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ABSTRACT
Demand for low-power data processing hardware continues to rise
inexorably. Existing programmable and “general purpose” solutions
(eg. SIMD, GPGPUs) are insufficient, as evidenced by the order-
of-magnitude improvements and industry adoption of application
and domain-specific accelerators in important areas like machine
learning, computer vision and big data. The stark tradeoffs between
efficiency and generality at these two extremes poses a difficult ques-
tion: how could domain-specific hardware efficiency be achieved
without domain-specific hardware solutions?

In this work, we rely on the insight that “acceleratable” algo-
rithms have broad common properties: high computational intensity
with long phases, simple control patterns and dependences, and
simple streaming memory access and reuse patterns. We define a
general architecture (a hardware-software interface) which can more
efficiently expresses programs with these properties called stream-
dataflow. The dataflow component of this architecture enables high
concurrency, and the stream component enables communication
and coordination at very-low power and area overhead. This pa-
per explores the hardware and software implications, describes its
detailed microarchitecture, and evaluates an implementation. Com-
pared to a state-of-the-art domain specific accelerator (DianNao),
and fixed-function accelerators for MachSuite, Softbrain can match
their performance with only 2× power overhead on average.
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1 INTRODUCTION
Data processing hardware is vital to the global economy – from
the scale of web services and warehouse computing, to networked
Internet of Things and personal mobile devices. As application needs
in these areas have evolved, general purpose techniques (even SIMD
and GPGPUs) are not sufficient and have fallen out of focus, because
of the energy and performance overheads of traditional VonNeumann
architectures.

Instead, application-specific and domain-specific hardware is pre-
vailing. For large scale computing, Microsoft has deployed the
Catapult FPGA accelerator [25] in its datacenters, and likewise
for Google’s Tensor Processing Unit for distributed machine learn-
ing [12]. Internet of things devices and modern mobile systems on
chip (SOCs) are already laden with custom hardware, and innovation
continues in this space with companies (eg. Movidius) developing
specialized processors for computer vision [11].

While more narrow hardware solutions are effective, they pose
many challenges. As algorithms change at an alarming rate, hard-
ware must be redesigned and re-verified, which is burdensome in
terms of development cost and time-to-market. As a corollary, inno-
vation in algorithms becomes more difficult without access to flexible
hardware. Furthermore, programmable hardware can be time-shared
across applications, while domain-specific cannot, making it more
costly in terms of silicon. Finally, from the academic viewpoint, it is
difficult to formalize and apply improvements from domain-specific
hardware to the broader field of computer architecture – limiting the
intellectual impact of such work.

Ideally, what we require is hardware that is capable of executing
data-intensive algorithms at high performance with much lower
power than existing programmable architectures, while remaining
broadly applicable and adaptable.

An important observation, as alluded to in the literature [9, 21],
is that typically-accelerated workloads have common characteristics:
1. High computational intensity with long phases; 2. Small instruc-
tion footprints with simple control flow, 3. Straightforward memory
access and re-use patterns. The reason for this is simple: these prop-
erties lend themselves to very efficient hardware implementations
through exploitation of concurrency. Existing data-parallel hard-
ware solutions perform well on these workloads, but in their attempt
to be far more general, sacrifice too much efficiency to supplant
domain-specific hardware. As an example, short-vector SIMD relies
on inefficient general pipelines for control and address generation,
but accelerated codes typically do not have complex control and
memory access. GPGPUs hide memory latency using hardware for
massive-multithreading, but accelerated codes’ memory access pat-
terns can usually be trivially decoupled without multithreading.

To take advantage of this opportunity, this work proposes an
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Figure 1: Stream-Dataflow Abstractions & Implementation

architecture and execution model for acceleratable workloads, whose
hardware implementation can approach the power and area efficiency
of specialized designs, while remaining flexible across application
domains. Because of its components, it is called stream-dataflow,
and exposes these basic abstractions:

• A dataflow graph for repeated, pipelined computations.
• Stream-based commands for facilitating efficient data-

movement across components and to memory.
• A private (scratchpad) address space for efficient data reuse.

Figure 1(a) depicts the programmer view of stream-dataflow, con-
sisting of the dataflow graph itself, and explicit stream communica-
tion for memory access, read reuse and recurrence. The abstractions
lead to an intuitive hardware implementation; Figure 1(b) shows
our high-level design. It consists of a coarse grain reconfigurable
architecture (CGRA) and scratchpad, connected with wide buses to
memory. It is controlled from a simple control core, which sends
stream commands to be executed concurrently by the memory con-
trol engine, scratchpad control engine and the CGRA. This coarse
grain nature of the stream-based interface enables the core to be quite
simple without sacrificing highly-parallel execution. The stream ac-
cess patterns and restricted memory semantics also enable efficient
address generation and coordination hardware.

Relative to a domain specific architecture, a stream-dataflow pro-
cessor can reconfigure its datapath and memory streams, so it is
far more general and adaptable. Relative to existing solutions like
GPGPUs or short-vector SIMD, the power and area overheads are
significantly less on amenable workloads. An implementation can
also be deployed flexibly in a variety of settings, either as a stan-
dalone chip or as a block on a SoC; it could be integrated with virtual
memory, and either use caches or directly access memory.

In this paper, we first define stream-dataflow, describe its execu-
tion model, and explain why it provides specialization benefits over
existing architectures. We then discuss the ISA and programmabil-
ity before describing the microarchitecture of our implementation,
Softbrain. To demonstrate the generality of this architecture and this
implementation’s capabilities, we compare against a state-of-the-art
machine learning accelerator, as well as fixed function accelerators
for MachSuite workloads. Our evaluation shows it can achieve equiv-
alent performance to the accelerators, with orders-of-magnitude area
and power efficiency improvement over CPUs. Compared to the
machine learning accelerator, we average only 2× power and area
overhead. On the broader set of MachSuite workloads, compared to
custom ASICs, the average overhead was 2× power and 8× area.

2 MOTIVATION AND OVERVIEW
For a broad class of data-processing algorithms, domain-specific
hardware provides orders of magnitude performance and energy
benefits over existing general purpose solutions. By definition, the
strategy that domain-specific accelerators employ is to limit the pro-
gramming interface to support a much narrower set of functionality
suitable for the domain, and in doing so simplify the hardware design
and improve efficiency. We further hypothesize that the efficiency
gap between domain-specific and general purpose architectures is
fundamental to the way general purpose programs are expressed
at an instruction-level, rather than a facet of the microarchitectural
mechanisms employed.

So far, existing programmable architectures (eg. SIMD, SIMT,
Spatial) have shown some promise, but have only had limited suc-
cess in providing a hardware/software interface that enables the
same specialized microarchitecture techniques that more customized
designs have employed.

Therefore, our motivation is to discover what are the architectural
abstractions that would enable microarchitectures with the execution
style and efficiency of a customized design, at least for a broad
and important class of applications that have long phases of data-
processing and streaming memory behavior. To get insights into the
limitations of current architectures and opportunities, this section
examines the specialization mechanisms of existing programmable
hardware paradigms. We then discuss how their limitations can
inspire a new set of architecture abstractions. Overall, we believe
that the stream-dataflow abstractions we propose could serve as the
basis for future programmable accelerator innovation.

2.1 Specialization in Existing Approaches
Several fundamentally different architecture paradigms have been
explored in an attempt to enable programmable hardware specializa-
tion; prominent examples are depicted in Figure 2. We discuss their
specialization capabilities in three broad categories:
1. Reducing the per-instruction power and resource access costs,
2. Reducing the cost of memory addressing and communication, and
3. Reducing the cost of attaining high execution resource utilization.
Table 1 provides a summary, and we discuss these in detail below.

SIMD and SIMT: Both SIMD and SIMT provide fixed-length vec-
tor abstractions in their ISA, which enables microarchitectures that
amortize instruction dispatch and enable fewer, wider memory ac-
cesses. The specification of computation at the instruction-level,
however, means that neither can avoid instruction communication
through large register files.
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Figure 2: High-Level Architecture Organizations (Green regions denote control)

Potential Specialization Capability SIMD SIMT Vector Threads Spatial Dataflow Stream-Dataflow

In
st

r . Amortize instruction dispatch Yes Yes Yes SIMD/ No Scalar Somewhat Yes
Reduce control divergence penalty No Somewhat Yes Yes Somewhat
Avoids large register file access No No No Yes Yes

M
em

or
y Coalesce spatially-local memory access Yes Yes Yes SIMD/ No Scalar No Yes

Avoid redundant addr. gen. for spatial access Yes No Yes SIMD/ No Scalar No Yes
Provide efficient memory for data reuse No Yes No No Yes

U
til

. Avoid multi-issue logic No Yes No Yes Yes
Avoid multi-threading logic and state Yes No Yes Yes Yes

Table 1: Architectural Specialization Capabilities (Assumption: High-parallelism, Small-Footprint Compute Kernels)

In addition, neither architecture enables inexpensive support of
high hardware utilization. Because the vector length is fixed and
relatively short, short-vector SIMD processors constantly rely on
the general purpose core to dynamically schedule parallel instruc-
tions. Scaling issue width, reordering logic and register file ports is
expensive in area and power. SIMT exposes massive-multithreading
capability to enable high hardware utilization, by allowing concur-
rent execution of many warps, which are groups of threads that
issue together. This requires large register files to hold live state,
warp-scheduling hardware, and incurs cache pressure from many
independent warps.

Both SIMT and SIMD have some unique limitations. SIMD’s
specification of control-flow through masking and merging intro-
duces additional instruction overhead. Also, typical short-vector
SIMD extensions lack programmable scratchpads for efficient data
reuse. SIMT threads are programmed to operate on scalar data, and
threads within a warp typically perform redundant address genera-
tion for spatially local access, and additional logic coalesces common
cross-thread access patterns.

Vector Threads ([15, 16]): A vector-thread architecture is similar
to SIMD, but exposes the programming capability to specify both
SIMD-style and scalar execution of the computation lanes. While
this does eliminate the control divergence penalty, it faces many of
the same limitations as SIMD. Specifically, it cannot avoid register
file access due to the instruction-level specification of computation,
and the limited vector-length means the control core’s pipeline is
relied on to achieve high utilization.

Spatial Dataflow ([2, 23, 32, 33]): Spatial dataflow architectures
expose the communication channels of an underlying computation
fabric through their hardware/software interface. This enables a
distributed instruction dispatch, and eliminates the need for register

file access between live instructions. The dispatch overheads can
be somewhat amortized using a configuration step. The distributed
nature of this abstraction also enables high utilization without the
need for multi-threading or multi-issue logic.

However, these architectures are unable to specialize the mem-
ory access to the same degree. Microarchitectural implementations
typically perform redundant address generation and issue more and
smaller cache accesses for spatially-local access. This is because the
spatially distributed memory address generation and accesses are
more difficult to coalesce into vector-memory operations.

Summary and Observations: First, being able to specify vector-
ized memory access is extremely important, not just for parallelism
and reducing memory accesses, but also for reducing address gener-
ation overhead. On the other hand, though vectorized instructions do
reduce instruction dispatch overhead, the separation of the work into
fixed-length instructions requires inefficient operand communication
through register files and requires high-power mechanisms to attain
high utilization. Exposing a spatial dataflow substrate to software
solves the above, but complicates and disrupts the ability to specify
and take advantage of vectorized memory access.

2.2 Opportunities for Stream-Dataflow
At the heart of the previous observations lies the fundamental trade-
off between vector and spatial architectures: vector architectures
expose a far more efficient parallel memory interface, while spatial
architectures expose a far more efficient parallel computation inter-
face. For it to be conceivable that a programmable architecture can
be competitive with an application-specific or domain-specific one,
it must expose both efficient interfaces.

Opportunities and Overview: While achieving the benefits of spa-
tial and vector architectures in the general case is perhaps impossible,
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Figure 3: Stream-Dataflow Abstractions

we argue that it is possible in a restricted but important workload
setting. In particular, many data-processing algorithms exhibit the
property where their computation and memory access components
can be specified independently. Following the principles of decou-
pled access/execute [30], we propose an architecture combining
stream and dataflow abstractions – stream-dataflow. The stream com-
ponent exposes a vector-like memory interface, and the dataflow
component exposes a spatial specification of computation.

The following is a brief overview of the abstractions, as shown in
Figure 3. The stream interface provides support for an ordered set of
stream commands, which is embedded within an existing Von Neu-
mann ISA. Stream commands specify long and concurrent patterns
of memory access. Expressible patterns include contiguous, strided,
and indirect. We add a separate “scratchpad” address space, which
can be used to efficiently collect and access re-used data. Finally,
the dataflow interface exposes instructions and their dependences
through a dataflow graph (DFG). The input and output interfaces
of the DFG are named ports with configurable width, that are the
sources and destinations for stream commands.

Microarchitecture: A standard hardware implementation consists
of a coarse grained reconfigurable architecture (CGRA) for compu-
tation, a programmable scratchpad, stream engines to process the
commands for memory or scratchpad access and a control core to
generate stream commands. A stream dispatcher enforces architec-
tural dependences between streams. The control core can execute
arbitrary programs, but is programmed to offload as much work as
possible to the stream-dataflow hardware.

Capabilities and Comparison: Stream-dataflow implementations
enable coalesced memory access and avoid redundant address gener-
ation by breaking down streaming access into memory-interface size
requests. Flexible-length (typically long) stream commands mean
the control core can be very simple, as it is needed only to generate
streams (not to manage their execution). High utilization is provided
without multi-threading or multi-issue pipelines by using a dataflow
computation substrate, which also avoids large register file access to
communicate values. A disadvantage is that fine-grain control relies
on predication (power overhead), and coarse-grain control requires
reconfiguration (performance overhead). Luckily, both are somewhat
rare in typically accelerated codes.

3 STREAM-DATAFLOW ARCHITECTURE
In this section we describe the stream-dataflow architecture through
its programming abstractions, execution model and ISA.

3.1 Abstractions
Stream-dataflow abstracts computation as a dataflow graph and data
movement with streams and barriers (Figure 3). Commands ex-
pressing these abstractions are embedded in a general program. The
following describes these abstractions and associated commands.

Dataflow Graph (DFG): The DFG is an acyclic graph containing
instructions and dependences, ultimately mapped to the computation
substrate. Note that we do support cycles for direct accumulation,
where an instruction produces a value accumulated by a later instance
of itself. More general cyclic dependences are supported through
“recurrence streams,” which we describe later.

DFG inputs and outputs are named ports with explicit vector
widths, which serve as the inputs and outputs of data streams, facili-
tating communication. For every set of inputs that arrive at the input
ports, one set of outputs are generated. One iteration of the entire
dataflow-graph execution through input ports, computation nodes
and output ports is a computation instance. Dataflow graphs can be
switched through a configuration command.

Streams: Streams are defined by a source architectural location, a
destination and an access pattern. Since a private scratchpad address
space is exposed, locations are either a memory or programmable
scratchpad address, or a named port. Ports either represent commu-
nication channels to the inputs or outputs of the DFG, or they can be
indirect ports which are used to facilitate indirect memory access.
Streams from DFG outputs to inputs support recurrence. Access
patterns for DFG ports are first-in-first-out (FIFO) only, while access
patterns for scratchpad and memory can be more complex (linear,
strided, repeating, indirect, scatter-gather etc.), but a restricted subset
of patterns may be chosen at the expense of generality.

Streams generally execute concurrently, but streams with the same
DFG port must logically execute in program order, and streams that
write from output DFG ports wait until that data is available. Also,
streams from DFG outputs to DFG inputs can be used to represent
inter-iteration dependences.

Barriers and Concurrency: Barrier instructions serialize the exe-
cution of certain types of commands. They include a location, either
scratchpad or memory, and a direction (read or write). The seman-
tics is that any following stream command must logically enforce
the happens-before relationship between itself and any prior com-
mands described by the barrier. For example, a scratch read barrier
would enforce that a scratch write which accesses address A must
come after a scratch read of A issued before the barrier. Barriers can
also optionally serialize the control core, to coordinate when data is
available to the host.

Note that in the absence of barriers, all streams are allowed to
execute concurrently. Therefore, if two stream-dataflow commands
read and write the same scratchpad or memory address, with no
barrier in-between them, the semantics of that operation are unde-
fined. The same is true between the host core memory instructions
and the stream-dataflow commands. The programmer or compiler is
responsible for enforcing memory dependences.
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Figure 4: Program Transformation and Execution

3.2 Programming and Execution Model
A stream-dataflow program consists of a set of configure, stream, and
barrier commands, that interact with and are ordered with respect to
the instructions of a general program.

Figure 4(a) shows a vector dot-product code region before and
after transformation to the stream-dataflow architecture. The memory
streams for the accesses of a, b and r are now explicitly represented,
and the computation has been completely removed (it is the DFG
in Figure 3). Also note that the loop is completely removed as
well (as the loop control is now implicitly coupled with the stream
length), signifying the vast reduction in the total number of dynamic
instructions required on the control core.

Execution Model: Stream-dataflow programs execute in phases,
each starting with a stream command to initiate data movement and
ending at a final barrier which synchronizes the control core. Phases
have arbitrary length consisting of many computation instances.
A simple example in Figure 4(b) demonstrates how the execution
model exposes concurrency. The state of the stream commands,
CGRA, and control core is shown over time. For each stream we
note where it was enqueued from the control core, dispatched to
execute in parallel, and completed, and we mark the duration in
which it has ownership of the source resource for data transfers. The
red arrows show dependences between events.

To explain, the first two commands are generated on the control
core. They are enqueued for execution and dispatched in sequence,
as there are no resource dependences between them. Both streams
share the memory fetch bandwidth. As soon as 3 items worth of data
are available on ports A and B (3 being the port width), the compu-
tation begins. Meanwhile the last two commands are generated and
enqueued. As soon as one instance of the computation is complete,
the computed data starts streaming to memory. When all data is
released into the memory system, the barrier command’s condition
is met, and the control core resumes.

Performance: The abstractions and execution model lead to intu-
itive implications for achieving higher-performance. First, the DFG

(a) Affine Stream Abstraction

(b) Supported Access Patterns

Linear

Strided

Overlapped

Repeating

Stride Size

Access Size

Start Address

Number of Strides

Figure 5: 2D Affine Access Patterns

size should be as large as possible to maximize instruction paral-
lelism. Second, streams should be as “long” as possible to avoid
instruction overheads on the control core. Third, reused data should
be pushed to the scratchpad to reduce bandwidth to memory.

3.3 Stream-Dataflow ISA
Because much of a stream-dataflow processor is exposed to the
software, careful consideration must go into the encoding of the
architecture abstractions into a specific ISA. We discuss here an
instance of a stream-dataflow ISA, and its stream commands are
summarized in Table 2. These commands would be embedded into
the ISA of the control core, typically as 1-3 instructions in a fixed-
width RISC ISA.

DFG Specification: The ISA exposes the configurable network of
the underlying computation substrate as well as the available com-
munication channels (called vector ports) between data streams and
the computation substrate. These two features correspond to an in-
struction mapping and vector port mapping component of the DFG
specification. Instead of proposing a specific DFG encoding, we
discuss here the basic requirements for both mapping specifications,
and their impact on programmability.

For instruction mapping, most hardware implementations will
employ a configuration-based substrate, meaning there will be some
maximum number of allowable instructions of each type, per config-
uration. The hardware may also impose restrictions on the number
of inputs or outputs, as well as operand bandwidth.

For vector port mapping, the ISA defines: 1. the number of vector
ports, 2. their width (maximum data words transferable per cycle),
3. their depth (the associated buffer size), and 4. their connections
to the computation substrate. All of these affect programmability;
for example, if there are no vector ports wide enough for a DFG’s
port, then that DFG cannot be mapped to the hardware. Also, the
maximum recurrence length in the program must not exceed the
buffering capacity (depth) of the vector ports, or else deadlock can
occur1. However, it should be noted that the scratchpad or memory
can be used for longer dependence chains with the use of barriers.

Though the above introduces significant complexity, our imple-
mentation shows that a compiler can automate instruction and vector
port mapping. The programmer uses a simple configuration com-
mand, SD_Config, to load the DFG configuration from memory.

1This is because the recurrence stream would not ever be able to reserve the correspond-
ing vector port. In practice lengths of 16-64 scalar values seem to be sufficient.
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Command Name Parameters Description

SD_Config Address, Size Set CGRA configuration from given Address

SD_Mem_Scratch Source Mem. Addr., Stride, Access Size, Strides, Dest. Scratch Addr. Read from memory with pattern to scratchpad
SD_Scratch_Port Source Scratch Addr., Stride, Access Size, Strides, Input Port # Read from scratchpad with pattern to input port
SD_Mem_Port Source Mem. Addr., Stride, Access Size, Strides, Input Port # Read from memory with pattern to input port #
SD_Const_Port Constant Value, Num Elements, Input Port # Send constant value to input port
SD_Clean_Port Num Elements, Output Port # Throw away some elements from output port
SD_Port_Port Output Port #, Num Elements, Input Port # Issue Recurrence between Input/Output Ports
SD_Port_Scratch Output Port #, Num Elements, Scratch Addr. Write from port to scratchpad
SD_Port_Mem Output Port #, Stride, Access Size, Strides, Destination Mem. Addr. Write from port to memory with pattern

SD_IndPort_Port Indirect Port #, Offset Addr., Destination Port Indirect load from port
SD_IndPort_Mem Indirect Port #, Output Port #, Offset Addr. Indirect store to address in indirect port

SD_Barrier_Scratch_Rd - Barrier for Scratchpad Reads
SD_Barrier_Scratch_Wr - Barrier for Scratchpad Writes
SD_Barrier_All - Barrier to wait for all commands completion

Table 2: Stream-Dataflow ISA (Mem: Memory, Scratch: Scratchpad, IndPort: Indirect Vector Port)

Stream Specification: To balance between efficiency and general-
ity, we focus on supporting common address patterns for which we
can build efficient hardware. One such pattern is two-dimensional
affine accesses, defined by an access size (size of lowest level ac-
cess), stride (size between consecutive accesses), and number of
strides. This abstraction, along with different example patterns it can
generate, are shown in Figure 5. More formally, these are accesses
of the form a[C*i+j], where induction variables i and j increment
from 0 to an upper bound.

The other pattern we support is indirect. The source for an indirect
stream is another stream’s destination port, which it uses to generate
memory addresses. The origin stream’s data is either treated as
an offset from a starting address, or as a pointer value. Indirect
streams can be chained to create multi-indirect access patterns (eg.
a[b[c[i]]]). We emphasize that only the lowest level of a data-
structure access should conform to one of these patterns. The control
core is free to generate arbitrary starting addresses to allow more
complex overall patterns.

Finally, for supporting control and software pipelining, we added
streams for sending constants (SD_Const_Port) and for clearing
unneeded values from ports (SD_Clean).

With the possible sources and destinations defined, as well as the
possible access patterns, the commands which specify these streams
fall-out naturally (See Table 2). Stream commands have parameters
for source, destination, pattern and length.

Barrier Specification: This ISA provides three barrier commands.
The first two synchronize the reading and writing of the scratchpad
memory, and the final one guarantees the phase is complete and the
data is visible in the memory system.

Example Program: Figure 6 is an example neural network classifier,
essentially a dense matrix-vector multiply of synapses and input
neurons. The figure shows the original program, stream-dataflow
version and execution behavior. The transformation to a stream-
dataflow version pulls the entire loading of neurons and synapses out
of the loop using long stream commands (lines 4-7). Here, the input
neurons are loaded into scratchpad while simultaneously reading the
synapses into a port. Inside the single loop (lines 10-13) are streams
which coordinate the accumulator reset, and then send out the final
value of each output neuron to memory. Note that the number of
instructions executed by the control core is reduced by roughly a
factor of Ni.

Original Program:
1 //Synapse and input/output neurons (Ni=784, Nn=10)
2 uint16_t synapse[Nn][Ni], neuron_i[Ni], neuron_n[Nn];
3

4 for (n = 0; n < Nn; n++) { //for each output neuron
5 sum = 0;
6 for (i = 0; i < Ni; i++) //for each input neuron
7 sum += synapse[n][i] * neuron_i[i];
8

9 neuron_n[n] = sigmoid(sum); }

Stream-Dataflow Program:
1 SD_Config(classifier_config) //Load CGRA Config.
2

3 //Scratchpad load and memory to port loading
4 SD_Mem_Port(synapse, Ni * 2, Ni * 2, Nn, Port_S);
5 SD_Mem_Scratch(neuron_i, Ni * 2, Ni * 2, 1, 0);
6 SD_Barrier_Scratch_Wr();
7 SD_Scratch_Port(0, Ni * 2, Ni * 2, 1, Port_N);
8

9 for (n = 0; n < Nn; n++){ //for each output neuron
10 SD_CONST(Port_R, 0, Ni/4-1);
11 SD_CONST(Port_R, 1, 1);
12 SD_Clean(Port_C, Ni/4-1);
13 SD_Port_Mem(Port_C, 1, &neuron_n[n]);
14 }
15 SD_Barrier_All();

Data Flow Graph (DFG)
for above code ↑ 

× × 
+

S (4) N (4)

C (1)

Input Ports:
(width)

Output 
Ports:

+
× × 

+

R (1)

acc

Commands:

CGRA Fabric:

L5) Mem  Scratch
L6) Scratch Write Barrier
L7) Scratch  Port A

L12) Port C  [null]

L4) Mem  Port S

L13) Port C  Mem

.Time.

General Core: ResumeCommand Gen.

Compute

sig

Lo
op

L10) Const 0  Port R
L11) Const 1  Port R

...
L15) All Barrier

Load Synapses

Load Neurons

Load Neurons from Scratch

Do not Reset
Reset 
Now

Clean Data Port

Write 
Final 
Data

Legend: Enqueued
Dispatched
CompleteDependence 

Resource Active

Figure 6: Example Program and Execution

421



Stream-Dataflow Acceleration ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Control 
Core

Stream 
Dispatcher

Scratchpad
Scratchpad 

Stream Engine (SSE)

CGRA Recurrence 
Stream Engine 

(RSE)

Memory Interface
Memory 

Stream Engine (MSE)

Cache/Memory Hierarchy
D

-C
ac

he
 R

eq
/R

es
p

I-C
ac

he
 R

eq
/R

es
p

To MSE

To RSE To SSE

Input Vector Port Interface

Output Vector Port Interface

Indirect Vector 
Port Interface

. . . .

. . . .

Control

State storage/SRAM

Datapath

BLACK       Data Line
RED      Control Data/

  Commands

LEGEND

Figure 7: Softbrain Overview

Stream Command 
Decoder

Ready 
Logic

Affine AGU
Indirect Load/Store 

AGU

Stream #2 

Stream #1 

Stream #3 

Stream #4 

Stream Select Unit

Command from 
Steam Dispatcher

Indices from
Indirect Ports

Stre
am

 Ta
b

le

Address, Mask, 
Stream parameters

Figure 8: Stream Request Pipeline

4 A STREAM-DATAFLOW
MICROARCHITECTURE

Our goal in constructing a microarchitecture for the stream-dataflow
ISA is to provide efficiency as close as possible to an application
or domain-specific design. Therefore, we adopt two primary design
principles: We avoid introducing large or power hungry structures,
especially multi-ported memories, and we take full advantage of the
concurrency provided by the ISA. Here we describe our microar-
chitecture implementation, Softbrain, and how it accomplishes the
above goals by leveraging stream-dataflow architecture primitives.

4.1 Overview
At a high level, we combine a low power control core to generate
stream commands, a set of stream-engines to efficiently interface
with memories and move data, and a deeply-pipelined reconfigurable
dataflow substrate for efficient parallel computation (see Figure 7).
There are five primary component types:

• Control Core - A low-power single-issue inorder core which
generates stream-dataflow commands to the stream dispatcher.
It facilitates programmability with low power and area cost.

• Stream Dispatcher - This unit manages the concurrent execu-
tion of the stream engines by tracking stream resource depen-
dences and issuing commands to stream engines.

• Stream Engines - Data access and movement is carried out
through three “stream engines”, one for memory (facilitating
wide access to memory), one for scratchpad (efficient data
reuse), and one for DFG recurrences (for immediate reuse with-
out memory storage). The stream-engines arbitrate the access
of their respective memory and scratchpad resources across
streams assigned to them.

• Vector Ports - The vector ports are the interface between the
computations performed by the CGRA and the streams of in-
coming/outgoing data. In addition, a set of vector ports not
connected to the CGRA are used for storing the streaming ad-
dresses of indirect loads/stores.

• CGRA - The coarse grained reconfigurable architecture enables
pipelined computation of dataflow graphs. The spatial nature of
the CGRA avoids the overheads of accessing register files or
memories for live values.

Stream Command Lifetime: The lifetime of a stream command
is as follows. First, the control core generates the command and
sends it to the stream dispatcher. The stream dispatcher issues the
command to the appropriate stream engines once any associated
resources (vector ports and stream-engine table entries) are free. The
data transfer for each stream is carried out by the stream engine,
which keeps track of the running state of the stream over its lifetime.
When the stream completes, the stream engine notifies the dispatcher
that the corresponding resources are free, enabling the next stream-
command to be issued.

4.2 Stream Dispatch and Control Core
The role of the stream dispatcher is to enforce resource dependences
on streams (and barrier commands), and coordinate the execution of
the stream-engines by sending them commands. Figure 9 shows the
design and internal resource management mechanisms of the stream
dispatcher. Stream requests from the control core are queued until
they can be processed by the command decoder. This unit consults
with resource status checking logic to determine if a command can
be issued, if so it will be dequeued. Barrier commands block the core
from issuing further stream commands until the barrier condition is
resolved. We explain in more detail below.

Resource Management: Subsequent streams that have the same
source or destination port must be issued in program order, ie. the
dynamic order of the streams on the control core. The stream dis-
patch unit is responsible for maintaining this order, and does so by
tracking vector port and stream engine status in a scoreboard. Before
issuing a stream, it checks the state of these scoreboards.

The state of a vector port is either taken, free, or all-requests-in-
flight. A port moves from free to taken when issued (by the resource
assigner), and that stream logically owns that resource while in flight.
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When the stream is finished, the associated stream engine notifies
the dispatcher to update the scoreboard entry of the vector port to
the free state. The all-requests-in-flight state indicates all requests
for a memory stream are completely sent to the memory system (but
have not arrived). This state exists as an optimization to enable two
memory streams using the same port to have their requests in the
memory system at the same time.

Barriers: The stream dispatcher must also coordinate the ordering
of streams given barrier instructions. Our simple microarchitecture
only implements scratchpad barriers, and simply blocks commands
beyond the barrier until the condition is met (eg. no outstanding
scratchpad writes). Other active streams can continue to perform
useful work while the stream dispatcher waits, which is how forward
progress can be guaranteed for a correct program.

Interface to the Control Core: The interface between the dis-
patcher and the control core is a command bus, and commands
are queued until issued. The dispatcher can stall the core, which
would happen if the command queue is full, or the SD_Barrier_All
command is in the command queue.

4.3 Stream Engines
Stream engines manage concurrent access to various resources
(memory interface, scratchpad, output vector port) by many active
streams. They are critical to achieving high parallelism with low
power overhead, by fully utilizing the associated resources through
arbitrating stream access.

Stream engines are initiated by receiving commands from the
stream dispatcher. They then coordinate the address generation and
data transfer over the lifetime of the stream, and finally notify the
dispatcher when the corresponding vector ports are freed (when the
stream completes). The stream engines each have their own 512-bit
wide bus to the input and output vector ports. The stream dispatcher
ensures that concurrent streams have dedicated access to their vector
ports. Indirect access is facilitated by vector ports which are not
connected to the CGRA, which buffer addresses in flight. Below we
describe the central control unit in each stream engine, the stream
request pipeline, followed by the specific design aspects of each.

Stream Request Pipeline: Similar hardware is required in each
stream engine to arbitrate access to the underlying resource, and we
call this a stream request pipeline. On each cycle, this unit selects one
of the multiple active streams and facilitates its address generation
and data transfer. Figure 8 shows the template for a stream request
pipeline, which is tailored slightly for each type of stream engine.
When a command is issued to a stream engine, it is first decoded

and any relevant state is placed in the stream table. This maintains
the set of active streams, where each row contains the associated
data for a stream. Ready logic observes the validity of streams, and
will connect to external backpressure signals (eg. remaining space in
input vector port) for determining which streams are ready to issue.
A stream is ready if its destination is not full and its source has data.
A selector prioritizes a ready stream.

The state of the selected stream will be sent to an appropriate
address generation unit (AGU), either affine or indirect, which com-
putes the next 64-byte aligned address. These units also generate
a mask to indicate words relevant to the stream. The affine AGU
generates the minimal number of memory requests by examining
the access size, stride size and number-of-strides parameters. The
indirect AGU takes address values from an indirect port. This unit
will attempt to coalesce up to four increasing addresses in the current
64-byte line.

Memory Stream Engine: This unit delivers data from or to the
memory system, which in case of Softbrain is a wide-interface cache.
The read and write engines have their own independent stream re-
quest pipelines. The memory read engine has buffering for outstand-
ing requests, and uses a balance arbitration unit for stream priority
selection (described in Section 4.5). The backpressure signal for
memory reads to the CGRA is the number of entries free in the
buffers associated with the vector ports. For handling backpressure
on scratchpad writes, a buffer sits between the MSE and SSE. This
buffer is allocated on a request to memory to ensure space exists.
The memory write engine uses the data available signals from vector
ports for priority selection.

Scratchpad Stream Engine: This unit is similar to the above, ex-
cept that it indexes a scratchpad memory. A single-read, single-write
ported SRAM is sufficient, and its width is sized proportional to
the maximum data consumption rate of the CGRA. Similar to the
memory stream engine, the backpressure signal is the number of free
buffer entries on the vector ports. If there are no entries available
(ie. there is backpressure), then the corresponding stream will not be
selected for loading data.

Reduction/Recurrence Stream Engine: A reduction/recurrence
stream engine delivers data from the output to input vector ports for
efficiently communicating dependences. It also is used for delivering
“constants” from the core. It does not require the AGU, but does use
a similar backpressure mechanism as the above units.

4.4 Computation and Dataflow Firing
Vector Port Interface: Vector ports are the interface between the
CGRA and stream engines, and are essentially 512-bit wide FIFOs
that hold values waiting to be consumed by the CGRA. Each vec-
tor port can accept or send a variable number of words per cycle,
up to 8 64-bit words. On the CGRA side, vector ports attach to
a heterogeneous set of CGRA ports, which are selected to spread
incoming/outgoing values around the CGRA to minimize contention.
This mapping is fed to the DFG scheduler to map ports of the pro-
gram DFG to hardware vector ports. Dataflow firing occurs in a
coarse-grained fashion, when one instance worth of data is available
on all relevant vector ports, all of the relevant data is simultaneously
released into the CGRA.
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CGRA: Our CGRA is a deeply pipelined execution substrate similar
to prior designs [7, 29]. It has a circuit-switched mesh of process-
ing elements, where each contains a set of pipelined functional
units. Predication support at each FU allows mapping of local data-
dependent control flow, and FUs store re-used constants and accu-
mulators. It differs from the referenced designs in that there is no
flow-control inside the mesh (we found this reduced the network
area by about half). This is enabled by the synchronized dataflow
firing of input vectors. The lack of flow-control also requires the
DFG compiler to ensure delay-matching along all computation paths,
including to the output vectors ports. The CGRA’s datapath is 64-bit
in our implementation, and functional units can perform multiple
sub-word operations including 32-bit and 16-bit.

The configuration of the CGRA (datapath and constants) and
vector ports is initialized by the SD_Config command, which is
processed by the memory stream engine. Configuration can be com-
pleted in less than 10 cycles if the data is cached.

4.5 Cross-cutting design issues
Buffering and Deadlocks: The Softbrain unit must avoid deadlock
by balancing the stream requests to different vector ports. This can
be local to a stream engine, as each stream engine owns a single
resource. Deadlock can occur, for example, when many long-latency
operations for a single port fill the request pipeline to memory, but
data is needed on another port for the CGRA computation to achieve
forward progress. This can happen if one of the streams is strided,
causing a lower relative memory bandwidth. We solve this issue by
adding a balance unit to the memory load stream engine. It tracks
the amount-of-unbalance for each active vector port, and heavily
unbalanced ports are de-prioritized.

Memory Coherence: Because Softbrain’s memory interface di-
rectly accesses the L2 cache, there is the possibility of incoherence
between the control core’s L1 and the L2. To avoid incoherent reads
from the L2 to the stream engines, the control core’s L1 is write-
through. To avoid incoherent reads on the L1, Softbrain sends L1
tag invalidations as it processes the stream.

Role of the Compiler and Programmer: In this work, we express
programs directly in terms of intrinsics for the stream-dataflow com-
mands (see Figure 6 on page 6). So the primary Compiler task is to
generate an appropriate CGRA configuration for the DFG and vector
port mapping. The DFGs are specified in a simple graph language,
and we extend an integer linear optimization based scheduling ap-
proach from prior work [22].

Though programming is low-level, the primitives are more flexi-
ble than their SIMD counterparts. Compiling to a stream-dataflow
ISA from a higher level language (OpenCL/OpenMP/OpenAcc)
seems practical and quite useful, especially to scale the design to
more complex workloads. This is future work.

Integration: Softbrain can be integrated into a broader system in
a number of ways, including as a unit in an SoC, through unified
virtual memory, or as a standalone chip. In this work we assume
a standalone device for evaluation purposes. It is possible to sup-
port integration to a unified virtual memory with coherent caches.
Address translation could be supported at the L2 level (making L1
and L2 virtual) if dedicated accelerator access is assumed, or by
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Figure 10: Software Stack

integrating TLBs in the memory stream engine.
There are other design aspects critical to certain settings and sys-

tems, like support for precise exceptions, backwards compatibility,
security and virtualization. These are deferred for future work.

5 IMPLEMENTATION
Here we discuss the implementation in terms of the hardware, soft-
ware stack, and simulator used in the evaluation. We also discuss how
this setup can be used in a practical hardware/software workflow.
Figure 10 shows an overview.

Hardware: We implemented the design from Section 4 in Chisel [1].
The design is parameterizable (eg. CGRA size, FU types, port widths,
scratchpad size, etc), and uses an architecture description file which
is shared with the software stack and simulator.

Software Stack: For programming, we create a simple wrapper
API that is mapped down into the RISCV-encoding of the stream-
dataflow ISA. We modified a GCC cross compiler for RISCV with
stream-dataflow ISA extensions, and implemented our own DFG
compiler. The DFG to CGRA mapper extends prior work [22].

Simulator: We implement a cycle-level RISC-V based simulator for
the control core and Softbrain. The Softbrain simulator is a simple
module, which takes stream-dataflow commands and integrates with
the core’s cache interface for load/store requests.

Hardware/Software Workflow: In practice, the hardware would be
provisioned once per chip family. For instance, if it is known ahead
of time that all data types for a particular market were a maximum of
16-bit (eg. for machine learning), this could be incorporated into the
functional unit composition of the CGRA. Here, an architect either
uses existing knowledge or profiles applications from the domain(s)
in question. Then they would adjust only the FU mix and scratchpad
size, recording this in the hardware parameter model file. Even in
this case, no Chisel or hardware interfaces need modification.

For each application, the developer constructs DFGs of the com-
putation component, and writes the stream coordination program
(stream commands embedded into a C program).

6 EXPERIMENT METHODOLOGY
Workloads: To compare against domain specific accelerators, we
use the deep neural network (DNN) workloads from the DianNao
accelerator work [3], including classifier, convolutional and pooling
layers. They have high data-parallelism and memory regularity, and
vary in their re-use behavior (and thus memory-bandwidth).
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To capture a broader understanding of the efficiency and gen-
erality tradeoffs, we consider MachSuite [26], a set of typically-
accelerated workloads. Unlike the DNN workloads, these capture
wider program behaviors like regular and irregular memory access
patterns, data-dependent control, and varying computation intensity.
We compare these designs against application specific versions.

Power & Area: For the power and area of our Softbrain implemen-
tation, we synthesize the Chisel-generated verilog with Synopsis
DC and the ARM 55nm technology library, which meets timing at
1GHz. We use Cacti [19] for SRAM and caches estimates.

Comparison Methodology: For the DNN workloads we compare
against the DianNao accelerator using a simple performance model.
This model optimistically assumes perfect hardware pipelining and
scratchpad reuse; it is only bound by parallelism in the neural net-
work topology and by memory bandwidth. We take the power/area
numbers from the relevant publication [3]. For comparison points,
we consider single-threaded CPU implementations, running on a i7
2600K Sandy Bridge machine. We also compare against GPGPU
implementations of these workloads written in CUDA, running on a
Kepler-based GTX 750. It has 4 SMs and 512 total CUDA cores.

For comparing to MachSuite accelerators, we use Aladdin [28], a
pre-RTL accelerator modeling tool. Aladdin determines the fixed-
function accelerator performance, power, and area given a set of
prescribed hardware transformations (eg. loop unrolling, loop flat-
tening, memory array partitioning and software pipelining, which
impact the datapath and scratchpad/caches sizes).

7 EVALUATION
In this section, we address five important questions for evaluating
Softbrain, and we list them here with brief answers for each:

(1) What are the sources of its power and area overhead?
• CGRA network and control core.

(2) Can it match the speedup of a domain specialized accel.?
• Yes

(3) Is the stream-dataflow paradigm general?
• Yes, All DNN and most MachSuite are implementable
using the stream-dataflow abstractions.

(4) What are its limitations in terms of generality?
• Code properties that are not suitable are arbitrary memory-
indirection and aliasing, control-dependent loads, and bit-
level manipulations.

(5) How does stream-dataflow compare to application-specific?
• Only 2× power and 8× area overhead.

7.1 Domain-Specific Accelerator Comparison
Here we explore the power and area of Softbrain compared to a
domain-specific accelerator for deep neural networks, DianNao. Our
approach is to compare designs with equivalent performance, and
examine the area and power overheads of Softbrain.

Area and Power Comparison: To make an intuitive comparison,
we configure the Softbrain’s functional units to meet the needs of
the DNN workloads. Here, we need four-way 16-bit subword-SIMD
multipliers and ALUs, and a 16-bit sigmoid. We also include 8 total
tiles (Softbrain units), which enables Softbrain to reach the same
number of functional units as DianNao.

area(mm2) power (mw)

Control Core +
16kB I & D$

0.16 39.1

CGRA
Network 0.12 31.2
FUs (4×5) 0.04 24.4

Total CGRA 0.16 55.6

5×Stream Engines 0.02 18.3
Scratchpad (4KB) 0.1 2.6
Vector Ports
(Input & Output)

0.03 3.6

1 Softbrain Total 0.47 119.3
8 Softbrain Units 3.76 954.4

DianNao 2.16 418.3

Softbrain / DianNao
Overhead

1.74 2.28

Table 3: Area and Power Breakdown / Comparison
(All numbers normalized to 55nm process technology)
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Figure 11: Performance on DNN Workloads.

Table 3 shows the breakdowns of area and power. All the analysis
is normalized to 55nm process technology. For the power calcula-
tions here, we use the maximum activity factors across the DNN
workloads. The majority of the area comes from the CGRA network,
consuming about one-fourth of the total area and power. The other
large factor is the control core, which consumes a third of the power
and the area. Compared to the DianNao accelerator, Softbrain is only
about 1.75× more power and a little over twice as large.

Performance: Figure 11 shows the speedups of the Kepler GPU,
DianNao and Softbrain for the three classes of DNN workloads.
Overall, the GPU is able to obtain up to 20× performance improve-
ment, while DianNao and Softbrain achieve similar performance,
around 100× or more on some workloads. The reason is intuitive:
both architectures use the same basic algorithm, and they are able
to keep 100s of FUs active in every cycle by decoupling memory
access from deep pipelined computation. Softbrain does see some
advantage in pooling workloads, as its more flexible network allows
it to reuse many of the subsequent partial sums in neighboring com-
putations, rather than re-fetching them from memory. This allows it
to reduce bandwidth and improve speedup.

7.2 Stream-Dataflow Generality
Here we attempt to distill the limitations of the stream-dataflow pro-
cessor in terms of its generality. To this end, we study a broader set
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Implemented
Codes Stream Patterns Datapath

bfs
Indirect Loads/Stores,
Recurrence Compare/Increment

gemm Affine, Recurrence 8-Way Multiply-Accumulate
md-knn Indirect Loads, Recurrence Large Irregular Datapath
spmv-crs Indirect, Linear Single Multiply-Accumulate
spmv-ellpack Indirect, Linear, Recurrence 4-Way Multiply-Accumulate
stencil2d Affine, Recurrence 8-Way Multiply-Accumulate
stencil3d Affine 6-1 Reduce and Multiplier Tree
viterbi Recurrence, Linear 4-Way Add-Minimize Tree

Unsuitable Codes Reason

aes Byte-level data manipulation
kmp Multi-level indirect pointer access
merge-sort Fine-grain data-dependent loads/control
radix-sort Concurrent reads/writes to same address

Table 4: Workload Characterization

of typically-accelerated workloads from MachSuite, and provision a
single design for them. We first characterize our implementations of
these workloads and the limitations we discovered.

Softbrain Provisioning: To provision Softbrain’s FU resources, we
implemented stream-dataflow versions of the MachSuite workloads
targeting a maximum of 20 DFG instructions (the same size we
used for the DianNao comparison). We then provisioned Softbrain’s
FU mix to the maximum needed across workloads. Note that for
consistency we used 64-bit integer/fixed-point datatypes2. Hereafter,
we refer to this as the broadly provisioned Softbrain.

Softbrain Generality: Table 4 summarizes the architectural ab-
stractions used in the stream-dataflow program implementations. It
describes the streaming patterns and datapath structure3.

We found that each architectural feature was useful across several
workloads. Affine accesses were used in gemm and stencil codes to
reduce access penalties. Indirect loads or stores were required in four
workloads (bfs and knn, and spmv versions). Recurrence patterns
were useful across most workloads, mainly for reduction variables.
The size and configuration of the datapath varies greatly, from re-
duction trees, SIMD-style datapaths, and more irregular datapaths,
suggesting that the flexible CGRA was useful.

There were four workloads that we found could not be efficiently
implemented in stream-dataflow. The aes encryption workload re-
quired too much byte-level manipulation (access words less than
16-bit) that made it difficult to justify offloading onto a coarse-
grained fabric. The kmp string matching code requires arbitrary-way
indirect loads, and the architecture can only support a finite amount
of indirection in an efficient way. The merge-sort code contains
fine-grain data-dependent loads and control instructions, used to
decide which list to read from next. The radix-sort workload has
several phases where reads or writes during that phase could be
to the same address (and we don’t provide hardware support for
implicit store-load forwarding).

Overall, Softbrain is quite general and applicable across many
data-processing tasks, even some with a significant degree of irregu-
larity. Its limitations are potentially addressable in future work.

2Using floating point would have decreased the relative overheads of Softbrain versus
an ASIC, but also decreased the area/power benefits of acceleration slightly.
3There were 4 additional workloads which we have not yet implemented, but do fit into
the stream-dataflow paradigm: fft, md(gridding version), nw and backprop.
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Figure 12: Softbrain Performance Comparison to ASIC
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Figure 13: Softbrain Power Comparison to ASIC

7.3 Application-Specific Comparison
In this section we compare the broadly provisioned Softbrain to
customized ASICs generated for each application, in terms of their
power, performance, energy and area.

ASIC Design Point Selection: For comparing the broadly provi-
sioned Softbrain with a workload-specific ASIC, we chose to do
an iso-performance analysis, while secondarily minimizing ASIC
area and power. To explain in detail - for each workload we explore
a large ASIC design space by modifying hardware optimization
parameters, and find the set of ASIC designs within a certain perfor-
mance threshold of Softbrain (within 10% where possible). Within
these points, we chose a Pareto-optimal ASIC design across power,
area, and execution time, where power is given priority over area.

Performance: For performance evaluation of Softbrain to ASIC,
the execution cycles obtained from our Softbrain RISC-V based
simulator is compared to the execution cycles of the benchmark-
specific custom accelerator generated from Aladdin. Figure 12 shows
the performance of Softbrain compared to benchmark specific Pareto
optimal ASICs. For both ASIC and Softbrain, the execution cycles
are normalized to a SandyBridge OOO4(4-wide) core, with both
performing achieving 1-7x speedup. In most cases we found an
ASIC design with similar performance to Softbrain4.

Power, Area & Energy vs. ASIC Designs: As explained above, we
choose the iso-performance design points for power, energy and area
comparison of Softbrain to ASIC.

For power analysis, we consider that only benchmark-specific
FUs are active during execution in Softbrain’s CGRA along with
other support structures, including the control core, stream engines,
scratchpad and vector ports. The static power and area for Softbrain
are obtained from the synthesized design, and the dynamic power
estimates reported are based on the activity factor of each module.

4Note that for some workloads (eg. stencil, md) there is an ASIC deign point with better
performance than Softbrain, but falls outside the performance threshold.

426



ISCA ’17, June 24-28, 2017, Toronto, ON, Canada T. Nowatzki et al.

b
fs

sp
m

v

e
llp

a
ck

st
e
n
ci

l

st
e
n
ci

l3
d

g
e
m

m

m
d

v
it

e
rb

i

G
M

1
1
0

1
0
0

1
0
0
0

E
n
e
rg

y
 E

ff
ic

ie
n
cy

 R
e
la

ti
v
e
 

to
 B

a
se

lin
e
 (

O
O

O
4

 C
o
re

)

SoftBrain

ASIC

Figure 14: Softbrain Energy Comparison to ASIC
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Figure 15: Softbrain Area Comparison to ASIC

Energy estimates are straightforward to get from execution cycles
and dynamic power estimates. ASIC area and power are obtained
from Aladdin, using 40nm technology, and are normalized to 55nm.

Figure 13 shows the power savings (efficiency) over a Sandy-
bridge OOO4 core5 as the baseline. Both ASIC and Softbrain have
a large power savings of up to 300x compared to the OOO4 core,
which is expected because of the power and area which the OOO4
core spends on supporting generality. ASICs have better power effi-
ciency than Softbrain overall, but only by 2× across all benchmarks.
With some workloads, ASIC has almost the same power as Softbrain,
and this is due to the fact that Aladdin instantiates larger memory
structures (scratchpads, buffers etc.) for loop-unrolling, essentially
flattening the array data-structures in order for the design space to
have performance points close to Softbrain. Note that we include
the local memory structures of the ASICs in their power estimation
as Softbrain also has a programmable scratchpad. Most of the addi-
tional power consumption in Softbrain is because of the generality
supporting structures, such as the CGRA network, which is capable
of mapping a wide variety of possible DFGs.

Figure 14 shows the energy efficiency comparison of Softbrain
and the ASICs, showing a high efficiency advantage for both com-
pared to the baseline OOO4 core. The energy consumption of Soft-
brain is within 2x of ASIC, and this is mainly due to the difference
in power consumption.

Figure 15 shows the area comparison. As Softbrain’s area is
fixed across benchmarks, the results show ASIC area relative to Soft-
brain’s area. We do not include the ASIC designs’ memory structures
area in their estimates, as most of the time these workloads have
streaming behavior and ASICs can achieve the same performance
with more parallel FUs, rather than larger storage structures6. The
mean Softbrain area is 8× that of the ASIC, which is expected as
5We consider the dynamic power of 1 core at 32nm and scale it to 55nm.
6Including the memory structure area for the ASIC estimates would make Softbrain
look better in comparison.

Softbrain is programmable and must run all workloads. From an-
other perspective, Softbrain is area efficient, as including all eight
MachSuite accelerators would have required 2.54× as much area as
only including Softbrain.

Overall, Softbrain is competitive with ASICs in terms of per-
formance, power, energy and area, even with the hardware neces-
sary to support significant programmability. This demonstrates that
there is scope to develop programmable architectures by tapping the
right synergy between the algorithm properties of typically acceler-
ated workloads and the microarchitectural mechanisms supporting
stream-dataflow execution.

8 RELATED WORK
Streaming in Data Parallel Architectures: The concept of expos-
ing streams in a core’s ISA to communicate to reconfigurable hard-
ware was proposed in the Reconfigurable Streaming Vector Proces-
sor (RSVP) [5]. RSVP uses similar descriptions of affine streams and
dataflow graphs, but have several fundamental limitations. RSVP’s
communication patterns for any given computation cannot change
during an execution phase. This reduces the flexibility of the types of
patterns that can be expressed (eg. outputs that are used for reduction
and sometimes written to memory). It also hampers the ability to
prefetch data across different phases – one phase must complete
before the data for another phase can be fetched, a high overhead
for short phases. Next, the inter-iteration dependence distance in
RSVP can only be 1, which limits programmability. Finally, the
address space of RSVP’s “scratchpad memory” is not exposed to the
programmer, which only map linear portions of the address space.
This disallows some optimizations where sparse data representations
are compacted into the scratchpad and read multiple times.

An early foundational work in this area is Imagine [13], which is
a scalable data parallel architecture for media processing. Imagine
uses concepts of streams for explicit communication between mem-
ory and a so-called stream register file which acts as a scratchpad for
communicating between memory and execution units, as well as be-
tween subsequent kernels. Streams are restricted to being linear and
have relatively small maximum size. Streams are also not exposed
in the lower level interface for controlling the execution resources:
a cluster of VLIW pipelines are activated in SIMD fashion by a
microcontroller. A stream based ISA in this context could reduce the
complexity of the controlling VLIW core. From a high-level, Imag-
ine can be viewed as a set of stream-dataflow processors which read
all memory through the scratchpad, and where the reconfigurable
fabric is replaced by more rigid SIMD+VLIW execution units.

Triggered instructions [23] is a spatial architecture featuring some
streaming memory capability to feed its dataflow fabric. The com-
puting fabric is more flexible in terms of control flow and total
instruction capacity, but is likely higher power and area.

The problem of efficiently interfacing with reconfigurable hard-
ware also occurs in an FPGA computation offloading environment.
CoRAM++ [36] enables data-structure specific API interfaces for
transferring data to FPGA-synthesized datapaths, which is imple-
mented with specialized soft-logic for each supported data-structure.
This interface is primarily based on streams.

Removing Data-Parallel Architecture Inefficiencies: Several
works attempt to specialize existing data parallel architectures.
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One example for SIMT is exploiting value structure to eliminate
redundant affine address and value computations [14]. The SGMF
architecture adds dataflow extensions to GPGPUs [34]. Another
work explores a set of mechanisms for data parallel execution, and
evaluates these for the TRIPS spatial architecture [27]. Many of the
data-parallel program attributes they define are targeted here, but
we use a different set of mechanisms. We previously discussed the
relationship to vector-thread architectures like Maven VT [16].

Softbrain can be viewed as an instance of the prototypical accel-
erator we defined in prior work [21], called LSSD. It leverages a
multi-issue inorder SIMD core to bring data to the reconfigurable
array (rather than stream engines), which requires higher energy due
to the core’s issue width, and is more difficult to program or compile
for because of the required modulo scheduling.

Heterogeneous Cores: There is a large body of work on combin-
ing general purpose cores and reconfigurable or otherwise special-
ized engines. A number of these designs target irregular work-
loads, like Composite Cores [18] for code phases with low ILP,
or XLOOPS [31] for loops with inter-iteration dependence patterns,
or SEED [20] for phases with non-critical control. We consider those
designs to be mostly orthogonal to the stream-dataflow ISA.

Programmable accelerators targeting data parallelism (eg.
DySER [7] or Libra [24]) could benefit from the architectural
interfaces we propose, and it would be interesting if compilers
could automatically target such architectures, perhaps by extending
existing SIMD-style vectorization approaches [8].

A highly related work is that of Memory Access Dataflow [10],
which is another access-execute style architecture. It consists of
a general core, compute accelerator, and reconfigurable address-
generation fabric. We considered a similar approach for address
generation, but found that for the access patterns we needed to
support, the area overheads would have exceeded multiple factors.

A recurring issue for resource-exposed architectures is binary
compatibility. VEAL uses dynamic compilation to translate loops
in the baseline ISA into a template loop accelerator which has sim-
ple address generators and a modulo-scheduled programmable en-
gine [6]. Similar techniques have been proposed to dynamically
compile for CGRAs [35], and are applicable to stream-dataflow.

Streaming in Domain Specific Accelerators: Many domain-
specific accelerators use streaming and dataflow abstractions.
Eyeriss is a domain-specific accelerator for convolutional neural net-
works, using streaming access to bring in data, as well as a dataflow
substrate for computation [4]. A recent work, Cambricon [17],
proposes SIMD instruction set extensions which can perform the
stream-like access patterns found in DNNs. Outside the domain
of machine learning, Q100 [37] is an accelerator for performing
streaming database queries. It uses a stream-based abstraction
for accessing database columns, and a dataflow abstraction for
performing computations.

9 DISCUSSION AND CONCLUSIONS
This paper has proposed a new execution model and architecture,
stream-dataflow, which provides abstractions that balance the trade-
offs of vector and spatial architectures, and attain the specializa-
tion capabilities of both on an important class of data-processing
workloads. We show that these primitives are sufficiently general to

express the execution of a variety of deep-learning workloads and
many workloads from MachSuite (a proxy for workloads that an
ASIC could be considered for). In terms of our hardware implemen-
tation, we have developed an efficient microarchitecture, and our
evaluation suggests its power and area is only small factors more
than domain-specific and ASIC designs.

We envision that this architectural paradigm can have a radical
simplifying effect on future chips by reducing the number of spe-
cialization blocks. Instead, a stream-dataflow type fabric can sit
alongside CPU and GPU processors, with functionality synthesized
on the fly as programs encounter suitable phases for efficient of-
floading. This not only reduces the area and complexity of having
vast arrays of specialized accelerators, it also can mitigate grow-
ing design and verification costs. In such a broad setting, it will
be critical to develop effective compilation tools that can balance
the complex tradeoffs between parallelism and data reuse that these
architectures provide. Providing dynamic compilation support for
a stream-dataflow architecture could bring specialized-architecture
efficiency to the masses.

Overall, we believe that stream-dataflow has a large role to play
going forward. Just as RISC ISAs defined and drove the era of
pipelining and the multi-decade dominance of general purpose pro-
cessors, for the era of specialization we need new architectures
and ISA abstractions that match the nature of emerging workloads.
Stream-dataflow can serve as this generation’s ISA to drive further
microarchitecture and architecture-level innovations for accelerators.
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