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Abstract—Graphs are one of the key data structures for
many real-world computing applications and the importance
of graph analytics is ever-growing. While existing software
graph processing frameworks improve programmability of graph
analytics, underlying general purpose processors still limit the
performance and energy efficiency of graph analytics. We ar-
chitect a domain-specific accelerator, Graphicionado, for high-
performance, energy-efficient processing of graph analytics work-
loads. For efficient graph analytics processing, Graphicionado
exploits not only data structure-centric datapath specialization,
but also memory subsystem specialization, all the while taking ad-
vantage of the parallelism inherent in this domain. Graphicionado
augments the vertex programming paradigm, allowing different
graph analytics applications to be mapped to the same accelerator
framework, while maintaining flexibility through a small set
of reconfigurable blocks. This paper describes Graphicionado
pipeline design choices in detail and gives insights on how
Graphicionado combats application execution inefficiencies on
general-purpose CPUs. Our results show that Graphicionado
achieves a 1.76−6.54× speedup while consuming 50−100× less
energy compared to a state-of-the-art software graph analytics
processing framework executing 32 threads on a 16-core Haswell
Xeon processor.

I. INTRODUCTION

Starting out as a recreational mathematical puzzle known as

the Königsberg bridge problem [9] in the early 18th century,

graph theory and topology have since developed into well-

known representations of many-to-many relationships, solving

research problems in the areas of network communications,

social informatics, natural language processing, system biology,

and cyber security. In the era of producing and consuming

“big data”, there has been a resurgence of interest in devel-

oping graph analytics applications to gain new solutions and

insights; examples include Google’s citation ranking algorithm,

PageRank [30], Facebook’s semantic search engine, Graph

Search [44], Ayasdi’s topological data analysis engine that

led scientists to more effective breast-cancer treatments [15],

and MITRE’s cyber warfare analytics management software,

CyGraph [48], that correlates intrusion alerts to known vul-

nerability paths. This renewed interest spurred the software

community to develop more efficient graph analytics processing

frameworks [4, 5, 23, 25, 33, 35, 46] as well as the hardware

community to create hardware that can execute graph analytics

applications with more efficiency than what the off-the-shelf,

general-purpose processors and systems can provide [11]. To

that end, our research focuses on exploiting the structured

data movements and computation patterns that graph analytics

applications exhibit to improve efficiency, and on mitigating the

challenges such applications face when executing on traditional

CPUs.

Certain key characteristics must be accounted for when

considering graph domain accelerators. First, graph analytics ap-

plications are often memory latency- or bandwidth-bound. For

example, graph traversals often require many memory accesses

relative to only small amounts of computation. Unfortunately,

current general purpose processors are not the ideal platform

for executing such applications. Their inefficiencies include 1)

waste of off-chip memory bandwidth from inefficient memory
access granularity—loading and storing 64-byte cacheline

data while operating on only a portion of the data (e.g., 4

bytes), 2) ineffective on-chip memory usage—hardware cache

is oblivious to graph-specific datatypes and does not effectively

retain high locality data on-chip, and 3) mismatch in execution
granularity—computation and communication of data using

x86 instructions instead of utilizing domain-specific datatypes

for graph analytics such as edges and vertices. To overcome

these limitations, we propose a set of datatype and memory

subsystem specializations in addition to exploiting the inherent

parallelism of graph workloads to alleviate these performance

bottlenecks.

We architect, design, and evaluate a domain-specific acceler-

ator for processing graph analytics workloads. Graphicionado

features a pipeline that is inspired by the vertex programming

paradigm coupled with a few reconfigurable blocks; this

specialized-while-flexible pipeline means that graph analytics

applications (written as a vertex program) will execute well

on Graphicionado.

This paper makes the following contributions:

• A specialized graph analytics processing hardware pipeline

that employs datatype and memory subsystem special-

izations while offering workload-specific reconfigurable

blocks called Graphicionado.

• An in-depth tour of the various microarchitecture opti-

mizations to provide performance and energy efficiency,

techniques to extract more parallelism, and tactics to

support large-scale real-world graphs using slicing and

partitioning.†This work was done while the author was working at Intel Corporation
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GraphMat Processing Model

1 For each Vertex V
2 For each incoming edge E(U,V) from active vertex U
3 Res ← Process_Edge (Eweight, Uprop, [OPTIONAL]Vprop)
4 Vtemp ← Reduce(Vtemp, Res)
5 End
6 End
7 For each Vertex V,
8 Vprop ← Apply(Vtemp, Vprop, Vconst)
9 End

Fig. 1: Simplified GraphMat processing model. Note that this is slightly
different from the original GraphMat [46] in that it integrates Send_Message
with Apply.

II. BACKGROUND AND MOTIVATION

A. Software graph processing frameworks

Software graph processing frameworks typically aim to

provide three things to users—ease of programming, improved

performance, and efficient scalability that allows the workloads

to scale up and out. In an effort to improve programmability

of graph algorithms, different programming models have been

proposed. Examples include vertex programming [4, 33, 35, 46],

sparse matrix operations [8], graph domain-specific languages

[18], and task-based models [23]. In addition, the software

frameworks vary widely in their performance and scalability

as well, especially when compared to native applications [43].

Of the various programming interfaces for graph frameworks,

the most popular is vertex programming. In this model,

the entire algorithm can be expressed as operations on a

single vertex and its edges. This programming model is

generally considered easy to use and not overly restrictive, but

implementation performance can vary significantly in practice.

GraphMat [46] has been shown to have the best performance

amongst many different software graph frameworks on a single

node. While the exact programming APIs for each vertex-

programming-based graph framework differ slightly, they all

have similar structure.

Fig. 1 shows a vertex programming example using three

essential operators—Process_Edge, Reduce and Apply. In a

vertex program, each vertex has an application-specific vertex

property that is updated iteratively. At every iteration, each

vertex is inspected to check if there are incoming edges from

active vertices (i.e. vertices whose states were updated in the

last iteration). Then, for all incoming edges from active vertices,

the corresponding vertex processes each edge separately using

Process_Edge and performs reduction using Reduce to a form

single value. Lastly, the reduced value, its vertex property,

and a constant vertex property are used to update the current

state of the vertex using Apply. Vertices whose properties have

changed become active for the next iteration and iterations

proceed until there are no more active vertices or until a

maximum number of iterations is specified. A few optional

parameters are user-controllable—for example, whether all

vertices are considered active in all iterations or not, and what

the convergence threshold is. This model helps specify a wide

variety of useful graph algorithms [43].

B. Algorithms

Throughout the paper, we discuss four different fundamental

graph algorithms which are representative from applications

including machine learning, graph traversal, and graph statistics.

These are core kernels and building blocks comprising the bulk

of graph processing runtime in many applications. This section

provides a brief introduction to these algorithms and shows

how each algorithm maps to the programming model.

PageRank (PR) The PageRank algorithm calculates scores of

vertices in a graph based on some metric (e.g., popularity). Web

pages are represented as vertices and hyperlinks are represented

as edges. The equation below shows how the PageRank score

is calculated for each vertex. α is a constant and Udeg is the

out-degree and a constant property of vertex U . In PageRank,

all vertices are considered active in all iterations.

Vscore = α+ (1− α) ·
∑

U|(U,V )∈E

Uscore

Udeg

Breadth-First Search (BFS) BFS is a widely-used graph

search algorithm from the Graph500 Benchmark, operating on

an unweighted graph [1]. Starting from a given initial vertex, the

algorithm iteratively explores neighboring vertices and assigns

the distance to each vertex connected to the active vertices

of the iteration. The equation below shows how the distance

is determined for each vertex adjacent to active vertices at

iteration t.

Vdist = min(Vdist, t)

Single Source Shortest-Path (SSSP) This is a graph traversal

algorithm which computes the distance between a single source

and all other vertices in a weighted graph. Similar to BFS, the

algorithm iteratively explores neighboring vertices from starting

vertices and assigns the distance to each vertex connected to

the active vertices of the iteration. The main difference between

BFS and SSSP is that SSSP utilizes edge weights to determine

the distance while BFS does not. The equation below shows

how the distance is determined for each vertex adjacent to

active vertices.

Vdist = min
U|(U,V )∈E

(Vdist, Udist + Eweight(U, V ))

Collaborative Filtering (CF) CF is a popular machine learning

algorithm for recommendation systems [2]. It estimates users’

ratings for a given item based on an incomplete set of (user,

item) ratings. The assumption of the algorithm is that a (user,

item) rating is determined by the match of the latent features

between users and items and the goal of algorithm is to calculate

the hidden features of each vertex (i.e. user and item). For

this purpose, a matrix factorization based on gradient descent

is performed. The equation below shows how the feature in

each vertex is calculated. Vf is a feature vector whose length

is K (note that K=32 is used throughout the paper); λ and

γ are constants. Collaborative Filtering runs on an undirected

bipartite graph (i.e., a graph whose vertices can be divided

into two disjoint sets — in CF, the users set and the items set



Algorithms Process_Edge (Eweight, Uprop, [Optional]Vprop) Reduce (Vtemp, Res) Apply (Vtemp, Vprop, Vconst)

PageRank Uprop Vtemp + Res (α+ (1− α)Vtemp)/Vdeg

BFS N/A min(Vtemp, IterCount) Vtemp

SSSP Uprop + Eweight min(Vtemp, Res) min(Vtemp, Vprop)

CF (Eweight(U, V )− Vprop · Uprop)Uprop − λ · Vprop Vtemp + Res Vprop + γ · Vtemp

TABLE I: Example mapping of algorithms to programming model. For an edge E = (U, V ), U is the source vertex and V is the destination vertex.
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Fig. 2: Off-chip communication efficiency of GraphMat.

are the two disjoint sets) and all vertices are considered active

in all iterations.

Vf = Vf + γ

[ ∑
U|(U,V )∈E

(Eweight(U, V )− Vf · Uf )Uf − λVf

]

Mapping algorithms to the programming model There

can be multiple ways to map an algorithm to the vertex

programming model specified here. An example mapping for

the algorithms discussed above is shown in Table I. Note that

the Vprop parameter for Process_Edge is an optional parameter.

In fact, many of the graph algorithms either do not need

this parameter or can be expressed without this parameter.

Nevertheless, GraphMat supports Vprop since it improves the

programmability in some algorithms such as Collaborative

Filtering.

C. Software framework inefficiencies

It was shown previously in [43] that most platform-optimized

native graph algorithms are memory bandwidth-limited. In or-

der to identify the inefficiencies of off-chip memory bandwidth

usage, we measured GraphMat [46] bandwidth consumption

on an Intel Xeon server instrumented using Intel VTune

Amplifier [21]. The results are shown in Fig. 2.

Here, the efficiency of the off-chip communication is

defined as the ratio of off-chip memory traffic normalized

to the optimal communication case — the amount of off-

chip memory accesses in an imaginary device which has

enough on-die storage to reuse all data for each iteration

but not across iterations. GraphMat performs many more off-

chip memory accesses than the optimal case for BFS and

SSSP, because GraphMat performs cacheline-granular off-chip

random accesses and these algorithms use many non-local

4- or 8-byte accesses. These algorithms become bandwidth

limited because an entire cacheline is fetched but only a small

portion is used, resulting in bandwidth waste. PageRank’s

off-chip memory usage is much closer to optimal since it
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Fig. 3: Percentage of executed instructions for custom computation

performs much fewer random memory accesses. However, in

such cases, memory latency or computation throughput often

become performance bottlenecks. On a small input graph such

as Flickr, GraphMat can perform less off-chip accesses than

optimal because the entire graph is small enough to fit within

the 40MB LLC, and the data stays on-chip across iterations

unlike the optimal communication case.

Software graph processing frameworks typically have another

inefficiency—they must execute many instructions just to move

data around and supply data for the custom computations which

define a target algorithm. As Fig. 3 shows, for three out of the

four algorithms, fewer than 6% of the executed instructions are

for custom computations (i.e., Process_Edge, Reduce, Apply).

In other words, more than 94% of the instructions executed are

responsible for traversing the graphs (i.e., finding the relevant

edge of a vertex, etc.) and loading the required arguments (e.g.,

vertex property, edge weight) for custom computations. These

instruction overheads often result in low energy efficiency.

D. Overcoming inefficiencies

To overcome the software framework inefficiencies, we

employed two categories of solutions. First, we applied memory

subsystem specialization and architected an on-chip storage as

part of the accelerator. The on-chip storage allowed dramatic

reduction of the communication latency and bandwidth by con-

verting the frequent and inefficient random off-chip data com-

munication to on-chip, efficient, finer-granularity scratchpad

memory accesses. Second, we applied data-structure-specific

specialization or datatype specialization and formed datapaths

around processing graph analytics primitives, vertices and edges.

This further reduces peripheral instruction overheads to prepare

the operands for computation. In this work, we will demonstrate

that datatype specialization coupled with the programmable

and high-performing vertex program paradigm allows the

Graphicionado pipeline to not only balance specificity with

flexibility but also to deliver exceptional energy efficiency.



III. GRAPHICIONADO OVERVIEW

Graphicionado is a hardware accelerator specialized for

processing graph analytics algorithms. For better programma-

bility and flexibility, Graphicionado inherits the advantage

of software graph processing framework GraphMat. As in

software graph processing frameworks, Graphicionado allows

users to express specific graph algorithms by defining three

computations (Process_Edge, Reduce, and Apply). In addition,

it transparently handles all necessary data movement and

communication on-chip and off-chip to support those operations.

Graphicionado overcomes the limitations of software graph

processing frameworks by applying specializations on the

compute pipeline and the memory subsystem.

A. Graph processing model

Graphicionado Base Graph Processing Model

� Processing Phase
1 for (int i=0; i<ActiveVertexCount; i++) {
2 Vertex src = ActiveVertex[i]; // Sequential Vertex Read
3 int eid = EdgeIDTable[src.id]; // Edge ID Read
4 Edge e = Edges[eid]; // Edge Read
5 while (e.srcid == src.id) {
6 dst.prop = VProperty[e.dstid]; // [OPTIONAL] Random Vertex Read
7 VertexProperty res = Process_Edge(e.weight, src.prop, dst.prop);
8 VertexProperty temp = VTempProperty[e.dstid]; // Random Vertex Read
9 temp = Reduce(temp, res);
10 VTempProperty[e.dstid] = temp; // Random Vertex Write
11 e = Edges[++eid] // Edge Read
12 }
13 }
14 // Reset ActiveVertex and ActiveVertexCount

� Apply Phase
1 for (int i=0; i<TotalVertexCount; i++) {
2 VertexProperty vprop = VProperty[i]; // Sequential Vertex Read
3 VertexProperty temp = VTempProperty[i]; // Sequential Vertex Read
4 VertexProperty vconst = VConst[i];
5 temp = Apply(vprop, temp, vconst);
6 VProperty[i] = temp; // Sequential Vertex Write
7 if(temp != vprop) {
8 Vertex v;
9 v.id = i;
10 v.prop = temp;
11 ActiveVertex[ActiveVertexCount++] = v; // Sequential Vertex Write
12 }
13 }

Fig. 4: Pseudocode for Graphicionado processing and apply phases.

Fig. 4 shows the workflow of Graphicionado in pseudocode.

Graphicionado takes an input graph in the coordinate format.

In this format, a graph is represented as a list of vertices where

each vertex v is associated with a vertex property VProperty,

and each edge e is associated with a 3-tuple (srcid, dstid,

weight) indexed by the edge id eid. This edge list is sorted

according to the srcid and then the dstid. Before the input

graph can be fed into the Graphicionado processing pipeline,

some preprocessing of the input graph is done: an EdgeIDTable

is constructed and stored in memory. This array stores the eid

of the first edge of each vertex to allow streaming accesses of

the edges starting at a particular vertex. Graphicionado also

uses memory to store the vertex property array VProperty,

the temporary vertex property array VTempProperty, and the

constant vertex property array VConst associated with all

vertices.

Processing Phase In this phase, all outgoing edges from

every active vertex are examined and the necessary user-defined

computations, Process_Edge and Reduce, and updates to the

associated vertex properties are calculated and stored into the

temporary vertex property array VTempProperty. This phase is

only terminated when all active vertices are processed. For some

graph analytics workloads such as Collaborative Filtering, not

only does the property associated with the source vertex need

to be read and manipulated, but also the property associated

with the destination vertex, as shown in the pseudocode (line

6).

Apply Phase In this phase, properties associated with all ver-

tices are updated using the user-defined Apply function. Apply

uses input values from the vertex property array VProperty, the

constant vertex property array VConst stored in memory and

the temporary vertex property array VTempProperty computed

from the processing phase to make necessary updates to the

vertex property array. The ActiveVertex array keeps track of

which active vertices changed their property values in this

phase.

B. Hardware implementation

In this section we describe the microarchitecture of the

hardware blocks that implement the Graphicionado graph

processing model. Each module corresponds to one or more

lines of pseudocode in Fig. 4 and their physical characteristics

are obtained using the implementation methodology described

in Section VII. Fig. 5 shows a base Graphicionado pipeline

that is constructed with the modules along with small hardware

queues (4-8 entry FIFOs) between the modules for communi-

cation and connection.

Graphicionado Modules The Sequential Vertex Read per-

forms sequential memory read accesses given a starting address.

It buffers one cacheline worth of data and passes the vertex

properties one at a time to the output queue for the consumption

of the next pipe stage. This module is used in stage P1 of the

Processing phase, and A1 and A2 of the Apply phase to read

VProperty and VTempProperty.

The Sequential Vertex Write performs sequential memory

writes given a starting address. It takes the data to be stored

from the input queue and writes it to its internal buffer. When

its internal buffer has a cacheline worth of data, it performs

a write request to memory. This module is used to store the

updated VProperty in stage A4 and ActiveVertex in stage A5

during the Apply phase.

The Random Vertex Read/Write performs random reads and

writes given a vertex id. It is used to read the destination

VProperty in stage P4, read and write VTempProperty in stage

P7 and P9.

The EdgeID Read performs a read from the preconstructed

EdgeIDTable given a vertex id and outputs the eid of the

first edge associated with the input vertex id. Implementations

of this module are different for the base and the optimized

Graphicionado pipeline. Section IV-A presents an optimized

implementation.
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Fig. 5: Graphicionado base pipeline.

The Edge Read performs random and sequential reads of

the edge data given an eid. The initial access is random but

subsequent accesses are sequential. All edge data streamed in

are examined for their srcid. The module continues fetching

edge data from the memory as long as the srcid of the fetched

edges matches the srcid of the edges being processed.

The Atomic Update performs the update of the destination

VProperty in three steps. First, the module reads the VProperty

in stage P7, then it performs a Reduce computation in stage P8,

and finally it writes the modified VProperty back to memory in

stage P9. Since this is a read-modify-write update, the process

needs to be atomic for the same vertex (i.e. the same vertex

cannot be in more than one of these pipeline stages at the

same time). This hardware module enforces the atomicity in

stage P6 by stalling the pipeline and blocking the issue of the

vertex id being processed when violation of the condition is

detected. We use a small 4-way associative CAM-like structure

to enforce such atomicity (16 4-byte entries).

Custom Modules As previously described, Graphicionado

uses three user-defined custom computations – Process_Edge,

Reduce, and Apply – which express the target graph algo-

rithm. There are several options to implement these custom

computations: 1) fully reconfigurable fabric (e.g., FPGA on-

chip/on-package [26]), 2) programmable ALUs, or 3) fully

custom implementations on chip for a set of algorithms. A

user can choose among these options depending on his/her

needs. This paper uses the third option for its evaluations; we

construct the custom functions using single-precision floating

point adders, multipliers, and comparators.

IV. GRAPHICIONADO OPTIMIZATIONS

Section III presents a base implementation of the Graphi-

cionado pipeline. For this pipeline to work effectively, however,

it is important to match the throughput of each pipeline stage

to achieve maximum efficiency. This section explores the

potential bottlenecks of the base implementation and presents

optimizations and extensions to relieve the shortcomings.

A. Utilizing on-chip scratchpad memory

Improving Destination Vertex Update One of the most

significant bottlenecks in the Graphicionado pipeline is the

destination vertex update (Fig. 5 stages P6–P9). It performs

poorly because random vertex reads and writes from and to

memory are slow. Further, vertex properties need updating in

many graph algorithms are less than 8 bytes and performing

cacheline-granular memory reads and writes ends up wasting

off-chip memory bandwidth. Still further, the destination vertex

updates need to be atomic. Long-latency random accesses to

memory can potentially stall the pipeline for a long time if

the next destination to be updated is the same one that is

currently being updated. Graphicionado optimizes these random

vertex reads and writes by utilizing a specialized large on-chip

embedded DRAM (eDRAM) scratchpad memory (Fig. 6 stages

P6–P9). This on-chip storage houses the VTempProperty array

and significantly improves the throughput of random vertex

reads and writes, eliminates bandwidth waste from cacheline-

granular off-chip memory accesses by reading and writing

on-chip, and lowers the pipeline stall time by minimizing the

latency of VTempProperty accesses.

Improving Edge ID Access Another potential performance

bottleneck in the pipeline is reading the EdgeIDTable (Fig. 5

stage P2). In this stage, an eid of the first outgoing edge of

a given source vertex is read from memory. This is another

random memory access that stalls the pipeline for a long-latency

access and wasting the off-chip memory bandwidth as the eid

is only 4 bytes. As in the case with reading the destination

vertex properties, Graphicionado places this EdgeIDTable data

in the on-chip scratchpad memory as well.

Storing VTempProperty and EdgeIDTable on-chip removes

almost all random memory accesses in the pipeline. In the

case where the on-chip scratchpad memory size is not large

enough, an effective partitioning scheme is employed and

described in Section VI. The partitioning scheme allows only

portions of such data to be stored on-chip while minimizing

the performance impact.

B. Optimization for edge access pattern

While some graph algorithms (e.g. BFS and SSSP) operate

with frontiers of active vertices, there are many algorithms that

simply treat all vertices as active, such as PageRank and CF. In

PageRank and CF, instead of accessing a portion of the edges

through the EdgeIDTable, all edges in a graph are accessed

and processed for every iteration; we call these algorithms

complete edge access algorithms. For complete edge access
algorithms, stage P3 in Fig. 6 performs sequential reads from

the beginning of the edge list. This optimization along with

utilizing the on-chip scratchpad memory removes any random

off-chip memory accesses since all vertices are considered

active and the optional destination vertex property in stage

P4 is not used. A similar optimization is done in the Apply
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algorithms.

phase where stage A5 in Fig. 5 is removed and the resulting

optimized pipeline is shown in Fig. 6.

C. Prefetching

With the optimizations described above, most of the off-

chip memory accesses in Graphicionado are now sequential

accesses. Since the addresses of these off-chip memory accesses

are not dependent on any other portions of the pipeline, we can

easily perform next-line prefetches and get the data into the

accelerator before they are needed. We extend the sequential
vertex read and edge read modules (stage P1 and P3 in Fig. 6)

to prefetch and buffer up to N cachelines (N = 4 is used for

our evaluation) and configure them to continue fetching the

next cacheline from memory as long as the buffer is not full.

With this optimization, almost all of the sequential memory

access latencies can be hidden and Graphicionado can operate

at a high throughput.

D. Optimization for symmetric graphs

Most graph processing frameworks (including GraphMat)

work naturally with directed graphs. In such frameworks, an

undirected input graph is effectively treated as a symmetric

graph. That is, for each edge (srcid, dstid, weight) there

exists an edge (dstid, srcid, weight). While this approach

works, it incurs unnecessary memory accesses for complete
edge access algorithms such as Collaborative Filtering. For ex-

ample, in order to process an edge (u, v, weight), the source

vertex property VProperty[u], the destination vertex property

VProperty[v], and the edge data e = (u, v, weight) are

read and VProperty[v] updated at the end of the processing
phase. The exact same set of data will be read again later

when processing the symmetric edge (v, u, weight) and

VProperty[u] is updated this time. To reduce bandwidth

consumption, Graphicionado extends its pipeline so that it can

update both the source and the destination vertex properties

when processing an edge from a symmetric graph without

having to read the same data twice. This is reflected in the

optimized pipeline shown in Fig. 6 stages P5–P9 where this

portion of the pipeline is replicated.

E. Large vertex property support

The current Graphicionado pipeline is designed to support

processing up to 32 bytes of vertex property data per cycle.

When a large vertex property is desired, for example, Collabo-

rative Filtering implements vertex properties of 128 bytes each,

the large vertex property is simply treated as a packet involving

multiple flits where each flit contains 32 bytes. For most of

the pipeline stages in Graphicionado, each flit is processed

without waiting for an entire packet worth of data to arrive

(in a manner similar to wormhole switching). For the custom

computation stages, we wait for the entirety of the packet data

to arrive using a simple buffering scheme before computations

are performed (as in store-and-forward switching) to maintain

functionality. With proper buffering (4 flits in the case for CF),

the throughput of the pipeline is not significantly impacted.

V. GRAPHICIONADO PARALLELIZATION

With optimizations described in Section IV, Graphicionado

can process graph analytics workloads with reasonable effi-

ciency. However, thus far it is a single pipeline with theoretical

maximum throughput limited to one edge per cycle in the

Processing phase and one vertex per cycle in the Apply
phase. This section discusses further improving Graphicionado

pipeline throughput, by exploiting the inherent parallelism in

graph workloads.

A. Extension to multiple streams

A naïve way to provide parallelism in the Graphicionado

pipeline is to replicate the whole pipeline and let each of the

replicated pipelines, or pipeline stream, to process a portion

of the active vertices. In fact, this is the most common

approach in software graph processing frameworks when

increasing parallelism. Unfortunately this approach introduces

some significant drawbacks in the hardware pipeline. When

multiple replicated streams try to read and write the same

on-chip scratchpad location, these operations are serialized

and performance degrades. To avoid these access conflicts,

Graphicionado divides the Processing phase into two portions,

a source-oriented portion and a destination-oriented portion,

corresponding to stages P1–P3 and stages P4–P9 in Fig. 5.

The two portions are then replicated separately and connected

using a crossbar switch as shown in Fig. 7. Each parallel

stream in the source-oriented portion of the pipeline is

responsible for executing a subset of the source vertices and

each parallel stream in the destination-oriented portion of the

pipeline is responsible for executing a subset of the destination

vertices. The crossbar switch routes edge data by matching the

destination vertex id of the edge. To maximize the throughput

of the switch, standard techniques such as virtual output

queues [47] are implemented.
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Fig. 8: Data layout for the parallel implementation of Graphicionado.

The Source-oriented portion of the pipeline reads pre-

partitioned source VProperty and associated edges from

memory; partitions are done using the source vertex id’s

last log2(n) bits for n streams. Similarly, the destination-
oriented portion of the pipeline reads pre-partitioned destination

VProperty from memory and reads and writes pre-partitioned

destination VTempProperty from the on-chip scratchpad as

shown in Fig. 8. Partitions are done using the destination

vertex id’s last log2(m) bits for m streams.

This parallelization of the source and destination streams

eliminates memory access conflicts as each stream is strictly

limited to only access the memory and scratchpad memory

regions exclusively assigned. Another benefit of this paral-

lelization technique is that it simplifies the on-chip scratchpad

memory design. We implement m instances of dual-ported

eDRAMs for Graphicionado as opposed to using a single large

eDRAM with 2m ports.

B. Edge access parallelization

For this parallelized Graphicionado pipeline, Read Edges
(stage P3) is likely to be one of the performance bottlenecks

because it needs to perform occasional random off-chip memory

accesses. Even for complete edge access algorithms which do

not need random off-chip memory accesses, this stage is still

likely to be the performance bottleneck as it can only process

one edge per cycle, while previous stages Read Source Property
and Read EdgeIDTable can process one vertex per cycle. Real-

world input graphs tend to have a large discrepancy between the

number of vertices and the number of edges with the number

of edges being an order or orders of magnitude larger than the

number of vertices [16]. This makes fetching multiple edges

per cycle necessary in order to maintain high throughput and

balance the pipeline design. Graphicionado replicates the Read
Edges unit and parallelizes edge accesses.

We show the different implementations of parallelizing

edge accesses for active-vertex based algorithms and complete
edge access algorithms in Fig. 9. In the active-vertex based
algorithms implementation, an active vertex id is allocated

to one of the Read Edges units for edge accesses based on
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Fig. 9: Implementations of parallelized edge accesses. A single stream is
shown.

input queue occupancy (lowest occupancy first). Edges loaded

from memory are then arbitrated and passed onto the crossbar

switch. In the complete edge access algorithms implementation,

each source vertex id is broadcasted to all of the Read Edges
units and the units only access edges with assigned destination

vertex id’s as described in Section V-A. The output of each

Read Edges is directly connected to the virtual output queue

of the crossbar switch.

C. Destination vertex access parallelization

While the use of the optional destination vertex property

array is not common (stage P4 in Fig. 5), it becomes a

performance bottleneck when it is present because it involves

random vertex reads. To alleviate such performance degradation,

we implement a parallelization scheme similar to the parallel

edge readers (Fig. 9a) described above. The Read DST
Property module is replicated and each destination vertex id is

allocated to the lowest occupied module to fetch the destination

VProperty. Vertex properties loaded from memory are then

arbitrated to produce a single output per cycle.

VI. SCALABLE ON-CHIP MEMORY USAGE

As outlined in Section IV-A, Graphicionado utilizes the

on-chip memory for two purposes: performing the temporary

destination property update (P7-P9) and reading the edge ID

table (P3). By storing those data in an on-chip scratchpad,

Graphicionado improves the throughput of pipeline stages (P3,

P7, and P9), avoids off-chip memory bandwidth wastes, and

lowers the pipeline stall time by minimizing the latency of

temporary destination vertex property updates. However, in

many cases, the scratchpad memory size is not big enough

to house all required data. This section explores strategies to

effectively utilize the limited on-chip scratchpad memory.

A. Graph slicing

Storing temporary destination vertex property requires

Number of Vertices × Size of a Vertex Property bytes of on-chip

scratchpad memory. Assuming a 4-byte vertex property size

and a 32MB on-chip scratchpad memory size, graphs with

up to 8 million vertices could be supported. To process larger

graphs without losing the benefit of on-chip memory usage,

Graphicionado slices a graph into several slices and processes

a single slice at a time.

The slicing technique works as follows. First, vertices from

the input graph are divided into N partitions based on their

vertex id’s. An example graph in Fig. 10 has six vertices and

they are partitioned into two partitions: P1 contains vertices
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Fig. 11: Extended graph slicing scheme for symmetric graph optimization.

(1, 2, 3) and P2 contains vertices (4, 5, 6). Then two slices

are constructed depending on which partition the destination

vertices of the edges fall as shown on the right side of Fig. 10.

After the input graph is sliced, Graphicionado processes a slice

of the graph for each sub-iteration, i.e. executing Processing
phase for slice 1, executing Apply phase for slice 1, executing

Processing phase for slice 2, executing Apply phase for slice 2,

and repeating for all iterations. Since the slices are partitioned

using destination vertex id’s, write-write conflicts are avoided

and no edges need to be processed twice. The slicing does

incur some overhead as the same source vertex properties could

be read more than once and therefore increase the total read

bandwidth usage slightly compared to no slicing.

B. Extended graph slicing for symmetric graphs

While the graph slicing is orthogonal to most of the Graphi-

cionado optimizations, it requires extra pipeline extensions

when used together with the symmetric graph optimization

(Section IV-D). With the symmetric graph optimization, a

scratchpad memory needs to house both the vertex property

array for the source as well as the destination vertices. In this

case, the slicing in Fig. 10 is not effective as its on-chip storage

requirement is not reduced. We employ an extended slicing

scheme as shown in Fig. 11.

Given a symmetric graph as the one shown in Fig. 11,

Graphicionado pre-processes the graph and generates a directed

graph which only keeps directed edges originating from a larger

vertex id to a smaller vertex id.

With the generated directed graph, three slices are con-

structed: Slice1 = {(u, v)|u ∈ P1, v ∈ P1}, Slice2 =
{(u, v)|u ∈ P2, v ∈ P1}, and Slice3 = {(u, v)|u ∈ P2, v ∈
P2}. Unlike the original graph slicing scheme which only

focuses on slicing a graph based on dstid’s, this extended

scheme considers both srcid and dstid for slicing. With N
partitions, this extended slicing scheme generates N(N +1)/2
slices.

For Graphicionado to operate with this extended slicing

scheme, an extension to the control is necessary as well. First,

care should be taken in ensuring that all edges associated

with the vertices about to be updated have gone through the

Processing phase before the Apply phase is executed. With the

extended slicing scheme, unlike the base case, Apply does not

happen for every sub-iteration. Instead, it happens selectively
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on
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Copy
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Fig. 12: Extended slicing scheme control example for four partitions. Each
row represents a sub-iteration and 3rd-6th column shows the set of events
taken after the processing phase of each sub-iteration.

for sub-iterations where a vertex partition is processed for the

last time. In addition, since each sub-iteration does not fully

process all edges associated with a vertex partition, temporary

vertex property data on the scratchpad memory should be stored

to memory and loaded back to the scratchpad memory between

each Processing phase.
Table 12 shows an example control of a four-partition case.

Note that this necessary write-back of scratchpad memory data

is not dynamically decided. Instead, they are determined a-

priori by the number of vertex partitions. Thus, at runtime,

Graphicionado simply needs to follow the pre-determined

control flow.

C. Coarsening edge ID table
Another use of the on-chip scratchpad is to store the

EdgeIDTable which keeps the mapping between vertices and

their corresponding starting edge id’s as shown in Fig. 13-

(a). When the size of the EdgeIDTable is too large to fit, a

coarsened EdgeIDTable is stored as shown in Fig. 13-(b). A

coarsened EdgeIDTable stores an EID for every N vertices

(N = 2 here) instead of storing the EID’s for every vertex. To

find edges corresponding to a given vertex id, the Read Edges
unit starts from index �vid/N� in the coarsened EdgeIDTable

where vid is the vertex id and N is the coarsening factor.

Edges[] in Memory

(b) Coarsened (2x) EdgeIDTable

Index 1 2 3 4 5 6 7 8 9 10 11
Edge (1,2) (1,4) (2,1) (2,3) (2,5) (3,6) (4,3) (5,1) (5,4) (5,6) *

Index 1 2 3 4 5 6
EID 1 3 6 7 8 11

Index 1 2 3
EID 1 6 8

(a) EdgeIDTable

Fig. 13: EdgeIDTable and coarsened EdgeIDTable.

When using a coarsened EdgeIDTable, extra edge accesses

will incur and care needs to be taken in trading off the on-

chip storage size and the extra edge accesses. Note that the

slicing technique actually reduces the average degree per

vertex and therefore reduces the overhead for coarsening the

EdgeIDTable.

VII. GRAPHICIONADO EVALUATION

A. Evaluation Methodology

Overall Design We implemented each pipeline stage of

Graphicionado in Chisel [6], generated Verilog, and synthesized



the blocks using a proprietary sub-28nm design library to

produce timing, area, and power numbers. We gave the

synthesis tools an operating voltage of 0.7V, a target clock cycle

of 1ns, and requested medium effort for area optimization. The

slowest module has a critical path of 0.94ns including setup

and hold time, putting the Graphicionado design comfortably

at 1GHz.

Evaluation Tools For the performance evaluation, a custom

cycle-accurate simulator was designed. This simulator models

the microarchitecture behavior of each hardware module

described in Section III-B. In addition, the performance model

implements a detailed cycle-accurate scratchpad memory model.

It is also integrated with the open-source DRAM simulator

DRAMSim2 [41] to simulate the cycle-accurate behavior of

the off-chip memory accesses. For the on-chip scratchpad

memory, 32nm eDRAM model of CACTI 6.5 [19] is used

to obtain the cycle time, access latency, and dynamic/static

energy consumption. Table II shows the system parameters of

the evaluated Graphicionado implementation.

Software Framework Evaluation To compare Graphi-

cionado’s performance and energy efficiency with an optimized

software implementation, a software graph processing frame-

work GraphMat [46] is evaluated. We chose GraphMat because

it has been shown to have the best performance amongst

many different software graph processing frameworks and the

performance is better or within 20% of the representative native

software implementation. We measure the Xeon chip power

consumption using National Instrument’s power measurement

data acqusition PCI board [37]. Table II shows the system

parameters of the evaluated system.

Graphicionado Software Framework

Compute Unit 8 × Graphicionado
Streams @ 1Ghz

16 × Haswell Xeon Cores @
2.3Ghz

On-chip
memory

8MB per stream
(total 64MB)

eDRAM scratchpad
(2Ghz / 1.5ns latency)

L1I/L1D: 512KB/8-way
L2: 4MB/8-way

LLC: 40MB

Off-chip
memory

4 × DDR4-2133
17GB/s channel

4 × DDR4-2133
17GB/s channel

TABLE II: System used for Graphicionado and software graph framework
evaluation.

Graph Datasets Table III describes the graph datasets used for

our evaluation. A mixture of real-world graphs – FR, FB, Wiki,
LJ, TW, NF, and synthetic graphs – RMAT, SB are used for

the evaluation. For synthetic graphs, the Graph500 RMAT data

generator [1] is used to generate the RMAT graph [10] and a

bipartite graph generator described in [43] is used to generate

a SB graph which has similar edge distributions with the real-

world Netflix graph but at a different scale. Amongst these

graphs, FR, FB, Wik, LJ, RMAT, and TW are used to evaluate

PageRank, BFS, and SSSP; bipartite graphs NF and SB are

used to evaluate CF which requires a bipartite input graph. For

the SSSP evaluation on unweighted real-world graphs, random

integer weights between 0 and 256 were assigned.

Graph #Vertices #Edges Brief Explanation

Flickr (FR) [13] 0.82M 9.84M Flickr Crawl Graph

Facebook (FB) [51] 2.93M 41.92M Facebook User Interaction Graph

Wikipedia (Wiki) [13] 3.56M 84.75M Wikipedia Link Graph

LiveJournal (LJ) [13] 4.84M 68.99M LiveJournal Follower Graph

RMAT Scale 23 (RMAT) [1] 8.38M 134.22M Synthetic Graph

Twitter (TW) [28] 61.57M 1468.36M Twitter Follower Graph

Netflix (NF) [7]

480K users,

18K movies 99.07M Netflix Prize Bipartite Graph

Synthetic Bipartite (SB) [43]

997K users,

21K items 248.94M Synthetic Bipartite Graph

TABLE III: Graph datasets used for the evaluation
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B. Graphicionado Results

Overall Performance Fig. 14 shows the normalized Graphi-

cionado speedup with respect to GraphMat performance.

Graphicionado’s on-chip storage is sized at 64MB which is not

large enough for all workloads to store their VTempProperty

arrays and EdgeIDTable. Techniques discussed in Section VI,

namely graph slicing and coarsening of the edge table, are used

for large graphs as stated in the caption. Graphicionado achieves

a 1.7× to 6.5× performance advantage over the software graph

processing framework GraphMat running on a 16-core 32-

thread Xeon server. Graphicionado’s main source of perfor-

mance advantage over the software framework is the efficient

use of the on-chip scratchpad memory. While the software

framework is run on a processor with vast parallelism, the

performance is often limited by inefficient memory bandwidth

usage. On the other hand, Graphicionado avoids wasting off-

chip memory bandwidth by utilizing scratchpad memory and

benefits from extra effective bandwidth.
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Throughput Fig. 15 shows the throughput of the Graphi-

cionado and the software graph processing framework. The

y-axis in the figure represents the average number of edges

processed every nanosecond (or every cycle for the Graphi-

cionado design since it runs at 1GHz). We make the following

observations: PageRank exhibits high and stable throughput

at about 4–4.5 edges per nanoseconds when executing on

Graphicionado . This is because Graphicionado’s PageRank

pipeline does not have any random memory accesses. As long

as all the data is prefetched in time, it can theoretically reach

the peak throughput of processing 8 edges per cycle, at 1

edge per cycle per stream for a total of 8 streams. However,

its throughput is limited by the off-chip memory bandwidth.

For active-vertex based algorithms such as BFS and SSSP,

there are random memory accesses and thus they achieved

lower throughput than PageRank. Amongst all workloads,

Wiki’s throughput is particularly low when executing on

Graphicionado and using GraphMat. This is because Wiki’s
graph structure is narrow and deep and it exhibits a large

number of iterations updating very few vertices each iteration.

CF has very low edge processing throughput because it has a

large vertex property size at 128 bytes; the off-chip memory

bandwidth is further bounded by the vertex property accesses

in addition to the edge accesses.

FR FB Wiki LJ RMAT TW AVG FR FB Wiki LJ RMAT TW AVG FR FB Wiki LJ RMAT TW AVG NF SB AVG

N
or

m
al

iz
ed

 o
ff-

ch
ip

 m
em

or
y 

ac
ce

ss
 tr

af
fic

0

2

4

6

8

10

12

14

16
129x 38x 27x 20x 30x

PageRank (PR) Breadth-First Search (BFS) Single Source Shortest Path 
                  (SSSP)

Collaborative 
Filtering (CF)

Software Framework
Graphicionado

Fig. 16: Off-chip communication traffic of Graphicionado and the software
graph processing framework normalized to optimal communication case.

Communication Efficiency Fig. 16 shows the efficiency of

Graphicionado and GraphMat’s off-chip memory accesses. The

efficiency of the off-chip communication is defined as the

ratio of its off-chip memory traffic normalized to the optimal

communication — the amount of off-chip memory accesses in

an imaginary device which has enough on-die storage to reuse

all the data for each iteration but not across iterations. For

PageRank, both Graphicionado and GraphMat exhibit quite a

bit less off-chip communication than other algorithms because

PageRank does not incur off-chip random accesses overhead.

For BFS and SSPS, Graphicionado accesses 2×-3× more

off-chip data than the optimal case in most of the graphs

(except Wiki) and GraphMat uses significantly more bandwidth

than Graphicionado. This is because off-chip bandwidth waste

(i.e. reading and writing 64-byte memory when only a small

portion of it is useful) are much more common when executing

in the software framework. Lastly, Graphicionado running

CF consumes roughly 10x more bandwidth than the optimal

case because Graphicionado loads destination vertex properties

at 128 bytes per edge. While the software framework uses

much less off-chip communication for CF, its performance is

heavily limited by other factors (i.e., memory latency, compute

throughput) as shown in Fig. 14.
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Power/Energy Fig. 17 shows the energy consumption of the

Graphicionado normalized to GraphMat running on a Haswell

Xeon server. For this diagram, energy per access and the leakage

power of the eDRAM is obtained using the 32nm eDRAM

model in CACTI 6.5 [19]. Note that the reported number from

CACTI was more conservative than eDRAM power models

shown in other literature [50]. For the Graphicionado pipeline

design, each hardware unit is conservatively assumed to be at its

peak activity. As shown in the diagram, the energy consumption

is about 1-2% of the processor energy consumption. The power

consumption differs by around 20x (∼150W on a Xeon chip

vs. ∼7W on Graphicionado), coupled with the 2-5x runtime

difference, resulted in a total of 50x-100x energy difference. In

Fig. 16, most of the energy (∼90%) is spent on the eDRAM.

The hardware modules themselves are mostly small specialized

routing, control, interface to the memory elements units and

thus it is natural that they do not consume much energy. Note

that Graphicionado’s energy consumption does not include the

DRAM controller energy since it could be placed off-die while

Xeon’s energy consumption includes its integrated memory

controller.

C. Effects of Graphicionado optimizations

Parallelization/Optimization This subsection explores the

impact of parallelization and optimization on the Graphicionado

pipeline. In Fig. 18, the leftmost bar represents the single stream

baseline case. This baseline utilizes the on-chip scratchpad

memory (Section IV-A) and edge access pattern optimization

(Section IV-B) and is denoted as Baseline. From this, the

number of streams are doubled for CFG 1 to CFG 3. Then,

CFG 4 shows the effects of prefetching while CFG 5 shows

the effects of edge and destination vertex property access

parallelization. Finally CFG 6 is only shown for CF and it

shows the effects of applying symmetric graph optimization.

As depicted, parallelizing Graphicionado streams provides near-

linear speedups. Enabling data prefetching achieves another 2×
speedup. Applying edge access parallelization for active-vertex
based algorithms provides an additional 1.2× speedup and

the combination of edge access parallelization and destination

vertex property parallelization provides another 2× speedup

on CF. PageRank, however, does not see any extra speedup
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Fig. 18: Effect of parallelizations and optimizations.
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Fig. 19: Effect of graph slicing and edge table coarsening on performance.

from CFG 4 to CFG 5 since it is already bounded by memory

bandwidth at this point. Lastly, symmetric graph optimization

provides another 1.7× extra speedup for CF by essentially

halving the number of edges that need processing.

Graph Slicing and Edge Table Coarsening Figure 19

explores the impact of graph slicing and edge table coarsening

techniques described in Section VI. In Fig. 19, the leftmost

bar represents the case where a scratchpad memory size is

enough to house all required data, denoted as Scaling Factor

= 1. The next few bars represent cases where a scratchpad

memory size is 1/N of the total required size where N is the

scaling factor. For a scaling factor of N, the input graph is

sliced into N slices (or N(N+1)/2 for the extended slicing

scheme), and the EdgeIDTable is coarsened by a factor of N.

In general, reducing the scratchpad memory size to one-eighth

of the required data size results in around a 30% performance

degradation in PageRank, a 35% degradation in BFS, and a

50% degradation in SSSP. Note that even with the 30%–50%

performance degradation, Graphicionado still outperforms the

software graph processing framework running on a server-grade

multiprocessor while consuming less than 2% of the energy.

For BFS-Wiki and CF, slicing provided a distribution of the

graph where some slices contain either no edges to process or

no vertices to update and therefore skip either the Processing or

the Apply phase for multiple iterations causing the performance

to actually be better than the no-slicing case.

In summary, as depicted in Fig. 19, Graphicionado can

support the processing of very large graphs with reasonable

performance degradation. In addition, given the recent trend

of increasing on-chip storage for processors (e.g. Intel’s i7-

5775C [20], IBM’s Power8 [45]), we expect that most of the

real-world graph’s intermediate data will fit in a larger on-chip

eDRAM with a reasonable scaling factor. With a scaling factor

of 16, a 128MB eDRAM can store intermediate data for graphs

having up to 512 million vertices which exceeds the number

of Internet users in Europe (487 Millions in 2015 [22]).

VIII. RELATED WORK

GPU-based Graph Processing Frameworks There are

a few graph analytics software frameworks and libraries

specifically optimized for GPUs; Gunrock [49], MapGraph [14],

nvGraph [39], and Enterprise [32] are representative examples.

Fair comparisons against GPU-based frameworks are difficult

since GPUs often have much larger memory bandwidth than

what we provisioned for Graphicionado (68GB/s). Here we

present a few datapoints for comparison. Recent work [32]

compares the throughput of GPU-based BFS implementations

across different frameworks. When run on a Tesla K40c GPU

(with 288GB/s memory bandwidth) using the Twitter input

graph, Enterprise (a specialized GPU BFS implementation)

is able to traverse 4.5 edges/ns, Gunrock 0.7 edges/ns, and

MapGraph 0.2 edges/ns. Graphicionado processes 1.1 edges/ns

(on BFS-Twitter) with 68GB/s available memory bandwidth.

If we scale these GPU results assuming a bandwidth of only

68GB/s, Enterprise can process 1.06 edges/ns, Gunrock 0.17

edges/ns, and MapGraph 0.047 edges/ns. Note that the TDP

of the Tesla K40c is 245W while Graphicionado only uses

around 7W.

Hardware-based Graph Analytics Acceleration Hardware

acceleration for graph analytics has been recently analyzed with

an emphasis on FPGA-based accelerators. First, there are a few

accelerators designed for a specific graph analytics algorithm

(e.g., SSSP [53], Belief Propagation [24], and PageRank [36]).

They can be very efficient but cannot be utilized for a domain

of applications. Recently, a couple of vertex-programming

model based graph analytics accelerators were explored [12,

38]. While both share the same goal with Graphicionado,

GraphGen [38] focuses on generating an application-specific

accelerator for a given vertex program specification rather than

providing a single re-usable domain-specific accelerator. On

the other hand, FPGP [12] targets a different problem where

edges are stored in a device with extremely limited bandwidth

(e.g., disk). GraphOps [40] is a concurrent work that provides

a set of modular hardware units implemented in FPGA for

graph analytics. GraphOps optimizes for graph storage and



layout to provide efficient use of the off-chip memory while

Graphicionado optimizes for graph access patterns utilizing

an on-chip scratchpad and eliminating unnecessary off-chip

memory accesses for efficiency. Lastly, Tesseract [3] targets the

same domain as our work, but explores different technology

by implementing specific hardware extensions using the logic

layer of a 3D-stacked DRAM.

Software Graph Processing Frameworks In addition to

the popular software graph processing frameworks described

in Section II-A, GraphChi [29], TurboGraph [17], and X-

Stream [42] are also similar frameworks utilizing disk-based

systems for graph processing. Since these frameworks often

focus on optimizing for efficient data locality and access

patterns, they are closely related to Graphicionado; however,

Graphicionado is a hardware implementation that optimizes for

off-chip memory bandwidth consumptions rather than memory-

to-disk bandwidth consumptions.

Domain-specific accelerators Domain specific accelerators

are becoming more popular since application-specific accel-

erators are prone to obsoleteness. Example domain-specific

accelerators in machine learning (PuDianNao [31], Tabla [34])

and databases (Q100 [52], Widx [27]) share the common

principle with Graphicionado in that they identify the key

characteristics and bottlenecks of applications in a specific

domain and try to overcome them with efficient hardware.

IX. CONCLUSION

In this paper, we present a domain-specific accelerator

Graphicionado specialized for graph analytics processing.

Based on the well-defined, popular vertex programming model

used in many software processing frameworks, Graphicionado

allows users to process graph analytics in a high-performance,

energy-efficient manner while retaining the flexibility and ease

of a software graph processing model. The Graphicionado

pipeline is carefully designed to overcome inefficiencies in

existing general purpose processors by 1) utilizing an on-chip

scratchpad memory efficiently, 2) balancing pipeline designs

to achieve higher throughput, and 3) achieving high memory

level parallelism with minimal cost and complexity. Based

on the fact that Graphicionado achieves significantly higher

speedup (1.76−6.54×) for the same memory bandwidth while

consuming less than 2% of the energy compared to the state-

of-the-art software graph analytics framework running on a

16-core Haswell Xeon server, we conclude that Graphicionado

could be a viable solution to meet the ever increasing demand

for an efficient graph processing platform.
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