
Speculative Taint Tracking (STT): A Comprehensive Protection
for Speculatively Accessed Data

Jiyong Yu

University of Illinois at

Urbana-Champaign

jiyongy2@illinois.edu

Mengjia Yan

University of Illinois at

Urbana-Champaign

myan8@illinois.edu

Artem Khyzha

Tel Aviv University

artkhyzha@mail.tau.ac.il

Adam Morrison

Tel Aviv University

mad@cs.tau.ac.il

Josep Torrellas

University of Illinois at

Urbana-Champaign

torrella@illinois.edu

Christopher W. Fletcher

University of Illinois at

Urbana-Champaign

cwfletch@illinois.edu

ABSTRACT

Speculative execution attacks present an enormous security threat,

capable of reading arbitrary program data under malicious specula-

tion, and later exfiltrating that data over microarchitectural covert

channels. Since these attacks first rely on being able to read ar-

bitrary data (potential secrets), a conservative approach to defeat

all attacks is to delay the execution of instructions that read those

secrets, until those instructions become non-speculative.

This paper’s premise is that it is safe to execute and selectively
forward the results of speculative instructions that read secrets,

which improves performance, as long as we can prove that the for-

warded results do not reach potential covert channels. We propose a

comprehensive hardware protection based on this idea, called Spec-

ulative Taint Tracking (STT), capable of protecting all speculatively

accessed data.

Our work addresses two key challenges. First, to safely selec-

tively forward secrets, we must understand what instruction(s) can

form covert channels. We provide a comprehensive study of covert

channels on speculative microarchitectures, and use this study to

develop hardware mechanisms that block each class of channel.

Along the way, we find new classes of covert channels related to

implicit flow on speculative machines. Second, for performance, it is

essential to disable protection on previously protected data, as soon

as doing so is safe. We identify that the earliest time is when the in-

struction(s) producing the protected data become non-speculative,

and design a novel microarchitecture for disabling protection at

this moment.

We provide an extensive formal analysis showing that STT en-

forces a novel form of non-interference, with respect to all specu-

latively accessed data. We further evaluate STT on 21 SPEC and 9

PARSEC workloads, and find it adds only 8.5%/14.5% overhead (de-

pending on attack model) relative to an insecure machine, while re-

ducing overhead by 4.7×/18.8× relative to a baseline secure scheme.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MICRO ’52, October 12–16, 2019, Columbus, OH, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6938-1/19/10. . . $15.00

https://doi.org/10.1145/3352460.3358274

CCS CONCEPTS

• Security and privacy→ Side-channel analysis and counter-

measures.

KEYWORDS

Security, Speculative execution attacks, Hardware, Information flow

ACM Reference Format:

Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas,

and Christopher W. Fletcher. 2019. Speculative Taint Tracking (STT): A

Comprehensive Protection for Speculatively Accessed Data. In MICRO ’52:
The 52nd Annual IEEE/ACM International Symposium on Microarchitecture,
October 12–16, 2019, Columbus, OH, USA.ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3352460.3358274

1 INTRODUCTION

Spectre [31], Meltdown [35] and follow-up attacks [8, 13, 24, 30, 32,

36, 46, 54, 57, 58] based on speculative execution have opened a new

chapter in hardware security. In these attacks, adversary-crafted

sequences of transient instructions—i.e., speculative instructions

bound to squash—access and then transmit sensitive program data

over microarchitectural covert channels (e.g., the cache [59]). For
example, Spectre Variant 1, shown in Figure 1, bypasses a bounds

check due to a branch misprediction and transmits secret data

behind that bounds check over a cache-based covert channel [31].

Since the address addr can take an arbitrary value, val can be any

value in program memory, meaning the covert channel can reveal

arbitrary program data. (In this paper, we denote a potentially secret

value in green.)

uint8 A[10];

uint8 B [256∗64];

void victim (size_t addr) {

if (addr < 10) { / / mispredicted branch

M1: uint8 val = A[addr]; / / secret is accessed

M2: ... = B[64 ∗ val]; / / secret is transmitted

}

}

Figure 1: Spectre Variant 1 assuming a 64 byte cache line size. Vari-

ables carrying potentially secret data are colored green. If the if
condition is predicted as true, then the cache line of B indexed by

val is loaded to the cache (loadM2) even though both loads are even-

tually squashed.

954

https://doi.org/10.1145/3352460.3358274
https://doi.org/10.1145/3352460.3358274
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3352460.3358274&domain=pdf&date_stamp=2019-10-12

MICRO ’52, October 12–16, 2019, Columbus, OH, USA Yu, et al.

Prior work has pointed out that speculative execution attacks

are broken into two components [29, 46]. First, a secret value is

speculatively accessed and read into architectural state (e.g., a regis-

ter) due to adversary-controlled speculative execution. For example,

load M1 in Figure 1 reads val even if addr ≥ 10 due to a branch

misprediction. Second, that secret value is transmitted over a covert

channel (formed using one or more younger instructions). For ex-

ample, load M2 in Figure 1 transmits the secret over a cache-based

covert channel (displacing the attacker’s line in the cache).

Using this distinction, a conservative scheme to protect all spec-
ulatively accessed data is therefore to delay the execution of any

instruction deemed capable of accessing a secret (access instruc-
tion for short) until it becomes non-speculative. For example, if

we define access instructions to be “all loads,” it isn’t possible for

val in Figure 1 to leak an out of bounds value through the covert

channel formed by load M2, since we delay executing load M1 until

the branch resolves (and squashes). On the other hand, this scheme

has high overhead, as delayed execution blocks execution for all

dependent instructions.

1.1 This Paper

The key observation underpinning this paper is that one can im-

prove the above conservative scheme’s performance, without hurt-

ing security, by executing and selectively forwarding the results of

speculative access instructions to younger instructions, as long

as those younger instructions cannot form a covert channel. For

example, suppose the microarchitect designs simple arithmetic (e.g.,

adds, xors) to have data-independent timing (e.g., implemented

with a single-cycle ALU). Then, it is safe to execute and forward

the result of load M1 to these dependent instructions, because their

execution cannot reveal the result’s value. By issuing load M1 and
the arithmetic early, we improve performance if the branch resolves

with a correct prediction.

This paper designs a framework to selectively forward data in

this fashion, providing an efficient mechanism to comprehensively

protect all speculatively accessed data. At a high level, our scheme

tracks the flow of results from access instructions, through their

def-use chains in a manner similar to dynamic information flow

tracking [17, 49], until those results reach an instruction, or se-

quence of instructions, that may form a covert channel. Only at that
later point do we stop forwarding the access instruction-dependent

value. To be secure and efficient, this approach needs to solve two

key technical challenges:

Challenge 1: Blocking leakage through all covert channels.

First, paramount to deciding when to forward the results of specu-

lative access instructions (called secrets for short) is having a com-

plete understanding of how instructions can form covert channels

in speculative execution attacks. This is not trivial, as prior attacks

have shown there to be many ways to leak a secret (e.g., through

loads that interact with the cache [31], SIMD units [46], and port

contention [8]).

A key contribution of this paper is a comprehensive study of

how instructions can be used to create covert channels and com-

municate data. In particular, we find that all covert channels are

one of two flavors, which we call explicit and implicit channels.

First, in an explicit channel data is directly passed to an instruction

whose execution creates operand-dependent hardware resource

usage, and that resource usage reveals the data. For example, how

a load impacts the cache depends on the load address [31]. Second,

in an implicit channel data indirectly influences how (or that) an

instruction or several instructions execute, and these changes in re-

source usage reveal the data. For example, the instructions executed

after a branch reveal the branch predicate [8, 46].

Implicit channels are related to implicit flow from the informa-

tion flow literature [43], which is notoriously difficult to deal with

in side channel research [52]. To our knowledge, we are the first

to study and provide comprehensive protection for implicit chan-

nels in the speculative execution attack setting. Along the way,

we also discover new ways that these channels can leak, and also

find entirely new forms of implicit channels, unique to speculative

microarchitectures.

Challenge 2: Disabling protection as soon as access instruc-

tions becomenon-speculative. Second, to be efficient, it is impor-

tant to disable protection on data produced by access instructions,

as soon as doing so is safe. Consider the example in Figure 1. Here,

a simple, secure scheme is to execute and forward data from load

M1, yet wait to issue load M2 until load M2 reaches the head of the

ROB. This is overly conservative. In fact, it is safe to issue load M2
as soon as the branch resolves in a correct prediction, as this is

the soonest point when the data returned by load M1 is no longer

considered secret (i.e., load M1 is no longer speculative). To reiter-

ate: at that earlier point, we can issue load M2. This is important for

performance. The later we delay issuing load M2, the greater the
chance it delays instruction retirement in the ROB.

The general principle is that it is safe to disable protection on

data, as soon as the data’s producer access instruction(s) have all

become non-speculative. This is technically challenging for a va-

riety of reasons, as data can be the result of complicated def-use

chains through potentially many access instructions, and other

instructions such as arithmetic. Yet, our solution requires simple

hardware and can disable protection on any protected data in a

data-independent number of cycles (e.g., 1 cycle), regardless of the

complexity of def-use dependencies through older instructions.

Putting everything together, we call our combined protection

scheme Speculative Taint Tracking, or STT for short.

Security guarantees and formal analysis. In addition to propos-

ing STT itself, we provide an extensive formal analysis and prove

that STT enforces a novel form of non-interference [38] with re-

spect to speculatively accessed data, given a powerful adversary

that can monitor potentially any covert channel at cycle granular-

ity. We show how this implies that with STT enabled, arbitrary
speculative execution is only able to leak retired register file state as
opposed to arbitrary program memory. This means STT comprehen-

sively defeats the worst Spectre attacks, e.g., those which form a

universal read gadget [37] such as Spectre Variant 1. We provide

an overview of our analysis in this paper, and provide proof details

in a companion technical report [61].

Contributions. To summarize, we make the following contribu-

tions:

(1) We provide a comprehensive study of covert channels on

speculative microarchitectures, including the first in-depth

look at implicit channels (related to implicit flow), new ways

955

Speculative Taint Tracking (STT): A Comprehensive Protection for Speculatively Accessed Data MICRO ’52, October 12–16, 2019, Columbus, OH, USA

implicit channels can leak, and new forms of implicit chan-

nels not yet exploited by speculative attacks.

(2) Based on our study of covert channels, we propose a general

framework for preventing speculatively accessed data from

leaking over any covert channel.

(3) We propose a novel scheme to quickly disable protection on

flows of data, once the data’s producer access instruction(s)

becomes non-speculative.

(4) We formalize our protection mechanisms and show they

are able to achieve a strong security definition, akin to non-

interference [38], with respect to data returned by specula-

tive access instructions.

(5) We extensively evaluate STT on 21 SPEC and 9 PARSEC

workloads, and find it adds only 8.5%/14.5% overhead (de-

pending on threat model) relative to an insecure machine,

while reducing overhead by 4.7×/18.8× relative to the base-

line secure scheme from Section 1.

We have open-sourced our simulation infrastructure used for

performance studies here: https://github.com/cwfletcher/stt.

2 BACKGROUND

Out-of-order Execution. Dynamically scheduled processors exe-

cute instructions in parallel and out of program order to improve

performance [21, 53]. Instructions are fetched in the processor fron-
tend, dispatched to reservation stations for scheduling, issued to

execution (functional) units in the processor backend, and finally

retired (at which point they update architected system state). In-

structions proceed through the frontend, backend and retirement

stages in order, possibly out of order, and in order, respectively.

In-order retirement is implemented by queueing instructions in a

reorder buffer (ROB) [26] in instruction fetch order and retiring a

completed instruction when it reaches the ROB head. Instructions

are referred to by their age in the ROB, i.e., if I1 precedes I2 in fetch

order, then I2 is younger than I1.

Speculative Execution. Speculative execution improves perfor-

mance by executing instructions whose validity is uncertain instead

of waiting to determine their validity. If such a speculative instruc-

tion turns out to be valid, it is eventually retired; otherwise, it is

squashed and the processor’s state is rolled back to a valid state. (As
a byproduct, all following instructions also get squashed.)

3 ATTACKER MODEL

We assume a powerful adversary that can monitor any microar-

chitectural covert channel from anywhere in the system, and in-

duce arbitrarily speculative execution to access secrets and create

covert channels. (For a more formal definition, see the BitCycle

adversary from [60].) For example, the attacker can monitor covert

channels through the cache/memory system [31], data-dependent

arithmetic [20], port contention [8], branch predictors [3], etc. As

in [58], the adversary may try to induce and monitor malicious

speculative execution by priming predictors, caches, etc.—from

within the victim thread itself (SameThread [46]), or from an exter-

nal context such as an SMT sibling (SMT) or nearby processor core

(CrossCore).

4 SCOPE: PROTECTING SPECULATIVELY

ACCESSED DATA

A speculative execution attack consists of two components [29, 46].

First, an instruction that reads a potential secret into a register, mak-

ing it accessible to younger instructions. We call this instruction

the access instruction [29]. Second, a younger instruction or instruc-

tions that exfiltrate the secret over a covert channel. The access

instruction is almost always a load [8, 13, 24, 30, 32, 36, 46, 54, 57],

but some attacks use a privileged register read [11].

We further distinguish attacks based on whether the access

instruction is transient or non-transient, i.e., doomed to squash

or bound to retire, respectively [11]. Figure 2 shows the general

schema. Note that the covert channel must be transient. Otherwise,

all older instructions—including the access instruction—are also

non-transient, which means that the attack is a traditional side

channel attack (e.g., [39]) and out of scope.

(Transient)
Covert channel

(Transient)
Access instruction

(Transient)
Covert channel

(Non-Transient)
Access instruction

Start misspeculation

Start misspeculation

This paper

Instruction fetch order

Type 1:

Type 2:

Figure 2: Schema for speculative execution attacks. Attacks can be

classified into two types, depending on whether the instruction ac-

cessing the secret is transient (top) or non-transient (bottom). This

paper protects data returned by transient access instructions.

This paper’s goal is to block attacks involving transient access

instructions, which are arguably the most dangerous speculative

execution attacks. The reason is that a transient access instruc-

tion can often be maneuvered to access data that its correct (not

misspeculated) execution would never access. The worst such at-

tacks can read from any location in memory, which is referred to

as a universal read gadget [37]. For example, in Spectre Variant 1

(Figure 1), misspeculating that a bounds check passes allows the

transient access instruction—load M1—to read from an arbitrary

out-of-bounds address. There are additional universal read gadgets

that exploit different program constructs and covert channels [37].

In contrast, attacks involving non-transient access instructions

cannot create a universal read gadget, because they can only leak

retired (or bound to retire) register file state. Figure 3 depicts such an

attack. Here, a secret is legitimately accessed by the program, i.e.,

secret = ∗addr; / / retired (non−transient) access instruction

...

if (...) { / / mispredicted branch

b = B[64 ∗ secret]; / / secret is transmitted

}

Figure 3: Example speculative execution attack involving a non-

transient access instruction. Blocking this class of attack is out of

scope.

956

https://github.com/cwfletcher/stt

MICRO ’52, October 12–16, 2019, Columbus, OH, USA Yu, et al.

the access instruction retires. Later, a transient covert channel cre-

ated through a branch misprediction exfiltrates secret. Although
such leakage is important to address, it is clearly less dangerous

than leaking all of program memory. Moreover, potential leakage of

retired state can be reasoned about by programmers and compilers

and blocked using complementary techniques (e.g., [60]). Therefore,

we consider such leakage out of scope.

5 COVERT CHANNELS IN SPECULATIVE

EXECUTION ATTACKS

As discussed in Section 1, STT executes and selectively forwards

the results of speculative access instructions (which are deemed

secrets) to younger instructions. For security, it is essential to un-

derstand how instructions, computing on secrets, can be used to

create covert channels. For this, we propose a novel abstraction for

covert channels in the speculative execution attack setting, shown

in Figure 4. We note that, although our scope is protecting data

read by speculative access instructions (Section 4), our analysis

here applies to covert channels following non-speculative access

instructions as well.

Explicit channel Implicit channel

Covert channel

Explicit branch Implicit branch

Prediction-based Resolution-based

a b means a is a
subtype of b

New

Figure 4: Covert channel classification on speculative microarchi-

tectures.

5.1 Explicit vs. Implicit Channels

To start, we classify all covert channels as one of two types: ex-

plicit channels and implicit channels. An explicit channel, related
to explicit flow in information flow [43, 52], is one where data

(e.g., a secret) is directly passed to an instruction whose execution

creates operand-dependent hardware resource usage, and that re-

source usage reveals the data. An implicit channel, related to implicit

flow [43, 52], is one where data indirectly influences how (or that)

an instruction or several instructions execute, and these changes in

resource usage reveal the data. Examples of explicit channels are

memory instructions (e.g., load M2 from Figure 1), variable latency

arithmetic instructions [20] and prefetch instructions. Importantly,

that load M2 executes is not secret; it is how the load executes

(i.e., brings a line into cache at a secret-dependent set) that leaks.

Recent speculative execution attacks have also started exploiting

implicit channels. Examples are branches with secret-dependent

predicates, which influence the instruction cache footprint, pro-

gram timing [46], execution unit port usage [8], etc.

A key contribution in this paper is finding newways that implicit

channels can leak (Section 5.2), and finding entirely new classes

of implicit channels related to what we call “implicit branches”

(Section 5.3). Figure 5 gives examples of “traditional” (Figure 5(a))

and new (Figure 5(b)-(c)) channels. We denote the value being

revealed through the channel as secret. The examples assume

(a) Control dependency:
if (secret)
 load rX <- (rY)

(b) Squash dep. (new):
if (secret)
 rX += 64
load rY <- (rZ)

(c) Alias dep. (new):
store rX -> (secret)
load rY <- (rZ)

Figure 5: Examples of implicit covert channels revealing secret.
Assume an older speculative access instruction has already read

secret into a register, e.g., M1 in Figure 1. The attacker can see the

sequence of load addresses sent to the memory system. rX, rY and

rZ are registers. Each of these covert channels can be “plugged into”

existing attacks as the “Covert channel” in Figure 2. For example, in

Spectre V1 (Figure 1) we can replace load M2with one of (a)-(c) above.

B predicts
not taken

Load
issues

B resolves
not taken

B predicts
not taken

Load
issues

B resolves
taken

Squash!

Load
issues

secret
== 0

secret
== 1

Time

Figure 6: Resolution-based implicit channel for example Figure 5

(b). When the branch (B) resolves, it leaks the secret based on

whether a squash occurs. There is an analogous case when the (pub-

lic) predictor state takes the branch.

the attacker can monitor the cache-based covert channel, but in

many cases (e.g., Figure 5(a) and (b)) the load can be replaced by an

instruction whose execution timing/etc. does not depend on its input.
Importantly, secret is not passed directly as the load address in

any of the examples, yet still leaks.

5.2 Prediction- vs. Resolution-based Leakage

We make a key observation that on speculative machines, implicit

channels can leak secrets at two points: when a control-flow pre-

diction is made (if any) and when that prediction is resolved. Recall,

branch prediction and resolution occur in the processor frontend

and backend, respectively (Section 2). This creates new types of

leakage depending on the adversary’s capability. In the following,

consider a branch whose predicate depends on a secret.

At prediction time, the sequence of instructions fetched after this
branch is fetched (after branch prediction but before resolution)

leaks secrets if the predictor structures have been updated based

on secret information at some time in the past. For example, if

an attacker runs repeated experiments and the branch predictor is

updated speculatively based on how the branch resolves, the branch

predictor “learns” the secret and will make future predictions based

on the secret.

At resolution time, the branch can also leak the secret even if the
predictor state has not been updated based on secret data, because
incorrect predictions will cause a pipeline squash. See the code

snippet in Figure 5(b), whose timing is shown as a function of the

secret in Figure 6. If the attacker knows the branch will predict

not taken (e.g., by priming it beforehand [31]), a squash means the

branch was actually taken. The adversary can observe the squash

through different effects, e.g., program timing or the fact that the

load issues twice. Importantly, Figure 5(b) would not be considered

957

Speculative Taint Tracking (STT): A Comprehensive Protection for Speculatively Accessed Data MICRO ’52, October 12–16, 2019, Columbus, OH, USA

a leak in traditional implicit flow, because the load is control- and

data-independent of the branch.

5.3 Explicit vs. Implicit Branches

We make a key observation that on speculative machines, non-

control flow instructions that speculate can similarly influence

control flow based on conditions in the pipeline. For example, in

Figure 5(c) there is no control flow instruction and the load address

seemingly does not depend on secret data. Note, stores in isolation

don’t form covert channels because they are not performed until

they retire.

Yet, there may still be an implicit channel. For example, on a

machine that performs memory dependence prediction [42], if the

store address resolves after the load is issued, the load will squash

based on whether secret==rZ, causing a similar pipeline distur-

bance as discussed above.
1
Likewise, if store-load forwarding is

enabled, the load conditionally accesses the L1 cache depending on

whether secret==rZ. Many additional hardware mechanisms, e.g.,

memory consistency speculation [19], value prediction [34], etc.,

create similar issues.

An important observation is that hardware optimizations like

those above can be modeled as implicit branches, whereas explicit
control-flow instructions like branches can be viewed as explicit
branches. That is, the store bypass in Figure 5 (c) can be rewritten

as “if (secret == rZ) { rY = rX; } else { load rY <- (rZ); }” where

the “implicit branch” direction is predicted if secret has not yet

resolved. In this sense, implicit branches may also leak at prediction

and/or resolution time (Section 5.2), e.g., if the architecture uses a

store set predictor [15].

Summary. To summarize, covert channels can be explicit or im-

plicit, and implicit channels can be further broken down based on

when they leak and their branch type. The next section uses these

observations to block leakage through all channel types with a

unified mechanism. For reference, Table 1 specifies channel types

for existing attacks and a variety of hardware optimizations.

Table 1: Classifying existing attacks and covert channel-creating

hardware structures. A channel’sType can be either Explicit (Exp) or

Implicit (Imp), c.f. Section 5.1. An implicit channel’s Branch Type is
likewise Exp or Imp, c.f. Section 5.3. Attacks utilizing implicit chan-

nels may be either prediction- or resolution-time (Section 5.2), thus

we leave that field out.

Channel Spectre PoC? Type Branch Type

Cache timing [40, 59] Spectre V1 [31] Exp -

Execution unit timing [6, 20] - Exp -

SIMD utilization NetSpectre [46] Imp Exp

Port contention [5] SmotherSpectre [8] Imp Exp

Store-load forwarding - Imp Imp

Mem. dep. prediction [42] - Imp Imp

Mem. consist. speculation [19] - Imp Imp

Value prediction [34] - Imp Imp

6 SPECULATIVE TAINT TRACKING

Speculative Taint Tracking (STT) is a low-overhead framework that

protects data accessed under misspeculation, such as data obtained

1
Note, this is not the already known Spectre Variant 4 (SSB) attack [25, 58]. In that

attack, an access instruction reads stale data through a store bypass. Our attack is

concerned with store bypass used as a covert channel.

by an out-of-bounds array access. We refer to such data, that a

non-speculative execution would never read, as secret.
In a manner similar to dynamic information flow tracking

(DIFT) [17, 49], STT “taints” secret data. The STT framework (Sec-

tion 6.1) defines which data should be tainted, which instructions

might leak it and thus should be protected, and when protection

can be disabled. Section 6.2 describes how STT tracks the flow of

tainted data between instructions and how—in contrast to conven-

tional DIFT schemes—it automatically “untaints” data once the in-

struction that produces it becomes non-speculative. Based on taint

information, STT applies novel protection mechanisms to block

explicit covert channels (Section 6.3) and implicit covert channels

(Sections 6.4–6.5).

6.1 Framework & Concepts

STT has three characteristics, which are set at design time.

Which data should be tainted? The microarchitecture classifies

instructions capable of reading secrets under speculative execution

as access instructions. We focus on the casewhere access instructions

are loads, as this will be sufficient to block universal read gadget

attacks (Section 4). STT taints the output of any speculative access

instruction.

When can data be untainted? The microarchitecture specifies

when a speculative access instruction is no longer considered a

security threat, referred to as the instruction’s visibility point [58].
The visibility point depends on the attack model. In the Spectre
model, an instruction has reached the visibility point if all older

control-flow instructions have resolved. In the Futuristic model, an

instruction has only reached this point if it cannot be squashed.

(The futuristic model protects data read by any possible hardware

speculation, blocking additional attacks such as Meltdown.) In-

structions reach the visibility point in fetch order. We call access

instructions before and after the visibility point unsafe and safe,
respectively, as instructions which have passed the visibility point

are not speculative from a security perspective. STT untaints the

output of an access instruction once it becomes safe.

Who can leak secrets? The microarchitecture classifies certain

instructions as transmit instructions. (Note that an instruction can

be neither, either, or both an access and a transmit instruction.)

STT considers the execution of a transmit instruction as an explicit

covert channel that leaks its argument (Section 5). Classifying only

loads as transmitters will block memory system-related explicit

covert channels. Classifying all instructions that have operand-

dependent hardware resource usage as transmitters will block all

explicit channels. We assume that stores trigger a cache coherence

invalidation only on retirement, or else are defined as transmitters.

To block implicit channels, STT requires the microarchitect to

classify explicit branch instructions, which affect control-flow, and

to identify the implicit branches that represent additional sources
of data-dependent resource usage, e.g., store-to-load forwarding,

memory consistency speculation [19], etc. Section 6.4.2 discusses

implicit branches in detail.

6.1.1 Identifying Access Instructions, Transmit Instructions and Im-
plicit Branches. Here, we describe how microarchitects can identify

access and transmit instructions, and implicit branch conditions.

958

MICRO ’52, October 12–16, 2019, Columbus, OH, USA Yu, et al.

secret
== 0

B predicts
taken

Load M
issues

B resolves
taken

secret
== 1

Squash!

secret
== 0

B predicts
not taken

B resolves
taken

secret
== 1

Squash!

B predicts
not taken

B resolves
taken

secret
== 1

Squash!

B0
resolves

Load M
issues

B
squashes

(c) When earlier branch B0 mispredicts (left: B predicts taken, right: B predicts not taken)

(b) When earlier branch B0 correctly predicted

B0
resolves

B0
resolves

secret
== 0

B predicts
taken

B resolves
taken

secret
== 1

TimeSquash!

secret
== 0

B predicts
not taken

B resolves
taken

secret
== 1

TimeSquash!

B predicts
not taken

B resolves
taken

secret
== 1

Time

(a) Implicit covert channel (control dep. / squash dep.)
B0: if (rA < 10) {
 load secret <- &X[rA]
B: if (secret)
M: load rX <- (rY)
 }

B predicts
taken

Load M
issues

B resolves
not taken

Squash!

B0
resolves

B predicts
taken

TimeSquash!

B predicts
not taken

B resolves
not taken

Squash!

B0
resolves

B predicts
not taken

TimeSquash!

branch predictor state not updated

instr output inputs

load

mul

add

load

branch

r1 rA

r2 r1 rC

r3

r4 r3

 rB r2

... ...

...
executes

input
not

ready

instr output inputs

load

mul

add

load

branch

r1 rA

r2 r1 rC

r3

r4 r3

 rB r2

... ...

...

executed

stalled,
tainted input

unresolved

instr output inputs

load

mul

add

load

branch

r1 rA

r2 r1 rC

r3

r4 r3

 rB r2

... ...

...

executes

(b) Access instruction executes (c) Transmit instruction delayed (d) Transmit instruction s input untainted(a) Figure 1 machine code
 rA = &A
 rB = &B
 rC = 64
 rX = addr
 if (rX < 10) {
 r0 = rA + rX
 load r1 <- (rA) // M1
 r2 = r1 * rC
 r3 = rB + r2
 load r4 <- (r3) // M2
 }

branch predictor state not updated

unresolved resolved

visibility
point

visibility
point

visibility
point

Figure 7: Snapshots of ROB state during the STT execution of the Spectre V1 code, in the Spectre threat model. (Tainted registers are green.)

An instruction should be an access instruction if it has the po-

tential to read a secret. Except for loads, there are only a handful of

such instructions (e.g., privileged/configuration register reads or

I/O instructions), which can be identified manually.

An instruction should be a transmit instruction if its execu-

tion creates operand-dependent resource usage that can reveal

the operand (partially or fully). Identifying implicit branches is

similar: the architect must analyze whether the resource usage

of some in-flight instruction changes as a function of some other
instruction’s operand. Examples of both transmitters and implicit

branch-based channels are given in Table 1. This informal definition

can be formalized by analyzing (offline) how information flows in

each functional unit at the SRAM-bit and flip-flop levels to deter-

mine whether resource usage depend on the input value, in the

style of the OISA [60] or GLIFT [52] formal frameworks. We leave

such analysis to future work.

6.2 Taint and Untaint Propagation

STT tracks information flow from access instructions to younger

in-flight instructions. STT taints the output register of an unsafe

access instruction and propagates taint using standard taint tracking

rules, namely that an instruction’s output register is tainted if any

of its input registers are tainted. Unlike conventional DIFT, STT

automatically untaints data. When an access instruction becomes

safe, its output register is untainted. Untaint information is also

propagated, so that when all the data dependencies of an instruction

become untainted, the instruction’s output is untainted.

We defer the details of STT’s taint/untaint tracking implementa-

tion to Section 7. At a high level, taint propagation is piggybacked

on the existing register renaming logic in a modern out-of-order

core. As an instruction enters the frontend and its registers are

renamed, the instruction’s output register is tainted if (1) it is an ac-

cess instruction or (2) any of its input (physical) registers are tainted.

Tainting is therefore fast. Propagating untaint is non-trivial, be-

cause dependency chains can be long and each instruction can have

many data dependencies whose taint status needs to be tracked.

STT addresses these challenges with a novel fast untaint algorithm

in Section 7. In this section, we simply assume that taint/untaint

information is available.

Unlike prior DIFT schemes [17, 49, 50, 60], STT does not require

tracking taint in any part of the memory system (TLB, caches, or

memory) or across store-to-load forwarding. The reason is that

the taint of the output of a load—which is an access instruction—

is determined only based on whether it has reached the visibility

point: If a load is unsafe, its output is always tainted. If a load is safe,

every instruction on which it depends has also reached its visibility

point (since this happens in-order) and so the load’s output is not

tainted.

6.3 Blocking Explicit Channels

STT blocks explicit channels by delaying the execution of any

transmit instruction whose operands are tainted until they become

untainted.
2
This scheme imposes relatively low overhead because

it only delays the execution of transmit instructions if they have

tainted operands. For example, a load that only reads a (potential)
secret but does not transmit one—such as load M1 in Figure 1—

executes without delay. Load M2, however, will be delayed and

eventually squashed, thereby defeating the attack.

Figure 7 depicts this scenario in detail. Figure 7(a) shows a se-

quence of instructions executing the Spectre V1 code; load M1 is

an access instruction. In Figure 7(b), the access instruction has exe-

cuted, and its output and all dependencies are tainted. Non-transmit

dependent instructions can freely execute, but any transmit depen-

dent instruction like M2 is stalled (Figure 7(c)). If the speculation

succeeds (i.e., rX < 10), the branch resolves as correct and the ac-

cess instruction becomes safe (assuming the Spectre threat model

defined in Section 6.1). In this case, its output becomes untainted

and the transmit instruction is allowed to execute (Figure 7(d)).

Although in this example the transmit instruction becomes safe

together with the access instruction, this is not true in general (e.g.,

if there is an unresolved branch between them). Thanks to STT’s

untaint mechanism, however, even an unsafe transmitter (i.e., that

has not reached the visibility point) whose input becomes untainted

can execute without having to delay until it reaches the visibility

point or head of ROB.

In contrast, if the branch is mispredicted (i.e., rX ≥ 10) the trans-
mitter remains stalled until it is eventually squashed along with

the access instructions it depends on.

Protection strategies. STT can apply different protection strate-

gies to transmit instructions with tainted arguments. We chose

to delay execution for simplicity, and also because this allows us

to prove non-interference (Section 8). Yet, other protections are

possible which create security-performance trade-offs. For example,

one can combine STT with a scheme such as InvisiSpec [58], which

would allow loads with tainted arguments to be executed earlier.

6.4 Eliminating Implicit Channels

STT blocks implicit channels by enforcing an invariant that the

sequence of instructions fetched/executed/squashed never depends

2
Notice that for loads, delaying execution implies delaying the TLB lookup.

959

Speculative Taint Tracking (STT): A Comprehensive Protection for Speculatively Accessed Data MICRO ’52, October 12–16, 2019, Columbus, OH, USA

secret
== 0

B predicts
taken

Load M
issues

B resolves
taken

secret
== 1

Squash!

secret
== 0

B predicts
not taken

B resolves
taken

secret
== 1

Squash!

B predicts
not taken

B resolves
taken

secret
== 1

Squash!

B0
resolves

Load M
issues

B
squashes

(c) When earlier branch B0 mispredicts (left: B predicts taken, right: B predicts not taken)

(b) When earlier branch B0 correctly predicted

B0
resolves

B0
resolves

secret
== 0

B predicts
taken

B resolves
taken

secret
== 1

TimeSquash!

secret
== 0

B predicts
not taken

B resolves
taken

secret
== 1

TimeSquash!

B predicts
not taken

B resolves
taken

secret
== 1

Time

(a) Implicit covert channel (control dep. / squash dep.)
B0: if (rA < 10) {
 load secret <- &X[rA]
B: if (secret)
M: load rX <- (rY)
 }

B predicts
taken

Load M
issues

B resolves
not taken

Squash!

B0
resolves

B predicts
taken

TimeSquash!

B predicts
not taken

B resolves
not taken

Squash!

B0
resolves

B predicts
not taken

TimeSquash!

branch predictor state not updated

instr output inputs

load

mul

add

load

branch

r1 rA

r2 r1 rC

r3

r4 r3

 rB r2

... ...

...

executes

input
not

ready

instr output inputs

load

mul

add

load

branch

r1 rA

r2 r1 rC

r3

r4 r3

 rB r2

... ...

...

executed

stalled,
tainted input

visibility
point

visibility
point

instr output inputs

load

mul

add

load

branch

r1 rA

r2 r1 rC

r3

r4 r3

 rB r2

... ...

...

executes

visibility
point

(b) Access instruction executes (c) Transmit instruction delayed (d) Transmit instruction’s input untainted(a) Figure 1 machine code
 rA = &A
 rB = &B
 rC = 64
 rX = addr
 if (rX < 10) {
 r0 = rA + rX
 load r1 <- (rA) // M1
 r2 = r1 * rC
 r3 = rB + r2
 load r4 <- (r3) // M2
 }

branch predictor state not updated

Figure 8: STT executing the code in (a), which includes an untainted branch B0, an access instruction reading secret, and an implicit channel.

on tainted data. That is, STT makes the program counter independent
of tainted data.

A key challenge in enforcing this invariant is how to maintain

efficiency. For example, a strawman DIFT approach to block implicit

channels would be to consider the execution of any instruction

following a branch with a tainted predicate (or tainted branch) as
an implicit channel, and delay the execution of all such instructions.

This approach would impose high overhead, as it requires delaying

execution of all instructions following a tainted branch until the

branch predicate becomes untainted. Even then, such an approach

would not block implicit channels caused by implicit branches

(Section 5.3), which are unique to the speculative execution setting.

To efficiently maintain the STT program counter invariant, we

introduce two general principles to neutralize the sources of implicit

channels identified in Section 5.2:

Prediction-based channels are eliminated by preventing

tainted data from affecting the state of any predictor structure.

Resolution-based channels are eliminated by delaying the

effects of branch resolution until the branch’s predicate becomes

untainted.

In the following, we discuss how STT applies these principles

to eliminate implicit channels over explicit and implicit branches.

Implementation details are presented in Section 7.

6.4.1 Explicit Branches. To prevent implicit channels through ex-

plicit branches (i.e., control flow instructions), STT modifies the

baseline microarchitecture as follows.

Prediction-based channels. STT requires that every frontend

predictor structure be updated based only on untainted data. This

makes the execution path fetched by the frontend unaffected by

the output of unsafe access instructions. STT passes a branch’s

resolution results to the direct/indirect branch predictors only after

the branch’s predicate and target address become untainted; if the

branch gets squashed before this, the predictor will not be updated.

Figure 8(c) demonstrates the effect of STT on a speculative exe-

cution of the code snippet in Figure 8(a), in which the branch B0
is mispredicted as taken. No matter how many experiments the

attacker runs, the predicted direction of the branch B will not be

a function of secret, because the branch predictor is not updated

when B resolves. As a result, the execution path does not depend on

secret (top vs. bottom)—it only depends on the predicted branch

direction (left vs. right).

STT does not need to change how the return address stack
(RAS) [27] (which predicts RET results) is updated; we discuss this
issue shortly.

Resolution-based channels. STT delays squashing a branch that

resolves as mispredicted until the branch’s predicate becomes un-

tainted. As a result, a transient branch with a tainted predicate

(such as the branch B in Figure 8(c)) will never be squashed and

re-executed, preventing the implicit channel leak shown in Figure 6.

As Figure 8(c) shows, the transient branch B is eventually squashed

once an older (mispredicted) branch with an untainted predicate

squashes. Thus, the squash does not leak any information about

the transient branch’s resolution. Importantly, note that it is safe to

resolve a branch as soon as its predicate becomes untainted, even if

an older branch with a tainted predicate has not yet resolved.
To summarize, where the strawman DIFT approach would stall

the execution of any instruction following a tainted branch, STT lets

the instructions execute, and only increases the latency of recover-
ing from a tainted branchmisprediction. For example, in Figure 8(b),

the load M does not execute immediately after the tainted branch B
resolves, because B’s predicate is tainted at this point. This is in con-

trast to a modern processor, which squashes a mispredicted branch

and starts executing the correct path immediately upon resolving

the branch [1, 4, 12]. Fortunately, tainted branch mispredictions

are only a small fraction of overall branch mispredictions (Sec-

tion 9), which are infrequent in the first place because successful

speculation requires accurate branch prediction.

Handling the RAS.With STT, the RAS is updated by the frontend

as usual: as CALLs and RETs are fetched, they push and pop return

addresses from the RAS. The reason is that STTmakes the predicted

execution path up to a CALL—and therefore the return address it

pushes—independent of tainted data. Thus, RETs can safely pop

from the RAS as usual, as the values they pop do not depend on

tainted data.

STT does need to delay squashes due to RAS misprediction until

the mispredicted RET reaches its visibility point, because the RAS

misprediction resolution depends on the return address the RET
reads from the stack. We assume that the baseline microarchitecture

can repair the RAS after a squash to undo the effects of squashed

CALLs [47]. We do not require a perfect RAS repair algorithm. Our

only requirement is that the repair does not depend on tainted data.

In particular, any repair algorithm whose input is only the RAS

state [47] is fine.

960

MICRO ’52, October 12–16, 2019, Columbus, OH, USA Yu, et al.

6.4.2 Implicit Branches. Implicit branches frame microarchitec-

tural mechanisms that observably change how the processor ex-

ecutes instructions as being caused by a branch “injected” into

the execution (Section 5.3). Speculations—such as memory depen-

dence speculation [42], value prediction [34], memory consistency

speculation [19], etc.—are predictions of an implicit branch.

Formulatingmicroarchitectural mechanisms as implicit branches

allows STT to block leakage through them using a similar mecha-

nism as was used to block prediction- and resolution-based chan-

nels for explicit branches. This section walks through this process

for several common optimizations. While we cannot exhaustively

discuss all known processor optimizations, the successful system-

atic application of STT’s principles is evidence that they should

generalize to other optimizations.

Implicit branch without prediction. Consider a store-to-load

forwarding design without memory dependence speculation (e.g.,

[23]). In such a design, a load stalls until the addresses
3
of all older

stores have resolved. As shown in Figure 9(a), store-to-load for-

warding creates an implicit channel because the load M2 accesses
the cache only if it does not alias with the store S, i.e., if the secret

r2 is not 17. Figure 9(b) shows store-to-load forwarding framed as

an implicit branch, denoted by impIf in the code.

This implicit branch only creates a resolution-based implicit

channel, because the branch is not predicted. We eliminate this

channel by delaying the resolution of the implicit branch until its

predicate is untainted. In our example, this means that M2 (and

so all instructions data-dependent on it) are delayed until both

r2 and r0 become untainted, which means they are delayed until

the mispredicted explicit branch B squashes. (Section 6.5 describes

an STT optimization that handles store-to-load forwarding more

efficiently.)

In general, the store-to-load forwarding implicit branch predicate

checks that every older in-flight store does not alias with the load,

i.e., it is a conjunction of the “no alias” predicate for each older

store. For example, Figure 9(b) should have:

impIf (AND{S | in-flight store S older than M2} S.addr , &Y[r0]) .

Crucially, the implicit branch predicate never depends on prior

explicit or implicit branches. This ensures that implicit branch pred-

icates do not grow more complicated as more speculative instruc-

tions enter the ROB. Because of STT’s invariant that instructions

fetched/executed/squashed thus far are independent of tainted data,

we need only guarantee that subsequent instructions do not create

an implicit channel by (in this case) delaying the branch’s resolu-

tion until its predicate is untainted. Implementation-wise, our STT

microarchitecture (Section 7) efficiently tracks the taint of addresses

in the load-store queue (LSQ), which allows resolving the implicit

branch as part of the store-to-load forwarding logic.

Implicit branch with prediction. Consider now memory depen-
dence speculation, where the processor might execute a load (read

from memory) speculatively and squash it if an older store ends up

aliasing with it. This is simply a prediction of the store-to-load for-

warding implicit branch. We eliminate its predictor-based channel

by requiring that the relevant predictor (e.g., a store set predic-

tor [15]) be updated only by untainted data, i.e., only after the

3
We refer to physical addresses simply as “addresses.”

(a) Store-to-load forwarding:
 r0 = 17
B: if (r1 < size) { // mispredict
M1: load r2 <- &X[r1] // access
S: store r0 -> &Y[r2]
M2: load r3 <- &Y[r0] // transmit
 }

(b) Squash dep. (new):
if (secret)
 rX += 64
load rY <- (rZ)

(c) Alias dep. (new):
store rX -> (secret)
load rY <- (rZ)

(b) Store-to-load forwarding implicit branch:
 r0 = 17
B: if (r1 < size) { // mispredict
M1: load r2 <- &X[r1] // access
S: store r1 -> &Y[r2]
 implIf (r2 != r0)
M2: load r3 <- &Y[r0] // transmit
 else
 r3 = r1
 }

(a) Control dependency:
if (secret)
 load rX <- (rY)

B predicts
not taken

B predicts
taken

Load
issues

secret
== 0

secret
== 1

Time

Repeated
experiments

B predicts
not taken

Load
issues

B resolves
taken

Squash!

Load
issues

secret
== 0

secret
== 1

Time

B predicts
not taken

B predicts
taken

r2 == 0

(a) Implicit channel:
 r0 = 17
B1: if (r1 < size) { // mispredict
M1: load r2 <- (&X[r1]) // access
B2: if (r2)
M2: load r3 <- (&Y[r0]) // transmit
 }

r2 == 1

B resolves
not taken

Br resolves
some Br

mispredicts

Squash!

B predicts
not taken

Load
issues

B resolves
 not taken

Br resolves
some Br

mispredicts

Squash!

Br predicts
taken

Load
issues

B resolves
taken

secret
== 0

secret
== 1

Time

Br predicts
taken

Load
issues

B resolves
 not taken

outer mispeculation
resolves

Squash!

Br predicts
not taken

Load
issues

B resolves
 taken

secret
== 1

Time

B1 resolves

Squash!

outer mispeculation
resolves

Squash!

outer
speculation

outer speculation
resolves

secret
untainted

Figure 9: Store-to-load forwarding implicit channel due to implicit

branch.

implicit branch predicate becomes untainted. The prediction typi-

cally also depends on the LSQ state—for example, a prediction is

made only if there are older stores with unresolved addresses. In this

case, eliminating the predictor-based channel also requires delaying

the prediction until the relevant LSQ state becomes untainted, e.g,

until the addresses of older stores become untainted. We eliminate

the resolution-based channel by delaying the squashing of the load

on a misspeculation (misprediction of the implicit branch) until the

branch’s predicate becomes untainted.

Squashing implicit branches early-on.An advantage of implicit

branches is that the microarchitecture knows the structure of their

predicates. In some cases, this knowledge allows STT to untaint an

implicit branch predicate early-on, based on the observation from

GLIFT [52] that “the output of a logical function should only be

untrusted if some untrusted input actually had an opportunity to

affect the output.”

For example, suppose that the memory dependence predictor

predicts that the implicit branch in Figure 9(b) is taken, and that

this turns out to be a misprediction. Naively, STT would need to

delay squashing the implicit branch until the load’s address and the

addresses of all older stores become untainted, as the predicate is a

function of them. However, the GLIFT observation implies that we

need to delay the squash only until one term that evaluates to false
becomes untainted—i.e., until the address of some older aliasing

store and the load are untainted. At this point, the result of the

AND becomes a function of only untainted data—the attacker only

learns that an alias between untainted addresses exists.

Statically-predicted implicit branches. Several common forms

of speculation can be formulated as implicit branches that are pre-

dicted statically, and therefore have no predictor-based channels.

We only need to eliminate resolution-based channels by identifying

the branch’s predicate and, if the implicit branch is mispredicted,

delay the resulting squash until the predicate becomes untainted.

Below, we consider the example of memory consistency speculation

in a multicore processor. Load-load ordering is another example

with similar characteristics.

Memory consistency speculation. A memory consistency model (or

memory model) specifies the order in which a processor’s memory

operations are performed and observed by other processors in

the system [48]. Memory consistency speculation [19] allows the

processor to maintain any required ordering between loads while

still issuing them out of order. The idea is that if two loads, M1 and

M2, must appear to execute in program order (M1 before M2), then M2
can still execute before M1 but will be squashed if the data loaded

961

Speculative Taint Tracking (STT): A Comprehensive Protection for Speculatively Accessed Data MICRO ’52, October 12–16, 2019, Columbus, OH, USA

by M2 is invalidated by another processor or gets evicted from the

cache before M2 retires.
Memory consistency speculation is thus a static prediction of true

for an implicit branch predicate that the cache line a load accesses

remains valid until the load retires. It turns out that with STT’s

delayed execution protection strategy, the resolution of this implicit

branch predicate can only occur when it becomes untainted. There-

fore, its resolution does not need to be delayed—i.e., consistency

squashes can be performed when signalled, as usual.

The reason is that a consistency squash of load L can be signalled

only after L accesses the cache, which implies that L’s address is
untainted. In addition, the memory access that triggers the line’s

invalidation/replacement is independent of tainted data. This holds

because such a memory access occurs either because of a load/store

instruction or a hardware prefetch. With STT, loads and stores ac-

cess memory only if their address argument is untainted, which also

implies that hardware prefetching state at the caches is a function

of untainted data. Therefore, if the implicit memory consistency

branch predicate evaluates to false, it is due to an untainted term.

6.5 Optimizing Store-to-Load Forwarding

We now describe an optimization that allows resolving the store-to-

load forwarding implicit branch without waiting for its predicate

to become untainted. The insight is, because store-load forward-

ing can only result in two observable outcomes (issue the load,

or forward from a prior store) it is feasible to hide which occurs.

Specifically: when the load address becomes untainted, we issue

the load unconditionally. (That is, we do not wait for the prior store

addresses to become untainted.) If forwarding should occur, we

ignore the value read from memory and use the forwarded store

value as the load’s output. The load’s output register is written only

after the memory access completes, to guarantee that the timing of

younger instructions is unchanged from the “no forwarding” case.

The optimizationmaintains STT’s property that tainted data does

not influence the execution path. The reason is that the resolution

of this implicit branch only determines whether the load will access

memory (and its output). It does not influence the execution path

as long as the load is unsafe. This principle is general to other

implicit branches whose resolution does not determine whether

instructions retire/squash.

7 MICROARCHITECTURE

We now present a microarchitecture for STT. The key challenge

in the implementation is how to implement the automatic untaint

operation (Section 6.2). We present a unified mechanism that im-

plements taint and untaint, and show how it can be used to block-

/eliminate both explicit and implicit channels. In the following,

instructions are labeled with monotonically increasing numbers,

which we loosely refer to as their position in the ROB (younger

instructions are assigned larger numbers).

7.1 Main Ideas

We make a key observation that helps implement untainting. Since

instructions reach their visibility point in program order (Sec-

tion 6.1), to untaint the arguments for an instruction i, it suffices to

wait for the youngest access instruction that is causing the taint for

i to reach the visibility point. We call this instruction the Youngest
Root of Taint (YRoT) of i.

With this approach, we do not need to track exact def-use chains

between instructions. Conceptually, we track the position of the

YRoT for each instruction in the ROB. Then, we broadcast the

ROB position of each access instruction as it reaches the visibility

point. Each younger instruction whose YRoT is smaller or equal

to the broadcasted value becomes untainted. If multiple access

instructions reach the visibility point in the same cycle, we can

broadcast the maximum index of all of them (instead of all of their

indices). We note that logic indicating which instructions reach the

visibility point is provided by prior work on InvisiSpec [58].

Untainting can trigger different operations. When a transmit in-

struction’s arguments become untainted, it can execute (Section 6.3).

When an explicit branch predicate is untainted, subsequent instruc-

tions are squashed if the branch was mispredicted (Section 6.4.1).

Finally, when an implicit branch predicate is untainted, any ob-

servable effect related to the implicit branch, e.g., a squash due to

memory dependence prediction (Section 6.4.2), can occur.

7.2 Hardware Changes to Frontend

We now describe an architecture that implements STT (Figure 10).

Our architecture is meant to model a modern speculative out-of-

order multicore with optimizations such as those described in Sec-

tion 6.

Fetch

Decode Rename

ROBICache

Predictors

Rename table

Load-store unit

Branch
resolutions

Original fields

head tail

YRoT

AccessInstrIdx

YRoT

YRoT

Is access instr?

VP
Data independent ALU

Data dependent ALU

YRoT
YRoT_impSq
PendingSq

Branch unit

yrot

Branch
resolutions

New hardware
New wire

2

1
3

4

5

6

Figure 10: Microarchitecture with support for STT. Shaded block

represent new hardware added to support our scheme; dashed lines

are new wires. The per-instruction Youngest Root of Taint is de-

noted yrot, whereas fields added to hardware tables are denoted

YRoT.

In the processor frontend (up to dispatch to execution units) the

main hardware changes are to add logic to generate the Youngest

Root of Taint (Section 7.1) for fetched instructions. We reuse logic

from the InvisiSpec paper [58] paper to generate the visibility point

(VP, shown as ①). For example, in the Spectre model the VP equals

the ROB index of the oldest unresolved branch.

Tracking Youngest Root of Taint. We calculate the Youngest

Root of Taint (YRoT) in the processor rename stage (Figure 10

②). We add two new fields to the entries in the rename table

(which maps logical registers to physical registers): YRoT and the

access instruction ROB index (AccessInstrIdx), both of which require

log
2
(ROBSize) bits. YRoT tracks the Youngest Root of Taint of the

instruction that last produced each logical register in program order.

962

MICRO ’52, October 12–16, 2019, Columbus, OH, USA Yu, et al.

AccessInstrIdx records the ROB index of the last producer for each

logical register, if that producer was an access instruction, or −1

otherwise.

Suppose a new instruction is being renamed. Then we calculate

the Youngest Root of Taint for that instruction (denoted yrot) as
the YRoT of the argument, in the rename table, which reaches the

visibility point the latest. If an argument was directly produced by

an access instruction, that instruction’s index in the ROB directly

becomes the YRoT for that argument (which is known through the

AccessInstrIdx field). For example, suppose that this instruction

has source registers Rs1 and Rs2. Let RT be short for rename table.

Assume that when the source for a logical register Rx is in retired

architectural state, RT[Rx].YRoT = -1. Then at rename time, we

compute the instruction’s yrot as:

yrot = max(
((RT[Rs1].AccessInstrIdx == -1) ?
RT[Rs1].YRoT : RT[Rs1].AccessInstrIdx),

((RT[Rs2].AccessInstrIdx == -1) ?
RT[Rs2].YRoT : RT[Rs2].AccessInstrIdx));

Recall, younger instructions have larger ROB indices, hence the

use of max. If the instruction has a different number of arguments,

the same max is taken over all of them.

If the instruction has a destination register, call it Rd, then we up-

date the rename table as RT[Rd].YRoT = yrot. As previously men-

tioned, RT[Rd].AccessInstrIdx is set to the instruction’s index

in the ROB, if the instruction is an access instruction (determined

in decode), or -1 otherwise. If the instruction does not update a

register (e.g., a branch or store), the rename table is not updated

because no logical register is being updated.

After rename, the instruction is dispatched to a reservation sta-

tion (RS) based on its type. Depending on the instruction type, yrot
may travel with the instruction and be stored in the RS (see below).

Importantly, this design assigns each instruction a yrot without

adding new ports to the rename table or ROB. The YRoT and Ac-

cessInstrIdx fields for each entry are read along with the logical to

physical register mappings that are read per-argument in the re-

name table already. As with the normal logical-to-physical register

mappings, the YRoT and AccessInstrIdx in each entry needs to be

restored after a squash.

7.3 Hardware Changes to Backend

At dispatch time, each instruction travels with its yrot. We now

describe logic changes at the reservation stations (RS) for each

instruction type, based on whether those instructions can form

explicit and/or implicit channels (Section 5).

Our goal is design simplicity, and note that many optimizations

are possible. While we cannot cover every proposed microarchitec-

tural optimization, we cover an example for instructions that cause

neither, both or one of explicit/implicit channels. The mechanisms

can be generalized to other instructions. Recall, the microarchi-

tecture is responsible for denoting each instruction as potentially

creating explicit and/or implicit channels (Section 6.1).

Data-Independent Arithmetic. In the simplest case, the instruc-

tion performs a simple task that cannot create either an explicit

or implicit covert channel (e.g., single-cycle add, xor without side

effects), shown in Figure 10 ③. In this case, there are no changes to

the RS and the yrot is dropped. Such instructions can execute as

soon as their arguments are available, even if they are tainted. This

is key for performance.

Data-Dependent Arithmetic. Instructions may be capable of cre-

ating only explicit channels, such as arithmetic with data-dependent

timing (e.g., a multiplier [20]), see Figure 10 ④. If the microarchi-

tecture classifies these as transmitters, the yrot of each instruction

waiting in the RS is stored alongside the instruction in a new field

called YRoT.When the VP changes, we calculate for each instruction

i in the RS:

instr i can execute = yroti < VP.

Our current design performs these checks in parallel, for each RS

entry, in a fashion similar to instruction wakeup logic that checks

if a dependency is ready.

Recall, yrot is based on each instruction’s def-use chains, not

where each instruction appears in program order. So, instruction

wakeup due to yrot still allows instructions to execute out of order
once their arguments become untainted.

Branches. Instructions may be capable of creating only implicit

channels, such as conditional/unconditional branches and jumps,

see Figure 10 ⑤. We handle these cases with the same mechanism

as in the previous case for Data-Dependent Arithmetic: the yrot is

stored alongside each branch in the branch RS (branch unit) and

wakeup occurs by performing the same comparison between yrot
and VP. This ensures that branch resolution only occurs when the

branch’s predicate and target (if any) is untainted. This design also

avoids any modification to the branch predictors in the frontend,

because only executions based on untainted data will update the

predictors.

Loads and Stores. Finally, there are instructions which can create

both explicit and implicit channels such as stores and loads, see

Figure 10 ⑥. Discussed in Section 5.1, memory instructions are an

important type of explicit channel. At the same time, loads and

stores can also create implicit channels due to hardware features

such as store-to-load forwarding, memory dependence speculation

and memory consistency checks across cores (Section 6.4.2).

In isolation, a store creates neither explicit or implicit channels

because we assume stores are performed at retirement. Yet, stores

may alias with younger loads; we thus must store the yrot for each
store, calculated in rename, along with the store, to calculate the

predicate for implicit branches.

We block channels related to loads as follows. First, loads are

stored in the LSQ with their yrot, as with previous cases, in a new

YRoT field. Loads are also assigned two additional fields: Pend-

ingSquash (1 bit), and YRoT_impSquash (same width as the YRoT

field). YRoT is used in the same way as before, to notify when the

load address is untainted (can no longer form an explicit channel),

at which point it is safe to perform the load.

When the load address becomes untainted, it may require store-

load forwarding or memory dependence speculation. We handle

store-load forwarding as discussed in Section 6.5: we uncondition-

ally perform the load unless all prior stores are resolved and un-

tainted. PendingSquash and YRoT_impSquash are used to handle

memory dependence speculation. After the load is performed, if

it suffers an alias to an earlier store whose address resolves late,

963

Speculative Taint Tracking (STT): A Comprehensive Protection for Speculatively Accessed Data MICRO ’52, October 12–16, 2019, Columbus, OH, USA

we set YRoT_impSquash to the YRoT of the store causing the alias

and set the PendingSquash bit (but do not perform the squash). If

PendingSquash is set and YRoT_impSquash < VP, we perform the

squash. (This checks requires analogous logic as comparing the

normal yrot values to the VP.) This is equivalent to performing

the squash when the implicit branch predicate becomes a function

of untainted data (see Section 6.4.2). As explained in Section 6.4.2, a

memory consistency violation simply squashes when it is signalled.

Multiple late resolving stores may alias with the load, resolving

one after another. In this case, YRoT_impSquash is set to the min

YRoT_impSquash of any store causing an alias. This is important

for security. Once any memory violation occurs, it will eventu-

ally cause a squash, unless a squash is triggered beforehand by

older instructions in the ROB. If the memory violation itself causes

the squash, we must reveal that squash only when the implicit

branch predicate is untainted. This moment is exactly when the

min YRoT_impSquash of any alias reaches the visibility point. The

logic for repeatedly updating the YRoT_impSquash in this fashion

piggybacks off of the existing LSQ logic for detecting aliases.

8 SECURITY ANALYSIS

We formally prove that STT in the Spectre threat model enforces

a novel notion of non-interference [38] appropriate for enforcing

privacy of speculatively accessed data. (The formal proof for the

futuristic model is ongoing work.) Our proof applies to a strong

adversary that observes the instructions fetched, when and which

functional units are busy (i.e., resource usage and port contention),

and the target address of every cache/memory access. (See Sec-

tion 3.) This section summarizes the key ideas and results; the

details appear in a companion technical report [61].

We formally model processors as state machines. We define an

STT machine that is a detailed model of a speculative out-of-order

processor with STT. In addition to registers and memory, its state in-
cludes hardware structures such as branch predictors, the ROB, LSQ,

etc. Its state also includes taint bits for registers. A processor logic
defines how the state changes at every cycle. In each cycle, the pro-

cessor logic performs events that modify the machine’s state. These

events model microarchitectural events such as instruction fetch,

execution by a functional unit, squashes, retirement, tainting/un-

tainting, etc. The STT machine models the protections described in

Section 6 (e.g., delaying execution of tainted transmit instructions)

and the fast untaint mechanism described in Section 7.

We show that the STT machine provides the following non-

interference security guarantee: at each step of its execution, the

value of a doomed register, that is, a register written to by a specu-

lative access instruction that is bound to squash, does not influence

future visible events in the execution. The key challenge is that

when an instruction executes, we do not know whether it is going

to squash or not. We address this by considering a simple in-order

processor model, which we use to verify the STT machine’s branch

predictions against their true outcome, obtained from the in-order

processor. Specifically, at each step of the STT machine’s execution

of a program, in our formal analysis we maintain an auxiliary bit of

state,mispredicted, that is only set to true if the prediction of one of
the preceding branches differs from the outcome of a corresponding

branch in the in-order execution of the program.

With theway to identifywhether the STTmachinemispredicts at

each point of the execution, we are able to distinguish doomed reg-

isters: a register r is doomed in a state σ with a givenmispredicted
flag, if it gets tainted in the shadow of what the in-order processor

identifies as a misprediction, i.e., while mispredicted = true. For
each register, we also maintain auxiliary state indicating whether

it is doomed. We refer to the STT machine state coupled with its

auxiliary state as an extended state. Given two extended STT states,

κ1 and κ2, we say that κ1 ≈ κ2 holds if κ1 and κ2 only differ by

values of doomed registers.

We prove the following theorem, which states that values of

doomed registers neither influence which events the STT machine

executes at each cycle nor get leaked into the rest of the state by

those events. We parameterize the theorem by an observability func-
tion view, which models the adversary’s view [60], i.e., it projects

event traces onto the parts the adversary can observe. The theorem

holds in particular for the strong adversary described above, which

observes the entire event trace.

Theorem 1. At any cycle t , given two extended states κ1 and κ2
such that κ1 ≈ κ2 holds, if τ1 and τ2 are the sequences of events the
STT processor logic performs at the cycle t from κ1 and κ2 respectively,
then the following holds:
(a) view(τ1) = view(τ2) holds, and
(b) for the extended states κ ′

1
and κ ′

2
resulting from executing τ1 and

τ2 respectively, κ ′
1
≈ κ ′

2
holds.

The theorem proves that κ1 ≈ κ2 is an invariant preserved by

each cycle of the machine execution. Since this invariant is in-

ductive, we obtain the following corollary: at any cycle t in any

extended state κ, changes to doomed registers do not influence the

future of the execution of the machine. In particular, they never in-

fluence the program counter’s value, which is sufficient to eliminate

traditional implicit covert channels.

9 EVALUATION

9.1 Experimental Setup

Simulator setup. We evaluate STT with the Gem5 [10] simulator,

which models the performance implications of speculative instruc-

tions. We run SPEC CPU2006 [22] and PARSEC 3.0 [9] benchmarks,

as representatives of both single-threaded and multi-threaded pro-

grams. For SPEC, we use the reference input size, and launch detailed
simulation for 1 billion instructions after skipping the first 10 bil-

lion instructions. PARSEC benchmarks are all run with eight cores

with the simmedium input size (except x264, whose input size is

simsmall). A detailed architecture specification used for all schemes

is shown in Table 2.

Microarchitectural features modeled in Gem5. In Gem5, in-

structions that create explicit channels are loads. The simulator

also models the implicit channels discussed in Section 6, including

direct/indirect branches, jumps, calls/returns, as well as implicit

branches formed by store-load forwarding, memory dependence

speculation (with a store set predictor), memory consistency checks

and load-load ordering.

Configurations. We evaluate the following design variants, as

shown in Table 3. We evaluate a baseline scheme DelayExecute

964

MICRO ’52, October 12–16, 2019, Columbus, OH, USA Yu, et al.

Table 2: Parameters of the simulated architecture.

Parameter Value

Architecture 1 core (SPEC) or 8 cores (PARSEC) at 2.0GHz

Core 8-issue, out-of-order, no SMT, 32 Load Queue entries, 32

Store Queue entries, 192 ROB, Tournament branch

predictor, 4096 BTB entries, 16 RAS entries

Private L1-I Cache 32KB, 64B line, 4-way, 1 cycle round-trip (RT) lat., 1 port

Private L1-D Cache 64KB, 64B line, 8-way, 1 cycle RT latency, 3 Rd/Wr ports

Shared L2 Cache Per core: 2MB bank, 64B line, 16-way, 8 cycles RT local

latency, 16 cycles RT remote latency (max)

Network 4×2 mesh, 128b link width, 1 cycle latency per hop

Coherence Protocol Directory-based MESI protocol

DRAM RT latency: 50 ns after L2

which conservatively delays execution for all access instructions un-

til they reach the visibility point. This models the strawman, secure

scheme from Section 1. Our main proposal DelayExecute+STT

only applies this protection to tainted transmitters, and additionally

eliminates implicit channels.

Table 3: Evaluated configurations.

Configuration Description

Unsafe An unmodified insecure Gem5 processor as baseline.

DelayExecute Delay the execution of every transmit instruction

until it reaches the visibility point.

DelayExecute STT implemented on top of DelayExecute, therefore

+STT only transmitters with tainted arguments are delayed.

DelayExecute DelayExecute+STT without handling implicit channels.

+STT-ExpOnly Thus this configuration has weaker security.

For each configuration, we evaluate the two visibility points

from [58], namely Spectre and Futuristic, together with both To-

tal Store Ordering (TSO) and Release Consistency (RC) memory

consistency models.

Penetration testing. Prior to performancemodeling, we evaluated

whether our framework blocked Spectre variants, such as Spectre

V1 (Figure 1) and confirmed the attack was blocked.

9.2 Main Performance Result

Figures 11 and 12 compare the execution time of configurations

Unsafe, DelayExecute and DelayExecute+STT on the single-

threaded SPEC and multi-threaded PARSEC applications, respec-

tively. The goal is to show the performance overhead of DelayExe-

cute+STT (our complete proposal) relative to Unsafe and perfor-

mance improvement relative to the naive but secureDelayExecute

scheme. All individual benchmark results use the TSO model, and

execution times are normalized to Unsafe for each memory model.

SPEC analysis.With the Spectre threat model, STT improves over-

head on average relative to naive DelayExecute from over 40%

without STT to 8.5% with STT, in TSO. RC results are similar. The

main reason is that only a small portion of all speculative loads

(transmitters) are tainted due to older speculative loads (access

instructions).

The savings is even more pronounced using the Futuristic model,

where overhead drops from around 3× to 14.5%. This makes sense

because Futuristic is a more restrictive model that forces longer

delays before loads can execute. The fact that Futuristic overhead

is close to Spectre overhead (14.5% to 8.5%) is an important result.

Futuristic was designed in [58] to be a holistic threat model, taking

into account all possible reasons for an instruction to be specula-

tive. The small difference between the two models suggests that

Table 4: The effect of delaying predictor updates and resolution

(for explicit and implicit branches). All numbers assume TSO + Fu-

turistic.

Benchmark Suite SPEC2006 PARSEC

Protection Mechanism Unsafe

DelayExe-

cute+STT
Unsafe

DelayExe-

cute+STT

1

explicit br. misp. /

explicit branches
8.81% 9.04% 3.62% 3.85%

2

tainted explicit br. misp. /

explicit br. misp.
N/A 8.87% N/A 28.81%

3

implicit br. misp. /

implicit branches
0.008% 0.01% 0.022% 0.018%

4

tainted implicit br. misp. /

implicit br. misp.
N/A 15.5% N/A 7.74%

supporting comprehensive security definitions is viable with STT

without sacrificing much performance.

PARSEC analysis. The multi-threaded PARSEC workloads in Fig-

ure 12 exhibit the same trends seen in the SPEC workloads. For

the Spectre model, DelayExecute+STT reduces the overhead of

DelayExecute from 78% to 24% in TSO model, and from 103% to

30% in RC. For the Futuristic model, DelayExecute+STT lowers

the overhead (over 3x in both TSO and RC) of DelayExecute to

27% and 36% for TSO and RC, which are close to the weaker Spectre

model.

Overhead from implicit branch protection. A central compo-

nent in STT is mechanisms that eliminate implicit channels by

delaying predictor updates and explicit/implicit branch resolutions

until branch predicates are untainted. Figure 11 and 12 include re-

sults for DelayExecute+STT-ExpOnly, which shows performance

for a weaker security guarantee that ignores implicit channels.

For SPEC workloads, ignoring implicit branches reduces overhead

on average relative to DelayExecute+STT by around 1%, for all

memory models and visibility points. The number increases to 3%

for PARSEC workloads. The takeaway is that protection against

implicit branches using our mechanisms is very cheap.

For more insight into implicit channel overhead, Table 4 shows

the explicit and implicit branch misprediction rates for both the

Unsafe baseline and DelayExecute+STT, under TSO in the Fu-

turistic model. We see that, delaying branch predictor updates only

increases explicit branch misprediction rate by 0.2% relative to the

unsafe baseline, and the rate of memory violations (implicit branch

misprediction) is close for all schemes. Second, the percentage of

branchmispredictions where STTwould delay resolution—and thus

may incur performance overhead—is small. These are the explicit

and implicit branch mispredictions that occur when the branch is

tainted. For example, with DelayExecute+STT on SPEC, only 0.8%

of all dynamic branches are both tainted and mispredicted (8.87%

of the 9.04% mispredicted branches). The situation is even more

apparent for memory violations, as they are very rare (< 0.1%, re-

gardless of whether the implicit branch predicate is tainted). Results

for PARSEC are similar.

9.3 InvisiSpec vs. STT

InvisiSpec [58] is a prior hardware mechanism for blocking specu-

lative execution attacks. The two schemes have different security

trade-offs: On one hand, InvisiSpec only blocks covert channels

through the cache hierarchy, whereas STT can block any covert

channel. On the other hand, STT does not prevent leaking secrets

which are part of retired state (Section 4) whereas InvisiSpec does

965

Speculative Taint Tracking (STT): A Comprehensive Protection for Speculatively Accessed Data MICRO ’52, October 12–16, 2019, Columbus, OH, USA

Figure 11: Execution time (normalized to Unsafe) of SPEC benchmarks with the schemes DelayExecute, DelayExecute+STT,

DelayExecute+STT-ExpOnly, in two visibility points (Spectre and Futuristic). All per-benchmark results assume TSO; averages for TSO

and RC are given on the right.

Figure 12: Execution time (normalized to the Unsafe baseline) of

PARSEC benchmarks. Results shown and methodology follow Fig-

ure 11.

handle this case. As we mentioned, STT is sufficient to prevent the

universal read gadget, which is the most dangerous class of attacks.

We compare overhead of InvisiSpec and STT running SPEC2006,

using the Spectre and Futuristic threat models.
4
We find InvisiSpec

and STT have 7.6% and 8.5% overhead relative to Unsafe for the

Spectre model, respectively; and 18.2% and 14.5% overhead in the

Futuristic model, respectively.

10 RELATEDWORK

STT builds on the rich literature of hardware DIFT [14, 16–18, 41,

49, 51, 52, 55, 60]. Most DIFT works consider threat models that

occur outside of speculative execution and do not involve covert

channels (we note exceptions below). Our conceptual contribution

is in exposing new types of implicit flow in the speculative execution

attack setting (Section 5).

Several hardware defenses work for speculative execution at-

tacks: InvisiSpec [58], SafeSpec [28], and DAWG [29] only block

covert channels through the cache hierarchy. Conditional Specula-

tion [33] and Selective Delay [44] additionally block covert channels

through the memory system (e.g., DRAM contention). In contrast,

STT can block all covert channels (Section 6).

4
InvisiSpec is evaluated using a recent code update that models the design accu-

rately [2].

Oblivious ISA Extensions (OISA) [60] and GLIFT [52] can achieve

non-interference on speculative architectures (similar to Section 8),

but impose restrictive, potentially low performance programming

models such as data oblivious programming. Context Sensitive Fenc-

ing [50], OISA, and ConTExT [45] require taint tracking through

memory, while STT does not require taint tracking for retired state

or the memory system. Context Sensitive Fencing briefly men-

tions implicit flow. They do not mention the new, different ways

branches can leak (Section 5.2) or implicit branches (Section 5.3).

Their scheme—tainting the PC—is relatively high overhead (11.8%

for explicit branches), relative to our 1-3% overhead for both explicit

and implicit branches.

NDA [56] and SpecShield [7], which are concurrent to our work,

share a similar high-level strategy as STT: to restrict propagation

of potential secrets to covert channels. However, neither NDA nor

SpecShield provide an abstraction to classify all covert channels,

identify implicit branch-based implicit channels, distinguish be-

tween prediction- and resolution-time leakage for implicit channels,

or propose an untaint mechanism which is as aggressive as STT’s.

For example, SpecShield delays forwarding tainted data to covert

channels until the youngest instruction dependency (as opposed to

the youngest access instruction; Section 7.1) producing that data

reaches the visibility point. As a result, both NDA and SpecShield

propose multiple design variants, each with security-performance

trade-offs. By contrast, STT proposes a single design that is both

high performance and high security.

11 CONCLUSION

This paper proposes Speculative Taint Tracking (STT), a novel

protection framework to comprehensively protect speculatively

accessed data from speculative execution attacks. STT has two key

novelties: a framework to eliminate both explicit and implicit covert

channels, and a new taint/untaint procedure capable of waking

instructions up early. Together, these mechanisms enable a high-

performance and high-security design, able to enforce strong non-

interference properties with respect to speculatively accessed data.

966

MICRO ’52, October 12–16, 2019, Columbus, OH, USA Yu, et al.

ACKNOWLEDGMENTS

This work was funded in part by NSF under grant CNS-1816226,

Blavatnik ICRC at TAU, ISF under grant 2005/17, and by an Intel

Strategic Research Alliance (ISRA) grant. We thank Joel Emer, Sarita

Adve and Shubu Mukherjee for very helpful discussions, and thank

the anonymous reviewers for their feedback and insights during

the review process.

REFERENCES

[1] 2018. Intel 64 and IA-32 Architectures Optimization Reference Man-

ual. https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-

architectures-optimization-manual.pdf.

[2] 2019. InvisiSpec-1.0 simulator bug fix. https://github.com/mjyan0720/InvisiSpec-

1.0/commit/f29164ba510b92397a26d8958fd87c0a2b636b0c.

[3] Onur Aciicmez, Jean-Pierre Seifert, and Cetin Kaya Koc. 2006. Predicting Secret

Keys via Branch Prediction. IACR (2006).

[4] Haitham Akkary, Ravi Rajwar, and Srikanth T. Srinivasan. 2003. Checkpoint

Processing and Recovery: Towards Scalable Large InstructionWindow Processors.

In MICRO’03.
[5] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida

Garcia, and Nicola Tuveri. 2018. Port Contention for Fun and Profit. IACR (2018).

[6] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner,

and Hovav Shacham. 2015. On Subnormal Floating Point and Abnormal Timing.

In S&P’15.
[7] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang, and Radu Teodorescu. 2019.

SpecShield: Shielding Speculative Data from Microarchitectural Covert Channels.

In PACT’19.
[8] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-

dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. 2019. SMoTher-

Spectre: exploiting speculative execution through port contention. arXiv (2019).

[9] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The

PARSEC Benchmark Suite: Characterization and Architectural Implications. In

PACT’08.
[10] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh

Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.

Hill, and David A. Wood. 2011. The Gem5 Simulator. ACM SIGARCH Computer
Architecture News 2 (2011), 1–7.

[11] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg,

Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2019. A

Systematic Evaluation of Transient Execution Attacks and Defenses. In USENIX
Security’19.

[12] Christopher Celio, David A. Patterson, and Krste Asanovic. 2015. The Berkeley
Out-of-Order Machine (BOOM): An Industry-Competitive, Synthesizable, Parame-
terized RISC-V Processor. Technical Report UCB/EECS-2015-167. EECS Depart-
ment, University of California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/

TechRpts/2015/EECS-2015-167.html

[13] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and

Ten H. Lai. 2018. Sgxpectre Attacks: Leaking Enclave Secrets via Speculative

Execution. arXiv (2018).

[14] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons, T. C. Mowry, V. Ra-

machandran, O. Ruwase, M. Ryan, and E. Vlachos. 2008. Flexible Hardware

Acceleration for Instruction-Grain Program Monitoring. In ISCA’08.
[15] G. Z. Chrysos and J. S. Emer. 1998. Memory dependence prediction using store

sets. In ISCA’98.
[16] J. R. Crandall and F. T. Chong. 2004. Minos: Control Data Attack Prevention

Orthogonal to Memory Model. In MICRO’04.
[17] Michael Dalton, Hari Kannan, and Christos Kozyrakis. 2007. Raksha: A Flexible

Information Flow Architecture for Software Security. In ISCA’07.
[18] D. Y. Deng, D. Lo, G. Malysa, S. Schneider, and G. E. Suh. 2010. Flexible and Effi-

cient Instruction-Grained Run-Time Monitoring Using On-Chip Reconfigurable

Fabric. In MICRO’10.
[19] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. 1991. Two Techniques

to Enhance the Performance of Memory Consistency Models. In ICPP’91.
[20] Johann Grossschadl, Elisabeth Oswald, Dan Page, and Michael Tunstall. 2009.

Side-Channel Analysis of Cryptographic Software via Early-Terminating Multi-

plications. ICISC’09.
[21] John L. Hennessy and David A. Patterson. 2017. Computer Architecture, Sixth

Edition: A Quantitative Approach (6th ed.). Morgan Kaufmann Publishers Inc.

[22] John L Henning. 2006. SPEC CPU2006 Benchmark Descriptions. ACM SIGARCH
Computer Architecture News 4 (2006), 1–17.

[23] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, Doug Carmean, Alan

Kyker, and Patrice Roussel. 2001. The Microarchitecture of the Pentium 4 Proces-

sor. Intel Technology Journal 5 (2001).

[24] Jann Horn. 2018. Speculative execution, variant 4: speculative store bypass.

https://bugs.chromium.org/p/project-zero/issues/detail?id=1528.

[25] Intel. 2018. Q2 2018 Speculative Execution Side Channel Update. https://www.

intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html.

[26] Mike Johnson. 1991. Superscalar Microprocessor Design. Prentice Hall Englewood
Cliffs, New Jersey.

[27] David R. Kaeli and Philip G. Emma. 1991. Branch History Table Prediction of

Moving Target Branches Due to Subroutine Returns. In ISCA’91.
[28] Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry

Evtyushkin, Dmitry Ponomarev, and Nael B. Abu-Ghazaleh. 2019. SafeSpec:

Banishing the Spectre of a Meltdown with Leakage-Free Speculation. In DAC’19.
[29] Vladimir Kiriansky, Ilia A. Lebedev, Saman P. Amarasinghe, Srinivas Devadas, and

Joel Emer. 2018. DAWG: A Defense Against Cache Timing Attacks in Speculative

Execution Processors. In MICRO’18.
[30] Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative Buffer Overflows:

Attacks and Defenses. arXiv (2018).

[31] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz

Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.

2019. Spectre Attacks: Exploiting Speculative Execution. In S&P’19.
[32] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and

Nael Abu-Ghazaleh. 2018. Spectre Returns! Speculation Attacks using the Return

Stack Buffer. InWOOT’18.
[33] Peinan Li, Lutan Zhao, Rui Hou, Lixin Zhang, and Dan Meng. 2019. Conditional

Speculation: An Effective Approach to Safeguard Out-of-Order Execution Against

Spectre Attacks. In HPCA’19.
[34] Mikko H. Lipasti, Christopher B. Wilkerson, and John Paul Shen. 1996. Value

Locality and Load Value Prediction. In ASPLOS’96.
[35] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.

2018. Meltdown: Reading KernelMemory fromUser Space. InUSENIX Security’18.
[36] Giorgi Maisuradze and Christian Rossow. 2018. Ret2Spec: Speculative Execution

Using Return Stack Buffers. In CCS’18.
[37] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L. Titzer, and Toon Verwaest.

2019. Spectre is here to stay: An analysis of side-channels and speculative

execution. arXiv (2019).

[38] John Mclean. 1994. Security Models. In Encyclopedia of Software Engineering.
Wiley & Sons.

[39] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-

termeasures: The Case of AES. In CT-RSA’06.
[40] Colin Percival. 2005. Cache missing for fun and profit. In Proc. of BSDCan 2005.
[41] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, Yuanyuan Zhou, and Youfeng

Wu. 2006. LIFT: A Low-Overhead Practical Information Flow Tracking System

for Detecting Security Attacks. In MICRO’06.
[42] Glenn Reinman and Brad Calder. 1998. Predictive Techniques for Aggressive

Load Speculation. In MICRO’98.
[43] A. Sabelfeld and A. C. Myers. 2003. Language-based information-flow security.

IEEE Journal on Selected Areas in Communications 21, 1 (Jan 2003), 5–19. https://

doi.org/10.1109/JSAC.2002.806121

[44] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean, and Mag-

nus Sjalander. 2019. Efficient Invisible Speculative Execution Through Selective

Delay and Value Prediction. In ISCA’19.
[45] Michael Schwarz, Robert Schilling, Florian Kargl, Moritz Lipp, Claudio Canella,

and Daniel Gruss. 2019. ConTExT: Leakage-Free Transient Execution. arXiv
(2019).

[46] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss. 2019. Net-

Spectre: Read Arbitrary Memory over Network. In ESORICS’19.
[47] Kevin Skadron, Pritpal S. Ahuja, Margaret Martonosi, and Douglas W. Clark.

1998. Improving Prediction for Procedure Returns with Return-address-stack

Repair Mechanisms. In MICRO’98.
[48] Daniel J. Sorin, Mark D. Hill, and David A. Wood. 2011. A Primer on Memory

Consistency and Cache Coherence. Morgan & Claypool Pub.

[49] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. 2004. Secure

Program Execution via Dynamic Information Flow Tracking. In ASPLOS’04.
[50] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. 2019. Context-

Sensitive Fencing : Securing Speculative Execution via Microcode Customization.

In ASPLOS’19.
[51] Mohit Tiwari, Xun Li, Hassan M. G. Wassel, Frederic T. Chong, and Timothy Sher-

wood. 2009. Execution Leases: A Hardware-supported Mechanism for Enforcing

Strong Non-interference. In MICRO’09.
[52] Mohit Tiwari, Hassan M.G. Wassel, Bita Mazloom, Shashidhar Mysore, Frederic T.

Chong, and Timothy Sherwood. 2009. Complete Information Flow Tracking from

the Gates Up. In ASPLOS’09.
[53] Robert M Tomasulo. 1967. An efficient algorithm for exploiting multiple arith-

metic units. IBM Journal of Research and Development 11, 1 (1967), 25–33.
[54] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.

2008. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient

Out-of-Order Execution. In USENIX Security’18.

967

https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://github.com/mjyan0720/InvisiSpec-1.0/commit/f29164ba510b92397a26d8958fd87c0a2b636b0c
https://github.com/mjyan0720/InvisiSpec-1.0/commit/f29164ba510b92397a26d8958fd87c0a2b636b0c
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
https://bugs.chromium.org/p/project-zero/issues/ detail?id=1528
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121

Speculative Taint Tracking (STT): A Comprehensive Protection for Speculatively Accessed Data MICRO ’52, October 12–16, 2019, Columbus, OH, USA

[55] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic. 2008. FlexiTaint: A

programmable accelerator for dynamic taint propagation. In HPCA’08.
[56] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas Wenisch, and Baris Kasikci. 2019.

NDA: Preventing Speculative Execution Attacks at Their Source. In MICRO’19.
[57] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Raoul Strackx, Thomas F. Wenisch, and Yuval Yarom.

2018. Foreshadow-NG: Breaking the Virtual Memory Abstraction with Transient

Out-of-Order Execution. Technical report (2018).
[58] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher W.

Fletcher, and Josep Torrellas. 2018. InvisiSpec: Making Speculative Execution

Invisible in the Cache Hierarchy. In MICRO’18.

[59] Yuval Yarom and Katrina Falkner. 2014. Flush+Reload: a high resolution, low

noise, L3 cache side-channel attack. In USENIX Security’14.
[60] Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, and Christopher W. Fletcher. 2019.

Data Oblivious ISA Extensions for Side Channel-Resistant and High Performance

Computing. In NDSS’19.
[61] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and

Christopher Fletcher. 2019. Speculative Taint Tracking (STT): A Formal Analysis.
Technical Report. University of Illinois at Urbana-Champaign and Tel Aviv Uni-

versity. http://cwfletcher.net/Content/Publications/Academics/TechReport/stt-

formal-tr_micro19.pdf.

968

http://cwfletcher.net/Content/Publications/Academics/TechReport/stt-formal-tr_micro19.pdf
http://cwfletcher.net/Content/Publications/Academics/TechReport/stt-formal-tr_micro19.pdf

	Abstract
	1 Introduction
	1.1 This Paper

	2 Background
	3 Attacker Model
	4 Scope: Protecting Speculatively Accessed Data
	5 Covert Channels in Speculative Execution Attacks
	5.1 Explicit vs. Implicit Channels
	5.2 Prediction- vs. Resolution-based Leakage
	5.3 Explicit vs. Implicit Branches

	6 Speculative Taint Tracking
	6.1 Framework & Concepts
	6.2 Taint and Untaint Propagation
	6.3 Blocking Explicit Channels
	6.4 Eliminating Implicit Channels
	6.5 Optimizing Store-to-Load Forwarding

	7 Microarchitecture
	7.1 Main Ideas
	7.2 Hardware Changes to Frontend
	7.3 Hardware Changes to Backend

	8 Security Analysis
	9 Evaluation
	9.1 Experimental Setup
	9.2 Main Performance Result
	9.3 InvisiSpec vs. STT

	10 Related Work
	11 Conclusion
	Acknowledgments
	References

