
Neural Acceleration for General-Purpose Approximate Programs

Hadi Esmaeilzadeh Adrian Sampson Luis Ceze Doug Burger∗

University of Washington ∗Microsoft Research

{hadianeh,asampson,luisceze}@cs.washington.edu dburger@microsoft.com

Abstract
This paper describes a learning-based approach to the acceleration
of approximate programs. We describe the Parrot transformation,
a program transformation that selects and trains a neural network
to mimic a region of imperative code. After the learning phase, the
compiler replaces the original code with an invocation of a low-power
accelerator called a neural processing unit (NPU). The NPU is tightly
coupled to the processor pipeline to accelerate small code regions.
Since neural networks produce inherently approximate results, we
define a programming model that allows programmers to identify
approximable code regions—code that can produce imprecise but
acceptable results. Offloading approximable code regions to NPUs
is faster and more energy efficient than executing the original code.
For a set of diverse applications, NPU acceleration provides whole-
application speedup of 2.3× and energy savings of 3.0× on average
with quality loss of at most 9.6%.

1. Introduction
Energy efficiency is a primary concern in computer systems. The ces-

sation of Dennard scaling has limited recent improvements in transis-

tor speed and energy efficiency, resulting in slowed general-purpose

processor improvements. Consequently, architectural innovation has

become crucial to achieve performance and efficiency gains [10].

However, there is a well-known tension between efficiency and

programmability. Recent work has quantified three orders of magni-

tude of difference in efficiency between general-purpose processors

and ASICs [21, 36]. Since designing ASICs for the massive base of

quickly changing, general-purpose applications is currently infeasible,

practitioners are increasingly turning to programmable accelerators

such as GPUs and FPGAs. Programmable accelerators provide an

intermediate point between the efficiency of ASICs and the gener-

ality of conventional processors, gaining significant efficiency for

restricted domains of applications.

Programmable accelerators exploit some characteristic of an ap-

plication domain to achieve efficiency gains at the cost of generality.

For instance, FPGAs exploit copious, fine-grained, and irregular par-

allelism but perform poorly when complex and frequent accesses

to memory are required. GPUs exploit many threads and SIMD-

style parallelism but lose efficiency when threads diverge. Emerg-

ing accelerators, such as BERET [19], Conservation Cores and Qs-

Cores [47, 48], or DySER [18], map regions of general-purpose code

to specialized hardware units by leveraging either small, frequently-

reused code idioms (BERET and DySER) or larger code regions

amenable to hardware synthesis (Conservation Cores). Whether an

application can use an accelerator effectively depends on the degree

to which it exhibits the accelerator’s required characteristics.

Tolerance to approximation is one such program characteristic that

is growing increasingly important. Many modern applications—such

as image rendering, signal processing, augmented reality, data mining,

robotics, and speech recognition—can tolerate inexact computation

in substantial portions of their execution [7,14,28,41]. This tolerance

can be leveraged for substantial performance and energy gains.

This paper introduces a new class of programmable accelerators

that exploit approximation for better performance and energy effi-

ciency. The key idea is to learn how an original region of approx-

imable code behaves and replace the original code with an efficient

computation of the learned model. This approach contrasts with pre-

vious work on approximate computation that extends conventional

microarchitectures to support selective approximate execution, in-

curring instruction bookkeeping overheads [1, 8, 11, 29], or requires

vastly different programming paradigms [4, 24, 26, 32]. Like emerg-

ing flexible accelerators [18, 19, 47, 48], our technique automatically

offloads code segments from programs written in mainstream lan-

guages; but unlike prior work, it leverages changes in the semantics

of the offloaded code.

We have identified three challenges that must be solved to realize

effective trainable accelerators:

1. A learning algorithm is required that can accurately and effi-

ciently mimic imperative code. We find that neural networks can

approximate various regions of imperative code and propose the

Parrot transformation, which exploits this finding (Section 2).

2. A language and compilation framework should be developed

to transform regions of imperative code to neural network evalua-

tions. To this end, we define a programming model and implement

a compilation workflow to realize the Parrot transformation (Sec-

tions 3 and 4). The Parrot transformation starts from regions of

approximable imperative code identified by the programmer, col-

lects training data, explores the topology space of neural networks,

trains them to mimic the regions, and finally replaces the original

regions of code with trained neural networks.

3. An architectural interface is necessary to call a neural process-

ing unit (NPU) in place of the original code regions. The NPU

we designed is tightly integrated with a speculative out-of-order

core. The low-overhead interface enables acceleration even when

fine-grained regions of code are transformed. The core communi-

cates both the neural configurations and run-time invocations to

the NPU through extensions to the ISA (Sections 5 and 6).

Rather than contributing a new design for neural network implemen-

tation, this paper presents a new technique for harnessing hardware

neural networks in general-purpose computations. We show that us-

ing neural networks to replace regions of imperative code is feasible

and profitable by experimenting with a variety of applications, includ-

ing FFT, gaming, clustering, and vision algorithms (Section 7). These

applications do not belong to the class of modeling and prediction

that typically use neural networks. For each application, we identify a

single approximable function that dominates the program’s execution

time. NPU acceleration provides 2.3× average whole-application

speedup and 3.0× average energy savings for these benchmarks with

average accuracy greater than 90% in all cases. Continuing work

on NPU acceleration will provide a new class of accelerators—with

implementation potential in both analog and digital domains—for

emerging approximate applications.

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.48

449

http://crossmark.crossref.org/dialog/?doi=10.1109%2FMICRO.2012.48&domain=pdf&date_stamp=2012-12-01

Imperative
Source
Code

Annotated
Source
CodeProgrammer

Input
Data

Processor

Training
Inputs Trainer

(Topology &
Synaptic
Weights)

Trained
Neural

Network

Code
Generator

Instrumented
CPU Binary

NPU Config

Core

NPU

Programming Code Observation Training Code Generation Execution

Compilation

Figure 1: The Parrot transformation at a glance: from annotated code to accelerated execution on an NPU-augmented core.

2. Overview
The Parrot transformation is an algorithmic transformation that con-

verts regions of imperative code to neural networks. Because neural

networks expose considerable parallelism and can be efficiently ac-

celerated using dedicated hardware, the Parrot transformation can

yield significant performance and energy improvements. The trans-

formation uses a training-based approach to produce a neural network

that approximates the behavior of candidate code. A transformed

program runs primarily on the main core and invokes an auxiliary

hardware structure, the neural processing unit (NPU), to perform

neural evaluation instead of executing the replaced code. Figure 1

shows an overview of our proposed approach, which has three key

phases: programming, in which the programmer marks code regions

to be transformed; compilation, in which the compiler selects and

trains a suitable neural network and replaces the original code with a

neural network invocation; and execution.

Programming. During development, the programmer explicitly

annotates functions that are amenable to approximate execution and

therefore candidates for the Parrot transformation. Because toler-

ance of approximation is a semantic property, it is the programmer’s

responsibility to select code whose approximate execution would

not compromise the overall reliability of the application. This is

common practice in the approximate computing literature [8, 11, 41].

We discuss our programming model in detail in Section 3.

Compilation. Once the source code is annotated, as shown in Fig-

ure 1, the compiler applies the Parrot transformation in three steps:

(1) code observation; (2) neural network selection and training; and

(3) binary generation. Section 4 details these steps.

In the code observation step, the compiler observes the behavior of

the candidate code region by logging its inputs and outputs. This step

is similar to profiling. The compiler instruments the program with

probes on the inputs and outputs of the candidate functions. Then,

the instrumented program is run using representative input sets such

as those from a test suite. The probes log the inputs and outputs of

the candidate functions. The logged input–output pairs constitute the

training and validation data for the next step.

The compiler uses the collected input–output data to configure

and train a neural network that mimics the candidate region. The

compiler must discover the topology of the neural network as well

as its synaptic weights. It uses the backpropagation algorithm [40]

coupled with a topology search (see Section 4.2) to configure and

train the neural network.

The final step of the Parrot transformation is code generation. The

compiler first generates a configuration for the NPU that implements

the trained neural network. Then, the compiler replaces each call to

the original function with a series of special instructions that invoke

the NPU, sending the inputs and receiving the computed outputs.

The NPU configuration and invocation is performed through ISA

extensions that are added to the core.

Execution. During deployment, the transformed program begins

execution on the main core and configures the NPU. Throughout

execution, the NPU is invoked to perform a neural network evaluation

in lieu of executing the original code region. The NPU is integrated as

a tightly-coupled accelerator in the processor pipeline. Invoking the

NPU is faster and more energy-efficient than executing the original

code region, so the program as a whole is accelerated.

Many NPU implementations are feasible, from all-software to

specialized analog circuits. Because the Parrot transformation’s ef-

fectiveness rests on the efficiency of neural network evaluation, it is

essential that invoking the NPU be fast and low-power. Therefore,

we describe a high-performance hardware NPU design based on a

digital neural network ASIC (Section 6) and architecture support to

facilitate low-latency NPU invocations (Section 5).

A key insight in this paper is that it is possible to automatically

discover and train neural networks that effectively approximate im-

perative code from diverse application domains. These diverse ap-

plications do not belong to the class of modeling and prediction

applications that typically use neural networks. The Parrot transfor-

mation enables a novel use of hardware neural networks to accelerate

many approximate applications.

3. Programming Model

The Parrot transformation starts with the programmer identifying

candidate code regions. These candidate regions need to comply with

certain criteria to be suitable for the transformation. This section

discusses these criteria as well as the concrete language interface

exposed to the programmer. After the candidate regions are identified,

the Parrot transformation is fully automated.

3.1. Code Region Criteria

Candidate code for the Parrot transformation must satisfy three cri-

teria: it must be frequently executed (i.e., a “hot” function); it must

tolerate imprecision in its computation; and it must have well-defined

inputs and outputs.

Hot code. Like any acceleration technique, the Parrot transfor-

mation should replace hot code. The Parrot transformation can be

applied to a wide range of code from small functions to entire al-

gorithms. The code region can contain function calls, loops, and

complex control flow whose cost can be elided by the Parrot trans-

formation. When applied to smaller regions of code, the overhead of

450

1 f l o a t sobel [[PARROT]] (f l o a t [3] [3] p) {
f l o a t x , y , r ;

3 x = (p [0] [0] + 2 ∗ p [0] [1] + p [0] [2]) ;
x = (p [2] [0] + 2 ∗ p [2] [1] + p [2] [2]) ;

5 y = (p [0] [2] + 2 ∗ p [1] [2] + p [2] [2]) ;
y = (p [0] [0] + 2 ∗ p [1] [1] + p [2] [0]) ;

7 r = s q r t (x ∗ x + y ∗ y) ;
i f (r >= 0.7071) r = 0.7070;

9 return r ;
}

void edgeDetect ion (Image& srcImg , Image& dstImg) {
2 f l o a t [3] [3] p ; f l o a t p i x e l ;

for (i n t y = 0; y < srcImg . he igh t ; ++y)
4 for (i n t x = 0; x < srcImg . width ; ++x)

srcImg . toGrayeScale (x , y) ;
6 for (i n t y = 0; y < srcImg . he igh t ; ++y)

for (i n t x = 0; x < scrImg . width ; ++x) {
8 p = srcImg . build3x3Window (x , y) ;

p i x e l = sobel (p) ;
10 dstImg . s e t P i x e l (x , y , p i x e l) ;

}
12 }

(a) Original implementation of the Sobel filter

p[0][0]

p[1][0]

p[2][0]

p[0][1]

p[1][1]

p[2][1]

p[0][2]

p[1][2]

p[2][2]

...

r
Input Layer Hidden Layer Output Layer

(b) The sobel function transformed to a 9 → 8 → 1 NN

void edgeDetect ion (Image& srcImg , Image& dstImg) {
2 f l o a t [3] [3] p ; f l o a t p i x e l ;

for (i n t y = 0; y < srcImg . he igh t ; ++y)
4 for (i n t x = 0; x < srcImg . width ; ++x)

srcImg . toGrayeScale (x , y) ;
6 for (i n t y = 0; y < srcImg . he igh t ; ++y)

for (i n t x = 0; x < scrImg . width ; ++x) {
8 p = srcImg . build3x3Window (x , y) ;

NPU_SEND(p [0] [0]) ; NPU_SEND(p [0] [1]) ; NPU_SEND(p [0] [2]) ;
10 NPU_SEND(p [1] [0]) ; NPU_SEND(p [1] [1]) ; NPU_SEND(p [1] [2]) ;

NPU_SEND(p [2] [0]) ; NPU_SEND(p [2] [1]) ; NPU_SEND(p [2] [2]) ;
12 NPU_RECEIVE(p i x e l) ;

dstImg . s e t P i x e l (x , y , p i x e l) ;
14 }

}

(c) parrot transformed code; an NPU invocation replaces the function call

Figure 2: Three stages in the transformation of an edge detection algorithm using the Sobel filter.

NPU invocation needs to be low to make the transformation profitable.

A traditional performance profiler can reveal hot code.

For example, edge detection is a widely applicable image process-

ing computation. Many implementations of edge detection use the

Sobel filter, a 3×3 matrix convolution that approximates the image’s

intensity gradient. As the bottom box in Figure 2a shows, the local

Sobel filter computation (the sobel function) is executed many times

during edge detection, so the convolution is a hot function in the

overall algorithm and a good candidate for the Parrot transformation.

Approximability. Code regions identified for the Parrot transfor-

mation will behave approximately during execution. Therefore, pro-

grams must incorporate application-level tolerance of imprecision.

This requires the programmer to ensure that imprecise results from

candidate regions will not cause catastrophic failures. As prior work

on approximate programming [2, 8, 29, 41, 43] has shown, it is not

difficult to deem regions approximable.

Beyond determining that a code region may safely produce im-

precise results, the programmer need not reason about the mapping

between the code and a neural network. While neural networks are

more precise for some functions than they are for others, we find that

they can accurately mimic many functions from real programs (see

Section 7). Intuitively, however, they are less likely to effectively

approximate chaotic functions, in which even large training sets can

fail to capture enough of the function’s behavior to generalize to

new inputs. However, the efficacy of neural network approximation

can be assessed empirically. The programmer should annotate all

approximate code; the compiler can then assess the accuracy of a

trained neural network in replacing each function and select only

those functions for which neural networks are a good match.

In the Sobel filter example, parts of the code that process the pixels

can be approximated. The code region that computes pixel addresses

and builds the window for the sobel function (line 8 in the bottom box

of Figure 2a) needs to be precise to avoid memory access violations.

However, the sobel function, which estimates the intensity gradient of

a pixel, is fundamentally approximate. Thus, approximate execution

of this function will not result in catastrophic failure and, moreover,

is unlikely to cause major degradation of the overall edge detection

quality. These properties make the sobel function a suitable candidate

region for approximate execution.

Well-defined inputs and outputs. The Parrot transformation re-

places a region of code with a neural network that has a fixed number

of inputs and outputs. Therefore, it imposes two restrictions on the

code regions that can feasibly be replaced. First, the inputs to and

outputs from the candidate region must be of a fixed size known at

compile time. For example, the code may not dynamically write an

unbounded amount of data to a variable-length array. Second, the

code must be pure: it must not read any data other than its inputs nor

affect any state other than its outputs (e.g., via a system call). These

two criteria can be checked statically.

The sobel function in Figure 2a complies with these requirements.

It takes nine statically identifiable floating-point numbers as input,

produces a single output, and has no side effects.

3.2. Annotation
In this work, we apply the Parrot transformation to entire functions.

To identify candidate functions, the programmer marks them with

an annotation (e.g., using C++11 [[annotation]] syntax as shown in

Figure 2a). The programmer is responsible for ensuring that the

function has no side effects, reads only its arguments, and writes only

its return value. Each argument type and the return type must have a

fixed size. If any of these types is a pointer type, it must point to a

fixed-size value; this referenced value is then considered the neural

network input or output rather than the pointer itself. If the function

needs to return multiple values, it can return a fixed-size array or a C

struct. After the programmer annotates the candidate functions, the

Parrot transformation is completely automatic and transparent: no

further programmer intervention is necessary.

Other annotation approaches. Our current system depends on ex-

plicit programmer annotations at the granularity of functions. While

we find that explicit function annotations are straightforward to apply

(see Section 7), static analysis techniques could be used to further

simplify the annotation process. For example, in an approximation-

aware programming language such as EnerJ [41], the programmer

451

uses type qualifiers to specify which data is non-critical and may be

approximated. In such a system, the Parrot transformation can be

automatically applied to any block of code that only affects approxi-

mate data. That is, the candidate regions for the Parrot transformation

would be implicitly defined.

Like prior work on approximate computing, we acknowledge

that some programmer guidance is essential when identifying error-

tolerant code [2, 8, 11, 29, 41]. Tolerance to approximation is an

inherently application-specific property. Fortunately, language-level

techniques like EnerJ demonstrate that the necessary code annotations

can be intuitive and straightforward for programmers to apply.

4. Compilation Workflow

Once the program has been annotated, the compilation workflow

implements the Parrot transformation in three steps: observation,

training, and instrumented binary generation.

4.1. Code Observation

In the first phase, the compiler collects input–output pairs for the

target code that reflect real program executions. This in-context

observation allows the compiler to train the neural network on a

realistic data set. The compiler produces an instrumented binary for

the source program that includes probes on the input and output of the

annotated function. Each time the candidate function executes, the

probes record its inputs and outputs. The program is run repeatedly

using test inputs. The output of this phase is a training data set: each

input–output pair represents a sample for the training algorithm. The

system also measures the minimum and maximum value for each

input and output; the NPU normalizes values using these ranges

during execution.

The observation phase resembles the profiling runs used in profile-

guided compilation. Specifically, it requires representative test inputs

for the application. The inputs may be part of an existing test suite or

randomly generated. In many cases, a small number of application

test inputs are sufficient to train a neural network because the candi-

date function is executed many times in a single application run. In

our edge detection example, the sobel function runs for every pixel in

the input image. So, as Section 7 details, training sobel on a single

512×512 test image provides 262144 training data points and results

in acceptable accuracy when computing on unseen images.

Although we do not explore it in this paper, automatic input genera-

tion could help cover the space of possible inputs and thereby achieve

a more accurate trained neural network. In particular, the compiler

could synthesize new inputs by interpolating values between existing

test cases.

4.2. Training

The compiler uses the training data to produce a neural network that

replaces the original function. There are a variety of types of artificial

neural networks in the literature, but we narrow the search space to

multilayer perceptrons (MLPs) due to their broad applicability.

The compiler uses the backpropagation algorithm [40] to train the

neural network. Backpropagation is a gradient descent algorithm

that iteratively adjusts the weights of the neural network according to

each input–output pair. The learning rate, a value between 0 and 1, is

the step size of the gradient descent and identifies how much a single

example affects the weights. Since backpropagation on MLPs is not

convex and the compilation procedure is automatic, we choose a small

learning rate of 0.01. Larger steps can cause oscillation in the training

and prevent convergence. One complete pass over the training data

is called an epoch. Since the learning rate is small, the epoch count

should be large enough to ensure convergence. Empirically, we

find that 5000 epochs achieve a good balance of generalization and

accuracy. Larger epoch counts can cause overtraining and adversely

affect the generalization ability of the network while smaller epoch

counts may result in poor accuracy.

Neural network topology selection. In addition to running back-

propagation, this phase selects a network topology that balances be-

tween accuracy and efficiency. An MLP consists of a fully-connected

set of neurons organized into layers: the input layer, any number of

“hidden” layers, and the output layer (see Figure 2b). A larger, more

complex network offers better accuracy potential but is likely to be

slower and less power-efficient than a small, simple neural network.

To choose the topology, we use a simple search algorithm guided

by the mean squared error of the neural network when tested on an

unseen subset of the observed data. The error evaluation uses a typical

cross-validation approach: the compiler partitions the data collected

during observation into a training set, 70% of the observed data, and

a test set, the remaining 30%. The topology search algorithm trains

many different neural network topologies using the training set and

chooses the one with the highest accuracy on the test set and the

lowest latency on the NPU (prioritizing accuracy).

The space of possible topologies is large, so we restrict the search

to neural networks with at most two hidden layers. We also limit

the number of neurons per hidden layer to powers of two up to

32. (The numbers of neurons in the input and output layers are

predetermined based on the number of inputs and outputs in the

candidate function.) These choices limit the search space to 30

possible topologies. The maximum number of hidden layers and

maximum neurons per hidden layer are compilation options and

can be specified by the user. Although the candidate topologies

can be trained in parallel, enlarging the search space increases the

compilation time.

The output from this phase consists of a neural network topology—

specifying the number of layers and the number of neurons in each

layer—along with the weight for each neuron and the normalization

range for each input and output. Figure 2b shows the three-layer

MLP that replaces the sobel function. Each neuron in the network

performs a weighted sum on its inputs and then applies a sigmoid

function to the result of weighted sum.

On-line training. Our present system performs observation and

training prior to deployment; an alternative design could train the

neural network concurrently with in-vivo operation. On-line training

could improve accuracy but would result in runtime overheads. To

address these overheads, an on-line training system could offload

neural network training and configuration to a remote server. With off-

site training, multiple deployed application instances could centralize

their training to increase input space coverage.

4.3. Code Generation

After the training phase, the compiler generates an instrumented

binary that runs on the core and invokes the NPU instead of calling

the original function. The program configures the NPU when it is

first loaded by sending the topology parameters and synaptic weights

to the NPU via its configuration interface (Section 6.2). The compiler

replaces the calls to the original function with special instructions

that send the inputs to the NPU and collect the outputs from it. The

452

Core

Speculative Tail

Non-speculative Head
Speculative Head

Output FIFO

Input FIFO

Config FIFO

NPU

Fetch

Decode

Issue

Execute

Memory

Commit

Figure 3: The NPU exposes three FIFO queues to the core. The spec-
ulative state of the FIFOs is shaded.

configuration and input–output communication occurs through ISA

extensions discussed in Section 5.1.

5. Architecture Design for NPU Acceleration

Since candidate regions for the Parrot transformation can be fine-

grained, NPU invocation must be low-overhead to be beneficial.

Ideally, the NPU should integrate tightly with the processor pipeline.

The processor ISA also needs to be extended to allow programs to

configure and invoke the NPU during execution. Moreover, NPU

invocation should not prevent speculative execution. This section

discusses the ISA extensions and microarchitectural mechanism for

tightly integrating the NPU with an out-of-order processor pipeline.

5.1. ISA Support for NPU Acceleration

The NPU is a variable-delay, tightly-coupled accelerator that com-

municates with the rest of the core via FIFO queues. As shown in

Figure 3, the CPU–NPU interface consists of three queues: one for

sending and retrieving the configuration, one for sending the inputs,

and one for retrieving the neural network’s outputs. The ISA is ex-

tended with four instructions to access the queues. These instructions

assume that the processor is equipped with a single NPU; if the ar-

chitecture supports multiple NPUs or multiple stored configurations

per NPU, the instructions may be parameterized with an operand that

identifies the target NPU.

• enq.c %r: enqueues the value of the register r into the config FIFO.

• deq.c %r: dequeues a configuration value from the config FIFO to

the register r.
• enq.d %r: enqueues the value of the register r into the input FIFO.

• deq.d %r: dequeues the head of the output FIFO to the register r.
To set up the NPU, the program executes a series of enq.c instructions

to send configuration parameters—number of inputs and outputs,

network topology, and synaptic weights—to the NPU. The operating

system uses deq.c instructions to save the NPU configuration during

context switches. To invoke the NPU, the program executes enq.d
repeatedly to send inputs to the configured neural network. As soon

as all of the inputs of the neural network are enqueued, the NPU starts

computation and puts the results in its output FIFO. The program

executes deq.d repeatedly to retrieve the output values.

Instead of special instructions, an alternative design could use

memory-mapped IO to communicate with the NPU. This design

would require special fence instructions to prevent interference be-

tween two consecutive invocations and could impose a large overhead

per NPU invocation.

5.2. Speculative NPU-Augmented Architecture

Scheduling and issue. To ensure correct communication with the

NPU, the processor must issue NPU instructions in order. To ac-

complish this, the renaming logic implicitly considers every NPU

Lower Cost of
Implementation

CPU GPU FPGA
Approximate
Digital ASIC

FPAA Analog ASIC
Digital
ASIC

Lower Energy/Higher Performance
Lower Accuracy

Figure 4: Design space of NPU implementations. This paper focuses
on a precise digital ASIC design.

instruction to read and write a designated “dummy” architectural

register. The scheduler will therefore treat all NPU instructions as

dependent. Furthermore, the scheduler only issues an enqueue in-

struction if the corresponding FIFO is not full. Similarly, a dequeue

instruction is only issued if the corresponding FIFO is not empty.

Speculative execution. The processor can execute enq.d and deq.d
instructions speculatively. Therefore, the head pointer of the input

FIFO can only be updated—and consequently the entries recycled—

when: (1) the enqueue instruction commits; and (2) the NPU finishes

processing that input. When an enq.d instruction reaches the commit

stage, a signal is sent to the NPU to notify it that the input FIFO head

pointer can be updated.

To ensure correct speculative execution, the output FIFO maintains

two head pointers: a speculative head and a non-speculative head.

When a dequeue instruction is issued, it reads a value from the output

FIFO and the speculative head is updated to point to the next output.

However, the non-speculative head is not updated to ensure that the

read value is preserved in case the issue of the instruction was a result

of misspeculation. The non-speculative head pointer is only updated

when the instruction commits, freeing the slot in the output FIFO.

In case of a flush due to branch or dependence misspeculation, the

processor sends the number of squashed enq.d and deq.d instructions

to the NPU. The NPU adjusts its input FIFO tail pointer and output

FIFO speculative head pointer accordingly. The NPU also resets its

internal control state if it was processing any of the invalidated inputs

and adjusts the output FIFO tail pointer to invalidate any outputs

that are based on the invalidated inputs. The rollback operations are

performed concurrently for the input and output FIFOs.

The enq.c and deq.c instructions, which are only used to read and

write the NPU configuration, are not executed speculatively.

Interrupts. If an interrupt were to occur during an NPU invocation,

the speculative state of the NPU would need to be flushed. The

remaining non-speculative data in the input and output FIFOs would

need to be saved and then restored when the process resumes. One

way to avoid this complexity is to disable interrupts during NPU

invocations; however, this approach requires that the invocation time

is finite and ideally short as to not delay interrupts for too long.

Context switches. The NPU’s configuration is architectural state,

so the operating system must save and restore the configuration data

on a context switch. The OS reads out the current NPU configuration

using the deq.c instruction and stores it for later reconfiguration when

the process is switched back in. To reduce context switch overheads,

the OS can use the same lazy context switch techniques that are

typically used with floating point units [33].

6. Neural Processing Unit

There are many implementation options for NPUs with varying trade-

offs in performance, power, area, and complexity, as illustrated by

Figure 4. At one extreme are software implementations running on

a CPU or GPU [20, 34]. Since these implementations have higher

computation and communication overheads, they are likely more

suitable for very large candidate regions, when the invocation cost

453

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Bus
Scheduler

Scheduling Buffer

Output FIFO

Input FIFO

Config FIFO

Scaling
Unit

(a) 8-PE NPU

Multiply-Add
Unit

Sigmoid
Unit

Weight Buffer

Output Register File

Input FIFO

Controller

Accumulator
Registers

(b) Single processing engine

Figure 5: Reconfigurable 8-PE NPU.

can be better amortized. Next on the scale are FPGA-based imple-

mentations [50]. Digital ASIC designs are likely to be lower-latency

and more power-efficient than FPGA-based implementations [9, 37].

Since neural networks are themselves approximable, their implemen-

tation can also be approximate. Therefore, we can improve efficiency

further and use approximate digital circuits (e.g., sub-critical voltage

supply). In the extreme, one can even use custom analog circuitry

or FPAAs [3, 42, 44]. In fact, we believe that analog NPUs have

significant potential and we plan to explore them in future work. We

focus on an ASIC design operating at the same critical voltage as

the main core. This implementation represents a reasonable trade-off

between efficiency and complexity; it is able to accelerate a wide

variety of applications without the complexity of integrating analog

or sub-critical components with the processor.

6.1. Reconfigurable Digital NPU

The Parrot transformation produces different neural network topolo-

gies for different code regions. Thus, we propose a reconfigurable

NPU design that accelerates the evaluation of a range of neural

topologies. As shown in Figure 5a, the NPU contains eight identical

processing engines (PEs) and one scaling unit. Although the design

can scale to larger numbers of PEs, we find that the speedup gain

beyond 8 PEs is small (see Section 7). The scaling unit scales the

neural network’s inputs and outputs if necessary using scaling factors

defined in the NPU configuration process.

The PEs in the NPU are statically scheduled. The scheduling infor-

mation is part of the configuration information for the NPU, which

is based on the neural network topology derived during the training

process. In the NPU’s schedule, each neuron in the neural network

is assigned to one of the eight PEs. The neural network’s topology

determines a static schedule for the timing of the PE computations,

bus accesses, and queue accesses.

The NPU stores the bus scheduling information in its circular

scheduling buffer (shown in Figure 5a). Each entry in this buffer

schedules the bus to send a value from a PE or the input FIFO to a set

of destination PEs or the output FIFO. Every scheduling buffer entry

consists of a source and a destination. The source is either the input

FIFO or the identifier of a PE along with an index into its output

register file (shown in Figure 5b). The destination is either the output

FIFO or a bit field indicating the destination PEs.

Figure 5b shows the internal structure of a single PE. Each PE

performs the computation for all of its assigned neurons. Namely,

because the NPU implements a sigmoid-activation multilayer percep-

tron, each neuron computes its output as y = sigmoid(∑i(xi ×wi))
where xi is an input to the neuron and wi is its corresponding weight.

The weight buffer, a circular buffer, stores the weights. When a PE

receives an input from the bus, it stores the value in its input FIFO.

When the neuron weights for each PE are configured, they are placed

into the weight buffer; the compiler-directed schedule ensures that

the inputs arrive in the same order that their corresponding weights

appear in the buffer. This way, the PE can perform multiply-and-add

operations in the order the inputs enter the PE’s input FIFO.

Each entry in the weight buffer is augmented by one bit indicating

whether a neuron’s multiply-add operation has finished. When it

finishes, the PE applies the sigmoid function, which is implemented

as a lookup table, and write the result to its output register file. The

per-neuron information stored in the weight buffer also indicates

which output register should be used.

6.2. NPU Configuration

During code generation (Section 4.3), the compiler produces an NPU

configuration that implements the trained neural network for each

candidate function. The static NPU scheduling algorithm first assigns

an order to the inputs of the neural network. This order determines

both the sequence of enq.d instructions that the CPU will send to the

NPU during each invocation and the order of multiply-add operations

among the NPU’s PEs. Then, the scheduler takes the following steps

for each layer of the neural network:

1. Assign each neuron to one of the processing engines.

2. Assign an order to the multiply-add operations considering the

order assigned to the inputs of the layer.

3. Assign an order to the outputs of the layer.

4. Produce a bus schedule reflecting the order of operations.

The ordering assigned for the final layer of the neural network dictates

the order in which the program will retrieve the NPU’s output using

deq.d instructions.

7. Evaluation

To evaluate the effectiveness of the Parrot transformation, we apply

it to several benchmarks from diverse application domains. For each

benchmark, we identify a region of code that is amenable to the

Parrot transformation. We evaluate whole-application speedup and

energy savings using cycle-accurate simulation and a power model.

We also examine the resulting trade-off in computation accuracy. We

perform a sensitivity analysis to examine the effect of NPU PE count

and communication latency on the performance benefits.

7.1. Benchmarks and the Parrot Transformation

Table 1 lists the benchmarks used in this evaluation. These bench-

marks are all written in C. The application domains—signal pro-

cessing, robotics, gaming, compression, machine learning, and im-

age processing—are selected for their usefulness to general appli-

cations and tolerance to imprecision. The domains are commen-

surate with evaluations of previous work on approximate comput-

ing [1, 11, 28, 29, 41, 43].

Table 1 also lists the input sets used for performance, energy, and

accuracy assessment. These input sets are different from the ones

used during the training phase of the Parrot transformation. For

applications with random inputs we use a different random input set.

For applications with image input, we use a different image.

454

Table 1: The benchmarks evaluated, characterization of each transformed function, 0 data, and the result of the Parrot transformation.

�������	�
� ���
������	�
�
����	���	

��
������	�
��
�����

��
��
�

��

��
������
�����

��
������� �
���	���	�
��

�������!
����	���	

"������"�	#
�$�
�
�
�
! ""�%��

���
��
%�	��� ���
�

��	

�������$&'

'(���	

'��!

$(����

�
)��

�������	

���������		
����	������

������	
���������

����	������	
��������	�����	
 ��!��

� � � "�
"�#$�	������	
��������	�����	
 ��!��

%	�&	�	�&	�	�&	� �'�����
()���	
�����)	
*����

#'��+

,�)��	
���������	���	
��-����	���

��!����� %����	.�/�0	������	

���������

� � � %�� %����	.�/�0	������	

���������

�	�&	�	�&	� �'��1$"
()���	
�����)	
*����

#'1�+

�������	
����������	
�������

"2	3�����
%����	������	�����	
��	"2	�������	

���������

"� � �" %/�#4
%�����	������	
�����	��	"2	�������	

���������

%�	�&	"�	�&	�	�&	� �'��1"� 5���	
���

#'"�+

6�*3	�������
��7������
������������	
����	
,��� " � � %/�1#

�8�	1%��1%������	

����	,���� $�	�&	%$	�&	$� �'���4�

,���	
2��� 4'1$+

9�����	
���������

5��8��	
:������

������������	
����	
,���

% � � �$
1����	�����	��	
������	.�/	�/	!0	
;����

$	�&	�	�&	�	�&	% �'��%$4 ,���	
2���

$'%�+

��!�	��	
������

,���	
���������

������������	
����	
,��� " � % ��

<�	1%��1%������	

����	,��� 4	�&	�	�&	% �'���"�

,���	
2��� "'��+

Code annotation. The C source code for each benchmark was an-

notated as described in Section 3: we identified a single pure function

with fixed-size inputs and outputs. No algorithmic changes were

made to the benchmarks to accommodate the Parrot transformation.

There are many choices for the selection of target code and, for some

programs, multiple NPUs may even have been beneficial. For the

purposes of this evaluation, however, we selected a single target re-

gion per benchmark that was easy to identify, frequently executed as

to allow for efficiency gains, and amenable to learning by a neural

network. Qualitatively, we found it straightforward to identify a

reasonable candidate function in each benchmark.

Table 1 shows the number of function calls, conditionals, and loops

in each transformed function. The table also shows the number of

x86-64 instructions for the target function when compiled by GCC
4.4.6 at the -O3 optimization level. We do not include the statistics

of the standard library functions in these numbers. In most of these

benchmarks, the target code contains complex control flow including

conditionals, loops, and method calls. In jmeint, the target code con-

tains the bulk of the algorithm, including many nested method calls

and numerous conditionals. In jpeg, the transformation subsumes

the discrete cosine transform and quantization phases, which contain

function calls and loops. In fft, inversek2j, and sobel, the target code

consists mainly of arithmetic operations and simpler control flow. In

kmeans, the target code is the 0 distance calculation, which is simple

and fine-grained yet frequently executed. In each case, the target

code is side-effect-free and the number of inputs/outputs are statically

identifiable.

Training data. To train the NPU for each application, we have

used either (1) typical program inputs (e.g., sample images) or (2)

a limited number of random inputs. For the benchmarks that use

random inputs, we determined the permissible range of parameters

in the code and generated uniform random inputs in that range. For

the image-based benchmarks, we used three standard images that

are used to evaluate image processing algorithms (lena, mandrill, and

peppers). For kmeans, we supplied random inputs to the code region

to avoid overtraining on a particular test image. Table 1 shows the

specific image or application input used in the training phase for each

benchmark. We used different random inputs and different images

for the final accuracy evaluation.

Neural networks. The “Neural Network Topology” column in Ta-

ble 1 shows the topology of the trained neural network discovered by

the training stage described in Section 4.2. The “NN MSE” column

shows the mean squared error for each neural network on the test

subset of the training data. For example, the topology for jmeint
is 18 → 32 → 8 → 2, meaning that the neural network takes in 18

inputs, produces 2 outputs, and has two hidden layers with 32 and 8

neurons respectively. As the results show, the compilation workflow

was able to find a neural network that accurately mimics each original

function. However, different topologies are required to approximate

different functions.

Different applications require different neural network topologies, so the
NPU structure must be reconfigurable.

Output quality. We use an application-specific error metric, shown

in Table 1, to assess the quality of each benchmark’s output. In all

cases, we compare the output of the original untransformed applica-

tion to the output of the transformed application. For fft and inversek2j,
which generate numeric outputs, we measure the average relative

error. jmeint calculates whether two three-dimensional triangles inter-

sect; we report the misclassification rate. For jpeg, kmeans, and sobel,
which produce image outputs, we use the average root-mean-square

image difference. The column labeled “Error” in Table 1 shows the

whole-application error of each benchmark according to its error

metric. Unlike the “NN MSE” error values, this application-level

error assessment accounts for accumulated errors due to repeated

execution of the transformed function.

Application average error rates range from 3% to 10%. This

quality-of-service loss is commensurate with other work on quality

trade-offs. Among hardware approximation techniques, Truffle [11]

shows similar error (3–10%) for some applications and much greater

error (above 80%) for others in a moderate configuration. The evalu-

ation of EnerJ [41] also has similar error rates; two thirds of the ap-

plications exhibit error greater than 10% in the most energy-efficient

configuration. Green [2], a software technique, has error rates below

1% for some applications but greater than 20% for others. A case

study by Misailovic et al. [30] explores manual optimizations of a

video encoder, x264, that trade off 0.5–10% quality loss.

455

Table 2: Microarchitectural parameters for the core, caches, memory, NPU, and each PE in the NPU.

Core

Architecture x86-64
Fetch/Issue Width 4/6

INT ALUs/FPUs 3/2
Load/Store FUs 2/2

ROB Entries 96
Issue Queue Entries 32

INT/FP Physical Registers 256/256
Branch Predictor Tournament, 48 KB
BTB Sets/Ways 1024/4

RAS Entries 64
Load/Store Queue Entries 48/48

Dependence Predictor 4096-entry Bloom Filter

Caches and Memory

L1 Cache Size 32 KB instruction, 32 KB data
L1 Line Width 64 bytes

L1 Associativity 8
L1 Hit Latency 3 cycles

ITLB/DTLB Entries 128/256
L2 Cache Size 2 MB
L2 Line Width 64 bytes

L2 Associativity 8
L2 Hit Latency 12

Memory Latency 50 ns (104 cycles)

NPU

Number of PEs 8
Bus Schedule FIFO 512×20-bit

Input FIFO 128×32-bit
Output FIFO 128×32-bit
Config FIFO 8×32-bit

NPU PE

Weight Cache 512×33-bit
Input FIFO 8×32-bit

Output Register File 8×32-bit
Sigmoid Unit LUT 2048×32-bit
Multiply-Add Unit 32-bit Single-Precision FP

�� ��� ��� ��� ��� ��� 	��
�� ��� ��� ����
�����

��

���

���

	��

���

����

��
��

��
	

��
��

��
�	

��
	��

��
�

��
	�

�
����������
������
����
������
�����

Figure 6: Cumulative distribution function (CDF) plot of the applica-
tions’ output error. A point (x,y) indicates that y fraction of
the output elements see error less than or equal to x.

The Parrot transformation degrades each application’s average output
quality by less than 10%, a rate commensurate with other approximate
computing techniques.

To study the application level quality loss in more detail, Figure 6

depicts the CDF (cumulative distribution function) plot of final er-

ror for each element of application’s output. The output of each

benchmark consists of a collection of elements—an image consists

of pixels; a vector consists of scalars; etc. The error CDF reveals the

distribution of output errors among an application’s output elements

and shows that very few output elements see large quality loss.

The majority (80% to 100%) of each transformed application’s output
elements have error less than 10%.

7.2. Experimental Setup

Cycle-accurate simulation. We use the MARSSx86 cycle-accurate

x86-64 simulator [35] to evaluate the performance effect of the Par-

rot transformation and NPU acceleration. Table 2 summarizes the

microarchitectural parameters for the core, memory subsystem, and

NPU. We configure the simulator to resemble Intel’s Penryn microar-

chitecture, which is an aggressive out-of-order design. We augment

MARSSx86 with a cycle-accurate NPU simulator and add support

for NPU queue instructions through unused x86 opcodes. We use

C assembly inlining to add the NPU invocation code. We compile

the benchmarks using GCC version 4.4.6 with the -O3 flag to enable

aggressive compiler optimizations. The baseline in all of the reported

results is the execution of the entire benchmark on the core without

the Parrot transformation.

Energy modeling. MARSSx86 generates an event log during the

cycle-accurate simulation of the program. The resulting statistics

are sent to a modified version of McPAT [27] to estimate the energy

consumption of each execution. We model the energy consumption

of an 8-PE NPU using the results from McPAT and CACTI 6.5 [31]

for memory arrays, buses, and steering logic. We use the results

from Galal et al. [17] to estimate the energy of multiply-and-add

operations. We model the NPU and the core at the 45 nm technology

node. The NPU operates at the same frequency and voltage as the

main core. We use the 2080 MHz frequency and Vdd = 0.9 V settings

because the energy results in Galal et al. [17] are for this frequency

and voltage setting.

7.3. Experimental Results

Dynamic instruction subsumption. Figure 7 depicts dynamic in-

struction count of each transformed benchmark normalized to the

instruction count for CPU-only execution. The figure divides each

application into NPU communication instructions and application in-

structions. While the potential benefit of NPU acceleration is directly

related to the amount of CPU work that can be elided, the queuing

instructions and the cost of neural network evaluation limit the actual

benefit. For example, inversek2j exhibits the greatest potential for

benefit: even accounting for the communication instructions, the

transformed program executes 94% fewer instructions on the core.

Most of the benchmark’s dynamic instructions are in the target region

for the Parrot transformation and it only communicates four values

with the NPU per invocation. This is because inversek2j is an ideal

case: the entire algorithm has a fixed-size input ((x,y) coordinates of

the robot arm), fixed-size output ((θ1,θ2) angles for the arm joints),

and tolerance for imprecision. In contrast, kmeans is representative of

applications where the Parrot transformation applies more locally: the

target code is “hot” but only consists of a few arithmetic operations

and the communication overhead is relatively high.

Performance and energy benefits. Figure 8a shows the applica-

tion speedup when an 8-PE NPU is used to replace each benchmark’s

target function. The rest of the code runs on the core. The baseline

is executing the entire, untransformed benchmark on the CPU. The

plots also show the potential available speedup: the hypothetical

speedup if the NPU takes zero cycles for computation. Among the

benchmarks inversek2j sees the highest speedup (11.1×) since the

Parrot transformation substitutes the bulk of the application with a

relatively small NN (2 → 8 → 2). On the other hand, kmeans sees

a 24% slowdown even though it shows a potential speedup of 20%

in the limit. The transformed region of code in kmeans consists of

26 mostly arithmetic instructions that can efficiently run on the core

456

0

0.25

0.50

0.75

1.00

fft inversek2j jmeint jpeg kmeans sobel geomean

N
o

rm
al

iz
ed

 #
 o

f
D

yn
am

ic
 In

st
ru

ct
io

ns

Other Instructions
NPU Queue Instructions

Figure 7: Number of dynamic instructions after Parrot transformation
normalized to the original program.

0

1

2

3

4

5

fft inversek2j jmeint jpeg kmeans sobel geomean

3.4

2.5

1.2

1.9

4.5
 15.8

3.8

2.3
1.9

.8

1.61.7

11.1

3.6

A
p

p
lic

at
io

n
S

p
ee

d
up

Core + NPU
Core + Ideal NPU

(a) Total application speedup with 8-PE NPU

0

1

2

3

4

5

6

7

fft inversek2j jmeint jpeg kmeans sobel geomean

3.9

2.4

1.4

2.4

5.8

 25.2

3.2 3.0

2.2

1.1

2.12.3

21.1

3.1

A
p

p
lic

at
io

n
E

ne
rg

y
R

ed
uc

ti
o

n

Core + NPU
Core + Ideal NPU

(b) Total application energy saving with 8-PE NPU

Figure 8: Performance and energy improvements.

while the NN (6 → 8 → 4 → 1) for this benchmark is comparatively

complex and involves more computation (84 multiply-adds and 12

sigmoids) than the original code. On average, the benchmarks see a

speedup of 2.3× through NPU acceleration.

Figure 8b shows the energy reduction for each benchmark. The

baseline is the energy consumed by running the entire benchmark on

the unmodified CPU and the ideal energy savings for a hypothetical

zero-energy NPU. The Parrot transformation elides the execution of

significant portion of dynamic instructions that otherwise would go

1

10

100

fft inversek2j jmeint jpeg kmeans sobel geomean

19.923.9

64.7

21.9

74.0

5.6
4.5

A
p

p
lic

at
io

n
S

lo
w

d
o

w
n

Figure 9: Slowdown with software neural network execution.

through power-hungry stages of the OoO pipeline. The reduction in

the number of dynamic instructions and the energy-efficient design

of the NPU yield a 3.0× average application energy reduction.

For the applications we studied, the Parrot transformation and NPU
acceleration provided an average 2.3× speedup and 3.0× energy re-
duction.

Results for a hypothetical zero-cost NPU suggest that, in the limit, more
efficient implementation techniques such as analog NPUs could result
in up to 3.4× performance and 3.7× energy improvements on average.

Software neural network execution. While our design evaluates

neural networks on a dedicated hardware unit, it is also possible to run

transformed programs entirely on the CPU using a software library

for neural network evaluation. To evaluate the performance of this

all-software configuration, we executed each transformed benchmark

using calls to the widely-used Fast Artificial Neural Network (FANN)

library [15] in place of NPU invocations. Figure 9 shows the slow-

down compared to the baseline (untransformed) execution of each

benchmark. Every benchmark exhibits a significant slowdown when

the Parrot transformation is used without NPU acceleration. jmeint
shows the highest slowdown because 1079 x86 instructions—which

take an average of 326 cycles on the core—are replaced by 928 multi-

plies, 928 adds, and 42 sigmoids. FANN’s software multiply-and-add

operations involve calculating the address of the neuron weights and

loading them. The overhead of function calls in the FANN library

also contributes to the slowdown.

The Parrot transformation requires efficient neural network execution,
such as hardware acceleration, to be beneficial.

Sensitivity to communication latency. The benefit of NPU-based

execution depends on the cost of each NPU invocation. Specifically,

the latency of the interconnect between the core and the NPU can

affect the potential energy savings and speedup. Figure 10 shows

the speedup for each benchmark under five different communication

latencies. In each configuration, it takes n cycles to send data to the

NPU and n cycles to receive data back from the NPU. In effect, 2n
cycles are added to the NPU invocation latency. We imagine a design

with pipelined communication, so individual enqueue and dequeue

instructions take one extra cycle each in every configuration.

The effect of communication latency varies depending on the

application. In cases like jpeg, where the NPU computation latency

is significantly larger than the communication latency, the speedup is

mostly unaffected by increased latency. In contrast, inversek2j sees

457

0

1

2

3

4

5

fft inversek2j jmeint jpeg kmeans sobel geomean

1.8
1.4

0.5

1.61.5

6.9

3.1

2.3
1.9

0.8

1.61.7

11.1

3.6

A
p

p
lic

at
io

n
S

p
ee

d
up

1 Cycle 2 Cycles 4 Cycles 8 Cycles 16 Cycles

Figure 10: Sensitivity of the application’s speedup to NPU communi-
cation latency. Each bar shows the speedup if communi-
cating with the NPU takes n cycles.

0%

10%

20%

30%

40%

50%

1->2 PEs 2->4 PEs 4->8 PEs 8->16 PEs 16->32 PEs

G
eo

m
et

ri
c

M
ea

n
S

p
ee

d
up

 G
ai

n

Figure 11: Performance gain per doubling the number of PEs.

a significant reduction in speedup from 11.1× to 6.9× when the

communication latency increases from one cycle to 16 and becomes

comparable to the computation latency. For kmeans, the slowdown

becomes 48% for a latency of 16 cycles compared to 24% when the

communication latency is one cycle.

For some applications with simple neural network topologies, a tightly-
coupled, low-latency NPU–CPU integration design is highly beneficial.
Other applications we studied can tolerate a higher-latency interconnect.

Number of PEs. Figure 11 shows the geometric mean speedup

gain from doubling the number of PEs in the NPU. Doubling the

number of PEs beyond eight yields less than 5% geometric mean

speedup gain, which does not justify the complexity of adding more

than eight PEs for our benchmarks.

8. Limitations and Future Directions

Our results suggest that the Parrot transformation and NPU accelera-

tion can provide significant performance and energy benefits. How-

ever, further research must address three limitations to the Parrot

transformation as described in this work: (1) applicability; (2) pro-

grammer effort; and (3) quality and error control.

Applicability. Since neural networks inherently produce approxi-

mate results, not all code regions can undergo the Parrot transforma-

tion. As enumerated in Section 3.1, a target code region must satisfy

the following conditions:

• The region must be hot in order to benefit from acceleration.

• The region must be approximable. That is, the program must

incorporate application-level tolerance of imprecision in the results

of the candidate region.

• The region must have a bounded number of statically identifiable

inputs and outputs.

Although these criteria form a basis for programmers or compilers to

identify nominees for the Parrot transformation, they do not guarantee

that the resulting neural network will accurately approximate the code

region. There is no simple criterion that makes a certain task (here

a candidate region) suited for learning by a neural network. How-

ever, our experience and results suggest that empirical assessment

is effective to classify a wide variety of approximate functions as

NPU-suitable. Follow-on work can improve on empirical assessment

by identifying static code features that tend to indicate suitability for

learning-based acceleration.

Programmer effort. In this paper, the Parrot transformation re-

quires programmers to (1) identify approximable code regions and

(2) provide application inputs to be used for training data collection.

As with the other approaches that ensure the safety of approximate

computation and avoid catastrophic failures [41], the programmer

must explicitly provide information for the compiler to determine

which code regions are safe to approximate. As Section 3.2 outlines,

future work should explore allowing the compiler to automatically

infer which blocks are amenable to approximation.

Because NPU acceleration depends on representative test cases,

it resembles a large body of other techniques that use programmer-

provided test inputs, including quality assurance (e.g., unit and in-

tegration testing) and profile-driven compilers. Future work should

apply traditional coverage measurement and improvement techniques,

such as test generation, to the Parrot transformation. In general, how-

ever, we found that it was straightforward to provide sufficient inputs

for the programs we examined. This is in part because the candi-

date function is executed many times in a single application run, so

a small number of inputs can suffice. Furthermore, as Section 4.2

mentions, an on-line version of the Parrot transformation workflow

could use samples of post-deployment inputs if representative tests

are not available pre-deployment.

Quality and error control. The results in this paper suggest that

NPU acceleration can effectively approximate code with accuracy

that is commensurate with state-of-the art approximate computing

techniques. However, there is always a possibility that, for some

inputs, the NPU computes a significantly lower-quality result than

the average case. In other words, without exhaustively exploring

the NPU’s input space, it is impossible to give guarantees about its

worst-case accuracy.

This unpredictability is common to other approximation tech-

niques [11,41]. As long as the frequency of low-quality results is low

and the application can tolerate these infrequent large errors, approxi-

mation techniques like NPUs can be effective. For this reason, future

research should explore mechanisms to mitigate the frequency of

such low-quality results. One such mechanism is to predict whether

the NPU execution of the candidate region will be acceptable. For

example, one embodiment would check whether an input falls in the

range of inputs seen previously during training. If the prediction is

negative, the original code can be invoked instead of the NPU. Alter-

natively, the runtime system could occasionally measure the error by

comparing the NPU output to the original function’s output. In case

the sampled error is greater than a threshold, the neural network can

be retrained. These techniques are similar in spirit to related research

on estimating error bounds for neural networks [46].

9. Related Work
This work represents a convergence of three main bodies of research:

approximate computing, general-purpose configurable acceleration,

458

and hardware neural networks. Fundamentally, the Parrot transfor-

mation leverages hardware neural networks to create a new class of

configurable accelerators for approximate programs.

Approximate computing. Many categories of “soft” applications

have been shown to be tolerant to imprecision during execution [7,14,

28,49]. Prior work has explored relaxed hardware semantics and their

impact on these applications, both as (1) extensions to traditional

architectures [1, 8, 11, 29] and (2) in the form of fully approximate

processing units [4, 24, 26, 32].

In the former category (1), a conventional processor architecture

is extended to enable selective approximate execution. Since all the

instructions, both approximate and precise, still run on the core, the

benefits of approximation are limited. In addition, these techniques’

fine granularity precludes higher-level, algorithmic transformations

that take advantage of approximation. The Parrot transformation

operates at coarser granularities—from small functions to entire

algorithms—and potentially increases the benefits of approximation.

Furthermore, NPU acceleration reduces the number of instructions

that go through the power-hungry frontend stages of the processor

pipeline. In the latter category (2), entire processing units carry

relaxed semantics and thus require vastly different programming

models. In contrast, NPUs can be used with conventional imperative

0 languages and existing code. No special code must be written to

take advantage of the approximate unit; only lightweight annotation

is required.

Some work has also exposed relaxed semantics in the program-

ming language to give programmers control over the precision of

software [2, 8, 41]. As an implementation of approximate semantics,

the Parrot transformation dovetails with these programming models.

General-purpose configurable acceleration. The Parrot transfor-

mation extends prior work on configurable computing, synthesis,

specialization, and acceleration that focuses on compiling traditional,

imperative code for efficient hardware structures. One research di-

rection seeks to synthesize efficient circuits or configure FPGAs to

accelerate general-purpose code [6, 13, 38, 39]. Similarly, static spe-

cialization has shown significant efficiency gains for irregular and

legacy code [47, 48]. More recently, configurable accelerators have

been proposed that allow the main CPU to offload certain code to a

small, efficient structure [18,19]. These techniques, like NPU acceler-

ation, typically rely on profiling to identify frequently executed code

sections and include compilation workflows that offload this “hot”

code to the accelerator. This work differs in its focus on accelerating

approximate code. NPUs represent an opportunity to go beyond

the efficiency gains that are possible when strict correctness is not

required. While some code is not amenable to approximation and

should be accelerated only with correctness-preserving techniques,

NPUs can provide greater performance and energy improvements in

many situations where relaxed semantics are appropriate.

Neural networks. There is an extensive body of work on hard-

ware implementation of neural networks (neural hardware) both

digital [9, 37, 50] and analog [3, 25, 42, 44]. Recent work has pro-

posed higher-level abstractions for implementation of neural net-

works [23]. Other work has examined fault-tolerant hardware neural

networks [22, 45]. In particular, Temam [45] uses datasets from the

UCI machine learning repository [16] to explore fault tolerance of a

hardware neural network design. That work suggests that even faulty

hardware can be used for efficient simulation of neural networks. The

Parrot algorithmic transformation provides a compiler workflow that

allows general-purpose approximate applications to take advantage

of this and other hardware neural networks.

An early version of this work [12] proposed the core idea of

automatically mapping approximable regions of imperative code

to neural networks. A more recent study [5] showed that 5 of 13

applications from the PARSEC suite can be manually reimplemented

to make use of various kinds of neural networks, demonstrating that

some applications allow higher-level algorithmic modifications to

make use of hardware neural networks (and potentially an architecture

like NPUs). However, that work did not prescribe a programming

model nor a preferred hardware architecture.

10. Conclusion

This paper demonstrates that neural accelerators can successfully

mimic diverse regions of approximable imperative code. Using this

neural transformation and the appropriate hardware accelerator, sig-

nificant application-level energy and performance savings are achiev-

able. The levels of error introduced are comparable to those seen in

previous approximate computing techniques. For the technique to

be effective, two challenges must be met. First, the program trans-

formation must consider a range of neural network topologies; a

single topology is ineffective across diverse applications. Second,

the accelerator must be tightly coupled with a processor’s pipeline to

accelerate fine-grained regions of code. With these requirements met,

our application suite ran 2.3× faster on average while using 3.0×
less energy and maintaining accuracy greater than 90% in all cases.

Traditionally, hardware implementations of neural networks have

been confined to specific classes of learning applications. In this

paper, we show that the potential exists to use them to accelerate

general-purpose code that can tolerate small errors. In fact, the

transformation was successful for every approximable code region

that we tested. This acceleration capability aligns with both transistor

and application trends, as transistors become less reliable and as

imprecise applications grow in importance. NPUs may thus form a

new class of trainable accelerators with potential implementations in

the digital and analog domains.

Acknowledgments

We would like to thank the anonymous reviewers for their valuable

comments. We thank our shepherd, Mike Schlansker, for his feedback

and encouragement. We also thank Brandon Lucia, Jacob Nelson,

Ardavan Pedram, Renée St. Amant, Karin Strauss, Xi Yang, and the

members of the Sampa group for their feedback on the manuscript.

This work was supported in part by NSF grant CCF-1016495 and

gifts from Microsoft.

References

[1] C. Alvarez, J. Corbal, and M. Valero, “Fuzzy memoization for floating-
point multimedia applications,” IEEE Trans. Comput., vol. 54, no. 7,
2005.

[2] W. Baek and T. M. Chilimbi, “Green: A framework for supporting
energy-conscious programming using controlled approximation,” in
PLDI, 2010.

[3] B. E. Boser, E. Säckinger, J. Bromley, Y. Lecun, L. D. Jackel, and
S. Member, “An analog neural network processor with programmable
topology,” J. Solid-State Circuits, vol. 26, pp. 2017–2025, 1991.

[4] L. N. Chakrapani, B. E. S. Akgul, S. Cheemalavagu, P. Korkmaz, K. V.
Palem, and B. Seshasayee, “Ultra-efficient (embedded) SOC architec-
tures based on probabilistic CMOS (PCMOS) technology,” in DATE,
2006.

459

[5] T. Chen, Y. Chen, M. Duranton, Q. Guo, A. Hashmi, M. Lipasti, A. Nere,
S. Qiu, M. Sebag, and O. Temam, “Benchnn: On the broad potential
application scope of hardware neural network accelerators?” in IISWC,
Nov. 2012.

[6] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner, “Application-
specific processing on a general-purpose core via transparent instruction
set customization,” in MICRO, 2004.

[7] M. de Kruijf and K. Sankaralingam, “Exploring the synergy of emerging
workloads and silicon reliability trends,” in SELSE, 2009.

[8] M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: An archi-
tectural framework for software recovery of hardware faults,” in ISCA,
2010.

[9] H. Esmaeilzadeh, P. Saeedi, B. Araabi, C. Lucas, and S. Fakhraie,
“Neural network stream processing core (NnSP) for embedded systems,”
in ISCAS, 2006.

[10] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in ISCA,
2011.

[11] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” in ASPLOS, 2012.

[12] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Towards neural
acceleration for general-purpose approximate computing,” in WEED,
Jun. 2012.

[13] K. Fan, M. Kudlur, G. Dasika, and S. Mahlke, “Bridging the computa-
tion gap between programmable processors and hardwired accelerators,”
in HPCA, 2009.

[14] Y. Fang, H. Li, and X. Li, “A fault criticality evaluation framework of
digital systems for error tolerant video applications,” in ATS, 2011.

[15] FANN, “Fast artificial neural network library,” 2012. Available:
http://leenissen.dk/fann/wp/

[16] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010.
Available: http://archive.ics.uci.edu/ml

[17] S. Galal and M. Horowitz, “Energy-efficient floating-point unit design,”
IEEE Trans. Comput., vol. 60, no. 7, pp. 913–922, 2011.

[18] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically spe-
cialized datapaths for energy efficient computing,” in HPCA, 2011.

[19] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August, “Bundled
execution of recurring traces for energy-efficient general purpose pro-
cessing,” in MICRO, 2011.

[20] A. Guzhva, S. Dolenko, and I. Persiantsev, “Multifold acceleration of
neural network computations using GPU,” in ICANN, 2009.

[21] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C.
Lee, S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding
sources of inefficiency in general-purpose chips,” in ISCA, 2010.

[22] A. Hashmi, H. Berry, O. Temam, and M. H. Lipasti, “Automatic ab-
straction and fault tolerance in cortical microarchitectures,” in ISCA,
2011.

[23] A. Hashmi, A. Nere, J. J. Thomas, and M. Lipasti, “A case for neuro-
morphic ISAs,” in ASPLOS, 2011.

[24] R. Hegde and N. R. Shanbhag, “Energy-efficient signal processing via
algorithmic noise-tolerance,” in ISLPED, 1999.

[25] A. Joubert, B. Belhadj, O. Temam, and R. Heliot, “Hardware spiking
neurons design: Analog or digital?” in IJCNN, 2012.

[26] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “ERSA: Error
resilient system architecture for probabilistic applications,” in DATE,
2010.

[27] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling

framework for multicore and manycore architectures,” in MICRO, 2009.
[28] X. Li and D. Yeung, “Exploiting soft computing for increased fault

tolerance,” in ASGI, 2006.
[29] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Sav-

ing refresh-power in mobile devices through critical data partitioning,”
in ASPLOS, 2011.

[30] S. Misailovic, S. Sidiroglou, H. Hoffman, and M. Rinard, “Quality of
service profiling,” in ICSE, 2010.

[31] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimiz-
ing NUCA organizations and wiring alternatives for large caches with
CACTI 6.0,” in MICRO, 2007.

[32] S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones, “Scalable stochastic
processors,” in DATE, 2010.

[33] NetBSD Documentation, “How lazy FPU context switch works,” 2011.
Available: http://www.netbsd.org/docs/kernel/lazyfpu.html

[34] K.-S. Oh and K. Jung, “GPU implementation of neural networks,” Pat-
tern Recognition, vol. 37, no. 6, pp. 1311–1314, 2004.

[35] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSSx86: A full system
simulator for x86 CPUs,” in DAC, 2011.

[36] A. Pedram, R. A. van de Geijn, and A. Gerstlauer, “Codesign tradeoffs
for high-performance, low-power linear algebra architectures,” Comput-
ers, IEEE Transactions on, vol. 61, no. 12, Dec. 2012.

[37] K. Przytula and V. P. Kumar, Eds., Parallel Digital Implementations of
Neural Networks. Prentice Hall, 1993.

[38] A. R. Putnam, D. Bennett, E. Dellinger, J. Mason, and P. Sundarara-
jan, “CHiMPS: A high-level compilation flow for hybrid CPU-FPGA
architectures,” in FPGA, 2008.

[39] R. Razdan and M. D. Smith, “A high-performance microarchitecture
with hardware-programmable functional units,” in MICRO, 1994.

[40] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” in Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition. MIT Press, 1986,
vol. 1, pp. 318–362.

[41] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “EnerJ: Approximate data types for safe and general
low-power computation,” in PLDI, 2011.

[42] J. Schemmel, J. Fieres, and K. Meier, “Wafer-scale integration of analog
neural networks,” in IJCNN, 2008.

[43] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,”
in FSE, 2011.

[44] S. Tam, B. Gupta, H. Castro, and M. Holler, “Learning on an analog
VLSI neural network chip,” in SMC, 1990.

[45] O. Temam, “A defect-tolerant accelerator for emerging high-
performance applications,” in ISCA, 2012.

[46] N. Townsend and L. Tarassenko, “Estimations of error bounds for neural-
network function approximators,” IEEE Transactions on Neural Net-
works, vol. 10, no. 2, Mar. 1999.

[47] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor, “Conservation cores: Reducing
the energy of mature computations,” in ASPLOS, 2010.

[48] G. Venkatesh, J. Sampson, N. Goulding, S. K. Venkata, S. Swanson, and
M. Taylor, “QsCores: Trading dark silicon for scalable energy efficiency
with quasi-specific cores,” in MICRO, 2011.

[49] V. Wong and M. Horowitz, “Soft error resilience of probabilistic infer-
ence applications,” in SELSE, 2006.

[50] J. Zhu and P. Sutton, “FPGA implementations of neural networks: A
survey of a decade of progress,” in FPL, 2003.

460

