ,�$��!����-�����0�/

�

��
	

��

� � �

�
�

,!�6�

&'���& (��)�* ���+ ,�$��!�)�-�.�����/

&'���& (��)�* ���+ ,�$��!����-��.�01�/

&'���& (��)�* ����+ ,�$��!����-�����0�/

Figure 17: Increased memory parallelism decreases the criticality
of a single cache miss.

�

��

��

��

��

���

���

���

� ��� � ��� � ���

�	
���� ������

�
��
��
��
�	

�
��
	

�
��
�	
�
�
��
��
�
�
�
��
�
�
�
�

������
��� ��������	���	�� ��

��� ������ ����������

�������

�� � ��� � ��� � ��� � �

������ ��� ��! ����� "���#

������
��� ��������	���	�� ��!
�! �������� ��"��#	�������

���������� $%���$��&���'�(���) *�"����'�+�,�����-

$%���$��&���'�(���) *�"��������+�,�����-

$%���$��&���'�(����) *�"��������+�,���.�-

��� � ��� � ��� � ��� �

"���# / ��0

1��

/ ��0*2
���3��� *��4�

 �������� ��"��#	�������

$%���$��&���'�(���) *�"����'�+�,�����-

$%���$��&���'�(���) *�"��������+�,�����-

$%���$��&���'�(����) *�"��������+�,���.�-

���

*��4�

$%���$��&���'�(���) *�"����'�+�,�����-

$%���$��&���'�(���) *�"��������+�,�����-

$%���$��&���'�(����) *�"��������+�,���.�-

Figure 18: Gradual DVFS demonstrates high accuracy despite
memory parallelism.

Figure 17 shows TCP accuracy on both the ARM sim-
ulator (first set of bars) and the out-of-order GEMS con-
figurations for varying levels of memory parallelism. The
latter is accomplished by changing the number of Miss Sta-
tus Holding Register (MSHR) entries. Our plot also shows
the time spent in the pre-calculated or correct DVFS set-
tings (lower bar portion), as well as time spent in frequency
settings higher (middle portion of each bar) or lower (upper
portion of each bar) than our pre-calculated values.

Figure 17 shows that the out-of-order GEMS pipeline with
blocking caches (1 MSHR entry) actually enjoys slightly
higher TCP accuracy than the in-order pipeline. In par-
ticular, Cholesky’s accuracy now improves to 93% because
of the minimization of noise from out-of-order instruction
scheduling on program behavior. Unfortunately, the re-
sults change when increasing memory parallelism. We still
achieve an accuracy of 89.57% at 8 MSHR entries but at
32 entries, this degrades to 83.35%. This is because the
criticality of a single cache miss decreases as the cache is
able to overlap the miss penalty with subsequent accesses.
While benchmarks with large working sets (Ocean, Volrend,
Blackscholes, and Streamcluster) remain more immune
to this, others are susceptible. In fact, Figure 17 shows that
these TCP mispredictions are especially problematic as they
result in frequency settings lower than those pre-calculated,
degrading performance.

Fortunately, an elegant solution to this problem is to favor
cautious, gradual DVFS. In this scheme, downward transi-
tions can only occur to immediately lower frequencies (eg. f0
can switch to only 0.85f0), while upward transitions can be
handled as before (eg.0.70f0 can to either 0.85f0 or f0). Fig-
ure 18 reveals that this greatly improves predictor accuracy

298

�

���

���

���

���

�

���

���

���

���

�

���

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

	
 ����� ������ � ���� ��� ����� ����� � �

!�"

� � #$ ����%��� #�&�

�
�
�
��
�
�
�	

�
��

�
��
��
��
�
��
�
��
�
�
�
��
�
�
��
�

���������������������������� ������������! �����"#��������������

������	$%%%��&�������! ������������������'��(�"����

���������

	�����'(���(!����(

!�&��

)*'�(� *�����(+ (��%(�,���(

$�����,-(��. (�/(��'����(0���&�(

Figure 19: DVFS transition penalties without the SCT severely
degrade performance.

even at high MSHR counts. While accuracy may decrease at
low MSHR counts (eg. Radix accuracy decreases by 4%) be-
cause of longer learning time from gradual frequency scaling,
we now see above 90% accuracy across every tested bench-
mark for 32-entry MSHRs. Moreover, most of the inaccu-
racy is spent at higher frequencies. While this might reduce
energy savings, it ensures good performance for many levels
of memory parallelism.

7.5 Results
The previous sections have detailed TCP-driven DVFS

hardware and algorithms to mitigate barrier-induced energy
waste. We have presented predictor accuracy for a range of
microarchitectures and discussed the merits of both aggres-
sive DVFS and gradual, conservative DVFS. We now present
performance and energy results.

7.5.1 Impact of TCP-Driven DVFS Transition
Overheads on Benchmark Performance

While energy efficiency is the motivation for applying our
TCP to DVFS, we want to avoid compromising performance.
Therefore, we now consider the impact of DVFS transition
time penalties on application performance for both the con-
ventional or aggressive DVFS case and the alternate gradual
DVFS case for increased memory parallelism.

DVFS relies on off-chip switching voltage regulators with
transition penalties in the order of microseconds. While pre-
liminary work on fast on-chip voltage regulators for per-core
DVFS shows promise [19], our predictor must also handle
the larger transition times typical of contemporary systems.

Figure 19 shows how transition penalties affect benchmark
runtimes for aggressive DVFS on our emulator in the absence
of the SCT. Runtimes are normalized to their baseline ex-
ecution. The lower bar portions indicate baseline runtime
while the middle portion indicates learning time and noise
overheads. The upper bar portion accounts for performance
degradation due to transitions. We vary voltage transitions
from 50 cycles (typical of on-chip regulators) to 50K cy-
cles (typical of off-chip regulators). As expected, the lack
of suggestion confidence introduces significant noise. Even
worse however, transition overheads further degrade execu-
tion time by 52% on average at 50K cycles. Cholesky is
particularly affected, almost doubling in runtime.

Fortunately, Figure 20 shows that the SCT removes both
noise and transition overheads for aggressive DVFS, even at
the high penalties associated with off-chip regulators. Since
predictions now have to build confidence before frequency
scaling, mispredictions from noise and their associated tran-
sitions are prevented. Thus, benchmark overheads remain
under 10%. Interestingly, we see that the runtimes of Ocean,
Radix, and Streamcluster are actually improved by 5-10%.
This occurs because non-critical threads are slowed down,
spreading out their cache misses. Hence, bus/interconnect

�

���

���

���

���

�

���

���

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

	
 ����� ������ ����� ��� ����� ����� � �

!�"

� � #$ ����%��� #�&�

�
�
�
��
�
�
�	

�
��

�
��
��
��
�
��
�
��
�
�
�
��
�
�
��
�

���������������������������� ���������!��" �����#$��������������

������	%&�'(�������" ���������������'��)�#����

���������

	�����'(���(!����(

!�&��

)*'�(�*�����(+(��,(�-���($�����-(

.(/��0 (�1(��'����(�2���&�(

Figure 20: The SCT eliminates noise and transition overhead.

�

���

���

���

���

�

���

���

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

�
��

�
�
�� �
�
�

	
 ����� ������ � ���� ��� ����� ����� � �

!�"

� � #$ ����%��� #�&�

�
�
�
��
�
�
�	

�
��

�
��
��
��
�
��
�
��
�
�
�
��
�
�
��
�

������������������������� ���������!��" ����#�$��������������������

	%&�'(�������) ���������������'��*������

���������

	�����'(���(!����(

!�&��

)*'�(� *�����((+ (��,(�-���($�����-(

.(���/ (�0(� �'����(�1���&�(

Figure 21: Gradual DVFS with the SCT enjoys low runtime
overheads.

congestion is lowered enough for the critical thread cache
misses to be serviced faster, boosting overall performance.

Figure 21 considers the alternate case of gradual DVFS
on our emulator. Again, minimal performance degradation
occurs due to our confidence estimation scheme. While some
benchmarks see a slightly higher overhead due to the longer
learning time, LU and Cholesky see roughly 4% improvement
in runtime overhead. This is because TCP mispredictions
are minimized, lowering the number of frequency switches
and their transition overhead.

Note that we also tested performance on the in-order ARM
simulator, with similar results. We therefore conclude that
our TCP predictor is robust to DVFS non-idealities as well.

7.5.2 Energy Savings from TCP-Driven DVFS
We now present the energy savings from integrating our

TCP in barrier-based programs. We run our selected bench-
marks on the FPGA-based emulator assuming a transition
penalty of 50K cycles. Figure 22 shows that TCP-driven
DVFS saves considerable energy across benchmarks, an av-
erage of 15% and 11% for aggressive and gradual DVFS re-
spectively. Benchmarks with more load imbalance generally
save more energy; the large imbalance for LU and Volrend
leads to energy savings above 20% for both DVFS modes.
Meanwhile, Radix, Ocean, and Streamcluster benefit from
their shorter runtimes, which decreases idle energy contri-
butions. Note that while gradual DVFS usually leads to
lower energy savings than the aggressive case, this situation
is reversed for Cholesky. This is because the gradual case
minimizes TCP mispredictions, decreasing the number of
frequency switches and their transition overheads.

299

�

���

���

���

���

���

���

��	

��

���

�

���

�
�
��

�
��
�	

��

	
��
�
��
�
�
	

	

�

��
	
��
��
�
	
��
�
��
��
�
�
�
��
�
	

��
�
�
��
��
�

�������������

������������

����������������� !����������������"������#

����������������� !���������������"������#

Figure 22: Energy expended by TCP-guided DVFS normalized
to no DVFS case (lower values indicate savings).

Our energy savings are actually a conservative estimate
for a few reasons. First, our results are based on 4 simple
cores. Increasing load imbalance from a greater number of
complicated cores will yield considerably higher energy sav-
ings. Second, we fix leakage cost to a forward-looking value
of 50% of total baseline energy. In reality, lower power from
our scheme on the non-critical threads will lead to lower
temperatures, leading to leakage savings. Moreover, bench-
marks with shorter runtime would lead to even lower leak-
age power, which we do not account for. Finally, as on-chip
regulators become the norm, energy waste from transition
penalties will be eliminated.

8. RELATED WORK
While application criticality has been studied, most prior

work has explored this in the context of instructions [14,
32]. The advent of CMPs however, has pushed the focus
on thread criticality prediction. We have already detailed
the thrifty barrier [21] and meeting points [9] approaches
and shown our distinct research goals. Other than these ap-
proaches, Liu et al. use past non-critical thread barrier stall
times to predict future thread criticality and DVFS accord-
ingly [23]. In contrast to this history-based approach, we
predict thread criticality based on current behavior, regard-
less of barriers. We also use our predictor to improve TBB
task stealing, building from the occupancy-based approach
of Contreras and Martonosi [12]. Our work is distinct, how-
ever, in that we use criticality to guide task stealing for
performance gains with little hardware overhead.

Apart from these applications, the power of our TCP-
hardware lies in its generality and applicability to a range of
adaptive resource management schemes. For example, TCPs
could be used to guide shared last-level cache management
[17, 18, 30], QoS-aware cache designs such as Virtual Pri-
vate Caches [28], the design of fair memory controllers and
their priority schemes [15, 22, 27], the development of SMT
priority, throughput and fairness schemes [9, 25, 31], as well
as the management of other parallelization libraries such as
CAPSULE [29] and CARBON [20] and other work-stealing
schemes [2, 7, 11].

9. CONCLUSION
Our overarching goal has been to explore the accuracy and

usefulness of simple TCPs based largely on metrics already
available on most CMPs. By focusing on the large amounts
of run-time variation introduced by the memory hierarchy,
our TCPs offer useful accuracy at very low hardware over-
head. Furthermore, situating the TCP near the L2 cache
controller allows it to collect the necessary inputs with little
network or bus overhead.

One of our goals has been to develop TCPs general enough
for several applications. To demonstrate this, we imple-
mented a TCP-based TBB task stealer, and a TCP-based

DVFS controller for energy savings in barrier-based pro-
grams. The TCP-based task stealer offers 12.9% to 31.8%
performance improvements on a 32-core CMP. The TCP-
based DVFS controller offers an average of 15% energy sav-
ings on a 4-core CMP.

Looking beyond the initial applications covered in this pa-
per, the real promise of our work lies in its ability to provide
a cost-effective foundation for a large variety of performance
and resource management problems in future CMPs. As
future CMPs scale to higher core counts, greater complex-
ity, and increased heterogeneity, the need to dynamically
apportion system resources among multiple threads will be
crucial. Our TCP mechanisms present a first effort in this
regard and, we expect it to be valuable for a range of re-
source management issues in both hardware and software.

10. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their feedback. We

also thank Gilberto Contreras and Niket Agarwal for their
help with the simulation infrastructure and Sibren Isaacman
for his help with the emulator. This work was supported
in part by the Gigascale Systems Research Center, funded
under the Focus Center Research Program, a Semiconductor
Research Corporation program. In addition, this work was
supported by the National Science Foundation under grant
CNS-0720561.

11. REFERENCES
[1] Intel Threading Building Blocks 2.0. 2008.
[2] U. Acar, G. Blelloch, and R. Blumofe. The Data

Locality of Work Stealing. ACM Symp. on Parallel
Algorithms and Architectures, 2000.

[3] A. Bhattacharjee, G. Contreras, and M. Martonosi.
Full-System Chip Multiprocessor Power Evaluations
using FPGA-Based Emulation. Intl. Symp. on Low
Power Electronics and Design, 2008.

[4] C. Bienia et al. The PARSEC Benchmark Suite:
Characterization and Architectural Implications. Intl.
Conf. on Parallel Architectures and Compilation
Techniques, 2008.

[5] C. Bienia, S. Kumar, and K. Li. PARSEC vs
SPLASH-2: A Quantitative Comparison of Two
Multithreaded Benchmark Suites on Chip
Multiprocessors. IEEE Intl. Symp. on Workload
Characterization, 2008.

[6] R. Blumofe et al. Cilk: An Efficient Multithreaded
Runtime System. Journal of Parallel and Distributed
Computing, 1996.

[7] R. Blumofe and C. Leiserson. Scheduling
Multithreaded Computations by Work Stealing.
Journal of ACM, 46(5):720–748, 1999.

[8] S. Borkar et al. Parameter Variations and Impact on
Circuits and Microarchitecture. Design Automation
Conference, 2003.

[9] Q. Cai et al. Meeting Points: Using Thread Criticality
to Adapt Multicore Hardware to Parallel Regions.
Intl. Conf. on Parallel Architectures and Compilation
Techniques, 2008.

[10] H. Chang and S. Sapatnekar. Full-Chip Analysis of
Leakage Power Under Process Variation, including
Spatial Correlations. Design Automation Conference,
2005.

[11] D. Chase and Y. Lev. Dynamic Circular
Work-Stealing Deque. ACM Symp. on Parallelism in
Algorithms and Architectures, 2005.

[12] G. Contreras and M. Martonosi. Characterizing and
Improving the Performance of Intel Threading
Building Blocks. IEEE Intl. Symp. on Workload
Characterization, 2008.

[13] J. Donald and M. Martonosi. Techniques for Multicore
Thermal Management: Classification and New
Exploration. Intl. Symp. on Computer Architecture,
2006.

300

[14] B. Fields, S. Rubin, and R. Bodik. Focusing Processor
Policies via Critical-Path Prediction. Intl. Symp. on
High Performance Computer Architecture, 2001.

[15] E. Ipek et al. Self-Optimizing Memory Controllers: A
Reinforcement Learning Approach. Intl. Symp. on
Computer Architecture, 2008.

[16] C. Isci et al. An Analysis of Efficient Multi-Core
Global Power Management Policies: Maximizing
Performance for a Given Power Budget. Intl. Symp.
on Microarchitecture, 2006.

[17] A. Jaleel et al. Adaptive Insertion Policies for
Managing Shared Caches. Intl. Conf. on Parallel
Architectures and Compilation Techniques, 2008.

[18] S. Kim, D. Chandra, and Y. Solihin. Fair Cache
Sharing and Partitioning in a Chip Multiprocessor
Architecture. Intl. Conf. on Parallel Architectures and
Compilation Techniques, 2004.

[19] W. Kim et al. System Level Analysis of Fast,
Per-Core DVFS Using On-Chip Switching Regulators.
Intl. Symp. on High Performance Computer
Architecture, 2008.

[20] S. Kumar, C. Hughes, and A. Nguyen. Carbon:
Architectural Support for Fine-Grained Parallelism on
Chip Multiprocessors. Intl. Symp. on Computer
Architecture, 2007.

[21] J. Li, J. Martinez, and M. Huang. The Thrifty
Barrier: Energy-Aware Synchronization in
Shared-Memory Multiprocessors. Intl. Symp. on High
Performance Computer Architecture, 2005.

[22] W. Lin et al. Reducing DRAM Latencies with an
Integrated Memory Hierarchy Design. Intl. Symp. on
High Performance Architecture, 2001.

[23] C. Liu et al. Exploiting Barriers to Optimize Power
Consumption of CMPs. Intl. Symp. on Parallel and
Distributed Processing, 2005.

[24] S. Liu et al. A Probabilistic Technique for Full-Chip
Leakage Estimation. Intl. Symp. on Low Power
Electronics and Design, 2008.

[25] K. Luo, J. Gummaraju, and M. Franklin. Balancing
Throughput and Fairness in SMT Processors. Intl.
Symp. on Performance Analysis of Systems and
Software, 2001.

[26] M. Martin et al. Multifacet’s General
Execution-Driven Multiprocessor Simulator (GEMS)
Toolset. Comp. Arch. News, 2005.

[27] K. Nesbit et al. Fair Queuing Memory Systems. Intl.
Symp. Microarchitecture, 2006.

[28] K. Nesbit, J. Laudon, and J. Smith. Virtual Private
Caches. Intl. Symp. on Computer Architecture, 2007.

[29] P. Palatin, Y. Lhuillier, and O. Temam. CAPSULE:
Hardware-Assisted Parallel Execution of
Component-Based Programs. Intl. Symp. on
Microarchitecture, 2006.

[30] S. Srikantaiah, M. Kandemir, and M. J. Irwin.
Adaptive Set Pinning: Managing Shared Caches in
CMPs. Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems, 2007.

[31] D. Tullsen et al. Exploiting Choice: Instruction Fetch
and Issue on an Implementable Simultaneous
Multithreading Processor. Intl. Symp. on Computer
Architecture, 1996.

[32] E. Tune et al. Dynamic Prediction of Critical Path
Instructions. Intl. Symp. on High Performance
Computer Architecture, 2001.

[33] S. Woo et al. The SPLASH-2 Programs:
Characterization and Methodological Considerations.
Intl. Symp. on Computer Architecture, 1995.

301

