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Abstract
Microfluidic devices promise to automate wetlab procedures
by manipulating small chemical or biological samples. This
technology comes in many varieties, all of which aim to
save time, labor, and supplies by performing lab protocol
steps typically done by a technician. However, existing mi-
crofluidic platforms remain some combination of inflexible,
error-prone, prohibitively expensive, and difficult to pro-
gram.
We address these concerns with a full-stack digital mi-

crofluidic automation platform. Our main contribution is a
runtime system that provides a high-level API for microflu-
idic manipulations. It manages fluidic resources dynamically,
allowing programmers to freely mix regular computation
with microfluidics, which results in more expressive pro-
grams than previous work. It also provides real-time error
correction through a computer vision system, allowing ro-
bust execution on cheaper microfluidic hardware. We im-
plement our stack on top of a low-cost droplet microfluidic
device that we have developed.
We evaluate our system with the fully-automated exe-

cution of polymerase chain reaction (PCR) and a DNA se-
quencing preparation protocol. These protocols demonstrate
high-level programs that combine computational and flu-
idic operations such as input/output of reagents, heating of
samples, and data analysis. We also evaluate the impact of
automatic error correction on our system’s reliability.
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1 Introduction
Microfluidic technology facilitates the automation of chemi-
cal and biological protocols. These devices manipulate small
quantities of liquid at smaller scales and with higher pre-
cision than humans. Laboratories can use these devices to
save time, labor, and supplies. Outside of the lab, microfluidic
automation also promises to advance fields like medicine,
education, and molecular computation/storage.
Despite these promises, microfluidics are still not uni-

versal. Different microfluidic technologies (covered in Sec-
tion 2) have different drawbacks including high cost, inflexi-
bility, high error rate, and difficulty to users. Until a system
stack addresses these concerns, general-purpose microflu-
idic automation will remain inaccessible to all but experts in
resource-rich labs.
Aside from the above concerns, most existing work on

microfluidics has focused on automating individual proto-
cols, i.e. given a fixed set of inputs, manipulate them in some
way to produce an output. While this is certainly an impor-
tant component, we picture a greater role for microfluidics.
These devices are the bridge between computation and the
world of chemistry and biology. However, the role of com-
putation in these systems has typically been limited to that
of a microcontroller or synthesis tool.
If we instead view microfluidic devices as part of a het-

erogeneous computer system, we can begin to close loops
that otherwise require human intervention. Instead of exe-
cuting a pre-determined list of operations and reporting the
output, the heterogeneous system can use information from
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sensors to dynamically make decisions. This combination of
fluidic manipulation and computation is critical for emerg-
ing applications which depend on biology “in the loop”, e.g.,
molecular data storage and computation [10, 17, 38, 45, 52]
or automated experimentation [33–35, 48, 51].
We present a full-stack, open-source1 microfluidics sys-

tem with a new high-level programming model that allows
unrestricted combination of computation and fluidics. In-
stead of a new programming language, we introduce Puddle,
a runtime system that provides microfluidic manipulations
through an API. Puddle controls PurpleDrop, an affordable
general-purpose microfluidic device with novel capabilities
that executes the fluidic portions of programs. Users write
programs against the Puddle API using Python (or the lan-
guage of their choice), and Puddle dynamically manages the
fluidic resources and provides transparent error correction
using a computer vision system.
Puddle’s key innovation is its dynamic approach to re-

source (i.e., fluidic) management, a fundamental problem in
microfluidic programming. Existing work takes a more static
approach, trading off programming expressiveness for the
ability to statically plan microfluidic execution. Solutions
compete on metrics such as synthesis time, placement and
routing efficiency, and simulation ticks to completion. This
static approach comes at the cost of excluding or restricting
programming features such as data structures, loops, func-
tions. Puddle comes from the other side of the design space;
we maximize expressiveness and ease-of-use while trading
off some efficiency and ahead-of-time guarantees.
Our dynamic approach is more flexible than previous

work, allowing both the system and the user to gather and
react to data from the fluidic domain. These data-driven
decisions occur at three levels (see Figure 1):

• Execution-level decisions ensure that the program is
run as intended, e.g., error detection and correction.

• Protocol-level decisions allow protocols to conditionally
take action, e.g., replenishing a liquid that may have
evaporated

• Application-level decisions allow high level user code to
make decisions based on protocol output, e.g., deciding
what experiment to run next based on data analysis.

We demonstrate all three types of decisions in our evaluation.
Puddle and PurpleDrop constitute a complete system stack

for microfluidic programming. While the design of the run-
time system is our main contribution, the full-stack nature
of the work necessitates advances at all levels:

• We present Puddle, a runtime system that provides a
high-level microfluidic API. Puddle allows for more
expressive programs than previous work, including
the unrestricted combination of fluidic manipulation
and computation.

1Both the Puddle software and the PurpleDrop hardware are open-source
and available at http://puddle.bio
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Figure 1. Puddle and PurpleDrop provide a full stack pro-
gramming system for digital microfluidics. Users program
in Python where they can combine Puddle’s primitives
into higher-level, domain specific operations. Programs go
through the syscall-like API, allowing the Puddle system to
plan, optimize, and control execution on the microfluidic de-
vice. PurpleDrop provides a low-cost target device. Feedback
gives the system and the user flexibility at the execution,
protocol, and application levels.

• We present PurpleDrop, a simple and affordable digi-
tal microfluidic device. Together with peripherals for
heating, fluidic input/output, and volume measure-
ment, PurpleDrop more is capable than comparable
designs from the literature.

• We implement and evaluate a computer vision system
for error-correction that is more flexible than previous
work.

• We demonstrate fully automated, closed-loop execu-
tion of two important protocols in synthetic biology.
These include protocol-level conditional action and
application-level decisions.

Section 2 covers the relevant background on microfluidic
hardware and software. Section 3 introduces the Puddle API
with an example. Section 4 describes the implementation and
our custom microfluidic device. In Section 5, we evaluate the
error correction component of our system in isolation, and
we demonstrate the end-to-end system with the first fully-
automated execution of two synthetic biology protocols on a
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digital microfluidic device. Section 6 discusses related work.
Section 7 concludes with a discussion of the benefits and
trade-offs of our dynamic approach and finally a mention of
future work.

2 Background
2.1 Applications for Microfluidics
Microfluidic devices have broad applications, from medical
devices [14] to tools for education or entertainment [2, 57].
Instead of breadth of applications, we want to highlight the
different levels of complexity at which microfluidics can
play a role, and how that role impacts the requirements of a
microfluidic system.

Protocol automation As mentioned in the introduction,
the primary (and most obvious) use for microfluidic devices
is to automate well-specified chemical or biological protocols.
These protocols are typically specified in natural language,
but they are precise enough to be executed by technicians
other than the authors [31]. In fact, many of these protocols
are distributed with the supplies (e.g., here are the steps to
prepare sample X for process Y).
These encapsulated, well-specified protocols are ripe for

expression as programs. Others have noted that automation
offers not only convenience and savings, but it can prevent
human error stemming from lack of precision and natural
language ambiguity [47]. Most existing work on microfluidic
software focuses on this level of application complexity (see
Section 2.3).

Automated experimentation Performing individual pro-
tocols on a microfluidic device saves a lab technician time
and effort. However, just like in computer systems, many
tasks in the lab involve many repetitive actions coordinated
by data-driven decisions. These situations call for a pro-
gramming model that can compose fluidic protocols with
general-purpose computation.

The field of automated experimentation has aspired to pro-
duce systems that can propose hypotheses, design and run
experiments, and analyze data [33, 34, 48, 51]. These efforts
rely on liquid handling robots and have therefore focused
on drug discovery, a domain with the resources to afford
high-throughput automation. While microfluidics could be
a promising replacement for the execution layer, the pro-
gramming model must be able to handle the computation
side. These systems rely on a broad variety of techniques
from logic programming [33] to program synthesis [35] to
design experiments. Current microfluidic programming sys-
tems (covered in Section 2.3) lack the flexibility to combine
fluidic control with such broad computational needs.

Molecular data storage and computing The field of com-
puter science has taken notice of synthetic biology as a
future substrate for data storage and computation. By in-
terpreting molecules as data, molecular operations promise

(a) Channel-based
microfluidic device.
[55]

(b) Liquid handling
robot. [44]

(c) PurpleDrop, our
digital microfluidic
device.

Figure 2. Microfluidic technologies come in many shapes
and sizes, each offering different advantages.

massive storage density [12, 17, 38] or parallel computation
[45, 52, 63].
Integrating these molecular components into heteroge-

neous computer systems requires microfluidics. The full life
cycle of the data, including encoding, writing (intomolecules),
operating, reading back, and decoding must be fully auto-
mated.

2.2 Microfluidic Hardware
Microfluidic technologies all center around the manipula-
tion of small fluid volumes, but different approaches offer
different trade-offs between cost, flexibility, and reliability.
On one end of the spectrum, channel-based devices (Fig-

ure 2a) offer high precision and low cost at scale. These
devices move liquids through a fixed set of channels, so they
are single-purpose by nature. Similar to ASICs in computer
systems, channel-based devices are used in situations where
the application is static enough to overcome the initial de-
sign and manufacturing cost. Some channel-based devices
incorporate configurable valves for some degree of flexibility
[5, 42].

Liquid handling robots (Figure 2b) are more general, aim-
ing to emulate a lab technician anthropomorphically with
robotic arms controlling pipettes. In theory, these systems
can be programmed to do anything a human can, but their
flexibility comes at a size and monetary cost (thousands up
to hundreds of thousands of dollars).
Digital microfluidic (DMF) technology (Figure 2c) offers

flexibility at small size and potentially at low cost. DMF de-
vices manipulate individual droplets of liquids on a grid of
electrodes, taking advantage of a phenomenon called elec-
trowetting on dielectric [43]. Activating electrodes in cer-
tain patterns can move, mix, or split droplets anywhere on
the chip. Figure 3 shows how our DMF device, PurpleDrop,
moves droplets by activating electrodes in sequence. The
droplets can move through either an oil or air medium.

The discrete nature of handling individual droplets makes
DMF devices more flexible than channel-based devices; think
of a CPU compared to fixed-function ASICs. Unfortunately,
the hardware itself can suffer from high failure rates [11].
The physics of electrowetting rely on a hydrophobic surface
that can wear out, and it also involves high voltage electronic
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Figure 3. Side view of the PurpleDrop DMF device. Elec-
trodes (yellow) sit at the top of the PCB (purple) in a grid.
The PCB is topped with a dielectric and hydrophobic layer.
The top plate sits on risers and is also hydrophobic and con-
ductive. Droplets are attracted to the activated electrodes
(shown with diagonal lines). Activating the neighboring elec-
trode will move a droplet.

components, which can be prone to shorts or contact issues,
and also cause dielectric layer breakdown. Either of these
complications can result in partial system failures where
regions of the board become inaccessible or unusable.

2.3 Controlling DMF devices
The “machine language” that controls DMF devices is little
more than turning individual electrodes on or off. To move
a droplet from one location to another, a controller must
activate the electrodes along that path in sequence. This
sequence of electrode actuations explicitly refers to locations
on the board, and there is no notion of the identity, properties,
or even the existence of the droplets. A better programming
model allows high-level operations such as those shown in
Figure 4, and the tool plans where those operations should
occur and how the droplet operands get there.

Existing work has tackled these problems with place-and-
route techniques from VLSI [8, 19, 20, 27, 32, 46, 61, 64]. The
input to these tools is a directed acyclic graph that encodes
the data dependencies of the operations. Figure 4 shows a
pseudo-code snippet along with the corresponding DAG.
Tools can take such a DAG and, together with the layout of
the DMF chip, automatically determine when and where to
execute each operation. The tool then plans routes for every
droplet so that they do not collide on the way. Importantly,
this is all done ahead of time: the tool statically determines
if executing a given DAG on a given chip is possible. How-
ever, DAGs do not naturally express constructs found in
programming like conditionals, loops, or functions.
Other approaches have proposed domain specific lan-

guages (DSLs) to increase expressiveness [6, 15, 20, 21, 39].
A DSL can support features like data-dependent control flow,
which is necessary if a fluidic program is expected to act
on the value of a sensor reading. However, compiling or
interpreting microfluidic programs in these languages in-
troduces a fundamental trade-off between the flexibility of

a = input(substance_A)

b = input(substance_B)

ab = mix(a, b)

heat(ab)

INPUT A
time 0–2
port (0,2)

INPUT B
time 0–2
port (0,4)

MIX
time 2–5
cell (2,4)

HEAT
time 5–9
cell (5,6)

Figure 4. Pseudocode for fluidic a program fragment and
the corresponding DAG where the operations have been
scheduled and placed.

available programming constructs and the ability to statically
reason about the program. In order to statically place and
route a protocol, a system must be able to prove the protocol
only uses resources that the hardware can supply. To meet
this requirement, existing work has limited or eliminated
programming features that allow potentially unbounded re-
source usage (e.g., loops, data structures, recursive functions,
and error detection and recovery).

3 Dynamic Microfluidic Programming
The vision put forward in this paper calls for a microfluidics
platform that can combine computation and fluidic manip-
ulation in an unrestricted, high-level programming model.
Our microfluidic programming system, Puddle, realizes this
vision by making a different trade-off than previous work
in microfluidics and doing everything dynamically. This de-
cision is based on the following key insight: when it comes
to resource management, expressiveness comes from dy-
namism. As a result, Puddle is not a programming language
but a runtime system that provides a high-level API for mi-
crofluidic manipulations. The runtime system dynamically
manages the fluidic resources (droplets), imposing no restric-
tions on the user’s programming model.
This section serves as an introduction to the Puddle API,

detailingwhat it provides to the programmer and the runtime
system implementer. Section 4 explains the implementation,
and Section 7 discusses the benefits and trade-offs of our
approach.

3.1 Example
While the Puddle API is language-agnostic (we provide fron-
tends in both Rust and Python), we focus on the Python fron-
tend for this paper. Python immediately satisfies many of the
requirements for an effective microfluidic programming so-
lution. Python is popular with beginning programmers [22],
and it is also the language of choice for many scientists due
to the wealth of libraries for scientific computation [30] and
bioinformatics [13]. Python also has a read-eval-print-loop
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1 # reduce is a functional fold over lists

2 from functools import reduce
3

4 def mix_n_heat(droplets):

5 vol_before = sum(
6 d.volume for d in droplets

7 )

8 stuff = reduce(mix, droplets)

9 stuff.heat(temp=90, seconds=60)

10 if stuff.volume < vol_before:

11 print("we lost some volume!")

12 return stuff

13

14 a = input("substance a", volume=1.0)

15 b = input("substance b", volume=2.0)

16 c = input("substance c", volume=1.5)

17 abc = mix_n_heat([a, b, c])

Figure 5. A example Python program interfacing with Pud-
dle. Puddle API calls are underlined.

(REPL), allowing users to interactively write (microfluidic or
conventional) programs.
Consider the program snippet in Figure 5. Users write

regular Python programs that interface with Puddle through
a simple library that implements the Puddle API (fully de-
scribed in Section 3.2). Python snippets shown throughout
the paper will have calls into Puddle underlined.
Starting at line 14, the user inputs three samples of var-

ious volumes. These inputs take the substance name and
requested volume of the sample. Larger droplets may span
multiple electrodes, but Puddle handles that automatically.
The inputs return opaque handles to the new droplets called
droplet ids. The user then calls mix_n_heat with a list con-
taining the three droplet ids as an argument. Note that mix_n_heat
is regular Python function and thus is completely transpar-
ent to the Puddle system; it could be recursive, exported or
imported from a library, or passed around as a first-class
value.

Inside mix_n_heat, the user calculates the expected vol-
ume of mixing all the droplets together by adding their in-
dividual volumes. The droplets are then all mixed together
by reducing the list with mix, resulting in a new droplet id
stuff. The call to heat then mutates stuff. The user then
compares the droplet’s new volume (which may have shrank
due to evaporation) to the expected one, conditionally prints
something, and then returns a handle to the mixed, heated
droplet.

The API calls to input, mix, and heat were non-blocking.
They immediately returned new droplet ids without actu-
ally manifesting the droplets that those ids represent, which

Fluidic I/O
input(name, volume)→ d
output(name, d)

Sensing
volume(d)→ volume of d
temperature(d)→ temp. of d

Fluidic Manipulation
mix(d1, d2) → d
split(d)→ (d1, d2)
heat(d , temp, time)→ d ′

Other
flush(d1,d2, ...)

Figure 6. The Puddle API. ds are droplet ids, opaque handles
to droplets. All calls are non-blocking except for those under
Sensing.

might take several seconds. All manipulations and actuations
are non-blocking in Puddle, because the user has no way to
inspect their progress except through other API calls. Non-
blocking calls give the runtime system more flexibility in
how to implement operations on the microfluidic device. For
example, even though mix is binary in the API, the runtime
system can see that the user intends to mix many droplets
together, which could lead to more efficient execution.
In contrast, the accesses to volume on lines 5 and 10 are

blocking; they are also the only points at which something
happens on the microfluidic device. The volume of a droplet
is a dynamic property: it cannot (in general) be known stati-
cally, as precision errors in input and actuations like heat
might change it. These calls must block and wait for the
system to produce the relevant droplets and take the sensor
reading, because the return value is just a number that the
user’s program (which Puddle knows nothing about) can
manipulate and branch on.

3.2 Programming Interface
The API’s most important feature is that it deals in opaque
handles to droplets called droplet ids. The user cannot intro-
spect on these ids (they are just numbers), so all queries and
manipulations of droplets must go through the API. There-
fore, Puddle is free to reorder, optimize, or delay performing
the requested operations, allowing many calls in the API
to be non-blocking. This opacity also allows Puddle to pro-
vide automatic error correction and process-like isolation
for concurrency.
The complete Puddle API is listed in Figure 6. The calls

for fluidic I/O and manipulation are non-blocking; they im-
mediately return a fresh droplet id. The fluidic I/O calls are
indexed by a name, which refers to an input pump based on
a configuration file with the hardware details. The fluidic
manipulation functions are self-explanatory. Note that they
are functional, consuming their droplet id arguments and
returning new ones. The frontend, however, is free to wrap
the API calls to provide an idiomatic interface: for example,
heat was used imperatively in Figure 5.
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The sensing API calls force the system to “flush the queue”
by performing the operations necessary to make the in-
put droplet. The volume operation reads the volume using
the camera (see Section 4.3). The temperature operation
measures the temperature using an onboard sensor. In our
Python frontend, volume and temperature are getters.
The flush operation allows the user to manually force

to realize the specified droplets (or all of them, if none are
given), which is useful in interactive programming. This
can also be useful to inform Puddle of parallelism it would
otherwise not see, as seen at the end of Section 7.2.
Users can easily extend the Puddle API with their own

actuation and sensing primitives. The mechanism for allocat-
ing space on the device (Section 4.2.2) is sufficiently general
to implement any primitive that the hardware might support.

3.3 Handling Errors
API calls can fail instantaneously for two reasons: invalid
arguments or using a consumed droplet id. These failures
happen as soon as the API call is made and are recoverable;
the error propagates back to the user (in the form of an
exception in the Python frontend). Consider the following
code snippets:

input("water", 1e-10)
ab = mix(a, b)

mix(ab, a)

The left snippet demonstrates an invalid argument by try-
ing to input too small a volume of fluid; the pumps do not
have that level of precision. The right snippet reuses droplet
id a after it has been consumed on the first line. Droplets are
physical resources that can only be consumed once. All API
calls under “I/O” and “manipulation” consume their droplet
arguments. It is the programmer’s responsibility to not reuse
droplets ids that have been consumed. An imperative inter-
face (like heat in Figure 5) can help prevent this problem
by changing the droplet id that the wrapper object refers to.
The Rust frontend statically prevents droplet reuse through
its ownership-based type system.
Additionally, hardware failures may occur during execu-

tion, making droplets not move or actuate as planned. Most
of these are automatically detected and corrected by Pud-
dle’s error correction system (described in Section 4.3). In
rare cases, however, an error can result in a situation that is
unrecoverable (e.g. the number of failed electrodes prevents
routing). Because actuation API calls are non-blocking, the
program may have progressed with the assumption that the
promised droplets will be actually produced. Therefore, Pud-
dle treats this case as unrecoverable and throws an exception
to the user.

4 Implementation
Our implementation spans three levels of the stack shown
in Figure 1: a frontend that facilitates high-level microfluidic
programming against the Puddle API, the Puddle runtime

A
B

C

D E

F

G

Figure 7. PurpleDrop, our digital microfluidic device. The
motherboard PCB (A) contains the electronic components,
and the daughterboard (B) contains the electrodes and the
hydrophobic surface detailed in Figure 3. The device supports
heaters on the bottom three electrodes (C). We can drive up
to three pumps (D) that can input or output fluids on the edge
of the device (E). PurpleDrop is controlled by a Raspberry Pi
over the 40-pin connector (F). The Raspberry Pi connects to
a camera on a 3D-printed mount (G).

system which implements the API detailed in Section 3.2,
and PurpleDrop, the DMF device which Puddle controls.
The interface and programming model were covered in the
previous section; here we detail the implementation of the
hardware and runtime system.

4.1 PurpleDrop DMF Device
We designed our digital microfluidic device, PurpleDrop,
with simplicity and accessibility in mind. All together, the
components cost on the order of $300, orders of magnitude
less than most other microfluidic systems. Furthermore, the
design uses commodity components and does not require
a clean room, so anyone with electronics experience could
assemble PurpleDrop on their own or have it assembled
by a PCB assembly service. Figure 7 shows the device and
enumerates its components.

DMF hardware The DMF portion of PurpleDrop is respon-
sible for holding and manipulating the droplets. The daugh-
terboard contains the electrodes that hold the droplets, and
the motherboard contains the electrical components such as
high-voltage controllers, shift registers, etc. Both mother and
daughterboard are PCBs. The daughterboard is removable,
allowing different configurations of electrodes with the same
motherboard. The modularity is also useful for durability, as
the daughterboard is the most prone to wear.
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PurpleDrop’s design was inspired by OpenDrop [2], an
existing open-source DMF platform. Unlike OpenDrop, Pur-
pleDrop runswithout an oil medium for easier setup. Figure 3
shows a side view of the PurpleDrop daughterboard.

Electronic control Instead of using a microcontroller to
drive the electronics needed for electrowetting, we use a
Raspberry Pi 3B [1] single-board computer. The Raspberry
Pi runs Linux and sports a quad-core 1.2 GHz ARMv7 pro-
cessor as well as GPIO pins, allowing PurpleDrop to be a
self-sufficient microfluidics platform. The control software
actuates the electrodes on the daughterboard with the GPIO
pins through some shift registers on the motherboard. The
execution planning (Section 4.2) and computer vision for
error correction (Section 4.3) also run on-device, so no host
machine is needed.

Peripherals Microfluidic devices can move and mix liquid
samples, but possible applications are limited without the
ability to sense and manipulate properties of the droplets
and get droplets to and from the device. PurpleDrop includes
a heater, temperature sensor, and the ability to do both input
and output of droplets. Input and output are driven by small
peristaltic pumps which carry droplets to/from test tube
reservoirs or other devices. Section 5.4 demonstrates using
fluidic IO to interface with a DNA sequencer.
PurpleDrop also uses a camera mounted on top of the

device as a multi-purpose sensor. The camera detects the lo-
cations of the droplets for error correction. Other approaches
like capacitive sensing [7] would increase the hardware cost,
where as the camera is relatively cheap. The camera can
also sense the volume of droplets, which is useful for certain
protocols like that shown in Section 5.3. Droplet volume is
computed by multiplying the area of the droplet in the image
by the fixed distance between the board and the top plate
(see Figure 3).

4.2 Planning and Execution
Because all the complications of a programming language
(loops, function calls, conditionals) are handled at the user
level, the internals of Puddle are concerned only with the
planning and execution of API calls. Note that we do not
use any of the existing algorithms that might guarantee
optimal routing or extract parallelism. This decision was
made primarily to simplify implementation, but also because
none of ourmicrofluidic needs demand that level of efficiency.
Section 7.3 discusses how we could incorporate this body of
work into our system.

Figure 8 shows the entire lifetime of an API call. The first
step is reification into a command, the object used inter-
nally to represent a request from the user. The remainder of
the flow operates on these command objects. All types of
commands (input/output, sensing, actuation) go through the
same flow, so a user can extend Puddle with a new primitive

API Call Plan Simulate
& Record Execute

RollbackReplan

FinalizeReject
bad arguments

Reject
infeasible

Crash
not recoverable

reify Accept
return droplet id
if non-blocking

detect
error

Figure 8. The life of a command. Dashed edges end the flow
immediately. Commands may be rejected if the API call was
malformed or a feasible execution plan cannot be found.
The user can recover from rejected commands, but not from
failures to replan accepted ones.

without modifying the planning and execution infrastruc-
ture.

4.2.1 API Calls to Commands
Commands store the operations’ arguments, input droplet
ids, and freshly created output droplet ids for droplet manipu-
lation operations. These output droplet ids correspond to the
droplets that command will make if successfully executed.
After the command is created and planned, the system can
return these ids if the API call was non-blocking, allowing
the program to proceed without waiting on execution.
The core of planning is placement and routing, which

occur after the API call has been reified into a command.
Commands can form aDAGwhere the edges are their droplet
id dependencies. For simplicity, however, we store them in a
queue and place and route them serially.

4.2.2 Planning
Each command makes an allocation request for space on the
microfluidic board. For example, mix requests a rectangle
slightly larger than the resulting combined droplet so it has
space to move the droplet in a circle, agitating the mixture.
The allocation request can also place constraints on the fea-
tures of the space, e.g. heat requests a space with a heater.
Our simple placement algorithm directly checks for the best
of all possible ways to satisfy a location. This is linear in the
size of the hardware, and the hardware is small, so practically
we can still do this in real-time.

The allocation request also specifies the (relative) desired
locations of the input droplets. In the case of mixing two
1× 1 droplets, mix will request a 3× 2 rectangle and ask that
the input droplets start at coordinates (0, 0) and (1, 0). The
adjacent droplets will combine, leaving a 2× 1 droplet inside
the 3× 2 rectangle. After the allocation request is placed, the
system routes the input droplets to their specified locations
using a modified A* algorithm [8, 24]. Both placement and
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routing ensure that droplets stay at least 1 space apart to
avoid collisions.
If either placement or routing fails, the command is re-

jected as infeasible. Because planning happens right after
command creation, the user gets an immediate, recoverable
error. If planning succeeds, then non-blocking API calls can
return droplet id(s) knowing that their successful execution
is at least feasible (although not guaranteed in the face of
hardware errors).

4.2.3 Simulation and Recording
Regardless of whether the API call is blocking, successfully
planned commands are then simulated. Each time step in the
simulation is recorded, resulting in a record of where each
droplet is (and thus which electrodes to activate) at every
moment. The record provides a view into the future state of
the microfluidic device assuming that no hardware errors
occur during execution.
Puddle only simulates droplet movement to check for er-

rors and determine the presence and location of droplets
on the DMF device at each timestep. Chemical results of
actuations on the droplets or mixing them are not simulated.
Simulation does, however, record when actuations occur, so
execution can perform them when it “replays” the record.

The record allowsmultiple commands to be planned ahead-
of-time without executing any of them. Consider the follow-
ing program snippet:

for i in range(1000000):
input("water", volume=3.0)

This program clearly cannot run on our microfluidic hard-
ware; it requires more space than any DMF device available
today. And since Puddle knows nothing about the program
structure, it will begin to accept these operations as they are
submitted. However, commands are planned with respect
to the latest state in the record, i.e. commands are planned
under the assumption that all previous commands execute ex-
actly as planned. Eventually, one of the inputs in the above
program will be infeasible, since the DMF device will be full
of the previous droplets. Puddle will reject the command as
infeasible, returning an error to the user even though none
of the commands have been executed yet.

4.2.4 Execution, Monitoring, and Rollback
The simulation record allows execution to be asynchronous
with planning. Execution simply consists of popping the
earliest state from the record, and activating the electrodes
(and any peripherals) according to the droplets’ position in
that state. After a short delay, Puddle uses its computer vision
system (described in Section 4.3) to detect the actual state of
droplets on the device. If the actual state does not match the
expected state, the system triggers a rollback. This “check
and correct” flow is similar to previous work [26] that uses
capacitance sensing instead of computer vision.

Figure 9. A computer vision system identifies droplets in
real time for error detection and volume measurement.

A rollback consists of deleting the record and replanning
all commands which have not been completed. Replanning is
identical to planning, except that failure to replan is unrecov-
erable (Figure 8). Non-blocking API calls may have already
returned with a droplet id that essentially promises that new
droplet. Since Puddle had no knowledge of the program, we
have no choice but to terminate.

During the rollback, Puddle can also mark any electrodes
that failed to move a droplet as dead. Otherwise, the rollback
would replan the same route over the same electrode, and the
error would occur again. Section 5.2 demonstrates how this
allows execution on a DMF with faulty electrodes. The user
can tune this behavior, forcing Puddle to retry an electrode
a certain number of times before marking it as dead.
Replanning can fail in one of two cases: the number/i-

dentity of the droplets on the board has suddenly changed
(something accidentally mixed), or the new arrangement of
droplets is impossible to place and route. The first case is
relatively unlikely, as hardware errors tend to be a failure
to move a droplet (due to some defect with the DMF device)
rather than an errant move in some other direction. The
second case is also unlikely in the face of few errors: the
main constraints to placement and routing are the number
of droplets on the device, and the same droplets (albeit in
a different arrangement) were successfully planned before.
However, as errors accumulate, Puddle avoidsmore andmore
regions of the board. If enough errors build up, routing can
become impossible, and replanning will fail.
The record also keeps track of the states that commands

were completed in. When execution reaches such a state,
the command is finalized. For most commands, this does
nothing, but for blocking commands, this sends the result
back to the user.

4.3 Error Detection via Computer Vision
The previous section discussed how Puddle corrects errors
via the rollback and replan mechanism, but not how we
detect them. Like other works, we use a computer vision
system to localize the droplets on the DMF device. However,
our system is more flexible. Past work has required either a
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template image for a droplet [36] or a reference background
image of the electrode array [50, 58]. The template image
approach does not scale to droplets of different shapes and
sizes, and the background difference approach is sensitive to
changes in lighting and therefore requires a highly controlled
environment.
We detect droplets based on color. We tint all the input

fluids with green dye, and then calibrate the vision system
to that hue. Any object within that hue range is recognized
as a droplet. Because we are using the hue-saturation-value
color space, our system is resistant to changes in lighting.
We require only a simple paper shade to reduce glare off of
the reflective surface of the chip.
The shape detection portion of error detection is imple-

mented in OpenCV [9]. The result of the hue filtering is a
binary image indicating which pixels are the desired shade
of green. A series of morphological operations (erosions
and dilations) suffices to remove any noise. A contour find-
ing algorithm [53] then generates shapes that represent the
droplets. We finally use a projective transform to map those
shapes from the image’s coordinate space to that of the DMF
device.
Once the shapes are detected, Puddle must determine if

the set of shapes constitutes an error. The first step is to
match the shapes with the expected droplets. We use a dis-
tance metric to measure the difference in their locations and
sizes. The pairwise distances form a bipartite graph, and we
find a matching using the Kuhn-Munkres algorithm [37].
Each shape is then compared with its expected droplet. If
they are all similar enough, execution proceeds. If there is
a significant difference between the expectation and real-
ity according to the camera, we convert the shapes into the
new expected state and trigger a rollback, which replans
unfinished commands starting from the new state.

The result is an error detection system that is more robust
to lighting changes and handles droplets of any shape or size,
an improvement over previous work.

5 Evaluation
We evaluate our system both quantitatively and qualitatively.
First we evaluate the computer vision system in isolation,
then we evaluate it in the context of error detection and
correction. We then demonstrate Puddle’s ability to write
high-level programs and interface with other computer sys-
tems with two case studies.

5.1 Computer Vision
We evaluated our computer vision system on a dataset of
57 images taken from the Raspberry Pi camera at 320x240
pixels, the resolution we use for real time tracking. We man-
ually labeled the droplets in the image and also specified
which electrodes they occupied. The images cover a wide
variety of droplet counts, droplet locations, and droplet areas

Image Segmentation Metrics
Mean Precision 0.9851
Mean Recall 0.9147
Mean False Positive Rate 0.0001

Droplet Metrics
Mean accuracy of droplet area 0.9220
Incorrect droplet count 1 / 57
Droplet occupation overestimates 14 / 56
Droplet occupation underestimates 0 / 56

Table 1. Results from evaluating our computer vision system
on 57 manually labeled images of the DMF device. The first
set of metrics come from image segmentation, and the second
set is specific to droplet recognition. Droplet occupation is
explained in Section 5.1.

on the microfluidic board, and are thus representative of
the microfluidic setup, and the variability expected to arise
within the setup during normal operation of the device. We
used a single piece of white paper mounted above the device
to reduce the glare off the PCB, otherwise the lighting was
uncontrolled and varies throughout the images.

Table 1 shows the results of our evaluation. Since droplet
recognition is similar to image segmentation, we first calcu-
late some metrics from that domain. Notably, the precision
is higher than recall, indicating that our recognition system
is relatively conservative. This comes from the fact that our
system uses more erosion than dilation to remove noise from
the image. Erosion results in slightly smaller recognized ar-
eas in the image, whereas too much dilation would combine
nearby droplets. The area underestimate is consistent and
thus could be calibrated out.
We also compute a number of metrics specific to droplet

recognition. Droplet count is the most important metric for
error correction. If the system observes the wrong number
of droplets, it cannot match the expected state to the actual
state. We only saw one of these errors in the dataset: in an
image with droplets on neighboring electrodes, the system
confused two droplets as one. Puddle prevents droplets from
being on neighboring electrodes to avoid accidental mixing,
so this error is unlikely to occur in practice. Of the remaining
56 images, we calculated the electrodes the droplets occupied.
Puddle takes a conservative approach here, preferring to
turn on more electrodes rather than fewer to ensure droplet
movement. The results reflect this with 14 overestimates
but no underestimates. Overall, these results indicate that
the vision system allows for correct and reliable droplet
detection.

5.2 Error Correction
In Puddle, we use the droplet position and size information
as part of a larger error correction system including droplet
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Figure 10. To test error correction, we moved a droplet
in circles until failure. Total experiment time was 2 hours
and 11 minutes. Along the way, the computer vision system
detected and corrected errors, marking regions of the board
as faulty and avoiding them in the future. The errors at the
beginning correspond to faulty electrodes; those at the end
were caused as the droplet evaporated.

matching, rollback, and replanning (detailed in Section 4.2).
To evaluate these mechanisms and their impact on DMF
reliability, we staged an endurance test on the microfluidic
device.

DMFs can suffer from either inherent or use-induced fail-
ure. Flaws inherent to the device itself, e.g., surface flaws
or poor electrical contact in the wiring for some electrodes,
lead to failure early in execution. Use-induced defects, e.g.,
droplet evaporation or surface wear, lead to failure later in
execution. Our endurance test demonstrates that Puddle’s
error correction can extend the life of a DMF device, allow-
ing it to run longer protocols in the face of both types of
failure. We specify four points on the chip near the corners
and route a droplet between them over and over until the
system eventually marks so many electrodes as faulty that
routing fails.
Figure 10 shows the results of our endurance test. Note

that six errors occur relatively soon in the test, before the
completion of the fourth loop. Without error correction, a
protocol would be forced to terminate here. These errors
were due to poor electrical contact, resulting in a weaker
electrowetting force that failed to pull the droplet to that elec-
trode. Our error correction system identified these electrodes
and avoided them in later loops. The later errors (starting
around loop 34) were due to evaporation, leaving the droplet
too small to move reliably. The next section demonstrates
how automatic replenishment can deal with evaporation.

5.3 PCR and Thermocycling
Many chemical or biological protocols include thermocy-
cling, or repeated heating and cooling, to speed up a reaction
or denature a reagent. Thermocycling poses a challenge to
current DMF systems that operate in air (as opposed to oil):

1 min_volume = 10 * microliters

2

3 def thermocycle(droplet, temps_and_times):

4 for temp, time in temps_and_times:

5 heat(droplet, temp, time)

6 if droplet.volume < min_volume

7 # '+=' is a mutating mix

8 droplet += input("water", min_volume)

9

10 def pcr(droplet, n_iter):

11 thermocycle(droplet, n_iter * [

12 (95, 3 * minutes),

13 (62, 30 * seconds),

14 (72, 20 * seconds),

15 ])

Figure 11. Python code for polymerase chain reaction (PCR)
and thermocycle. The heating in thermocycling can evapo-
rate droplets, so the code replenishes with water if necessary.
Note that list multiplication in Python is concatenation, e.g.
2 * [1] == [1, 1]

The heating portion of thermocycling could evaporate the
small droplets being manipulated on the DMF device.
From a programming perspective, the natural way to ex-

press thermocycling is with a loop. Moreover, thermocycling
is not a protocol in itself, but rather it is an important part
of many other protocols. Ideally, we would write the code
for thermocycling once, and its behavior would be parame-
terizable and reusable.
Figure 11 shows our implementation of thermocycling

in Puddle. The use of functions, data structures, and data-
dependent control-flow put this implementation out of reach
for any other high-level microfluidic programming system
that we know of.
We also implemented polymerase chain reaction (PCR)

using thermocycle as subroutine. PCR is an important pro-
tocol in synthetic biology that selectively amplifies DNA in
a solution. We validated the experiment by using the Qubit
system [49] to quantify the amount of DNA before and after
amplification. We performed 8 cycles of PCR which required
2 replenishments to avoid evaporation. The procedure dou-
bled the amount of DNA in our 10 microliter sample. While
commercial PCR instruments achieve more efficient amplifi-
cation, our PCR protocol was successful and can be improved
with more precise heaters and temperature sensors. To our
knowledge, this is the first fully-automated execution of PCR
with replenishment on a DMF device in air.

5.4 DNA Sequencing
To further highlight the combination of microfluidic manip-
ulation and computation, we performed DNA sequencing
using Puddle and the MinION sequencer [40]. The MinION
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1 def sequence(droplet):

2 # actual prep protocol

3 droplet += input("buffer", 65 * microliters)

4 output("sequencer", droplet)

5 # pseudocode to get and process the data

6 data = get_data_from_device()

7 seq = process(data)

8 return seq

Figure 12. A Python function that takes in a droplet and
returns the sequence of DNA contained in that droplet.

requires some fluidic steps to prepare a sample for sequenc-
ing, and the raw output data requires processing to return the
DNA sequence. Because of the computation needed for data
processing, the sequencer is connected directly to a laptop
instead of the Raspberry Pi. The Python code (including data
processing) runs on the laptop, but the Puddle system still
runs on the Raspberry Pi. The two sides communicate over
the network using the same Puddle API, which is encoded
in JSON format.

The code for the sequencing protocol is listed in Figure 12.
get_data_from_device and process_data are pseudocode
Python functions that get and process the data from the
MinION; the former returns the raw data and the latter re-
turns the actual DNA sequence. We use pseudocode because
the actual process for sequencing and processing involves
a closed-source GUI application. Given an API to perform
these operations, automating the entire protocol including
data acquisition and analysis is a matter of implementation.
We validated the DNA sequencing results from the experi-
ment by comparing the reported sequences with the known
sequences used as input.

The protocol is simple, but it still demonstrates the power
of the Puddle programming model. In one sense, the func-
tion sequence is no more exciting than one that reads the
contents of a file from disk. However, existing microfluidic
programming models cannot express both the fluidic and
computational aspects of this protocol, nor can they export
this functionality as an easy-to-use (and reuse) Python func-
tion. To our knowledge, this is the first time that computation
and protocol execution are merged in this way. We envision
encouraging the use microfluidics for complex experiment
automation.

6 Related Work
DMF hardware DMF devices can be built on different sub-
strates including silicon, or on a printed circuit board (PCB).
While the former two technologies offer great control over
the surface topology (an important property for electrowet-
ting), PCBs are much more flexible and accessible, as they are
cheaper and offer multi-layer wire routing [18]. We chose a

PCB substrate and operate in air because it makes the device
easier to manufacture and use. Our error correction system
compensates for faults which may occur due to the more
affordable substrate.
Jebrail et al. have presented a system for replenishing

liquid on a DMF device [29], but the intervention is not
automated (a user manually pushed a syringe).

DMF routing Extensive work in this area has led to algo-
rithms that can exploit parallelism [8, 19], reduce contamina-
tion [27, 61, 64], and minimize overall droplet travel [32, 46].
Our place and route algorithms in Puddle are intentionally
very simple and do not provide these features, as these are
outside the scope of this work. Section 7.3 discusses how
such features could be implemented within our system.

Microfluidic Programming Previous work has improved
upon static DAG place and route with domain specific lan-
guages for protocol specification and execution. Grissom et
al. propose a dynamic interpretation approach that allows
control flow [20], but the programmingmodel is still centered
around explicit DAG construction. Dynamic interpretation
also suffers from sub-optimal place and route, as the sys-
tem only considers one basic block at a time. Others have
proposed static compilers capable of handling control flow,
e.g., Curtis et al. [15] and Ott et al. [39]. These approaches
offer a static guarantee that the program (ignoring errors)
can be successfully routed, but they are all less expressive
than Puddle. In particular, programs cannot (in general) use
recursion, manipulate data structures, or allocate in loops.
The example given in Figure 11 exhibits the latter two of
these characteristics.

Previous approaches using general purpose languages ei-
ther offer little abstraction, requiring the user to manually ad-
dress droplet locations [2, 16], or require re-expression in a re-
stricted embedded DSL or manual DAG construction [6, 15].

Amin et al. propose an instruction set for a channel-based
microfluidic architecture [5]. Puddle could feasibly target
channel-based devices through such an ISA.

Autoprotocol [56] andAquarium [31] focus on off-premises
execution where users send samples and protocols to be exe-
cuted by pipetting robots (Autoprotocol) or by human techni-
cians (Aquarium). Antha [54] targets various lab automation
technologies for on-premises execution but not DMF. The
intended use case for these platforms is high-throughput flu-
idics rather than writing and running expressive programs.
In principle, Puddle could be used as a backend for these
frameworks to allow execution on DMF devices like Purple-
Drop.

Error Correction for DMFs Section 4.3 mentioned that
previous work on optical error detection is not as flexible as
our approach in terms of droplet size/shape [36] or lighting
conditions [50, 58]. We do require that droplets are dyed
green. We are working to lift this restriction, as it limits the
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use of the camera as a colormetric sensor in the visible light
spectrum. Other work has proposed impedence sensing as a
means of detecting droplets [23].

Alistar et al. [3] present an ahead-of-time solution for op-
erations that take variable time, accounting for some classes
of precision errors. An online solution has also been pre-
sented [4], but it has an offline component and only works
for programs represented as DAGs. Previous work has also
proposed error correction for DMF devices [25, 26, 28, 59, 60],
but these were implemented outside of a larger microfluidic
programming solution, relied on more expensive sensors, or
were only simulated.

Lazy dataflow processing Our approach of allowing the
programmer to lazily manipulate opaque ids through an API
bears a similarity to an approach used in data processing.
In particular, Apache Spark [62] and PyTorch [41] provide a
similar abstraction for the domains of data processing and
machine learning. Both allow the user to build up sets of op-
erations in a general-purpose host language, and then (upon
request for data) a runtime system optimizes and executes
the dataflow graph of pending operations.

7 Discussion
Our main contribution is the notion of a microfluidic runtime
system that dynamically manages fluidic resources. This ad-
vances upon previous work by allowing unrestricted flexibil-
ity and expressiveness, at the cost of some static guarantees.
Below we further detail the benefits of and reasons for this
approach, discuss the drawbacks, and propose future work
based on this key idea.

7.1 Benefits of Dynamism
Existing work has approached microfluidic programming
from the perspective that fluidic resources should be stat-
ically managed. This provides guarantees that a program
will “fit” on the microfluidic device, but limits the expressive
power of the programming model. Specifically, any program-
ming feature that allows for potentially unbounded fluidic
resource usage must be either prohibited or restricted, as the
tool cannot statically perform place and route.

General-purpose computation has taken the opposite tack.
Nearly all of the abstractions that make up the modern com-
puting stack (virtual memory, stack, heap, processes, file
systems, etc.) provide the illusion of exclusive access and
unlimited resources. The systems under these abstractions
cannot statically promise that enough resources exist, but
their popularity demonstrates the value of favoring expres-
siveness over static safety. Barring the development and
use of sufficiently complex static analyses, existing fluidic
programming systems cannot coexist with general purpose
computation: one side wants to make promises that the other
has given up on.

Puddle’s design draws more inspiration from general pur-
pose computer systems than synthesis tools for microfluidics.
Instead of trying to provide a monolithic solution, Puddle in-
stead defines a small API that decouples fluidic management
from the act of programming. This design leads to many
benefits that, to our knowledge, no other DMF programming
system has.
Most importantly, Puddle abstracts away fluid manage-

ment without restricting the programming model. This flex-
ibility is important since our target domains (automated
experimentation, molecular computer systems, etc.) are new
and have not yet settled on abstractions. The separation of
concerns in our approach allows the frontend(s) and the
runtime system to advance independently.
The notion of opaque handles (droplet ids) representing

dynamically managed resources (droplets) lets Puddle pro-
vide many features familiar to computer systems with very
little effort. Like the abstractions mentioned above, Puddle
lets the user pretend they have unlimited resources (space
on the microfluidic board) and exclusive access to it. Puddle
can provide process-like isolation by simply name-spacing
droplet ids with a UUID, so multiple programs can run on
a single device concurrently. The Puddle API can also be
used locally (on the Raspberry Pi) or remotely, useful for
interactive programming or protocols that require heavy
data analysis, respectively.
Unlike static approaches to digital microfluidic program-

ming [15, 20, 39], dynamism also allows for metaprogram-
ming. Users can use features of their favorite languages (re-
flection, macros, first-class functions, etc.) to programmati-
cally construct protocols.
Error correction is also closely tied to our dynamic ap-

proach. Puddle implements error detection and correction
using a computer vision system (details in Section 4.3). Ab-
stract droplet ids allow the runtime system to freely move
droplets around to correct and avoid errors. Since the nature
of a hardware failure cannot be known ahead of time, even
static approaches to microfluidic programming that include
this kind of error correction must resort to dynamic replan-
ning, limiting the static promises that can be made in the
face of errors.

7.2 Drawbacks of Dynamism
These benefits come with a trade-off, of course: we give up
all hope of statically reasoning about the program. One con-
cern is that the lack of static analysis allows programs to
run that will crash due to space constraints. This is techni-
cally true, but the problem can be mitigated by simulation.
Section 4.2.3 discusses the role of simulation in planning
execution, but it can also be used at the user level. When
running in simulation-only mode, Puddle plans execution
(including place and route), returning dummy values for sen-
sor readings if needed. If the fluidics portion of the program
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is “straight-line” code (i.e., with no branches), then the simu-
lation will tell the user if their program is infeasible before
executing on the DMF device, just like static approaches.
For more complex programs, it is intractable to explore

all the possible sequences of fluidic operations in simulation.
Since Puddle has no knowledge of the client’s program, it is
entirely possible to get to a state where resource requests
cannot be met, forcing Puddle to crash. We hope to address
this in future work, but we also view it as part of the ex-
pressiveness trade-off. Consider the thermocycle code in
Figure 11: it loops over a data structure of potentially un-
bounded size and potentially inputs a new droplet each
time. Even though this program is practical and useful, an
ahead-of-time compiler would see it as requiring unbounded
resources and fail to generate a static plan2.

A final concern is that the dynamic approach leads to ineffi-
cient placement and routing. Our prototype implementation
is simple, but taking advantage of more efficient solutions
from the literature [8, 19, 32, 46] is a matter of implemen-
tation. Because the droplet manipulation API is functional
and “lazy”, unfinished operations can form a DAG. The op-
erations themselves are the nodes and the droplet ids are
the edges, connecting operations based on their data de-
pendence. DAGs formed this way could contain even more
information that those from static approaches, as dynami-
cally constructed DAGs can easily capture inter-procedural
droplet dependencies. These DAGs are analogous to those
studied in the literature, so we could use all the same place-
ment and routing algorithms developed by existing work
without giving up the ability to write rich programs.

Despite the laziness of the API, it is still possible for users
to write programs that Puddle would fundamentally not be
able to optimize, even assuming the unimplemented ability to
do parallel planning. Consider the following snippet where
prep does a lot of manipulation and sense takes some kind
of sensor reading:

prep(a); prep(b); sense(a); sense(b);

When droplet a is sensed, Puddle will execute the planned
work from prep(a), and likewise for when b is sensed. Even
though the two calls to prep are independent, Puddle would
not exploit this fact. This is necessary becausewhen sense(a)
is called, Puddle still thinks that b might be manipulated
further, and Puddle aims to perform dependent operations
with minimal delay between them. The programmer could
solve this by inserting flush(a, b) before the calls to sense,
telling Puddle to realize those droplet now. Another approach
would be to sense the independent droplets concurrently on
the client side, so one does not block the other. On the server
side, Puddle could coalesce the two requests and possibly
plan them in parallel.
2 Assuming the static compiler is not smart enough to reason about the
volume comparison. In reality, the droplet should not grow too far beyond
that min_volume.

7.3 Future Work
The complexity of new applications provides challenges for
future work at all levels of the stack: programming model,
runtime system, and hardware. Our dynamic approach max-
imizes expressiveness, trading off the ability to statically
determine if a given program is feasible on a particular DMF
device. While simulation suffices for now, future, more com-
plex protocols would benefit from a static guarantee, but
only if it does not compromise the programming model. The
rich domains in which fluidic systems are used also pose
a challenge to programming languages: can we statically
reason about the contents of the fluids? Recent work has ap-
proached this from a chemical safety perspective, preventing
accidental dangerous reactions [39].

At the runtime system level, we hope to incorporate more
advanced place and route techniques from the literature
into Puddle. As Puddle already provides process-like con-
currency, algorithms that extract parallelism and prevent
contamination (by keeping certain paths separate) are espe-
cially promising. With further advances in DMF hardware,
a larger DMF system combined with Puddle could enable
a multi-user system where many protocols are running on
“virtualized” DMFs that share common resources like fluidic
input/output, heaters, etc.

7.4 Conclusion
We have presented Puddle, a runtime system that provides
a high-level API for microfluidic programming. By taking a
more dynamic approach than past work, Puddle allows an
unrestricted programming model in a general-purpose lan-
guage as well as real-time error correction. Puddle facilitates
decisions at the execution, protocol, and application level,
all of which are necessary for robust execution of complex
protocols. Puddle allows scientists to develop protocols (even
interactively) in a familiar language.
We have also presented PurpleDrop, an accessible DMF

hardware platform with features like fluidic input/output
necessary for hands-off automation of many protocols. Pur-
pleDrop’s design is simple and cheap enough for labs to as-
semble their own. Together, Puddle and PurpleDrop comprise
the first full-stack microfluidics platform that is accessible
and flexible enough to enable complex applications requiring
a combination of computation and fluidic manipulation.
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