
QSCORES: Trading Dark Silicon for Scalable Energy Efficiency with
Quasi-Specific Cores

Ganesh Venkatesh+, Jack Sampson, Nathan Goulding-Hotta, Sravanthi Kota Venkata+,
Michael Bedford Taylor and Steven Swanson

http://greendroid.org
Department of Computer Science and Engineering

University of California, San Diego

ABSTRACT
Transistor density continues to increase exponentially, but power
dissipation per transistor is improving only slightly with each gen-
eration of Moore’s law. Given the constant chip-level power bud-
gets, this exponentially decreases the percentage of transistors that
can switch at full frequency with each technology generation. Hence,
while the transistor budget continues to increase exponentially, the
power budget has become the dominant limiting factor in processor
design. In this regime, utilizing transistors to design specialized
cores that optimize energy-per-computation becomes an effective
approach to improve system performance.

To trade transistors for energy efficiency in a scalable manner, we
propose Quasi-specific Cores, or QSCORES, specialized processors
capable of executing multiple general-purpose computations while
providing an order of magnitude more energy efficiency than a
general-purpose processor. The QSCORE design flow is based on
the insight that similar code patterns exist within and across appli-
cations. Our approach exploits these similar code patterns to ensure
that a small set of specialized cores support a large number of com-
monly used computations.

We evaluate QSCORE’s ability to target both a single applica-
tion library (e.g., data structures) as well as a diverse workload
consisting of applications selected from different domains (e.g.,
SPECINT, EEMBC, and Vision). Our results show that QSCORES
can provide 18.4⇥ better energy efficiency than general-purpose
processors while reducing the amount of specialized logic required
to support the workload by up to 66%.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Heterogeneous (hybrid) systems;
C.3 [Special-Purpose and Application-based systems]

+ Now at Intel Corporation, Hillsboro, Oregon.

This research was funded by the US National Science Foun-
dation under NSF CAREER Awards 06483880 and 0846152, and
under NSF CCF Award 0811794.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO’11, December 3-7, 2011, Porto Alegre, Brazil
Copyright 2011 ACM 978-1-4503-1053-6/11/12 ...$10.00.

General Terms
Design, Experimentation, Measurement

Keywords
QSCORE, Conservation Core, Merging, Dark Silicon, Utilization
Wall, Heterogeneous Many-Core, Specialization

1. INTRODUCTION
Although transistor density continues to scale, nearly constant

per-transistor power and fixed chip-level power budget place tight
constraints on how much of a chip can be active at full frequency at
one time. Hence, as transistor density increases with each process
generation, so does the fraction of the chip that must be under-
clocked or under-utilized because of power concerns [27]. Re-
searchers have termed these passive expanses of silicon area dark
silicon [14, 11, 15, 17, 21]. Dark silicon is forcing designers to find
new solutions to convert transistors into performance.

Recent work [3, 16, 27] has shown that specialization is an ef-
fective solution to the problem of using the increasing transistor
budget to extend performance scaling. Specialization-based ap-
proaches trade a cheaper resource, dark silicon (i.e., area), for a
more valuable resource, power efficiency, to scale system perfor-
mance. Specialized processors improve system performance by
optimizing per-computation power requirements and thereby allow
more computations to execute within a given power budget.

Conventional accelerators reduce power for regular applications
containing ample data-level parallelism, but recent work [27, 21]
has shown that specialized hardware can reduce power for irreg-
ular codes as well. Moreover, these designs use specialized com-
pute elements even for relatively short running computations. This
increases the fraction of program execution on specialized, power-
efficient hardware, but also raises questions about area efficiency
and re-usability, since each specialized core targets a very specific
computation. In addition, supporting a large number of tasks in
hardware would require designing a large number of specialized
cores, which in turn would make it difficult to tightly integrate all
of them with the general-purpose processor. Therefore, for spe-
cialization to be effective at targeting a general-purpose system’s
workload, the specialized processors must ideally be able to sup-
port multiple computations, such that a relatively small number of
them can together support large fractions of system execution.

To trade silicon for specialization in a scalable manner, we pro-
pose a new class of specialized processors, Quasi-specific Cores
(QSCORES). Unlike traditional ASICs, which target one specific
task, QSCORES can support multiple tasks or computations. Be-
cause of this improved computational power, a relatively small num-
ber of QSCORES can potentially support a significant fraction of a

163

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2155620.2155640&domain=pdf&date_stamp=2011-12-03

system’s execution. Moreover, QSCORES are an order of magni-
tude more energy-efficient than general-purpose processors. The
QSCORE design flow is based on the insight that “similar” code
segments exist within and across applications, and these code seg-
ments can be represented by a single computation pattern. The
QSCORE design flow exploits this insight by varying the required
number of QSCORES as well as their computational power (i.e., the
number of distinct computations they can support) based on the rel-
ative importance of the applications and the area budget available to
optimize them. This enables QSCORES to significantly reduce the
total area and the number of specialized processors compared to a
fully-specialized logic approach supporting the same functionality.

In this paper, we address many of the challenges involved in
designing a QSCORE-enabled system. The first challenge lies in
identifying similar code patterns across a wide range of general-
purpose applications. The hotspots of a typical general-purpose
application tend to be many hundreds of instructions long and con-
tain complex control-flow and irregular memory access patterns,
making the task of finding similarity both computationally inten-
sive and algorithmically challenging. The second challenge lies
in exploiting these similar code patterns to reduce hardware re-
dundancy across specialized cores by designing generalized code-
structures that can execute all these similar code patterns. The third
challenge involves making the right area-energy tradeoffs to ensure
that the QSCORES fit within the area budget, while minimally im-
pacting their energy efficiency. Addressing this challenge requires
finding efficient heuristics that approximate an exhaustive search of
the design space but avoid the exponential cost of that search. The
final challenge involves modifying the application code/binary ap-
propriately to enable the applications to offload computations onto
the QSCORES at runtime.

We evaluate our toolchain by designing QSCORES for the op-
erator functions — find, insert, delete — of commonly used
data structures, including a linked-list, binary tree, AA tree, and
hash table. Our results show that designing just four QSCORES
can support all these data structure operations and provide 13.5⇥
energy savings over a general-purpose processor. On a more di-
verse general-purpose workload consisting of twelve applications
selected from different domains (SPECINT, SAT Solver, Vision,
and EEMBC), QSCORES continue to provide ASIC-like energy ef-
ficiency (18.4⇥ better than general-purpose processors) while re-
ducing the required number of specialized cores by over 50% and
the area required by 25% compared to the fully-specialized logic.
Also, at the system level, our approach reduces the energy-delay
metric by 46% compared to conventional processors.

The rest of this paper is organized as follows. Section 2 moti-
vates our work in the context of other proposals. Section 3 over-
views the QSCORE-enabled systems. Sections 4 and 5 describe
the QSCORE design flow. Section 6 presents our methodology for
generating the QSCORE hardware and for evaluating its efficiency.
Section 7 analyzes the efficiency of QSCORES. Finally, Section 8
concludes.

2. MOTIVATION
In this section we present some of the recent proposals for de-

signing specialized co-processors and motivate the need for QS-
CORES. Also, we examine the similarity that is present across ap-
plications and describe how our design methodology exploits this
similarity.

2.1 Specialized Processor Design
Significant prior work exists on customizing a general-purpose

processor or extending it with reconfigurable logic based on a target

 litWasTrue = GetTrueLit(iFlipCandidate);
 litWasFalse = GetFalseLit(iFlipCandidate);

aVarValue[iFlipCandidate] =
 1 - aVarValue[iFlipCandidate];

 pClause = pLitClause[litWasTrue];
 for (j=0;j<aNumLitOcc[litWasTrue];j++) {

 aNumTrueLit[*pClause]--;

 if (aNumTrueLit[*pClause]==0) {

 aFalseList[iNumFalse] = *pClause;
 aFalseListPos[*pClause] = iNumFalse++;
 UpdateChange(iFlipCandidate);
 aVarScore[iFlipCandidate]--;

 pLit = pClauseLits[*pClause];
 for (k=0;k<aClauseLen[*pClause];k++) {
 iVar = GetVarFromLit(*pLit);

 UpdateChange(iVar);
 aVarScore[iVar]--;

 pLit++;}
 }
 if (aNumTrueLit[*pClause]==1) {
 pLit = pClauseLits[*pClause];
 for (k=0;k<aClauseLen[*pClause];k++) {
 if (IsLitTrue(*pLit)) {
 iVar = GetVarFromLit(*pLit);

 UpdateChange(iVar);
 aVarScore[iVar]++;
 aCritSat[*pClause] = iVar;

 break;
 pLit++;}}}
 pClause++;
}

BestLookAheadScoreFlipTrackChangesFCL
 litWasTrue = GetTrueLit(iLookVar);
 litWasFalse = GetFalseLit(iLookVar);

 pClause = pLitClause[litWasTrue];
 for (j=0;j<aNumLitOcc[litWasTrue];j++) {

if (aNumTrueLit[*pClause]==1) {

pLit = pClauseLits[*pClause];
 for (k=0;k<aClauseLen[*pClause];k++) {
 iVar = GetVarFromLit(*pLit);

 UpdateLookAhead(iVar,-1);

 pLit++;}
 }
 if (aNumTrueLit[*pClause]==2) {
 pLit = pClauseLits[*pClause];
 for (k=0;k<aClauseLen[*pClause];k++) {
 if (IsLitTrue(*pLit)) {
 iVar = GetVarFromLit(*pLit);

 if (iVar != iLookVar) {
 UpdateLookAhead(iVar,+1);

 break;
 pLit++;}}}
 pClause++;
 }

Figure 1: SAT Solver hotspot code comparison These two func-
tions in the UBC SAT Solver tool [24] share significant code pat-
terns (highlighted).

application’s characteristics [19, 25, 28]. Our work differs from
these approaches in that it does not center on the customization
of pre-engineered components. Instead, our work builds the co-
processors from the ground up based on application characteristics.
This approach yields ASIC-like energy-efficiency by eliminating
power-hungry abstraction layers, such as a processor’s instruction
interpreter (fetch, decode, and register file access), or an FPGA’s
SRAM lookup-tables.

A significant body of work exists on providing application-specific
instruction set extensions based on commonly occurring instruction
patterns [28, 6, 8, 1, 5]. Our work differs from these prior ap-
proaches since we provide specialization at a much broader scope.
While these prior approaches focused on short acyclic instruction
patterns (10s of instructions), our approach seeks to offload com-
plete functions, typically containing 1000s of instructions, onto a
specialized core. This enables us to provide higher energy sav-
ings by completely switching off the general-purpose processor
pipeline, unlike these prior approaches that require many of the
pipeline components to remain active.

Many ASIC-like accelerators [4, 12, 29] have focused on us-
ing modulo scheduling to exploit regular loop bodies that have am-
ple loop parallelism and easy-to-analyze memory access patterns.
Yehia et al. demonstrate techniques for automatically designing
compound circuits that can support multiple regular loops [29].
Their technique focused on streaming loops, used an exploration al-
gorithm to map one loop circuit onto another, and presented evolu-
tionary techniques to enable merging of many loop circuits to form
one compound circuit. However, their approach is not directly ap-
plicable to the general-purpose domain for which the hotspots tend

164

Benchmark Type Application Hotspots

SPEC CPU 2000-2006

Twolf new_dbox, new_dbox_a,
newpos_a, newpos_b

Mcf refresh_potential,
primal_bea_mpp

Bzip2 fullGtU
LibQuantum cnot, toffoli

Image Compression CJPEG ycc_rgb extractMCU
DJPEG jpeg_idct, rgb_ycc

SAT Solver UBC SAT BestLookAheadScore,
FlipTrackChangesFCL

Splash Radix slave_sort

SD VBS

Tracking calc_dX, calc_dY,
imageBlur

Disparity finalSAD, findDisparity,
integralImage2D

EEMBC Consumer RGB/CMYK CMYfunction
RGB/YIQ YIQfunction

Table 1: Application Set We use a diverse set of applications to
evaluate the effectiveness of QSCORES.

to be much larger, contain complex control constructs, and have ir-
regular memory patterns. The hotspots QSCORES target typically
consist of many hundreds of assembly instructions, significantly
increasing the exploration space.

In previous work [21, 27], we presented techniques for generat-
ing application-specific hardware for the general class of irregular,
hard-to-parallelize applications. However, scalability in these sys-
tems can be limited by applications with large hotspots that have
sufficiently small execution time that they do not justify the area
cost of conversion into single-purpose coprocessors. Ideally, to
make this area-energy tradeoff more favorable, the co-processors
should support multiple applications with similar control/data de-
pendence.

2.2 Application Similarity
We base the QSCORE design methodology on the insight that

similar code patterns exist across applications. In this section, we
quantify the available similarity and use this to motivate the QS-
CORE design methodology.

To start, we examine two hotspots in UBC SAT Solver [24]
to provide insight about available similarity. Figure 1 shows the
source code of the hotspots and highlights the similar code seg-
ments present across them. The example shows that while the two
hotspots do not have similar control-flow, they do contain simi-
lar code segments. Our design methodology exploits these similar
code segments to generate computation patterns that can represent
both hotspots and supports these generic computation patterns in
hardware. This improves the computational power of specialized
cores and reduces hardware redundancy across them.

To quantify similarity across applications, we examine a diverse
set of applications from SPEC CPU [22], UBC SAT solver [24],
EEMBC [10], and SD-VBS [26] benchmark suites (described in
Table 1). First, we profile the applications to find the “hotspots”
where each application spends most of its time. Then, we build
program dependence graphs (PDGs) [13] for the hotspot functions.
We find similar code segments across the hotspots by searching
for isomorphic subgraphs across their PDGs (see Section 4.2). We
quantify the similarity between the hotspots’ PDGs as the size of
matching subgraph.

Our results, shown in Figures 2 and 3, demonstrate that signifi-
cant similarity exists across applications. Figure 2 bins the hotspot
pairs based on the amount of similarity present between them. The

data show that most (> 90%) hotspot pairs have some similar code
patterns (50% of nodes matched) and more importantly, at least
50% of the hotspot pairs have significant similarity (> 80% of
nodes matched). Figure 3 shows that significant similarity exists
both within and across application classes.

To exploit available similarity, our toolchain designs a computa-
tion pattern that encompasses the similar code structures and builds
a QSCORE for that computation pattern. This design methodology
provides the following benefits:
1. Reduced area requirements Our approach reduces area re-

quirements by eliminating hardware redundancy across special-
ized cores that target similar computations. We find these simi-
lar computations across hotspots of the same application, across
different applications in the same application domain, and even
across different application domains (such as Bzip2 and Dis-
parity).

2. Greater computational power QSCORES have greater com-
putational power and more flexible control/data flow compared
to fully-specialized hardware. In some cases, QSCORE’s com-
putational power can extend beyond the code segments for which
they were designed. For example, when targeting vision appli-
cations, our design flow builds a single QSCORE that supports
both imageBlur (that uses a five-stage filter [26]) and edge-
Filters (which uses three stages). The same QSCORE is flex-
ible enough to support other filter depths as well.

3. Backward compatibility for specialized logic For many general-
purpose applications, older versions may still be in use even
though newer versions are available. Our design methodology
enables QSCORES to support all previous “in-use” versions.
We achieve this by merging the hotspots of previous versions
with the latest version and designing one QSCORE for all of
them. This allows a system designer to target the latest version
without sacrificing legacy support.

3. QSCORE-ENABLED SYSTEMS
Figure 4 (a) shows the high-level design flow for building QS-

CORE-enabled systems. The process begins with a set of applica-
tions that the system designer believes make up a significant frac-
tion of the processor’s target workload. We profile these applica-
tions to extract the frequently used code segments, called hotspots,
which have high application coverage. The QSCORE design flow
uses these hotspots to design specialized cores based on the area
available for specialization as well as the relative execution cov-
erage of these hotspots. The final step integrates these QSCORES
with a general-purpose processor to build a heterogeneous tile. In
the general case, a QSCORE-enabled system will consist of multi-
ple heterogeneous tiles, each comprising several QSCORES target-
ing different workloads.
Hardware-specialization for energy efficiency At the heart of
this system design process is the QSCORE design stage (presented
in Section 4) that generates specialized cores targeting computa-
tions that are commonly run on the system. The QSCORE de-
sign flow stage seeks to ensure that the QSCORE set supports all
the hotspots of the system’s workload while fitting within the area
budget available for specialization. This is desirable because QS-
CORES are an order-of-magnitude more power-efficient than general-
purpose processors, and hence, offloading the hotspots onto them
can significantly improve the power efficiency of the system.
Application compilation and runtime execution The QSCORE
compiler (presented in Section 4.5) automatically retargets appli-
cation code to benefit from all the specialized cores available with-
out any programmer intervention. At runtime, an application’s ex-

165

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

(!)$!!" *!)(!" +!)*!" ,!)+!" #!),!" '!)#!"

-.
/0
.1

23
4.
"5
62
78
62
"-
39
/7
"

-./0.1234.":6;."<320="

Figure 2: Similarity available across hotspots For the applica-
tions in Table 1, we bin the hotspot pairs based on the amount of
similarity present between them.

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

,-
.
/0
12
23
-4

"
,-

42
5.

10
"

67
86
-9
:1
0"

6/
1;
"

6/
97
2<
"

=3
23
-4

"
,-

42
5.

10
"

67
86
-9
:1
0"

6/
1;
"

6/
97
2<
"

=3
23
-4

"
67
86
-9
:1
0"

6/
1;
"

6/
97
2<
"

=3
23
-4

"
6/
1;
"

6/
97
2<
"

=3
23
-4

"
6/
97
2<
"

=3
23
-4

"

,-./01223-4" ,-425.10" 6786-9:10" 6/1;" =323-4"

>1
0;
14

87
?1
"@
-A

1"
B
78
;<
"

Figure 3: Quantifying similarity present across application
types The graph quantifies similarity present across different
classes of applications.

ecution migrates between the general-purpose processor and QS-
CORES based on whether a matching QSCORE exists for the sec-
tion of code currently executing. This execution migration is pos-
sible because of the tight coupling of QSCORES and the general-
purpose processor via sharing of the L1 data cache and support for
arbitrary control transitions between the QSCORE and the CPU.

4. QSCORE DESIGN FLOW
In this section, we present the details of our QSCORE design

flow (shown in Figure 4 (b)). The design flow accepts as input the
hotspot functions as well as the area budget available for specializa-
tion and generates a set of QSCORES that implement these hotspots
and fit within the area budget.

The design flow starts by constructing a dependence graph cor-
responding to each of the hot code segments. At each stage, the
toolchain selects a dependence graph pair that has similar code pat-
terns present across them, uses these similar code patterns to design
a new dependence graph that represents both of the input depen-
dence graphs. It then replaces the input dependence graph pair with
the new merged graph. This process continues until the toolchain is
unable to find similar code segments across the dependence graphs
or the area budget goals are met. We describe these steps in greater
detail below. Figure 5(a)-(d) depicts the steps involved in the de-
sign of a QSCORE that can support the sample hot code segments,
computeSum (computes the sum of the first nl numbers) and com-
putePower (c2

nr).

4.1 Dependence Graph Generation
Our toolchain internally represents the application hotspots as

PDGs [13], in which nodes represent statements and edges repre-
sent control and data dependences. The PDG representation of a
hotspot is well-suited for finding matching code regions because
it enables us to perform matching based on the program seman-
tics rather than the program code text. Using PDGs, our toolchain

eliminates false dependences, preserving only the “true” control
and data dependences. Figure 5(a) shows the PDGs for two sam-
ple functions, computeSum and computePower. The solid edges
represent control dependences and dashed edges represent data de-
pendences.

The output of this stage is a pool of QSCORE PDGs, where each
PDG represents an application hotspot. The subsequent stages in-
crease the computational power of the QSCORES, enabling them to
represent multiple application hotspots.

4.2 Mining for Similar Code Patterns
This stage mines the QSCORE pool for code segments that are

similar to each other, in that they can be effectively represented
by a computation pattern, and hence, do not require multiple spe-
cialized cores to support them. The problem of finding similar
code segments across hotspots reduces to finding similar subgraphs
(subgraph-isomorphism) across their PDGs. Subgraph-isomorphism
is a well-studied problem in the field of graph algorithms. We base
our algorithm on the FFSM algorithm proposed by Huan et al. [18].
Below, we present a brief description of the FFSM algorithm and
how we tailor it to the problem of finding similar code segments.

FFSM takes as input two graphs, G1 and G2, where every node
in each graph has a unique ID as well as a type label. The algorithm
considers two nodes for matching only if they have the same type.
The algorithm begins by selecting a random node in G1, say n1,
and finds a matching node (of the same type) in G2, say n2. Then,
the algorithm tries to grow this matched subgraph by comparing the
neighbors of n1 and n2 and performing other graph transformations
on the matched subgraphs (refer to [18] for details). The algorithm
returns when it cannot grow the matched subgraph any further.

The QSCORE toolchain extends the FFSM matching algorithm
to tailor it to the problem of finding similar code patterns in PDGs.
First, instead of picking and matching nodes at random, our match-
ing algorithm focuses on finding similar loop bodies. This behavior
is desirable since most applications spend most of their execution

166

Energy-Intensive
Code Regions

Merge Similar
Components

Merge Matched
Expression

Similar Code
Regions Present?

Yes

No

Sequentialize Program
Dependence Graphs

QsCore Design
Generation

Create Dependence
Graphs

Select Best
QsCore Set

System
Workload Set

Hotspot Identification

Source Code

Energy-Intensive
Code Regions

QsCore Design
Flow

C
PU

L1

QsCores

QsCore-CPU
Integration

QsCore Specification

(a) (b)

Area budget available for
specialization

Figure 4: Overview of QSCORE-enabled system The figure overviews the high-level design flow of a QSCORE-enabled system (a) as well
as the design flow for generating QSCORES (b).

computeSum(int nl)
{
 int suml = 0;
 for(il = 0; il < nl; il++)
 {
 suml += il;
 }
 return(suml);
}

il = 0 il++

suml = 0il < nl

suml += il

computePower(int nr, int br)
{
 int sumr = br;
 for(ir = 0; ir < nr; ir++)
 {
 sumr *= sumr;
 }
 return(sumr);
}

ir = 0 ir++

sumr = brir < nr

sumr *= sumr

i=0 i++

init
sumi < n

mux
(sum,i)

sum=
alu(sum,in)

i = 0;
i = 0

i++;
i++

sum = 0
sum = bri < n;

i < n

sum += i;
sum *= sum

Expression Merging PDG
Sequentialization

computePower(int nr, int br)
{
 sumr = QsCore(nr , br ,COMPUTE_POWER);
 return(sum);
}

computeSum(int nl)
{
 suml = QsCore(nl, 0, COMPUTE_SUM);
 return(suml);
}

QsCore(int n, int b, int CONTROL_SIGNALS)
{
 i=0;
 sum = b;
 for(i=0;i<n;i++)
 {
 in = mux(sum,i,CONTROL_SIGNALS);
 sum = ALU(sum,in, CONTROL_SIGNALS);
 }
 return(sum);
}

Merging PDGs

(a)

(b) (c) (d)

Conditional Data
Dependence

Configurable
QsCore Nodes

Eliminating Hardware
Redundancy

Figure 5: QSCORE design example This example shows the different stages involved in converting two source code segments, computeSum
and computePower (a), into a QSCORE (d). The resultant QSCORE can perform the functionality of the two input code segments as well as
other functions such as n! and c2n

. In each PDG, solid lines represent control dependences and dashed lines represent data dependences.

167

time in loops. Second, we use the node type to encode the program
structure, reducing the search space by pruning the “illegal” node
matches. For example, all the nodes within a loop body should have
similar node types and different from the node type of any nested
loop nodes within that loop. The node type definition ensures that
two nodes match only if they perform similar arithmetic operations
(for example addition and branch operations are not similar), sim-
ilar memory operations (such as array/pointer access), and have
matching control/data edges.

For example, when mining for similar code patterns across the
hotspots computeSum and computePower, shown in Figure 5(a),
this stage maps the node suml += il in computeSum to
sumr *= sumr in computePower, among others (the mapped nodes
are drawn and placed similarly in Figure 5(a)).

The output of this stage is a list of dependence graph pairs that
have similar code patterns. For each of these similar dependence
graph pairs, this stage also produces a mapping of the nodes across
them.

4.3 Merging Program Dependence Graphs
This stage designs a new QSCORE PDG for each similar depen-

dence graph pair that the previous stage produces. The new QS-
CORE dependence graph supports all computations that either of
its input dependence graphs can represent. Below, we present the
steps involved in designing the new QSCORE’s dependence graph.
Creating QSCORE graph nodes The first step produces the QS-
CORE’s dependence graph nodes based on the node mapping from
the previous stage. For each pair of mapped nodes, we create a
new node consisting of all the expressions contained in the mapped
nodes. Figure 5(b) shows the nodes of the newly created depen-
dence graph, where each node consists of an expression from com-
puteSum and computerPower. For any nodes in the input depen-
dence graph pair that did not get matched, we add them to the QS-
CORE’s dependence graph without any modification.
Adding control and data dependence edges This step produces
the data and control dependences of the new QSCORE’s depen-
dence graph based on those of the input dependence graph pair.
The main challenge in this step is to ensure that the QSCORE’s de-
pendence graph is sequentializable, that is, there exists a sequential
ordering of the nodes that respects all the data and control depen-
dences.

In order to be sequentializable, the QSCORE’s dependence graph
should not have any circular data/control dependence. Any circu-
lar dependence in the new QSCORE’s PDG result from node map-
pings that the previous stage generates. We eliminate circular de-
pendences by removing the least number of node mappings that
would break all dependence cycles.

The second invariant we maintain to preserve sequentializability
is that each loop body in a QSCORE has a single entry point. To
maintain this invariant, we add a dummy control node for any code
regions with multiple entries.
Generating the variable set for QSCORES Finally, we create
the variable set for the newly created QSCORE (Figure 5(b)). To
do this, we build a one-to-one map between variables of the two in-
put dependence graphs based on how they are accessed in the new
QSCORE’s nodes. For example, in the newly created QSCORE,
variable il in computeSum is mapped to ir in computePower be-
cause they are accessed similarly (same read/write access across
mapped nodes) in the QSCORE’s nodes (shown in Figure 5(b)).
For these mapped variables, we create a new variable (i) for the
QSCORE’s variable set that replaces the usage of the original vari-
ables (il and ir). We propagate unmapped variables, such as br in

computePower, to the new PDG.
Figure 5(b) shows the new QSCORE’s dependence graph that this

stage designed by merging the dependence graphs of computeSum
and computePower.

Because a QSCORE’s dependence graph represents multiple com-
putations, it contains additional node and edge attributes beyond
those found in traditional dependence graphs. We describe these
additional attributes below:
Node attributes A traditional dependence graph node contains
a list of variables that are defined and used by that node. We ex-
tend this node attribute to contain a list of conditionally defined
and used variables. For example, in Figure 5(b) the QSCORE node
hsum += i; sum *= sumi conditionally consumes variable i because
only one of its input code segments (suml += il from computeSum)
uses i.
Edge attributes A QSCORE’s dependence graph contains condi-
tional data dependences. These conditional edges result from data
dependences that are present only in a subset of computations that
the QSCORE supports. For example, in Figure 5(b) there is a condi-
tional dependence from source node hi++; i++i to destination node
hsum += i; sum *= sumi.

The result of the preceding transformation is a new QSCORE cor-
responding to each pair of similar PDGs from the previous stage.
Each of these newly designed QSCORES have greater computa-
tional power than the two dependence graphs they were formed
from because they can support the computations that either of their
input dependence graph can support. Moreover, these QSCORES
reduce the area requirements compared to their input dependence
graphs because they eliminate hardware redundancy across the in-
put dependence graphs.

The final step of this stage is to, amongst all the QSCORES that
this step produces, select the QSCORE that will provide the maxi-
mum benefit in terms of area savings and computational flexibility.
Section 5 describes our heuristic for selecting the best QSCORE.
Finally, this stage replaces the two input dependence graphs with
the chosen QSCORE’s dependence graph in the QSCORE pool.

At the end of this stage, the toolchain loops back to the sec-
ond stage (Section 4.2) to find other potential PDG pairs for merg-
ing. Eventually, either the pool of QSCORES fits within the target
area budget, or the QSCORE set becomes distinct enough that no
substantial similarity can be found across them. At that point, the
toolchain proceeds to generate the QSCORE specifications in C.

4.4 QSCORE Generation
The fourth stage of the toolchain sequentializes each dependence

graph in the QSCORE pool to produce its corresponding QSCORE
specifications in C. The two steps involved in this stage are gen-
erating valid C-expressions for each QSCORE PDG node and se-
quentializing the QSCORE’s data and control dependences.
Merging expressions This step generates a valid C-expression
corresponding to each node in a QSCORE PDG. The QSCORE
dependence graph from the previous step can have multiple C-
expressions in each node. For example, in Figure 5(b), QSCORE
node hsum += i; sum *= sumi contains two expressions. To design
a valid merged C-expression we build expression trees for each of
the expressions in the QSCORE node. We merge the expression
trees to form a single expression tree, and this merged tree directly
translates to a valid C-expression (see Figure 6). Figure 5(c) shows
the result of merging the expressions in Figure 5(b). This step re-
duces the area requirement and increases the computational power

168

=

sum

sum i

+

=

sum

sum sum

*

=

sum

sum

alu

mux

sum i

sum += i sum *= sum

sum = alu(sum,
 mux(sum,i,muxControl),
 aluControl)

Figure 6: Expression merging Merging the two expressions at top
produces a single expression that adds a new multiplexor operator
and generalizes + and ⇥ operators into an ALU with a separate
control input.

while(i<n) A
{
 if(...) P
 {
 a = 5;
 b = a + 6;
 }
 if(...) Q
 {
 a = 5;
 c = a + 6;
 }
 if(...) R
 {
 d = a;
 e = b;
 }
}

P Q

R

Data Dependence
Graph

Inferred DependenceTrue Dependence

Figure 7: Inferred dependence example There is an inferred de-
pendence edge from P to Q because no valid ordering of P, Q, and R

orders Q before P (see Section 4.4).

of each QSCORE.
Sequentializing QSCORE PDGs PDGs are a inherently paral-
lel representation of a program. However, in order to produce a C
representation of the QSCORE, we need an ordering of nodes con-
sistent with the control and data dependence edges. The algorithm
for ordering the control edges in a QSCORE’s dependence graph
is similar to that for traditional dependence graphs, and previously
proposed techniques for dependence graphs [13] work in our case
as well. Sequentializing a QSCORE’s data dependences is more
challenging because of conditional data flow edges and condition-
ally defined-used variables in QSCORE nodes. This stage uses the
following technique to sequentialize data dependences.

Our technique orders a QSCORE’s nodes in the presence of con-
ditional data dependences without employing backtracking (the com-
putation time for backtracking-based techniques is exponential in
the worst case). Our technique avoids backtracking by building
inferred dependences between sibling nodes of a QSCORE’s de-
pendence graph. An inferred dependence is defined as follows: If
parent node A has child nodes P and Q, then P has an inferred de-
pendence on child Q if there exists a third child R of parent node
A such that child P produces value b consumed by child R, child Q

produces value a consumed by child R, and child P also produces
value a. This implies that the only valid ordering among them is
for child P to execute before child Q. Figure 7 shows an example.
Any valid ordering of the sibling nodes P, Q, and R orders P before
Q, even though there is no dependence between P and Q.

We use data dependences, inferred dependences, and use/def
analysis to sequentialize the data dependences. Our sequential-
ization algorithm supports conditional data dependences, and the
algorithm’s computation time scales well with the size and com-
plexity of the QSCORE PDG.

Figure 5(d) shows the C code for the QSCORE that our design
flow generates for computeSum and computePower. Based on the
value of the CONTROL_SIGNALS, this QSCORE can be configured
to support the computations performed by both computeSum and
computePower, as well as other operations such as n!, c ⇤ 2n, and
many others, by configuring the control lines to the mux and ALU.

4.5 Modifying Applications to use QSCORES
Our toolchain also modifies the application code to offload com-

putations to the QSCORES at runtime. The toolchain does this by
setting the QSCORE’s CONTROL_SIGNALS input such that the QS-
CORE executes the computation needed by the calling application.
For example, Figure 5(d) shows how the application code is modi-
fied to use the QSCORE. In this example, the computeSum function
sends the function argument values as well as an additional argu-
ment to configure the ALU in the QSCORE to perform addition. The
toolchain also inserts function stubs in the application code to query
the runtime for the availability of a matching QSCORE (not shown
in the figure for simplicity). If no matching QSCORE is present and
available, then the application defaults to running the computation
on the general-purpose processor.

5. QSCORE-SELECTION HEURISTIC
In the previous section we described our design methodology

for building QSCORES by merging application hotspots. One chal-
lenge in this process is deciding which hotspot pairs to match, since
a hotspot can potentially match well with many other hotspots. For
example, integralImage2D hotspot in Disparity matches well with
multiple hot spots (slave_sort in Radix, findDisparity in Dispar-
ity) belonging to different application classes and having different
code sizes. In general, there are exponentially many different al-
ternatives to consider for merging the hotspots to form a final set
of QSCORES. In this section, we present our heuristic to decide
which hotspots to merge to make the best area-energy tradeoff at
each step.

Our toolchain’s goal is to find the set of QSCORES that will most
significantly reduce the power consumption while fitting within the
available area budget. The reduction in power consumption that a
QSCORE can deliver is a combination of its power efficiency and
the fraction of programs that it executes. Formally, a QSCORE b
occupies area A

b

, consumes power P
b

, has speedup S
b

, and has
coverage (relative application importance) C

b

.
To evaluate the QSCORE b, we define a quality metric Q

b

=

CbSb
AbPb

. To select a good set of QSCORES to build, we will need
to compute Q

b

for an enormous number of candidate QSCORES.
Computing precise values for P

b

and S
b

in each case is not tractable

169

since it requires full-fledged synthesis and simulation. To avoid this
overhead, we make the following approximations.

First, we conservatively assume that the speedup, S
b

, is always 1.
We synthesized and simulated fully-specialized hardware for frag-
ments from integer programs and found that the they are typically
no more than twice as fast as a general-purpose processor (see Sec-
tion 7). Second, we estimate A

b

based on the datapath operators
and register counts. The resultant area model is able to estimate
the area within 10% of the actual area on average with a standard
deviation of 14.7%. Finally, we assume that power consumption
is proportional to area. This approximation is valid for leakage
power. For dynamic power, this is a conservative estimate because
the dynamic power of QSCORES is proportional to the amount of
logic that the target computation requires, and this amount does not
increase with increased QSCORE area.

With these assumptions we can approximate Q
b

as Q0
b

=

Cb
A

2
b
.

1: while |B| > 1 do
2: (b1, b2) = varmax(b12B,b22B)

Cb1./b2
A

2
b1./b2

� Cb1
A

2
b1

� Cb2
A

2
b2

3: B = B \ {b1, b2}
4: B = B [{b1 ./ b2}
5: Record the merging of b1 and b2 and the resulting values of

Q0
B

and
P

b2B

A
b

.
6: end while

Algorithm 1: Greedy selection algorithm The algorithm for de-
ciding which QSCORE set to build.

We use X ./ Y to denote the QSCORE that results from merging
the QSCORES for X and Y . While estimating A

X./Y

is straight-
forward, estimating C

X./Y

is more challenging because X ./ Y
can implement code segments beyond just X and Y . Currently, we
set C

X./Y

= C
x

+ C
y

as a conservative estimate. In the future,
we intend to use some form of cross-validation to measure C

X./Y

more accurately to promote generality.
To evaluate the quality of a set of QSCORES, B, we sum the

value of Q0 for each QSCORE. The goal of the QSCORE design
flow is to maximize

Q0
B

=

X

b2B

Q0
b

=

X

b2B

C
b

A2
b

subject to
X

b2B

A
b

< Abudget.

Algorithm 1 contains the pseudocode for our QSCORE-selection
heuristic that starts with a fully-specialized core for each compu-
tation and merges them to create the final set of QSCORES. It
iteratively selects QSCORE pairs that maximize Q0

B

(Line 2) and
merges them to form a more general QSCORE that has greater com-
putational power than its input QSCORES.

6. METHODOLOGY
In this section, we describe how our toolchain generates QS-

CORE hardware and how the QSCORES are integrated with a general-
purpose processor. We also explain our simulation infrastructure
for measuring QSCORE area, power, and performance.
QSCORE hardware generation The QSCORE hardware is gen-
erated using the C-to-hardware compiler developed in [27] that
generates synthesizeable Verilog from QSCORE’s source code. Our
toolchain is built around the OpenIMPACT (1.0rc4) [20], CodeSurfer
(2.1p1) [7], and ANTLRWorks (1.3.1) [2] compiler infrastructures
and accepts a large subset of the C language, including pointers,
switch statements, and loops with break/continue. Below, we

I-$
CPU

L1

OCN

Scan Chain
Select

QsCore
QsCore

QsCore

QsCore

C
PU

L1 C
PU

L1

C
PU

L1

C
PU

L1 C
PU

L1

C
PU

L1

C
PU

L1

C
PU

L1

C
PU

L1 C
PU

L1

C
PU

L1

C
PU

L1 C
PU

L1

C
PU

L1 C
PU

L1

C
P
U

L1

QsCore

QsCore

Figure 8: QSCORE-enabled tiled architecture A QSCORE-
enabled system containing an array of tiles, each of which contains
many QSCORES connected via scan chains to the general-purpose
processor.

briefly overview the C-to-hardware compiler, focussing primarily
on how we extend the compiler to support QSCORES. For addi-
tional details on the compiler and specialized co-processor’s hard-
ware design, please refer to our previous work on conservation
cores [27].

The compiler builds the hardware’s datapath and control state
machine based on the data and control flow graphs of the QSCORE
source code in single static assignment [9] form. In addition to stan-
dard C data operators, our hardware compiler also supports QS-
CORE-specific operations such as ALU and data-selector (shown
as mux in Figure 5(d)). The configurable ALUs in a QSCORE’s
dataflow graph are instantiated as functional units in the hardware’s
datapath. The data-selectors become mux operators. To optimize a
QSCORE’s energy efficiency, the computation of the data-selector’s
inputs are predicated on the data-selector’s control signal. Hence,
based on the control signal, only one of the inputs is computed.

Memory operations in the dataflow graph are instantiated as load
or store units in the hardware datapath. The load-store units con-
nect to the same coherent data cache as the general-purpose pro-
cessor and perform the same memory operations in program order.
Synthesis For synthesis, we target a TSMC 45-nm GS process us-
ing Synopsys Design Compiler (C-2009.06-SP2) and IC Compiler
(C-2009.06-SP2). The toolchain processes synthesizeable Verilog
to generate placed-and-routed QSCORES.
Integrating QSCORES with a general-purpose processor In a
QSCORE-enabled system (Figure 8), each tile contains a general-
purpose processor, I-cache, D-cache, a set of QSCORES, and inter-
connect logic. On each tile, QSCORES are connected to a general-
purpose processor via scan chains. The general-purpose processor
passes input arguments, starts QSCORE execution, and reads QS-
CORE state via these scan chains. The scan chain interface is slow
but scales well, allowing us to connect 10s of QSCORES to a single
CPU. The QSCORES share the D-cache with the general-purpose
processor enabling data transfer through the L1 cache as well.
Performance and power measurements We use a cycle-accurate
simulator to evaluate the QSCORE-enabled system. Our simulator
models the complete system including the general-purpose proces-
sor, QSCORES, interconnect, runtime, and a coherent memory sys-
tem.

In order to measure QSCORE power usage, the simulator period-
ically samples execution and feeds these samples to Synopsys VCS
and Synopsys Primetime. We use processor and clock power val-
ues for a MIPS 24KE processor in TSMC 45 nm reported in [27].
Finally, we use CACTI 5.3 [23] for I- and D-cache power.

170

Figure 9: Impact of varying computational power of QSCORES
for common data structures The labels on the area and energy
curves show the ratio of area and energy requirements of the QS-
CORE set compared to that of fully-specialized circuits. The axes
show the ratio of area and energy versus a general-purpose core.

Figure 10: Scalability of QSCORE approach The graph shows
that relatively few QSCORES can support multiple commonly used
data structures, while c-cores need a new specialized processor for
each distinct functionality.

7. RESULTS
In this section we first evaluate our heuristic for QSCORE selec-

tion by comparing it to the optimal solution found via exhaustive
search. Next, we demonstrate that designing relatively few QS-
CORES is enough to support access operations for multiple com-
monly used data structures. Moreover, these QSCORES are an
order-of-magnitude more energy-efficient than general-purpose pro-
cessors. When targeting a diverse workload (Table 1), the data
show that QSCORES continue to provide ASIC-like energy effi-
ciency while significantly reducing the hardware resource require-
ments compared to fully-specialized logic. Furthermore, we demon-
strate that the QSCORE design methodology enables them to sup-
port legacy versions of their target applications as well. Finally, we
evaluate the energy efficiency of a QSCORE-enabled system com-
pared to conventional processors.

7.1 Evaluating the Selection Heuristic
In this section we evaluate our QSCORE selection heuristic (Al-

gorithm 1) against exhaustive search. For this study, we use a mi-
crobenchmark suite containing code for computing eight mathe-
matical functions:

P
i<n

i=0 i, n!, 2

n, a2n
,

P
i<n

i=0 a[i],
Q

i<n

i=0 i,P
i<n

i=0 |a[i]|, and counting the powers of 2 in an array.
To evaluate our selection heuristic, we build QSCORES using

Algorithm 1 and also using an exhaustive approach that designs all
255 possible QSCORES that can arise from merging subsets of the
eight programs.

We compare our algorithm to the exhaustive search approach un-
der different design constraint scenarios. These different scenarios
were formed by varying the area budget available for specialization
as well as by varying the relative importance assigned to each of
the eight computations. In each case, our heuristic built the exact
same set of QSCORES as exhaustive search.

The low computational complexity and good performance of our
selection algorithm allows it to scale to handle large workloads.
This ability is critical because we expect a system’s target workload
to be very large for general-purpose systems.

7.2 QSCORE Area and Energy Efficiency
In this section we evaluate the energy and area efficiency of QS-

CORES and their ability to trade-off between area requirement and

energy efficiency without compromising on the fraction of the sys-
tem execution that they support.
Targeting an application domain First, we created QSCORES
for the find, insert, and delete operations of several data stru-
cures – a linked-list, a binary tree, an AA tree, and a hash table.
The results (see Figure 9) demonstrate that our methodology in-
creases the computational power of QSCORES, significantly reduc-
ing the area requirement while minimally impacting QSCORE’s en-
ergy efficiency. The X-axis plots the number of QSCORES that
the toolchain designs to support all the data structure access opera-
tions. The X-axis values decrease from left to right, so the number
of computations that each QSCORE supports increases from left
to right. The left and right Y-axes show how our toolchain trades
off between area and energy efficiency. The results show that just
four QSCORES are enough support all the data structure operations
and that these QSCORES are 13.5⇥ more energy-efficient than our
baseline general-purpose processor.

The next experiment shows that our toolchain can provide hard-
ware support for an increasing number of functionalities without a
corresponding increase in the number of required specialized cores.
Figure 10 plots the number of computations supported in hardware
against the required number of distinct QSCORES. The data show
that just four QSCORES can support all these operations, while the
fully-specialized approach (c-cores) would need to design eleven
specialized cores. This 63% decrease in the required number of
specialized cores allows us to closely integrate hardware support
for a greater number of features in a processor’s pipeline. For
example, for our scan-chain-based interconnect design, QSCORES
reduce the interconnect overhead (measured as the number of con-
nections between the CPU and all the specialized cores) by 54%
compared to ASICs.
Targeting a general-purpose workload In this section, we de-
sign and evaluate QSCORES for the hotspots from our diverse work-
load listed in Table 1. The results are shown in Figure 11. The
X-axis plots the number of QSCORES required to cover all the ap-
plication hotspots. The left-most point on the X-axis corresponds
to fully-specialized logic, and QSCORE’s computational power in-
creases from left to right. The results show that our toolchain
can reduce the number of specialized co-processors required to
cover all application hotspots by over 50%. Also, QSCORES re-

171

Figure 11: Impact of varying the computational power of QS-
CORES targeting a diverse workload Merging QSCORES reduces
area requirements much more quickly than it impacts efficiency.

Figure 12: QSCORES vs. ASICs QSCORES can trade-off between
energy efficiency and area requirements more effectively than fully-
specialized logic because QSCORES can save area by increasing
computational power rather than removing functionality.

duce the total area requirements by 22% compared to that of fully-
specialized hardware, while incurring a 27% increase in energy
consumption. The first few merges result in area reduction with-
out any impact on power consumption. This is because leakage en-
ergy goes down as the area is reduced and that offsets any increase
seen in dynamic energy. For subsequent merges, our approach en-
sures that energy-efficiency degrades gracefully with decrease in
the total area budget. These results show that our toolchain can ef-
fectively reduce hardware redundancy while providing ASIC-like
energy-efficiency.

Figure 12 demonstrates that compared to the recently-proposed
conservation core approach [27], QSCORES give up very little ef-
ficiency in return for substantial area savings. The X-axis plots
area compared to implementing our workloads in fully-specialized
logic. The Y-axis plots energy efficiency relative to our baseline
processor. As the area budget decreases (left to right on the X-axis),
our toolchain designs QSCORES with greater computational power
to ensure that the QSCORES continue to cover all the application
hotspots. This increase in the generality of QSCORES enable them
to provide significant energy efficiency even as the area budget de-
creases, unlike the fully-specialized logic that sees a 4⇥ decrease
in energy efficiency.

7.3 Backward Compatibility for QSCORES
Finally, we evaluate QSCORE’s ability to support older applica-

tion versions. Although hardware designers will build QSCORES
for the latest version of each target application, they may want the
QSCORES to support older versions as well. To provide this back-
ward compatibility, our toolchain merges the older application ver-
sions with the latest version and builds one QSCORE for them.

Previous work [27] presented reconfigurability mechanisms to
support newer (and older) application versions. Figure 13 presents
QSCORE’s energy-efficiency across application versions and com-
pares it to that of the technique proposed in [27]. The Y-axis plots
the energy efficiency compared to our baseline MIPS processor.
The results show that QSCORES provide significant energy effi-
ciency improvements compared to the baseline processor for all
the application versions and can be up to 7⇥ more energy-efficient
than conservation cores for older application versions. Also, for the
latest application version, QSCORES are almost as energy-efficient
as the prior approach (less than 10% difference on average).

7.4 Application-Level Energy Savings
This section compares the energy efficiency and energy-delay of

a QSCORE-enabled system to that of a conventional tiled system.
The QSCORE-enabled system consists of 12 QSCORES and tar-
gets the workload shown in Table 1. This experiment models the
complete system including the overheads involved in accessing the
runtime system and the overheads for offloading computations to
the QSCORES. Figure 14 summarizes the QSCORE characteristics.
Figure 15 shows that the QSCORE-enabled system can provide sig-
nificant energy efficiency improvements compared to the baseline
system. The data show that, at the application level, QSCORES save
45% of energy on average compared to a MIPS processor, and the
savings can be as high as 79%. Also, QSCORES reduce applica-
tion energy-delay product by 46% on average. The energy savings
for these QSCORE-enabled systems are significant, and the energy
efficiency will only improve as the transistor budget available for
specialization increases.

8. CONCLUSION
Technology scaling trends will continue to increase the number

of available transistors while reducing the fraction that can be used
simultaneously. To effectively utilize the increasing transistor bud-
gets, we present QSCORES, specialized co-processors that can sup-
port multiple general-purpose computations and can provide signif-
icant energy efficiency compared to a general-purpose processor.
Our toolchain synthesizes QSCORES by leveraging similar code
patterns that exist within and across applications. Given a target ap-
plication set and an area budget, our toolchain can trade off between
the computational power of individual QSCORES and the area they
require, while maximizing energy savings. The results show that
our approach can distill the operator functions of multiple com-
monly used data structures down to just four distinct computation
patterns. Moreover, the QSCORES designed to support these pat-
terns provide 13.5⇥ more energy efficiency than a general-purpose
processor. On a more diverse workload, our approach reduces the
required number of specialized cores by over 50% and occupies
25% less area compared to fully-specialized circuits, while provid-
ing up to 25⇥ more energy-efficiency than general-purpose proces-
sors.

172

Figure 13: Building QSCORES for backward compatibility The
energy-efficiency of the older application versions improves signif-
icantly (up to 7⇥) with minimal impact on that of newer ones.

Average QSCORE power 6.7 mW
Average QSCORE energy efficiency 23.23⇥
(compared to baseline CPU)
Average execution time 8951 cycles
per QSCORE invocation
Average invocation overhead 316 cycles
Average system execution 4.41%
coverage per QSCORE
Average QSCORE area 0.041 mm2

Figure 14: QSCORE statistics for workload shown in Table 1

MCF Bzip2 Twolf LibQuan.. SAT Radix Cjpeg Djpeg CMY YIQ Dispari..Trackin..Average

N
or

m
al

iz
ed

 A
pp

lic
at

io
n

En
er

gy

0

0.2

0.4

0.6

0.8

1

1.2

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
56

0.
21

0.
64

0.
57 0.

64

0.
44 0.

52

0.
80

0.
68

0.
41

0.
60

0.
58

0.
55

in
 S

W

in
 S

W

in
 S

W

in
 S

W

in
 S

W

in
 S

W

in
 S

W

in
 S

W

in
 S

W

in
 S

W

in
 S

W

in
 S

W

in
 S

W

on
 Q

sC
or

e

on
 Q

sC
or

e

on
 Q

sC
or

e

on
 Q

sC
or

e

on
 Q

sC
or

e

on
 Q

sC
or

e

on
 Q

sC
or

e

on
 Q

sC
or

e

on
 Q

sC
or

e

on
 Q

sC
or

e

on
 Q

sC
or

e

on
 Q

sC
or

e

on
 Q

sC
or

e

D−Cache Dynamic Core Dynamic QsCore Dynamic D−Cache Clock

Core Clock D−Cache Leakage Core Leakage QsCore Leakage

Figure 15: QSCORE-enabled system energy efficiency The graphs show the energy and EDP reductions by QSCORES compared to an
in-order, power-efficient MIPS core (“SW”). Results are normalized to running on the MIPS core (lower is better). The QSCORES can
reduce the application energy consumption and energy-delay product by up to 79% and 83%, respectively.

173

Specialization has emerged as an effective approach to combat
the dark silicon phenomenon and enable Moore’s law-style sys-
tem performance scaling without exceeding the power budget. QS-
CORES allow designers to provide this specialization in a scalable
manner by improving the computational power of specialized pro-
cessors such that a relatively few of them, combined, can support a
significant fraction of a system’s execution.

9. REFERENCES
[1] U. D. Bordoloi, H. P. Huynh, S. Chakraborty, and T. Mitra.

Evaluating design trade-offs in customizable processors.
DAC ’09, pages 244–249, New York, NY, USA, 2009. ACM.

[2] J. Bovet and T. Parr. ANTLRWorks: An ANTLR grammar
development environment. Softw. Pract. Exper.,
38(12):1305–1332, 2008.

[3] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai. Single-chip
heterogeneous computing: Does the future include custom
logic, FPGAs, and GPGPUs? In MICRO, pages 225–236,
Washington, DC, USA, 2010. IEEE Computer Society.

[4] N. Clark, A. Hormati, and S. Mahlke. VEAL: Virtualized
execution accelerator for loops. ISCA, 0:389–400, 2008.

[5] N. Clark, B. Jason, M. Chu, S. Mahlke, S. Biles, and
K. Flautner. An architecture framework for transparent
instruction set customization in embedded processors. ISCA,
pages 272–283, Washington, DC, USA, 2005. IEEE
Computer Society.

[6] N. Clark, H. Zhong, and S. Mahlke. Processor acceleration
through automated instruction set customization. MICRO-36,
pages 129–140, 3-5 Dec. 2003.

[7] CodeSurfer by GrammaTech, Inc.
http://www.grammatech.com/products/codesurfer/.

[8] J. Cong, Y. Fan, G. Han, and Z. Zhang. Application-specific
instruction generation for configurable processor
architectures. FPGA ’04, pages 183–189, New York, NY,
USA, 2004. ACM.

[9] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. An efficient method of computing static single
assignment form. In POPL ’89: Proceedings of the 16th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 25–35. ACM Press, 1989.

[10] Embedded Microprocessor Benchmark Consortium.
EEMBC benchmark suite. http://www.eembc.org.

[11] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam,
and D. Burger. Dark silicon and the end of multicore scaling.
In Proceeding of the 38th Annual International Symposium
on Computer Architecture, ISCA ’11, pages 365–376, New
York, NY, USA, 2011. ACM.

[12] K. Fan, M. Kudlur, G. S. Dasika, and S. A. Mahlke. Bridging
the computation gap between programmable processors and
hardwired accelerators. In HPCA, pages 313–322, 2009.

[13] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. ACM Trans.
Program. Lang. Syst., 9(3):319–349, 1987.

[14] N. Goulding, J. Sampson, G. Venkatesh, S. Garcia,
J. Auricchio, J. Babb, M. B. Taylor, and S. Swanson.
GreenDroid: A mobile application processor for a future of
dark silicon. In Hot Chips, 2010.

[15] N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia,
J. Auricchio, P.-C. Huang, M. Arora, S. Nath, V. Bhatt,
J. Babb, S. Swanson, and M. B. Taylor. The GreenDroid
mobile application processor: An architecture for silicon’s
dark future. IEEE Micro, 31(2):86 –95, March/April 2011.

[16] R. Hameed, W. Qadeer, M. Wachs, O. Azizi,
A. Solomatnikov, B. C. Lee, S. Richardson, C. Kozyrakis,
and M. Horowitz. Understanding sources of inefficiency in
general-purpose chips. In Proceedings of the 37th annual
international symposium on Computer architecture, ISCA
’10, pages 37–47, New York, NY, USA, 2010. ACM.

[17] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki.
Toward dark silicon in servers. IEEE Micro, 31:6–15, 2011.

[18] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent
subgraphs in the presence of isomorphism. In ICDM ’03:
Proceedings of the Third IEEE International Conference on
Data Mining, page 549, Washington, DC, USA, 2003. IEEE
Computer Society.

[19] V. Kathail, S. Aditya, R. Schreiber, B. Ramakrishna Rau,
D. Cronquist, and M. Sivaraman. PICO: Automatically
designing custom computers. Computer, 35(9):39–47, Sep
2002.

[20] OpenImpact. http://gelato.uiuc.edu/.
[21] J. Sampson, G. Venkatesh, N. Goulding-Hotta, S. Garcia,

S. Swanson, and M. B. Taylor. Efficient complex operators
for irregular codes. In HPCA ’11: Proceedings of the 17th
IEEE International Symposium on High Performance
Computer Architecture, pages 491–502, February 2011.

[22] SPEC. SPEC CPU 2000 benchmark specifications.
[23] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P.

Jouppi. CACTI 5.1. Technical Report HPL-2008-20, HP
Labs, Palo Alto, 2008.

[24] D. A. D. Tompkins and H. H. Hoos. UBCSAT: An
implementation and experimentation environment for SLS
algorithms for SAT and MAX-SAT. In SAT, pages 37–46,
2004.

[25] F. Vahid, G. Stitt, and R. Lysecky. Warp processing:
Dynamic translation of binaries to FPGA circuits. Computer,
41:40–46, 2008.

[26] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie,
S. Garcia, S. Belongie, and M. B. Taylor. SD-VBS: The San
Diego Vision Benchmark Suite. IISWC, 0:55–64, 2009.

[27] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia,
V. Bryksin, J. Lugo-Martinez, S. Swanson, and M. B. Taylor.
Conservation cores: Reducing the energy of mature
computations. In ASPLOS, pages 205–218, New York, NY,
USA, 2010. ACM.

[28] A. Wang, E. Killian, D. Maydan, and C. Rowen.
Hardware/software instruction set configurability for
system-on-chip processors. In DAC, pages 184–188. ACM
Press, 2001.

[29] S. Yehia, S. Girbal, H. Berry, and O. Temam. Reconciling
specialization and flexibility through compound circuits. In
HPCA, pages 277–288, 2009.

174

	Binder1p 01-05
	Paper - 01

	Paper - 15p

