Thread Criticality Predictors for Dynamic Performance, Power, and Resource Management in Chip Multiprocessors

Abhishek Bhattacharjee, Margaret Martonosi
Dept. of Electrical Engineering
Princeton University
{abhattach, mrm}@princeton.edu

ABSTRACT
With the shift towards chip multiprocessors (CMPs), exploiting and managing parallelism has become a central problem in computer systems. Many issues of parallelism management boil down to discerning which running threads or processes are critical, or slowest, versus which are non-critical. If one can accurately predict critical threads in a parallel program, then one can respond in a variety of ways. Possibilities include running the critical thread at a faster clock rate, performing load balancing techniques to offload work onto currently non-critical threads, or giving the critical thread more on-chip resources to execute faster.

This paper proposes and evaluates simple but effective thread criticality predictors for parallel applications. We show that accurate predictors can be built using counters that are typically already available on-chip. Our predictor, based on memory hierarchy statistics, identifies thread criticality with an average accuracy of 93% across a range of architectures.

We also demonstrate two applications of our predictor. First, we show how Intel’s Threading Building Blocks (TBB) parallel runtime system can benefit from task stealing techniques that use our criticality predictor to reduce load imbalance. Using criticality prediction to guide TBB’s task-stealing decisions improves performance by 13-32% for TBB-based PARSEC benchmarks running on a 32-core CMP. As a second application, criticality prediction guides dynamic energy optimizations in barrier-based applications. By running the predicted critical thread at the full clock rate and frequency-scaling non-critical threads, this approach achieves average energy savings of 15% while negligibly degrading performance for SPLASH-2 and PARSEC benchmarks.

Categories and Subject Descriptors
C.4 [Processor Architectures]: Parallel Architectures; C.4 [Performance of Systems]: Design Studies

General Terms
Design, Performance

Keywords
Thread Criticality Prediction, Parallel Processing, Intel TBB, DVFS, Caches

1. INTRODUCTION
While chip multiprocessors (CMPs) already dominate computer systems, key research issues remain in exposing and managing the parallelism required to fully exploit them. In particular, good performance for a parallel application requires reducing load imbalance and ensuring that processor resources (functional units, cache space, power/energy budget and others) are used efficiently. As a result, the ability to accurately predict criticality in a computation is a fundamental research problem. If the system can correctly gauge the critical, or slowest, threads of a parallel program, this information can be used for a variety of techniques including load rebalancing, energy optimization, and capacity management on constrained resources.

Predicting thread criticality accurately can lead to substantial performance and energy improvements. Consider, for example, the extreme case of a load-imbalanced parallel program in which one thread runs twice as long as the others. If this thread’s work could be redistributed among all the other threads, performance would improve by up to 2x. If one instead focuses on energy improvements, then the other threads could be frequency-scaled or power-gated to save energy during their prolonged wait time. While this example is extreme, Section 2 shows that significant real-world opportunities exist in a range of benchmarks. The key challenge, however, is that one must accurately and confidently predict the critical thread, or else large performance and energy degradations can arise from responses to incorrect predictions.

This work focuses on low-overhead and general thread criticality prediction schemes that harness counters and metrics mostly available on-chip. Having tested a range of techniques based on instruction counts and other possibilities, we find that per-core memory hierarchy statistics offer the best accuracy for criticality prediction. Our work shows how to form memory statistics into useful thread criticality predictors (TCPs). We also explore pairing them with confidence estimators that gauge the likelihood of correct predictions and reduce the high-cost responses to incorrect ones.

To demonstrate its generality, we also apply our TCP hardware to two possible uses. First, we study how TCP can assist Intel Threading Building Blocks (TBB) [1] in improving task-stealing decisions for load balancing among threads. By identifying the critical thread in an accurate and lightweight manner, threads with empty task queues can “steal” work from the most critical thread and shorten program runtimes. In the second application study, we focus on barrier-based applications and use TCP to guide dynamic voltage and frequency scaling (DVFS) decisions. Here we show that gauging the degree of criticality of different threads can also be useful. By determining which threads are non-critical (and by how much) we can choose to run the most critical thread at a high clock rate, while operating other threads on cores that are frequency-scaled to be more energy efficient.

Overall, this paper both describes the implementation issues for TCP and also evaluates methods for using it. The key contributions of this work are:

1. We demonstrate that accurate predictions of thread criticality can be built out of relatively-accessible on-chip

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ACM 871-60558-526-0/09/06 $5.00.

ISCA '09, June 20–24, 2009, Austin, Texas, USA.
Copyright 2009 ACM 978-1-60558-526-0/09/06 ...$5.00.
information such as memory hierarchy statistics. We describe our proposed TCP hardware and then test it on both in-order and out-of-order machines to show its effectiveness across different microarchitectures. Despite TCP’s simple design, it attains an average prediction accuracy of 93% on SPLASH-2 [39] and PARSEC [4] workloads.

2. In our first usage scenario, we apply TCP to task-stealing in Intel TBB. Here, our predictions improve the performance of PARSEC benchmarks ported to TBB by 13% to 32% on a 32-core CMP. While our results are demonstrated with TBB, similar approaches could be built for other environments based on dynamic parallelism.

3. In our second usage scenario, TCP techniques guide DVFS settings. In particular, we identify threads that are confidently non-critical and DVFS them to save energy. In this scenario, TCP achieves an average energy savings of 15% for a 4-core CMP running SPLASH-2 and PARSEC workloads. Our approach to barrier energy reductions offers potentially higher payoffs with lower hardware overheads than prior proposals.

Beyond the two application scenarios evaluated in this paper, thread criticality prediction can be applied to many other parallelism management problems. For example, TCP could shape how constrained in-core resources like issue width or execution units are apportioned among parallel tasks. It can also help guide the allocation of more global resources such as bus and interconnect bandwidth.

This paper is structured as follows. Section 2 offers quantitative motivations for TCPs and our specific design objectives. After describing methodology in Section 3, Section 4 evaluates the possible architectural metrics for predicting criticality, quantifying the link between cache misses and thread criticality. Section 5 proposes a base TCP design, and Section 6 elaborates on this for the TBB task stealing application. Section 7 then details and evaluates TCPs for barrier energy optimizations. Finally, Section 8 addresses related work and Section 9 offers our conclusions.

2. OUR MOTIVATION AND OBJECTIVES

2.1 The Case for Criticality Predictors

Fundamentally, criticality prediction is aimed at estimating load imbalance in parallel programs. To explore the potential benefits of approaches using criticality prediction, we characterized the load imbalance for SPLASH-2 and PARSEC applications with the data-sets listed in Table 2 on a cycle-accurate CMP simulator described in Section 3. For example, LU, Volfrend, Fluidanimate and Water-Nsq have at least one core stalling for 10% of the execution time at 4 cores worsening to an average of 25% at 32 cores. These stall cycles arise from wait times at barriers and on shared locks, the former dominating in barrier-based applications. Already substantial, we expect load imbalance to worsen as future CMPs expose more performance variations due to technology issues and thermal emergencies [8, 13].

Since imbalance degrades performance and energy efficiency, it is useful to predict thread criticality and react accordingly. Figure 1 shows potential performance improvements for barrier 2 of Blackscholes. The first four bars plot thread compute and stall times (light and dark portions) normalized to critical thread 2. These show large thread stall times, with a worst-case stall time of 55% of runtime for thread 1. In response, a TBB version of this application can split work into small tasks and insert them into per-core task queues. When one thread runs out of work, it steals tasks; however TBB currently steals from randomly-chosen cores and the middle bars of Figure 1 shows that this only modestly improves performance. In contrast, the right set of bars show the potential of TCP-guided prediction. These bars depict an oracle criticality prediction, in which tasks are stolen from the slowest thread, for a much higher speedup of 1.4x.

As a second approach, Figure 2 sketches the potential energy benefits of TCPs. The first four bars plot per-thread energy normalized to the total energy across the cores for unbalanced Blackscholes whose per-thread performance has already been given on the left-hand-side of Figure 1. The relative performance of non-critical threads 0, 1, and 3 indicate that they could ideally be slowed down to 0.78, 0.45, and 0.63 of the nominal frequency to eliminate barrier stalls without performance degradation. The second set of bars in Figure 2 shows that as much as 49% of the total initial energy could be saved using this TCP-guided approach. The key challenge here lies, however, in identifying non-critical threads, gauging their relative non-criticality to set clock rates appropriately, and balancing the benefits of dynamic energy savings against the potential extra leakage energy and switching overhead costs. We address these issues in the TCP design detailed in the following sections.

2.2 Goals of our Predictor Design

Before detailing the criticality predictor hardware, we first state the particular goals of our TCP and differentiate them from important related work.

First, our TCP needs to be highly accurate. Since the TCP will be used to either redistribute work among threads for higher performance or to frequency-scale threads for energy-efficiency, we need to minimize TCP inaccuracy, which can give rise to performance and energy degradations.

Second, our TCP design should be low-overhead. If, for example, the TCP relies on complex software analysis, overall system performance may be adversely affected. On the other hand, if the TCP is designed with complex hardware, it may scale poorly for future CMPs. Therefore, we strike a balance by avoiding software-only TCPs that involve high performance overheads and using simple and scalable hardware. We do however allow software-guided policies to be built on top of the hardware if necessary.

Third, the TCP is designed for versatility across a range of
Table 1: Simulators and emulator used in our studies.

<table>
<thead>
<tr>
<th>Infrastructure</th>
<th>Arm-based In-order Simulator</th>
<th>GemS Simulator</th>
<th>Fpga-based Full System Cmp Emulator</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>4+32 core cache-coherent Cmp</td>
<td>16 core cache-coherent Cmp</td>
<td>6 core cache-coherent Cmp</td>
</tr>
<tr>
<td>Cores</td>
<td>2-issue, in-order ARM</td>
<td>4-issue, out-of-order Sparc 32 entry inc. window</td>
<td>1-issue, in-order 7-stage pipeline</td>
</tr>
<tr>
<td>Dvfs Settings</td>
<td>Nominal (1.2V, 1GHz)</td>
<td>Nominal (1.2V, 1GHz)</td>
<td>No DVFS Capability</td>
</tr>
<tr>
<td>L1 I-Cache</td>
<td>32KB, 8-way, 32 byte lines</td>
<td>32KB, 4-way, 64 byte lines</td>
<td>64KB, 2-way, 32 byte lines</td>
</tr>
<tr>
<td>L1 D-Cache</td>
<td>32KB, 8-way, 32 byte lines</td>
<td>32KB, 4-way, 64 byte lines</td>
<td>64KB, 2-way, 32 byte lines</td>
</tr>
<tr>
<td>L2 Cache</td>
<td>4MB NUBA</td>
<td>4MB NUBA</td>
<td>None</td>
</tr>
<tr>
<td>Main Memory</td>
<td>Avg. latency ~ 400 cc</td>
<td>Avg. latency ~ 400cc</td>
<td>Avg. latency ~ 400cc</td>
</tr>
<tr>
<td>Os</td>
<td>None</td>
<td>Full Solaris 10</td>
<td>Full Linux 2.6</td>
</tr>
<tr>
<td>Tcp App. Studied</td>
<td>Tcp Accuracy Studies</td>
<td>Tcp Accuracy Studies</td>
<td>Dvfs Studies</td>
</tr>
</tbody>
</table>

† All latencies are relative to the nominal frequency.

Table 2: SPLASH-2 and PARSEC workloads used in our studies.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Suite</th>
<th>Problem Size</th>
<th>Tcp Application Studied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lm</td>
<td>Splash-2</td>
<td>1024x1024 matrix, 64 x 64 blocks</td>
<td>DvFs</td>
</tr>
<tr>
<td>Barnes</td>
<td>Splash-2</td>
<td>65,136 particles</td>
<td>DvFs</td>
</tr>
<tr>
<td>Vortex</td>
<td>Splash-2</td>
<td>8x4,800 vectors</td>
<td>DvFs</td>
</tr>
<tr>
<td>Ocean</td>
<td>Splash-2</td>
<td>514 x 514 grid</td>
<td>DvFs</td>
</tr>
<tr>
<td>Fft</td>
<td>Splash-2</td>
<td>4,194,304 data points</td>
<td>DvFs</td>
</tr>
<tr>
<td>Cholesky</td>
<td>Splash-2</td>
<td>2,062,872 complex matrices</td>
<td>DvFs</td>
</tr>
<tr>
<td>Radix</td>
<td>Splash-2</td>
<td>8,388,008 integers</td>
<td>DvFs</td>
</tr>
<tr>
<td>Water-nq</td>
<td>Splash-2</td>
<td>4,096 molecules</td>
<td>DvFs</td>
</tr>
<tr>
<td>Water-sp</td>
<td>Splash-2</td>
<td>4,096 molecules</td>
<td>DvFs</td>
</tr>
<tr>
<td>Blackholes</td>
<td>Parsec</td>
<td>16,385 (simmedium)</td>
<td>Dvfs, Tbb</td>
</tr>
<tr>
<td>Streamcluster</td>
<td>Parsec</td>
<td>8192 points per block (simmedium)</td>
<td>DvFs, Tbb</td>
</tr>
<tr>
<td>Swaptions</td>
<td>Parsec</td>
<td>32 swaptions, 5000 simulations (simmedium)</td>
<td>Tbb</td>
</tr>
<tr>
<td>Fluidanimate</td>
<td>Parsec</td>
<td>5 frames, 100k particles (simmedium)</td>
<td>Tbb</td>
</tr>
</tbody>
</table>

3.3 TCP-Guided DVFS Energy Evaluations

Finally, Table 1 shows the FPGA-based emulator used to assess energy savings from TCP-guided DVFS. Our emul-
We first study the correlation between instruction count and thread criticality. Figure 4 plots the behavior of 7 of the 16 threads from the first iteration of barrier 8 of Ocean (ARM simulator). To assess the accuracy of a metric in tracking criticality, we normalize thread compute time (the first bar) and the metric against the critical thread (in this case, thread 6) and then compare. In this example, instruction count (the second bar) is a poor indicator of thread criticality, exhibiting little variation.

4.2 Impact of Instruction Count on Criticality

We then study inter-core TCP metrics such as instruction counts, cache misses, control flow changes and TLB misses. For barrier-based benchmarks, the graphed error is calculated by averaging the error from all barrier iterations. In the absence of barriers (e.g., for example, in Swaptions and Fluidanimate), we split the execution time into 10% windows across which we calculate an average error. This periodic tracking of metric correlation yields a consistently accurate criticality indicator through execution.

Figure 5 shows that although instruction count may track criticality for LU, it is inaccurate for other benchmarks. This is because most benchmarks employ threads with similar instruction counts, typical of the single program, multiple data (SPMD) style used in parallel programming [21]. Therefore, instruction count is a poor indicator of thread criticality and we need to consider alternate metrics.

4.3 Impact of Cache Misses on Criticality

We find that cache misses intrinsically affect thread criticality. For example, Figure 4 shows that L1 data cache misses per instruction are a much better indicator of thread criticality for Ocean. Similarly, Figure 5 shows that this is true for other benchmarks as well, especially for Cholesky and FFT, which enjoy under 8% error (ARM simulator). Despite significant improvement however, benchmarks such as Ocean and LU still suffer from over 25% error.

In response, we consider all L1 cache misses (instruction and data). Figure 4 shows that Ocean’s criticality is much more accurate with this change, especially for threads 0, 2, and 4. Figure 5 also shows that all benchmarks benefit from this approach, especially Water-Sp, Water-Nq, and Lu. This is because instruction cache misses capture the impact of variable instruction counts and control flow changes, which affect these three benchmarks.

To tackle the remaining 22% error for Ocean, we integrate L2 cache misses. Since these experience 10× the latency of L1 misses on average in our simulators, L2 misses are scaled commensurately. Figure 4 demonstrates that this metric is indeed most accurate in tracking criticality for Ocean. Figure 5 shows improvements for other benchmarks too, particularly for memory-intensive applications like Ocean, Volrend, Radix, and the PARSEC workloads.

Finally, we gauge accuracy across other microarchitectures by testing the data cache misses per instruction metric on the out-of-order GEMS simulator. Figure 5 shows marginal error increases of 5% on GEMS. Benchmarks with larger working sets like Radix, Volrend, Ocean and the PARSEC workloads are least impacted by the microarchitectural change. This bodes well for our results as PARSEC mirrors future memory-heavy workloads. Moreover, our metric is robust to OS effects since GEMS boots a full version of Solaris 10. We therefore conclude from these observations that across other benchmarks by plotting the error between the normalized thread criticality and normalized metric in question. For barrier-based benchmarks, the graphed error is calculated by averaging the error from all barrier iterations.

In the absence of barriers (e.g., for example, in Swaptions and Fluidanimate), we split the execution time into 10% windows across which we calculate an average error. This periodic tracking of metric correlation yields a consistently accurate criticality indicator through execution.

Figure 5 shows that although instruction count may track criticality for LU, it is inaccurate for other benchmarks. This is because most benchmarks employ threads with similar instruction counts, typical of the single program, multiple data (SPMD) style used in parallel programming [21]. Therefore, instruction count is a poor indicator of thread criticality and we need to consider alternate metrics.

4.3 Impact of Cache Misses on Criticality

We find that cache misses intrinsically affect thread criticality. For example, Figure 4 shows that L1 data cache misses per instruction are a much better indicator of thread criticality for Ocean. Similarly, Figure 5 shows that this is true for other benchmarks as well, especially for Cholesky and FFT, which enjoy under 8% error (ARM simulator). Despite significant improvement however, benchmarks such as Ocean and LU still suffer from over 25% error.

In response, we consider all L1 cache misses (instruction and data). Figure 4 shows that Ocean’s criticality is much more accurate with this change, especially for threads 0, 2, and 4. Figure 5 also shows that all benchmarks benefit from this approach, especially Water-Sp, Water-Nq, and Lu. This is because instruction cache misses capture the impact of variable instruction counts and control flow changes, which affect these three benchmarks.

To tackle the remaining 22% error for Ocean, we integrate L2 cache misses. Since these experience 10× the latency of L1 misses on average in our simulators, L2 misses are scaled commensurately. Figure 4 demonstrates that this metric is indeed most accurate in tracking criticality for Ocean. Figure 5 shows improvements for other benchmarks too, particularly for memory-intensive applications like Ocean, Volrend, Radix, and the PARSEC workloads.

Finally, we gauge accuracy across other microarchitectures by testing the data cache misses per instruction metric on the out-of-order GEMS simulator. Figure 5 shows marginal error increases of 5% on GEMS. Benchmarks with larger working sets like Radix, Volrend, Ocean and the PARSEC workloads are least impacted by the microarchitectural change. This bodes well for our results as PARSEC mirrors future memory-heavy workloads. Moreover, our metric is robust to OS effects since GEMS boots a full version of Solaris 10. We therefore conclude from these observations that
cache misses represent a simple yet accurate means of predicting thread criticality.

4.4 Impact of Control Flow Changes and TLB Misses on Criticality

Apart from cache statistics, one may consider the impact of control flow and branch mispredictions on thread criticality. Fortunately, we find that instruction cache misses, which we have already accounted for, capture much of this behavior. This is unsurprising since more instructions and control flow changes typically lead to greater instruction cache misses.

Finally, Figure 6 considers the impact of TLB misses on thread criticality. Each bar presents the % error between combined instruction and data TLB misses per instruction and criticality on the out-of-order GEMS setup. As shown, TLB misses are a poor indicator of thread criticality; this is because multiple threads usually cooperate to process elements of a larger dataset, accessing the same pages. Therefore, they tend to experience similar TLB misses. As a result, our predictor is agnostic to TLB statistics. However, should future workloads require it, a weighted TLB miss contribution can easily be made.

5. BASIC DESIGN OF OUR TCP

Based on our goals and chosen metric, we now present the details of our TCP hardware. Figure 7 details a high-level view of the design. The TCP hardware is located at the shared, unified L2 cache where all cache miss information is centrally available. Our proposed hardware includes Criticality Counters, which count L1 and L2 cache misses resulting from each core’s references. As cache misses define thread progress, these counters track thread criticalities, with larger ones indicative of slower, poorly cached threads. Since individual L1 cache misses contribute less to thread stall times and criticality than individual L2 misses and beyond, we propose a weighted combination of L1 instruction, L1 data, and L2 cache misses, and others when needed. Currently, our weighted criticality counter values may be expressed by:

\[
N(\text{Crit.Count.}) = N(L1_{\text{miss}}) + \frac{(L1\times L2_{\text{miss}}) \times N(L1\times L2_{\text{miss}})}{L1_{\text{penalty}}} \tag{1}
\]

In this equation, \(N(\text{Crit.Count.})\) represents the value of the criticality counter, while \(N(L1_{\text{miss}})\) and \(N(L1\times L2_{\text{miss}})\) are equal to the number of L1 misses that hit in the L2 cache and the L1 misses that also miss in the L2 cache. Thus, since L2 misses incur a larger penalty, their weight is proportionately higher.

The counters are controlled by light-weight Predictor Control Logic, developed in subsequent sections. An Interval Bound Register, which is incremented on every clock cycle, ensures that criticality predictions are based on relatively recent application behavior. This is accomplished by resetting all Criticality Counters whenever the Interval Bound Register reaches a pre-defined threshold \(M\). We will investigate values for \(M\) in subsequent sections.

The TCP hardware we propose is simple and scalable. First, a simple state machine suffices in incrementing the counters instead of an adder. Unlike meeting points, counter information is in a unified location, eliminating redundancy. More cores are readily accommodated by adding counters. Furthermore, additional network messages are unnecessary as the L2 cache controller may be trivially modified to notify the predictor of relevant cache misses.

Our hardware is also applicable to alternate designs. For example, more cache levels and rare split L2 caches can be handled with trivial hardware and message overhead. For both these cases, the TCP hardware counters would need to be distributed among multiple cache controllers and would need to communicate with centralized prediction control logic. Furthermore, while distributed caches with multiple controllers are uncommon, if necessary we could accommodate messages to our counters on inter-controller coherence traffic. This would, however, still constitute low message overhead.

6. USING TCP TO IMPROVE TBB TASK STEALING

We now showcase the power and generality of TCP by applying it to two uses. We first study TCP-guided task stealing policies in Intel TBB and achieve significant performance improvements.

The Intel TBB library has been designed to promote portable parallel C++ code, with particular support for dynamic, fine-grained parallelism. Given its growing importance, it is a useful platform for studying critical thread prediction, although our techniques will likely apply to other environments as well [6]. We investigate the benefits of TCP-aware TBB in the following steps:

1. We study the TBB scheduler to better understand how our TCP mechanisms may be used to augment it.
2. We present our proposed TCP hardware for TBB task stealing.
3. Finally, we show performance results from our TCP-guided TBB task stealing and compare them with TBB’s default random task stealer for the 4 PARSEC benchmarks.

6.1 Introduction to the TBB Task Scheduler

TBB programs express concurrency in parallel tasks rather than threads. TBB relies on a dynamic scheduler, hidden from the programmer, to store and distribute parallelism. On initialization, the scheduler is given control of a set of slave worker threads and a master thread (the caller of the initialization). Each thread is associated with its own software task queue, into which tasks are enqueued directly by
1. if (Cache miss from Core P)
2. Update criticality counter for Core P based on cache miss type
3.
4. if(Steal request from a Core)
5. Scan all criticality counters to find the maximum value
6. Report core with highest criticality counter value as steal victim
7.
8. if(Message indicating steal from victim Core P unsuccessful)
9. Reset criticality counter for Core P
10
11. if ((Number of Cycles % Interval Bound) == 0)
12. Reset all criticality counters

Figure 8: Our TCP-guided task stealing algorithm improves victim selection by choosing the core with the largest Criticality Counter value as the steal victim.

Figure 9: Random stealing prompts a large false negatives contribution, leading to poor performance.

the programmer. Task dequeuing is performed implicitly by the runtime system in its main scheduling loop.

If possible, threads dequeue work locally from their task queues. In the absence of local work, task stealing tries to maximize concurrency by keeping all threads busy. The TBB scheduler randomly chooses a victim thread, whose task queue is then examined. If a task can be stolen, it is extracted and executed by the stealing thread. If the victim queue is empty, stealing fails and the stealer thread backs off for a pre-determined time before retrying.

While random task stealing is fast and easy to implement, it does not scale well. As the number of potential victims increases, the probability of selecting the best victim decreases. This is particularly true under load imbalance when few threads shoulder most of the work. As such, our TCP design can help by identifying critical threads, which are ideal steal candidates. Subsequent sections detail the performance benefits of such a TCP-guided stealing approach.

6.2 Developing Predictor Hardware to Improve TBB Task Stealing

Figure 8 details our predictor algorithm applied to task stealing. Cache misses are recorded by the Criticality Counters. When the TBB scheduler informs the predictor of a steal attempt, the TCP scans its criticality counters for the maximum value and replies to the stealer core that this maximum counter’s corresponding core number should be the steal victim. If the steal is unsuccessful, the stealer sends a message to the TCP to reset the victim counter, minimizing further incorrect victim prediction. As before, the Criticality Counters are reset every Interval so that stealing decisions are based on recent application behavior. As such, this algorithm may be mapped readily to the basic TCP hardware presented in Figure 7, with the Predictor Control Logic in charge of scanning for the largest Criticality Counter.

Our experiments indicate an occupancy-based TBB task stealing is still employed. We also compare our results against the occupancy-based TBB task stealer proposed in [12].

6.3 Results

We now study the performance of TCP-guided task stealing across the four PARSEC benchmarks (Fluidanimate, Swaptions, Blacksholes, and Streamcluster) ported to TBB. We compare to the random task stealing implemented in TBB version 2.0 (release tbb20-0100ss), but our results remain valid for newer TBB releases because random task stealing is still employed. We also compare our results against the occupancy-based TBB task stealer proposed in [12].

6.3.1 TBB with Random Task Stealing

As a baseline, Figure 9 characterizes random task stealing with two metrics. The success rate (light bar) is the ratio of successful steals to attempted steals. The false negatives rate (dark bar) indicates how often a steal is unsuccessful because its chosen target has no work, despite the presence of a stealable task elsewhere in the system. The latter arises from the randomness in choosing a steal victim. Unsurprisingly, random stealing deteriorates (decreasing success rate under 8% for all benchmarks.)

Figure 10: Our thread criticality-guided task stealing cuts the false negatives rate under 8% for all benchmarks.

Our experiments also account for the latency overhead in accessing the TCP hardware. Since the TCP is placed with the L2 cache, we assume that a TCP access costs an additional delay equivalent to the L2 latency. This is in contrast with the random task stealer, which makes purely local decisions and is not charged this delay.

Figure 11: TCP-guided stealing yields up to 32% performance gains against random task stealing and regularly outperforms occupancy-guided stealing.

case our performance benefits. Hence, a 64-core CMP requires merely 114 bytes for the Criticality Counters and Interval Bound Register, in addition to comparators. Nevertheless, should comparator complexity become an issue, the predictor can be implemented in software. We believe that any performance overhead from this would be trivial due to the simple manipulations of the Criticality Counters.

Our experiments also account for the latency overhead in accessing the TCP hardware. Since the TCP is placed with the L2 cache, we assume that a TCP access costs an additional delay equivalent to the L2 latency. This is in contrast with the random task stealer, which makes purely local decisions and is not charged this delay.

295
rate) as core counts rise. This occurs despite the presence of stealable tasks, indicated by higher false negatives rate at greater core counts. Even at low core counts, random task stealing performs poorly for Black_scholes and Streamcluster (above 15% false negatives). This is because just a few threads operate on many longer tasks and random stealing does not successfully select these as steal victims.

6.3.2 TBB with TCP-Guided Task Stealing

Figure 10 shows the improvements of modifying the TBB task stealer to be criticality-aware by plotting the success rate and false negatives rate of our TCP-guided stealing. Compared to random stealing, false negatives fall drastically and remain under 8% for all benchmarks. The benefits are immense especially at higher core counts. For example, the success rate for Streamcluster improves from 5% to around 37% at 32 cores. We also see that the success rate increases with higher core counts, contrary to the random stealing results. This is because increased core counts raise the availability of stealable tasks, which we now exploit through reliable stealing predictions.

6.3.3 TCP-Guided TBB Performance Improvements

While Figure 10 does indicate the benefits of our TCP-based task stealing, we still need to investigate how this translates into raw performance numbers. In order to study performance improvements, we again use the ARM CMP simulator. As previously noted, our TCP-aware TBB task stealer includes the extra delay of accessing the criticality counters as an additional L2 access due to their proximity to the L2 cache. This is in contrast with the random stealing approach which is fully-local and not charged this delay.

Apart from studying the performance improvements of the TCP approach against random task stealing, we also compare our results against the occupancy-based task stealer. As detailed in [12], occupancy-based stealing keeps track, in software, of the number of elements in each core’s task queue and selects the core with the maximum number as the next stealing victim. Since this results in higher performance than random task stealing, we need to check whether TCP-guided task stealing provides any further benefits.

Figure 11 plots the performance improvements of TCP-guided task stealing (parallel region of the benchmarks only) against TBB’s random task stealing in the dark bars. Furthermore, we also plot the performance improvements of the occupancy-based approach, against random stealing in the light bars. As shown, criticality-guided stealing offers significant performance improvements over random stealing, particularly at higher core counts (average of 21.6% at 32 cores). Moreover, we also improve upon the occupancy-based stealing results. This is because occupancy-based techniques only count the number of tasks in each queue, but do not gauge their relative complexity or expected execution time. In contrast, TCP-based approaches can better account for the relative work in each task, by tracking cache miss behavior. This generally improves performance, especially at higher core counts (13.8% at 32 cores). The only exception is Streamcluster where a few threads hold a large number of stealable tasks of similar duration. In such a scenario, thread criticality yields little benefit over simple occupancy statistics. Generally however, the performance benefits of our approach are evident.

7. USING TCP TO SAVE ENERGY IN BARRIER-BASED APPLICATIONS

While Section 6 focused on TCP-guided TBB performance, we now use the predictor to save energy in barrier-based programs. Our analysis is conducted as follows:

1. We describe our prediction algorithm for TCP-guided per-core DVFS and show how this maps to hardware.
2. We then study predictor accuracy on both the in-order and out-of-order simulators to ensure that our TCP design is robust across microarchitectures and applications.

3. Finally, we present the energy savings from our approach on the FPGA-based emulator.

7.1 Algorithm and Proposed Hardware

The goal of our energy-efficient algorithm is to predict thread criticality and DVFS accordingly so as to minimize barrier wait-time. Though energy is the primary concern, accurate prediction is essential to reduce the performance impact of DVFS, by clock-scaling only non-critical threads. An effective TCP must also use confidence from past behavior to reduce the number of “wrong answers” it provides.

Figure 12 details our prediction algorithm, highlighting the TCP components required for DVFS. On an L1 instruction cache, L1 data cache, or L2 cache miss, the Criticality Counter corresponding to the relevant core is updated. If the core’s counter value is now above a pre-defined threshold T and it is currently running at the nominal (fastest) frequency f_0, thread criticality calculations commence.

The first step uses the Switching Suggestion Table (SST) to translate Criticality Counter values into thread criticalities and suggest potential frequency switches. The SST is row-indexed with the current DVFS setting. Every row holds pre-calculated values corresponding to criticality counts required to switch to potential target frequencies. Each column thus corresponds to a different target frequency. Every core’s relative criticality is determined by row-indexing the SST with the current DVFS setting and comparing its criticality counter value against the row SST entries. The matching SST entry’s column index then indicates the target frequency. If this is different from the current DVFS setting, the SST suggests a frequency switch. If the criticality counter falls between two SST entries, we err on the side of performance by picking the entry for the higher frequency.

The second step in our algorithm feeds the suggested target frequency from the SST to the Suggestion Confidence Table (SCT). The SCT minimizes the impact of fast-changing, spurious program behavior which can lead to criticality mispredictions. The latter can degrade performance either by insufficiently slowing non-critical threads to make them critical or by further slowing down critical threads. To combat this, the SCT assesses confidence on the SST’s DVFS suggestion and permits switches only for consistently-observed criticality behavior. The SCT contains per-core registers maintaining a set of saturating counters, one for each DVFS level. At system initialization, the f_0 counter is set to its
maximum value while the others are zero. Now, when the SST suggests a frequency switch for a particular core, that core’s SCT register is checked. The register’s saturating counter for the suggested target frequency is then incremented while the other counters are decremented. An actual frequency switch is initiated only if the counter with the largest (most confident) SCT value corresponds to a DVFS setting different from the current one.

Our algorithm also uses the Interval Bound Register to periodically reset the Criticality Counters to ensure that predictions are based on recent thread behavior. For our results, this is set to 100K cycles.

Figure 13 shows the structure of the described hardware in more detail. The predictor control logic includes the Criticality Counters, Current DVFS Tags, and Interval Bound Register for a 16-core CMP with 4 DVFS levels and a threshold T of 1024, we use 71 bytes of storage overhead.

Our TCP hardware includes the Criticality Counters, SST, SCT, Current DVFS Tags, and Interval Bound Register; for a 16-core CMP with 4 DVFS levels and a threshold T of 1024, we use 71 bytes of storage overhead.

Figure 13 shows the structure of the described hardware in more detail. The predictor control logic includes the Criticality Counters, Current DVFS Tags, and Interval Bound Register.

Our algorithm also uses the Interval Bound Register to periodically reset the Criticality Counters to ensure that predictions are based on recent thread behavior. For our results, this is set to 100K cycles.

Our TCP design is clearly low-overhead and scalable. Based on our chosen TCP parameters, a 16-core CMP requires only 71 bytes of storage aside from comparators. At 64 cores, assuming the same TCP parameters, the required storage increases to merely 215 bytes, making for a scalable design.

Our algorithm requires modest inter-core communication; this however, only occurs when a core needs to DVFS. We have reduced communication requirements by housing the TCP state at the L2 cache controller, where counted events will be observed anyways. As such, this is lower overhead than meeting points, which requires frequent broadcasts. This allows for fast criticality predictions.

Having detailed our hardware structures, we now focus on tuning the structure parameters for optimal predictor accuracy, starting with the threshold T, which determines how often we consider clock-scaling threads.

7.2 Criticality Counter Threshold: How Often to Consider Switching?

Selecting an appropriate threshold parameter T involves balancing predictor speed and accuracy. While a low T provides the opportunity for fine-grained DVFS, it may increase susceptibility to temporal noise. Without good suggestion confidence, this results in too many frequency changes and excessive performance overhead.

We begin by measuring T’s effect on prediction accuracy using the ARM simulator with 16 cores and DVFS. To isolate the effect of T, we temporarily ignore the SCT and DVFS transition overheads; all suggested SST frequency switches are actually executed without going through the SCT or incurring voltage rail switching penalties.

To assess TCP accuracy, we first profile the benchmarks without TCP. We record thread compute and stall times across barriers and then use them to pre-calculate the thread frequencies required to minimize barrier stalling. A highly accurate criticality predictor would DVFS threads into these pre-calculated settings. We then integrate our TCP and study how closely we track the pre-calculated frequencies.

Figure 14 shows the accuracy with which TCP tracks the pre-calculated frequency settings. The lowest bar component represents time spent in the pre-calculated or correct state, averaged across all barrier instances. The central bar component shows the learning time taken until the correct DVFS state is first reached. Finally, the upper portion shows prediction noise or time in spent in erroneous DVFS after having arrived at the correct one.

Figure 14 shows how prediction accuracy varies with benchmark. While Radix and Barnes enjoy above 90% accuracy, Cholesky does poorly at 40%. In general, increasing T bolsters prediction accuracy though Cholesky actually gradually deteriorates. One reason for this is the learning time taken to study application behavior before predicting future thread criticality. While a perfect predictor eliminates learning time, the time taken to reach T limits us in practice. Typically, a larger T increases learning time. Figure 14 shows this, particularly for Blackscholes and Streamclus-

Figure 15 shows suggestion confidence mitigates noise with an average accuracy of 92.08% with 2 bits.
over a longer time-frame before making a prediction. Figure 15 demonstrates the benefits of this by varying the bit-width of the counters in each entry of the Suggestion Confidence Table. Clearly, even 2 bits of confidence particularly improve LU, Volrend, Streamcluster, and Cholesky accuracy.

However, Figure 15 also shows that while confidence estimation mitigates noise, learning time tends to rise. This is because even correct frequency switches now take longer to predict. This is why the accuracy of Barnes, Cholesky, and Radix degrades as the number of confidence bits rises. From now, we therefore assume 2 bits per SCT saturating counter as this presents the best results.

To further investigate how confidence estimation removes erroneous frequency transitions, Figure 16 shows a snapshot of Streamcluster on the ARM simulator. The upper sub-graph plots IPC profiles for thread 1 and 2 in the presence and absence of confidence estimation. The lower sub-graph plots thread 1’s DVFS setting through runtime with and without confidence estimation.

We begin by considering the thread 1 and 2 IPC profiles without confidence estimation. Thread 1 is critical, usually maintaining an IPC lower than thread 2. However, thread 1’s IPC does have occasional surges (100k - 120k and 320k - 350k cycles), unrepresentative of its general behavior. Unfortunately, at these points, our TCP without confidence estimation would infer that thread 1 is non-critical, scaling down its frequency. Indeed, the lower graph of Figure 16 shows the incorrect prediction around 110k cycles, causing a switch to 0.70f0. The resulting thread 1 IPC therefore decreases, degrading performance. Although the predictor eventually reorients at 155k cycles, critical thread 1 is now slowed down. Furthermore, another TCP misprediction is made around 340k cycles, when thread 1’s IPC again surges.

Figure 16 shows that with confidence estimation, these incorrect frequency switches are prevented. The upper sub-graph shows that thread 1’s IPC with confidence estimation again surges at 100K and 320k cycles. This time, however, there are no frequency switches and the resulting thread 1 IPC profile (Confidence case) is not degraded.

7.4 Prediction Accuracy in the Presence of Out-of-Order Pipeline and Memory Parallelism

Our goal is to provide general TCPs that work well across a range of microarchitectures. Therefore, we need to evaluate our techniques on both in-order and out-of-order scenarios. Thus far, our results have assumed an in-order pipeline and blocking caches. We now consider the effect of out-of-order pipelines and non-blocking caches.
even at high MSHR counts. While accuracy may decrease at low MSHR counts (e.g., Radix accuracy decreases by 4%) because of longer learning time from gradual frequency scaling, we now see above 90% accuracy across every tested benchmark for 32-entry MSHRs. Moreover, most of the inaccuracy is spent at higher frequencies. While this might reduce energy savings, it ensures good performance for many levels of memory parallelism.

7.5 Results

The previous sections have detailed TCP-driven DVFS hardware and algorithms to mitigate barrier-induced energy waste. We have presented predictor accuracy for a range of microarchitectures and discussed the merits of both aggressive DVFS and gradual, conservative DVFS. We now present performance and energy results.

7.5.1 Impact of TCP-Driven DVFS Transition Overheads on Benchmark Performance

While energy efficiency is the motivation for applying our TCP to DVFS, we want to avoid compromising performance. Therefore, we now consider the impact of DVFS transition time penalties on application performance for both the conventional or aggressive DVFS case and the alternate gradual DVFS case for increased memory parallelism.

DVFS relies on off-chip switching voltage regulators with transition penalties in the order of microseconds. While preliminary work on fast on-chip voltage regulators for per-core DVFS shows promise [19], our predictor must also handle the larger transition times typical of contemporary systems.

Figure 19 shows how transition penalties affect benchmark runtimes for aggressive DVFS on our emulator in the absence of the SCT. Runtimes are normalized to their baseline execution. The lower bar portions indicate baseline runtime while the middle portion indicates learning time and noise overheads. The upper bar portion accounts for performance degradation due to transitions. We vary voltage transitions from 50 cycles (typical of on-chip regulators) to 50K cycles (typical of off-chip regulators). As expected, the lack of suggestion confidence introduces significant noise. Even worse however, transition overheads further degrade execution time by 52% on average at 50K cycles. Cholesky is particularly affected, almost doubling in runtime.

Fortunately, Figure 20 shows that the SCT removes both noise and transition overheads for aggressive DVFS, even at the high penalties associated with off-chip regulators. Since predictions now have to build confidence before frequency scaling, mispredictions from noise and their associated transitions are prevented. Thus, benchmark overheads remain under 10%. Interestingly, we see that the runtimes of Ocean, Radix, and Streamcluster are actually improved by 5-10%. This occurs because non-critical threads are slowed down, spreading out their cache misses. Hence, bus/interconnect congestion is lowered enough for the critical thread cache misses to be serviced faster, boosting overall performance.

Figure 21 considers the alternate case of gradual DVFS on our emulator. Again, minimal performance degradation occurs due to our confidence estimation scheme. While some benchmarks see a slightly higher overhead due to the longer learning time, LU and Cholesky see roughly 4% improvement in runtime overhead. This is because TCP mispredictions are minimized, lowering the number of frequency switches and their transition overhead.

Note that we also tested performance on the in-order ARM simulator, with similar results. We therefore conclude that our TCP predictor is robust to DVFS non-idealities as well.

7.5.2 Energy Savings from TCP-Driven DVFS

We now present the energy savings from integrating our TCP in barrier-based programs. We run our selected benchmarks on the FPGA-based emulator assuming a transition penalty of 50K cycles. Figure 22 shows that TCP-driven DVFS saves considerable energy across benchmarks, an average of 15% and 11% for aggressive and gradual DVFS respectively. Benchmarks with more load imbalance generally save more energy; the large imbalance for LU leads to energy savings above 20% for both DVFS modes. Meanwhile, Radix, Ocean, and Streamcluster benefit from their shorter runtimes, which decreases idle energy contributions. Note that while gradual DVFS usually leads to lower energy savings than the aggressive case, this situation is reversed for Cholesky. This is because the gradual case minimizes TCP mispredictions, decreasing the number of frequency switches and their transition overheads.
Our energy savings are actually a conservative estimate for a few reasons. First, our results are based on 4 simple cores. Increasing load imbalance from a greater number of complicated cores will yield considerably higher energy savings. Second, we fix leakage cost to a forward-looking value of 50% of total baseline energy. In reality, lower power from our scheme on the non-critical threads will lead to lower temperatures, leading to leakage savings. Moreover, benchmarks with shorter runtime would lead to even lower leakage power, which we do not account for. Finally, as on-chip regulators become the norm, energy waste from transition penalties will be eliminated.

8. RELATED WORK

While application criticality has been studied, most prior work has explored this in the context of instructions [14, 32]. The advent of CMPs however, has pushed the focus on thread criticality prediction. We have already detailed the thrifty barrier [21] and meeting points [9] approaches and shown our distinct research goals. Other than these approaches, Liu et al. use past non-critical thread barrier stall times to predict future thread criticality and DVFS accordingly [23]. In contrast to this history-based approach, we predict thread criticality based on current behavior, regardless of barriers. We also use our predictor to improve TBB task stealing, building from the occupancy-based approach of Contreras and Martonosi [12]. Our work is distinct, however, in that we use criticality to guide task stealing for performance gains with little hardware overhead.

Apart from these applications, the power of our TCP hardware lies in its generality and applicability to a range of adaptive resource management schemes. For example, TCPs could be used to guide shared last-level cache management [17, 18, 30], QoS-aware cache designs such as Virtual Private Caches [28], the design of fair memory controllers and their priority schemes [15, 22, 27], the development of SMT priority, throughput and fairness schemes [9, 25, 31], as well as the management of other parallelization libraries such as CAPSULE [29] and CARBON [20] and other work-stealing schemes [2, 7, 11].

9. CONCLUSION

Our overarching goal has been to explore the accuracy and usefulness of simple TCPs based largely on metrics already available on most CMPs. By focusing on the large amounts of run-time variation introduced by the memory hierarchy, our TCPs offer useful accuracy at very low hardware overhead. Furthermore, situating the TCP near the L2 cache controller allows it to collect the necessary inputs with little network or bus overhead.

One of our goals has been to develop TCPs general enough for several applications. To demonstrate this, we implemented a TCP-based TBB task stealer, and a TCP-based DVFS controller for energy savings in barrier-based programs. The TCP-based task stealer offers 12.9% to 31.8% performance improvements on a 32-core CMP. The TCP-based DVFS controller offers an average of 15% energy savings on a 4-core CMP.

Looking beyond the initial applications covered in this paper, the real promise of our work lies in its ability to provide a cost-effective foundation for a large variety of performance and resource management problems in future CMPs. As future CMPs scale to higher core counts, greater complexity, and increased heterogeneity, the need to dynamically apportion system resources among multiple threads will be crucial. Our TCP mechanisms represent a first effort in this regard and, we expect it to be valuable for a range of resource management issues in both hardware and software.

10. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their feedback. We also thank Gilberto Contreras and Nitek Agarwal for their help with the simulation infrastructure and Sibren Isaacman for his help with the emulator. This work was supported in part by the Gigascale Systems Research Center, funded under the Focus Center Research Program, a Semiconductor Research Corporation program. In addition, this work was supported by the National Science Foundation under grant CNS-0720561.

11. REFERENCES

