
Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow
for Convolutional Neural Networks

Yu-Hsin Chen∗, Joel Emer∗† and Vivienne Sze∗

∗EECS, MIT
Cambridge, MA 02139

†NVIDIA Research, NVIDIA
Westford, MA 01886

∗{yhchen, jsemer, sze}@mit.edu

Abstract—Deep convolutional neural networks (CNNs) are
widely used in modern AI systems for their superior accuracy
but at the cost of high computational complexity. The complex-
ity comes from the need to simultaneously process hundreds
of filters and channels in the high-dimensional convolutions,
which involve a significant amount of data movement. Although
highly-parallel compute paradigms, such as SIMD/SIMT, effec-
tively address the computation requirement to achieve high
throughput, energy consumption still remains high as data
movement can be more expensive than computation. Accord-
ingly, finding a dataflow that supports parallel processing with
minimal data movement cost is crucial to achieving energy-
efficient CNN processing without compromising accuracy.

In this paper, we present a novel dataflow, called row-
stationary (RS), that minimizes data movement energy con-
sumption on a spatial architecture. This is realized by ex-
ploiting local data reuse of filter weights and feature map
pixels, i.e., activations, in the high-dimensional convolutions,
and minimizing data movement of partial sum accumulations.
Unlike dataflows used in existing designs, which only reduce
certain types of data movement, the proposed RS dataflow
can adapt to different CNN shape configurations and reduces
all types of data movement through maximally utilizing the
processing engine (PE) local storage, direct inter-PE communi-
cation and spatial parallelism. To evaluate the energy efficiency
of the different dataflows, we propose an analysis framework
that compares energy cost under the same hardware area
and processing parallelism constraints. Experiments using the
CNN configurations of AlexNet show that the proposed RS
dataflow is more energy efficient than existing dataflows in
both convolutional (1.4× to 2.5×) and fully-connected layers
(at least 1.3× for batch size larger than 16). The RS dataflow
has also been demonstrated on a fabricated chip, which verifies
our energy analysis.

I. INTRODUCTION

The recent popularity of deep learning [1], specifically

deep convolutional neural networks (CNNs), can be attributed

to its ability to achieve unprecedented accuracy for tasks

ranging from object recognition [2–5] and detection [6, 7]

to scene understanding [8]. These state-of-the-art CNNs [2–

5] are orders of magnitude larger than those used in the

1990s [9], requiring up to hundreds of megabytes for filter

weight storage and 30k-600k operations per input pixel.

The large size of such networks poses both throughput

and energy efficiency challenges to the underlying processing

hardware. Convolutions account for over 90% of the CNN

operations and dominates runtime [10]. Although these

operations can leverage highly-parallel compute paradigms,

such as SIMD/SIMT, throughput may not scale accordingly

due to the accompanying bandwidth requirement, and the

energy consumption remains high as data movement can be

more expensive than computation [11–13]. In order to achieve

energy-efficient CNN processing without compromising

throughput, we need to develop dataflows that support parallel

processing with minimal data movement. The differences

in data movement energy cost based on where the data is

stored also needs to be accounted for. For instance, fetching

data from off-chip DRAMs costs orders of magnitude more

energy than from on-chip storage [11, 12].

Many previous papers have proposed specialized CNN

dataflows on various platforms, including GPU [14],

FPGA [15–21], and ASIC [22–26]. However, due to dif-

ferences in technology, hardware resources and system

setup, a direct comparison between different implementations

does not provide much insight into the relative energy

efficiency of different dataflows. In this paper, we evaluate

the energy efficiency of various CNN dataflows on a spatial

architecture under the same hardware resource constraints,

i.e., area, processing parallelism and technology. Based

on this evaluation, we will propose a novel dataflow that
maximizes energy efficiency for CNN acceleration.

To evaluate energy consumption, we categorize the data

movements in a spatial architecture into several levels of

hierarchy according to their energy cost, and then analyze

each dataflow to assess the data movement at each level.

This analysis framework provides insights into how each

dataflow exploits different types of data movement using

various architecture resources. It also offers a quantifiable

way to examine the differences in energy efficiency between

different dataflows.

Previously proposed dataflows typically optimize a certain

type of data movement, such as input data reuse or partial

2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture

1063-6897/16 $31.00 © 2016 IEEE

DOI 10.1109/ISCA.2016.40

367

2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture

1063-6897/16 $31.00 © 2016 IEEE

DOI 10.1109/ISCA.2016.40

367

http://crossmark.crossref.org/dialog/?doi=10.1109%2FISCA.2016.40&domain=pdf&date_stamp=2016-06-18

sum accumulation. Using our analysis framework, we show

that a dataflow that exploits all types of data reuse, and takes

into account the energy cost of data movement at different

levels of the storage hierarchy, can deliver significant energy

savings. In summary, the main contributions of this work

include:

• A taxonomy that classifies existing CNN dataflows from

previous research. (Section IV)

• A spatial architecture based on a new CNN dataflow,

called row stationary, which is optimized for throughput

and energy efficiency. It works on both convolutional and

fully-connected layers, and optimizes all types of data

movement in the storage hierarchy. This dataflow has

also been demonstrated on a fabricated chip. (Section V)

• An analysis framework that can quantify the energy

efficiency of different CNN dataflows under the same

hardware constraints. It can also search for the most

energy efficient mapping for each dataflow. The analyti-

cal model uses energy/area numbers from a commercial

65nm process and all R/W numbers are exact based

on real CNN shape configurations, i.e., AlexNet. (Sec-

tion VI-C)

• For a variety of CNN dataflows, we present a compar-

ative analysis of the energy costs associated with data

movement and the impact of different types of data

reuse. (Section VII)

II. SPATIAL ARCHITECTURE

Spatial architectures (SAs) are a class of accelerators that

can exploit high compute parallelism using direct commu-

nication between an array of relatively simple processing

engines (PEs). They can be designed or programmed to

support different algorithms, which are mapped onto the PEs

using specialized dataflows. Compared with SIMD/SIMT

architectures, SAs are particularly suitable for applications

whose dataflow exhibits producer-consumer relationships or

can leverage efficient data sharing among a region of PEs.

SAs come in two flavors: coarse-grained SAs that consist of

tiled arrays of ALU-style PEs connected together via on-chip

networks [27–29], and fine-grained SAs that are usually in

the form of an FPGA. The expected performance advantage

and large design space of coarse-grained SAs has inspired

much research on the evaluation of its architectures, control

schemes, operation scheduling and dataflow models [30–35].

Coarse-grained SAs are currently a very popular imple-

mentation choice for specialized CNN accelerators for two

reasons. First, the operations in a CNN layer (e.g., convo-

lutional, fully-connected, pooling, etc. Details are described

in Section III-A) are uniform and exhibit high parallelism,

which can be computed quite naturally with parallel ALU-

style PEs. Second, direct inter-PE communication can be

used very effectively for (1) passing partial sums to achieve

spatially distributed accumulation, or (2) sharing the same

input data for parallel computation without incurring higher

PE Array

p
F

IF
O

RFRF

p
F

IF
O

RF

p
F

IF
O

iFIFO / oFIFO

… …

Global

Buffer

PE ArrayiFIFO / oFIFO

Off-Chip

DRAM

A
c

c
e

le
ra

to
r C

h
ip

CPU

GPU

Figure 1. Block diagram of a general CNN accelerator system consisting
of a spatial architecture accelerator and an off-chip DRAM. The zoom-in
shows the high-level structure of a PE.

energy data transfers. ASIC implementations usually deploy

dozens to hundreds of PEs and specialize the PE datapath

only for CNN computation [22–26]. FPGAs are also used

to build CNN accelerators, and these designs usually use

integrated DSP slices to construct the PE datapaths [15–21].

However, the challenge in either type of design lies in the

exact mapping of the CNN dataflow to the SA, since it has

a strong implication on the resulting throughput and energy

efficiency.

Fig. 1 illustrates the high-level block diagram of the

accelerator system that is used in this paper for CNN

processing. It consists of a SA accelerator and off-chip

DRAM. The inputs can be off-loaded from the CPU or GPU

to DRAM and processed by the accelerator. The outputs are

then written back to DRAM and further interpreted by the

main processor.

The SA accelerator is primarily composed of a global

buffer and an array of PEs. The DRAM, global buffer and

PE array communicate with each other through the input

and output FIFOs (iFIFO/oFIFO). The global buffer can be

used to exploit input data reuse and hide DRAM access

latency, or for the storage of intermediate data. Currently, the

typical size of the global buffer used for CNN acceleration is

around 100–300kB. The PEs in the array are connected via a

network on chip (NoC), and the NoC design depends on the

dataflow requirements. The PE includes an ALU datapath,

which is capable of doing multiply-and-accumulate (MAC)

and addition, a register file (RF) as a local scratchpad, and

a PE FIFO (pFIFO) used to control the traffic going in and

out of the ALU. Different dataflows require a wide range of

RF sizes, ranging from zero to a few hundred bytes. Typical

RF size is below 1kB per PE. Overall, the system provides

four levels of storage hierarchy for data accesses, including

DRAM, global buffer, array (inter-PE communication) and

RF. Accessing data from a different level also implies a

different energy cost, with the highest cost at DRAM and

the lowest cost at RF.

368368

III. CNN BACKGROUND

A. The Basics

A convolutional neural network (CNN) is constructed by

stacking multiple computation layers as a directed acyclic

graph [36]. Through the computation of each layer, a higher-

level abstraction of the input data, called a feature map (fmap),

is extracted to preserve essential yet unique information.

Modern CNNs are able to achieve superior performance by

employing a very deep hierarchy of layers.

The primary computation of CNN is in the convolutional

(CONV) layers, which perform high-dimensional convolu-

tions. From five [2] to even several hundred [5] CONV

layers are commonly used in recent CNN models. A CONV

layer applies filters on the input fmaps (ifmaps) to extract

embedded visual characteristics and generate the output

fmaps (ofmaps). The dimensions of both filters and fmaps

are 4D: each filter or fmap is a 3D structure consisting of

multiple 2D planes, i.e., channels, and a batch of 3D ifmaps

is processed by a group of 3D filters in a CONV layer. In

addition, there is a 1D bias that is added to the filtering results.

Given the shape parameters in Table I, the computation of a

CONV layer is defined as

O[z][u][x][y] = B[u]+
C−1

∑
k=0

R−1

∑
i=0

R−1

∑
j=0

I[z][k][Ux+ i][Uy+ j]×W[u][k][i][j],

0≤ z < N,0≤ u < M,0≤ x,y < E,E = (H−R+U)/U.
(1)

O, I, W and B are the matrices of the ofmaps, ifmaps, filters

and biases, respectively. U is a given stride size. Fig. 2 shows

a visualization of this computation (ignoring biases).

A small number, e.g., 3, of fully-connected (FC) layers are

typically stacked behind the CONV layers for classification

purposes. A FC layer also applies filters on the ifmaps as

in the CONV layers, but the filters are of the same size as

the ifmaps. Therefore, it does not have the weight sharing

property as in CONV layers. Eq. (1) still holds for the

computation of FC layers with a few additional constraints

on the shape parameters: H = R, E = 1, and U = 1. In

between CONV and FC layers, additional layers can be added

optionally, such as the pooling (POOL) and normalization

(NORM) layers. Each of the CONV and FC layers is also

immediately followed by an activation (ACT) layer, such as

a rectified linear unit [37].

B. Challenges in CNN Processing

In most of the widely used CNNs, such as AlexNet [2]

and VGG16 [3], CONV layers account for over 90% of

the overall operations and generate a large amount of data

movement. Therefore, they have a significant impact on the

throughput and energy efficiency of CNNs. Even though

FC layers use most of the filter weights, a recent study has

demonstrated that these weights are largely compressible to

1–5% of their original size [38], which greatly reduces the

Shape Parameter Description
N batch size of 3D fmaps
M # of 3D filters / # of ofmap channels
C # of ifmap/filter channels
H ifmap plane width/height
R filter plane width/height (= H in FC)
E ofmap plane width/height (= 1 in FC)

Table I
SHAPE PARAMETERS OF A CONV/FC LAYER.

Input fmaps (I)

Filters (W)
Output fmaps (O)

R

R

�

�

�
 C

�

H

H

�

�

�
 C

�

E

E

�

�

�
 M

E

E

�

�

�
 M

�

R

R

�

�

�
 C

�

H

H

�

�

�
 C

�

�

��

��

��

��

��

��

�

�

Figure 2. Computation of a CONV/FC layer.

impact of FC layers. Processing of POOL layers can share

the same compute scheme used for CONV layers since its

computation is a degenerate form of Eq. (1), where the MAC

is replaced with a MAX operation. Computation of ACT

layers is trivial, and we believe support for the NORM layer

can be omitted due to its reduced usage in recent CNNs [3, 5].

Processing of the CONV and FC layers poses two

challenges: data handling and adaptive processing. The detail

of each is described below.

Data Handling: Although the MAC operations in Eq. (1)

can run at high parallelism, which greatly benefits throughput,

it also creates two issues. First, naı̈vely reading inputs for

all MACs directly from DRAM requires high bandwidth and

incurs high energy consumption. Second, a significant amount

of intermediate data, i.e., partial sums (psums), are generated

by the parallel MACs simultaneously, which poses storage

pressure and consumes additional memory R/W energy if

not processed, i.e., accumulated, immediately.

Fortunately, the first issue can be alleviated by exploiting

different types of input data reuse:

• convolutional reuse: Due to the weight sharing property

in CONV layers, a small amount of unique input data

can be shared across many operations. Each filter weight

is reused E2 times in the same ifmap plane, and each

ifmap pixel, i.e., activation, is usually reused R2 times

in the same filter plane. FC layers, however, do not have

this type of data reuse.

369369

Layer H1 R E C M U
CONV1 227 11 55 3 96 4
CONV2 31 5 27 48 256 1
CONV3 15 3 13 256 384 1
CONV4 15 3 13 192 384 1
CONV5 15 3 13 192 256 1

FC1 6 6 1 256 4096 1
FC2 1 1 1 4096 4096 1
FC3 1 1 1 4096 1000 1

1 This is the padded size

Table II
CONV/FC LAYER SHAPE CONFIGURATIONS IN ALEXNET [39].

• filter reuse: Each filter weight is further reused across

the batch of N ifmaps in both CONV and FC layers.

• ifmap reuse: Each ifmap pixel is further reused across

M filters (to generate the M output channels) in both

CONV and FC layers.

The second issue can be handled by proper operation
scheduling so that the generated psums can be reduced as

soon as possible to save both the storage space and memory

R/W energy. CR2 psums are reduced into one ofmap pixel.
Unfortunately, maximum input data reuse cannot be

achieved simultaneously with immediate psum reduction,

since the psums generated by MACs using the same filter

or ifmap value are not reducible. In order to achieve

high throughput and energy efficiency, the underlying CNN

dataflow needs to account for both input data reuse and psum

accumulation scheduling at the same time.

Adaptive Processing: The many shape parameters shown

in Table I gives rise to many possible CONV/FC layer

shapes. Even within the same CNN model, each layer can

have distinct shape configurations. Table II shows the shape

configurations of AlexNet as an example. The hardware

architecture, therefore, cannot be hardwired to process only

certain shapes. Instead, the dataflow must be efficient for

different shapes, and the hardware architecture must be

programmable to dynamically map to an efficient dataflow.

C. CNN vs. Image Processing
Before CNNs became mainstream, there was already

research on high-efficiency convolution due to its wide

applicability in image signal processing (ISP) [40]. Many

high-throughput ISP techniques have also been proposed

for handling convolutions, including tiling strategies used in

multiprocessors and SIMD instructions. However, they are

not directly applicable for CNN processing for two reasons:

• The filter weights in CNNs are obtained through training

instead of fixed in the processing system. Therefore,

they can consume significant I/O bandwidth and on-

chip storage, sometimes comparable to that of ifmaps.

• The ISP techniques are developed mainly for 2D

convolutions. They do not optimize processing resources

for data reuse nor do they address the non-trivial psum

accumulation in the 4D convolutions of CNN.

IV. EXISTING CNN DATAFLOWS

Numerous previous efforts [15–26] have proposed solu-

tions for CNN acceleration, but it is difficult to compare their

performance directly due to differences in implementation

and design choices. In this section, we present a taxonomy

of these existing CNN dataflows based on their data handling

characteristics. Following are descriptions of these dataflows,

which are summarized in Table III.

A. Weight Stationary (WS) Dataflow

Definition: Each filter weight remains stationary in the RF to

maximize convolutional reuse and filter reuse. Once a weight

is fetched from DRAM to the RF of a PE, the PE runs

through all NE2 operations that use the same filter weight.

Processing: R×R weights from the same filter and channel

are laid out to a region of R×R PEs and stay stationary. Each

pixel in an ifmap plane from the same channel is broadcast
to the same R×R PEs sequentially, and the psums generated

by each PE are further accumulated spatially across these

PEs. Multiple planes of R×R weights from different filters

and/or channels can be deployed either across multiple R×R
PEs in the array or onto the same R×R PEs.

Hardware Usage: The RF is used to store the stationary

filter weights. Due to the operation scheduling that maximally

reuses stationary weights, psums are not always immediately

reducible, and will be temporarily stored to the global buffer.

If the buffer is not large enough, the number of psums that

are generated together has to be limited, and therefore limits

the number of filters that can be loaded on-chip at a time.

Examples: Variants of the WS dataflow appear in [15–17,

19, 25, 26].

B. Output Stationary (OS) Dataflow

Definition: The accumulation of each ofmap pixel stays
stationary in a PE. The psums are stored in the same RF for

accumulation to minimize the psum accumulation cost.
Processing: This type of dataflow uses the space of the PE

array to process a region of the 4D ofmap at a time. To

select a region out of the high-dimensional space, there are

two choices to make: (1) multiple ofmap channels (MOC) vs.

single ofmap channels (SOC), and (2) multiple ofmap-plane

pixels (MOP) vs. single ofmap-plane pixels (SOP). This

creates three practical OS dataflow subcategories: SOC-MOP,

MOC-MOP, and MOC-SOP.

• SOC-MOP is used mainly for CONV layers, and focuses

on processing a single plane of ofmap at a time. It

further maximizes convolutional reuse in addition to

psum accumulation.

• MOC-MOP processes multiple ofmap planes with mul-

tiple pixels in the same plane at a time. By doing so,

it tries to further exploit both convolutional reuse and

ifmap reuse.

• MOC-SOP is used mainly for FC layers, since it

processes multiple ofmap channels but with only one

370370

E

E

�

�

�
 M

(a)

E

E

�

�

�
 M

(b)

E

E

�

�

�
 M

(c)

Figure 3. Comparison of the three different OS dataflow variants: (a)
SOC-MOP, (b) MOC-MOP, and (c) MOC-SOP. The red blocks depict the
ofmap region that the OS dataflow variants process at once.

pixel in a channel at a time. It focuses on further

exploiting ifmap reuse.

The difference between the three OS dataflows is illustrated

in Fig. 3. All additional input data reuse is exploited at the

array level, i.e., inter-PE communication. The RF level only

handles psum accumulation.

Hardware Usage: All OS dataflows use the RF for psum

storage to achieve stationary accumulation. In addition, SOC-

MOP and MOC-MOP require additional RF storage for ifmap

buffering to exploit convolutional reuse within the PE array.

Examples: A variant of MOC-MOP dataflow appears in [20],

and variants of SOC-MOP and MOC-SOP dataflows appear

in [23] and [18]. Note that the MOC-MOP variant in [20]

does not exploit convolutional data reuse since it simply

treats the convolutions as a matrix multiplication.

C. No Local Reuse (NLR) Dataflow

Definition: The NLR dataflow has two major characteristics:

(1) it does not exploit data reuse at the RF level, and (2)

it uses inter-PE communication for ifmap reuse and psum
accumulation.

Processing: NLR divides the PE array into groups of PEs.

PEs within the same group read the same ifmap pixel but with

different filter weights from the same input channel. Different

PE groups read ifmap pixels and filter weights from different

input channels. The generated psums are accumulated across

PE groups in the whole array.

Hardware Usage: There is no RF storage required by the

NLR dataflow. Since the PE array is simply composed of

ALU datapaths, it leaves a large area for the global buffer,

which is used to store psums as well as input data for reuse.

Examples: Variants of the NLR dataflow appear in [21, 22,

24]. In [22], special registers are implemented at the end of

each PE array column to hold the psums, which reduces the

number of global buffer R/W for psums.

V. ENERGY-EFFICIENT DATAFLOW: ROW STATIONARY

While existing dataflows attempt to maximize certain types

of input data reuse or minimize the psum accumulation cost,

they fail to take all of them into account at once. This results

in inefficiency when the layer shape or hardware resources

vary. Therefore, it would be desirable if the dataflow could

Dataflow Data Handling

WS
Maximize convolutional reuse and filter reuse of
weights in the RF.

SOC-MOP OS
Maximize psum accumulation in RF.
Convolutional reuse in array.

MOC-MOP OS
Maximize psum accumulation in RF.
Convolutional reuse and ifmap reuse in array.

MOC-SOP OS
Maximize psum accumulation in RF. Ifmap
reuse in array.

NLR Psum accumulation and ifmap reuse in array.

Table III
DATA HANDLING COMPARISON BETWEEN EXISTING DATAFLOWS.

 PE Array Buffer

4000 μm

4000 μm

Process 65nm CMOS
of PEs 168

RF Size/PE 0.5 kB
Buffer Size 108 kB
Clock Rate 200 MHz

Precision 16-bit Fixed-Point

Figure 4. Die photo and spec of the Eyeriss chip [41].

adapt to different conditions and optimize for all types of data

movement energy costs. In this section, we will introduce

a novel dataflow, called row stationary (RS) that achieves

this goal. The RS dataflow is a key feature of the Eyeriss

architecture, which has been implemented in a fabricated

chip [41] (Fig. 4), and whose functionality has been verified

using AlexNet.

A. 1D Convolution Primitives

The implementation of the RS dataflow in Eyeriss is

inspired by the idea of applying a strip mining technique

in a spatial architecture [42]. It breaks the high-dimensional

convolution down into 1D convolution primitives that can

run in parallel; each primitive operates on one row of filter

weights and one row of ifmap pixels, and generates one

row of psums. Psums from different primitives are further

accumulated together to generate the ofmap pixels. The inputs

to the 1D convolution come from the storage hierarchy, e.g.,

the global buffer or DRAM.

Each primitive is mapped to one PE for processing;

therefore, the computation of each row pair stays stationary
in the PE, which creates convolutional reuse of filter weights

and ifmap pixels at the RF level. An example of this sliding

window processing is shown in Fig. 5. However, since the

entire convolution usually contains hundreds of thousands of

primitives, the exact mapping of all primitives to the PE array

is non-trivial, and will greatly affect the energy efficiency.

371371

time

1 2 3

1 2 3

x x x+ +

=

1

Op1 Op2 Op3

1 2 3

2 3 4

x x x+ +

=

2

Op4 Op5 Op6

1 2 3

3 4 5

x x x+ +

=

3

Op7 Op8 Op9

filter weight:

Ifmap pixel:

psum:

Figure 5. Processing of an 1D convolution primitive in the PE. In this
example, R = 3 and H = 5.

B. Two-Step Primitive Mapping

To solve this problem, the primitive mapping is separated

into two steps: logical mapping and physical mapping. The

logical mapping first deploys the primitives into a logical

PE array, which has the same size as the number of 1D

convolution primitives and is usually much larger than the

physical PE array in hardware. The physical mapping then

folds the logical PE array so it fits into the physical PE

array. Folding implies serializing the computation, and is

determined by the amount of on-chip storage, including

both the global buffer and local RF. The two mapping steps

happen statically prior to runtime, so no on-line computation

is required.

Logical Mapping: Each 1D primitive is first mapped to

one logical PE in the logical PE array. Since there is

considerable spatial locality between the PEs that compute

a 2D convolution in the logical PE array, we group them

together as a logical PE set. Fig. 6 shows a logical PE set,

where each filter row and ifmap row are horizontally and

diagonally reused, respectively, and each row of psums is

vertically accumulated. The height and width of a logical PE

set are determined by the filter height (R) and ofmap height

(E), respectively. Since the number of 2D convolutions in a

CONV layer is equal to the product of number of ifmap/filter

channels (C), number of filters (M) and fmap batch size (N),

the logical PE array requires N×M×C logical PE sets to

complete the processing of an entire CONV layer.

Physical Mapping: Folding means mapping and then run-

ning multiple 1D convolution primitives from different logical

PEs on the same physical PE. In the RS dataflow, folding is

done at the granularity of logical PE sets for two reasons.

First, it preserves intra-set convolutional reuse and psum

accumulation at the array level (inter-PE communication)

as shown in Fig. 6. Second, there exists more data reuse

and psum accumulation opportunities across the N×M×C
sets: the same filter weights can be shared across N sets

(filter reuse), the same ifmap pixels can be shared across M
sets (ifmap reuse), and the psums across each C sets can

be accumulated together. Folding multiple logical PEs from

the same position of different sets onto a single physical PE

exploits input data reuse and psum accumulation at the RF

level; the corresponding 1D convolution primitives run on the

same physical PE in an interleaved fashion. Mapping multiple

sets spatially across the physical PE array also exploits those

opportunities at the array level. The exact amount of logical

PE sets to fold and to map spatially at each of the three

dimensions, i.e., N, M, and C, are determined by the RF size

and physical PE array size, respectively. It then becomes an

optimization problem to determine the best folding by using

the framework in Section VI-C to evaluate the results.

After the first phase of folding as discussed above, the

physical PE array can process a number of logical PE sets,

called a processing pass. However, a processing pass still

may not complete the processing of all sets in the CONV

layer. Therefore, a second phase of folding, which is at

the granularity of processing passes, is required. Different

processing passes run sequentially on the entire physical PE

array. The global buffer is used to further exploit input data

reuse and store psums across passes. The optimal amount

of second phase folding is determined by the global buffer

size, and also requires an optimization using the analysis

framework.

C. Energy-Efficient Data Handling

To maximize energy efficiency, the RS dataflow is built

to optimize all types of data movement by maximizing the

usage of the storage hierarchy, starting from the low-cost

RF to the higher-cost array and global buffer. The way each

level handles data is described as follows.

RF: By running multiple 1D convolution primitives in a PE

after the first phase folding, the RF is used to exploit all

types of data movements. Specifically, there are convolutional
reuse within the computation of each primitive, filter reuse
and ifmap reuse due to input data sharing between folded

primitives, and psum accumulation within each primitive and

across primitives.

Array (inter-PE communication): Convolutional reuse
exists within each set and is completely exhausted up to

this level. Filter reuse and ifmap reuse can be achieved by

having multiple sets mapped spatially across the physical PE

array. Psum accumulation is done within each set as well as

across sets that are mapped spatially.

Global Buffer: Depending on its size, the global buffer is

used to exploit the rest of filter reuse, ifmap reuse and psum
accumulation that remain from the RF and array levels after

the second phase folding.

D. Support for Different Layer Types

While the RS dataflow is designed for the processing of

high-dimensional convolutions in the CONV layers, it can

also support two other layer types naturally:

FC Layer: The computation of FC layers is the same as

CONV layers, but without convolutional data reuse. Since the

RS dataflow exploits all types of data movement, it can still

adapt the hardware resources to cover filter reuse, ifmap reuse

372372

PE1,1 PE1,2 PE1,3
filter
row 1

PE2,1 PE2,2 PE2,3
filter
row 2

PE3,1 PE3,2 PE3,3
filter
row 3

(a)

PE1,1 PE1,2 PE1,3

ifmap
row 1

PE2,1 PE2,2 PE2,3

ifmap
row 2

PE3,1 PE3,2 PE3,3

ifmap
row 3

ifmap
row 4

ifmap
row 5

(b)

PE1,3

PE2,3

PE3,3

psum
row 3

PE1,2

PE2,2

PE3,2

psum
row 2

PE1,1

psum
row 1

PE2,1

PE3,1

(c)

Figure 6. The dataflow in a logical PE set to process a 2D convolution. (a) rows of filter weight are reused across PEs horizontally. (b) rows of ifmap
pixel are reused across PEs diagonally. (c) rows of psum are accumulated across PEs vertically. In this example, R = 3 and H = 5.

and psum accumulation at each level of the storage hierarchy.

There is no need to switch between different dataflows as in

the case between SOC-MOP and MOC-SOP OS dataflows.

POOL Layer: By swapping the MAC computation with a

MAX comparison function in the ALU of each PE, the RS

dataflow can also process POOL layers by assuming N = M
= C = 1 and running each fmap plane separately.

E. Other Architectural Features

In the Eyeriss architecture, the dataflow in Fig. 6 is handled

using separate NoCs for the three data types: global multi-

cast NoCs for the ifmaps and filters, and a local PE-to-PE

NoC for the psums. The architecture can also exploit sparsity

by (1) only performing data reads and MACs on non-zero

values and (2) compressing the data to reduce data movement.

Details on these techniques are described in [41]. This brings

additional energy savings on top of the efficient dataflow

presented in this paper.

VI. EXPERIMENTAL METHODOLOGY

A. Dataflow Implementation

A simulation model of each dataflow is implemented for

the energy efficiency analysis using our proposed framework

(Section VI-C). For the RS dataflow, we have implemented

the model as described in Section V and it is verified by the

measurement results of the Eyeriss chip. For each of the exist-

ing dataflows, however, different variants are demonstrated in

previous designs. Therefore, our implementations of existing

dataflows try to find the common ground that represents their

key characteristics, and is described as follows:

Weight Stationary: Each PE holds a single weight in the

RF at a time. The psum generated in a PE at each cycle is

either passed to its neighbor PE or stored back to the global

buffer, and the PE array operates as a systolic array with

little local control. This also leaves a large area for the global

buffer, which is crucial to the operation of WS dataflow.

Output Stationary: Each PE runs the psum accumulation

of a single ofmap pixel at a time. We also model the MOC-

MOP OS dataflow to capture convolutional reuse in the PE

array, which exploits more reuse compared with the plain

matrix multiplication implementation in [20]. Unlike SOC-

MOP, which dedicates the PE array for 2D convolutional

reuse, the MOC-MOP model uses the PE array for both 1D

convolutional reuse and ifmap reuse.

No Local Reuse: The PE array consists of only ALU

datapaths with no local storage. All types of data, including

ifmaps, filters and psums, are stored in the global buffer.

B. Setup for Dataflow Comparison

To compare the performance of different dataflows, the

constraints of a fixed total hardware area and the same

processing parallelism are imposed, i.e., all dataflows are

given the same number of PEs with the same storage area,

which includes the global buffer and RF. Based on the

storage requirement of each dataflow, the storage area can

be divided up differently between the global buffer and RF

across dataflows. For example, RS can use a larger RF for

better data reuse, but NLR does not require a RF at all.

In our simulations, a baseline storage area for a given

number of PEs is calculated as

#PE×Area(512B RF)+Area((#PE×512B) global buffer). (2)

For instance, with 256 PEs, the baseline storage area for

all dataflows is calculated from the setup with 512B RF/PE

and an 128kB global buffer. This baseline storage area is

then used to calculate the size of the global buffer and RF in

bytes for each dataflow. The total on-chip storage size will

then differ between dataflows because the area cost per byte

depends on the size and type of memory used as shown in

Fig. 7a. In general, the area cost per byte in the RF is higher

than the global buffer due to its smaller size, and thus the

dataflows requiring a larger RF will have a smaller overall

on-chip storage size. Fig. 7b shows the on-chip storage sizes

of all dataflows under a 256-PE SA. We fix the RF size

in RS dataflow at 512B since it shows the lowest energy

consumption using the analysis described in Section VI-C.

The difference in total on-chip storage size can go up to

80kB. For the global buffer alone, the size difference is up

to 2.6×. This difference in storage size will be considered

when we discuss the results in Section VII.

The accelerator throughput is assumed to be proportional to

the number of active PEs for a dataflow. Although throughput

373373

On-Chip Memory Size (Byte)
101 102 103

N
or

m
. A

re
a/

B
yt

e

2

4

6

8

10

12

14

����	�
��
���

�
���

(a)

RS WS OS
A

OS
B

OS
C

NLR

A
cc

el
er

at
or

 S
to

ra
ge

 (
K

B
)

0

100

200

300

400 Global Buffer
Total RF

(b)

Figure 7. The trade-off between storage area allocation and the total storage
size. (a) A smaller memory have a higher cost on area utilization. (b) Due to
the area allocation between global buffer and RF, the total on-chip storage
size varies between dataflows.

is also a function of data movement, since it adds latency

when there is limited storage bandwidth, there are many

existing techniques commonly used to compensate for the

impact, such as prefetching, double buffering, caching and

pipelining. For CNN acceleration, these techniques are quite

effective at hiding latency. Therefore, data movement is not

expected to impact overall throughput significantly.

C. Framework for Energy Efficiency Analysis

The way each MAC operation in Eq. (1) fetches inputs

(filter weight and ifmap pixel) and accumulates psums

introduces different energy costs due to two factors:

• how the dataflow exploits input data reuse and psum

accumulation scheduling as described in Section III-B.

• fetching data from different storage elements in the

architecture have different energy costs.

The goal of an energy-efficient CNN dataflow is then to

perform most data accesses using the data movement paths

with lower energy cost. This is an optimization process that

takes all data accesses into account, and will be affected by

the layer shape and available hardware resources.

In this section, we will describe a framework that can

be used as a tool to optimize the dataflows for spatial

architectures. Specifically, it defines the energy cost for each

level of the storage hierarchy in the architecture. Then, it

provides a simple methodology to incorporate any given

dataflow into an analysis using this hierarchy to quantify the

overall data movement energy cost. This allows for a search

for the optimal mapping for a dataflow that results in the best

energy efficiency for a given CNN layer shape. For example,

it describes the folding of the logical PEs onto physical PEs.

For all of the dataflows, this takes into account folding in

each of the three dimensions, i.e., number of filters, images

and/or channels. It optimizes to maximize reuse of data in

the RF, array and global buffer.

Data Movement Hierarchy: As defined in Section II, the SA

accelerator provides four levels of storage hierarchy. Sorting

their energy cost for data accesses from high to low, it in-

cludes DRAM, global buffer, array (inter-PE communication)

and RF. Fetching data from a higher-cost level to the ALU

DRAM
Global Buffer Array (inter-PE) RF

(>100kB) (1-2mm) (0.5kB)
Norm.

200× 6× 2× 1×
Energy

Table IV
NORMALIZED ENERGY COST RELATIVE TO A MAC OPERATION

EXTRACTED FROM A COMMERCIAL 65NM PROCESS.

incurs higher energy consumption. Also, the energy cost of

moving data between any of the two levels is dominated by

the one with higher cost. Similar to the energy consumption

quantification in previous experiments [11, 12, 43], Table IV

shows the energy cost of accessing each level relative to a

MAC operation under the listed conditions. The numbers are

extracted from a commercial 65nm process. The DRAM and

global buffer energy costs aggregate the energy of accessing

the storage and the iFIFO/oFIFO; the array energy cost

includes the energy of accessing the iFIFO/oFIFO/pFIFO

on both sides of the path as well as the cost from wiring

capacitance.

Analysis Methodology: Given a dataflow, the analysis is

formulated in two parts: (1) the input data access energy cost,

including filters and ifmaps, and (2) the psum accumulation

energy cost. The energy costs are quantified through counting

the number of accesses to each level of the previously defined

hierarchy, and weighting the accesses at each level with a

cost from Table IV. The overall data movement energy of a

dataflow is obtained through combining the results from the

two types of input data and the psums.

1) Input Data Access Energy Cost: If an input data value

is reused for many operations, ideally the value is moved

from DRAM to RF once, and the ALU reads it from the RF

many times. However, due to limited storage and operation

scheduling, the data is often kicked out of the RF before

exhausting reuse. The ALU then needs to fetch the same

data again from a higher-cost level to the RF. Following this

pattern, data reuse can be split across the four levels. Reuse

at each level is defined as the number of times each data
value is read from this level to its lower-cost levels during its
lifetime. Suppose the total number of reuses for a data value

is a×b× c×d, it can be split into reuses at DRAM, global

buffer, array and RF for a, b, c, and d times, respectively. An

example is shown in Fig. 8, in which case the total number

of reuse, 24, is split into a = 1, b = 2, c = 3 and d = 4. The

energy cost estimation for this reuse pattern is:

a×EC(DRAM)+ab×EC(global buffer)+

abc×EC(array)+abcd×EC(RF),
(3)

where EC(·) is the energy cost from Table IV. 1

2) Psum Accumulation Energy Cost: Psums travel be-

tween ALUs for accumulation through the 4-level hierarchy.

1Optimization can be applied to Eq. (3) when there is no reuse opportunity.
For instance, if d = 1, the data is transferred directly from a higher level to
the ALU and bypasses the RF, and the last term in Eq. (3) can be dropped.

374374

PE ArrayiFIFO / oFIFO

p
F

IF
O

D
R

A
M

Global

Buffer

RF RF RF

p
F

IF
O

p
F

IF
O

Processing Other Data …

�����
������	�

Array Level
Buffer Level

time

Memory Level

RF Level

DRAM Buffer Array RF

Reuses a = 1 b = 2 c = 3 d = 4

Figure 8. An example of the ifmap pixel or filter weight being reused
across four levels of hierarchy.

In the ideal case, each generated psum is stored in a local

RF for further accumulation. However, this is often not

achievable due to the overall operation scheduling, in which

case the psums have to be stored to a higher-cost level and

read back again afterwards. Therefore, the total number of

accumulations, a×b×c×d, can also be split across the four

levels. The number of accumulation at each level is defined

as the number of times each data goes in and out of its
lower-cost levels during its lifetime. An example is shown

in Fig. 9, in which case the total number of accumulations,

36, is split into a = 2, b = 3, c = 3 and d = 2. The energy

cost can then be estimated as

(2a−1)×EC(DRAM)+2a(b−1)×EC(global buffer)+

ab(c−1)×EC(array)+2abc(d−1)×EC(RF).
(4)

The factor of 2 accounts for both reads and writes. Note

that in this calculation the accumulation of the bias term is

ignored, as it has negligible impact on overall energy.

3) Obtaining the Parameters: For each dataflow, there

exists a set of parameters (a, b, c, d) for each of the three

data types, i.e., ifmap, filter and psum, that describes the

optimal mapping in terms of energy efficiency under a given

CNN layer shape. It is obtained through an optimization

process with objective functions defined in Eq. (3) and (4).

The optimization is constrained by the hardware resources,

including the size of the global buffer, RF and PE array.

D. Dataflow Modeling Side Note

While we charge the same energy cost at each level of the

storage hierarchy across all dataflows, the real cost varies

due to the actual implementation required by each dataflow.

For example, a larger global buffer should be charged with

a higher energy cost, which is the case for all dataflows

other than RS. At array level, short-distance transfers, such

PE ArrayiFIFO / oFIFO

p
F

IF
O

Global

Buffer

RF RF RF

ti
m

e

p
F

IF
O

p
F

IF
O

D
R

A
M

Buffer Level

Array Level

RF Level

repeat Array and Reg Levels as above

Memory Level

DRAM Buffer Array RF

Accumulations a = 2 b = 3 c = 3 d = 2

Figure 9. An example of the psum accumulation going through four levels
of hierarchy.

as communicating with a neighbor PE, should be charged

a lower energy cost than longer-distance transfers, such as

broadcast or direct global buffer accesses from all PEs, due

to smaller wiring capacitance and simpler NoC design. In

this case, WS, OSA, OSC and NLR might see a bigger

impact since they all have long-distance array transfers. At

the RF level, a smaller RF should be charged with less energy

cost. Except for RS and OSA, the other dataflows will see

a reduction in RF access energy. Overall, however, we find

our results to be conservative for RS compared to the other

dataflows.

VII. EXPERIMENT RESULTS

We simulate the RS dataflow and compare its performance

with our implementation of existing dataflows (Section VI-A)

under the same hardware area and processing parallelism

constraints. The mapping for each dataflow is optimized

by our framework (Section VI-C) for the highest energy

efficiency. AlexNet [2] is used as the CNN model for

benchmarking due to its high popularity. Its 5 CONV and

3 FC layers also provide a wide range of shapes that are

suitable for testing the adaptability of different dataflows.

The simulations assume 16 bits per word, and the result

aggregates data from all CONV or FC layers in AlexNet. To

save space, the SOC-MOP, MOC-MOP and MOC-SOP OS

dataflows are renamed as OSA, OSB and OSC, respectively.

375375

CONV1

CONV2

CONV3

CONV4

CONV5

FC1
FC2

FC3

N
or

m
al

iz
ed

 E
ne

rg
y

�1010

0

0.5

1

1.5

2

2.5
ALU
DRAM
Buffer
Array
RF

Figure 10. Energy consumption breakdown of RS dataflow in AlexNet.

A. RS Dataflow Energy Consumption

The RS dataflow is simulated with the following setup:

(1) 256 PEs, (2) 512B RF per PE, and (3) 128kB global

buffer. Batch size is fixed at 16. Fig. 10 shows the energy

breakdown across the storage hierarchy in the 5 CONV and

3 FC layers of AlexNet. The energy is normalized to one

ALU operation, i.e., a MAC.

The two types of layers show distinct energy distributions.

On one hand, the energy consumption of CONV layers

is dominated by RF accesses, which shows that RS fully

exploits different types of data movement in the local RF

and minimizes accesses to storage levels with higher cost.

This distribution is verified by our Eyeriss chip measurement

results where the ratio of energy consumed in the RF to the

rest (except DRAM) is also roughly 4:1. On the other hand,

DRAM accesses dominate the energy consumption of FC

layers due to the lack of convolutional data reuse. Overall,

however, CONV layers still consume approximately 80% of

total energy in AlexNet, and the percentage is expected to go

even higher in modern CNNs that have more CONV layers.

B. Dataflow Comparison in CONV Layers

We compare the RS dataflow with existing dataflows in

(1) DRAM accesses, (2) energy consumption and (3) energy-

delay product (EDP) using the CONV layers of AlexNet.

Different hardware resources (256, 512 and 1024 PEs) and

batch sizes (N = 1, 16 and 64) are simulated to further

examine the scalability of these dataflows.

DRAM Accesses: DRAM accesses are expected to have a

strong impact on the overall energy efficiency since their

energy cost is orders of magnitude higher than other on-chip

data movements. Fig. 11 shows the average DRAM accesses

per operation of the 6 dataflows. DRAM writes are the same

across all dataflows since we assume the accelerator writes

only ofmaps but no psums back to DRAM. In this scenario,

RS, OSA, OSB and NLR have significantly lower DRAM

accesses than WS and OSC, which means the former achieve

more data reuse on-chip than the latter. Considering RS has

much less on-chip storage compared to others, it shows the

importance of co-designing the architecture and dataflow.

In fact, RS can achieve the best energy efficiency when

taking the entire storage hierarchy into account instead of

just DRAM accesses (see Energy Consumption section).
The WS dataflow is optimized for maximizing weight reuse.

However, it sacrifices ifmap reuse due to the limited number

of filters that can be loaded on-chip at a time, which leads to

high DRAM accesses. The number of filters is limited by (1)

insufficient global buffer size for psum storage, and (2) size

of PE array. In fact, Fig. 11a shows a case where WS cannot

even operate due to the global buffer being too small for a

batch size of 64. OSC also has high DRAM accesses since

it does not exploit convolutional reuse of ifmaps on-chip.
In terms of architectural scalability, all dataflows can use

the larger hardware area and higher parallelism to reduce

DRAM accesses. The benefit is most significant on WS and

OSC, which also means that they are more demanding on

hardware resources. For batch size scalability, increasing N
from 1 to 16 reduces DRAM accesses for all dataflows since

it gives more filter reuse, but saturates afterwards. The only

exception is WS, which cannot handle large batch sizes well

due to the psum storage issue.

Energy Consumption: Fig. 12 shows the normalized energy

consumption per operation of the 6 dataflows. Overall, RS

is 1.4× to 2.5× more energy efficient than other dataflows.

Although OSA, OSB and NLR have similar or even lower

DRAM accesses compared with RS, RS still consumes

lower total energy by fully exploiting the lowest-cost data

movement at the RF for all data types. The OS and WS

dataflows use the RF only for psum accumulation and weight

reuse, respectively, and therefore spend a significant amount

of energy in the array for other data types. NLR does not use

the RF at all. Most of its data accesses come from the global

buffer directly, which results in high energy consumption.
Fig. 12d shows the same energy result at a PE array size

of 1024 but with energy breakdown by data type. The results

for other PE array sizes show a similar trend. While the WS

and OS dataflows are most energy efficient at weight and

psum accesses, respectively, they sacrifice the reuse of other

data types: WS is inefficient at ifmap reuse, and the OS

dataflows cannot reuse ifmaps and weights as efficiently as

RS since they focus on generating psums that are reducible.

NLR does not exploit any type of reuse of weights in the PE

array, and therefore consumes most of its energy for weight

accesses. RS is the only dataflow that optimizes energy for

all data types simultaneously.
When scaling up the hardware area and processing

parallelism, the energy consumption per operation roughly

stays the same across all dataflows except for WS, which

sees a decrease in energy due to the larger global buffer size.

Increasing batch size helps to reduce energy per operation

similar to the trend shown in the case of DRAM accesses.

The energy consumption of OSC, in particular, improves

significantly with batch sizes larger than 1, since there is no

reuse of weights at RF and array levels when batch size is 1.

376376

RS WS OS
A

OS
B

OS
C

NLR

D
R

A
M

 A
cc

es
s/

O
p

0

0.005

0.01

0.015

0.02

0.025
Memory Writes
Memory Reads

161 64 Batch
Size (N)

(a)

RS WS OS
A

OS
B

OS
C

NLR

D
R

A
M

 A
cc

es
s/

O
p

0

0.005

0.01

0.015

0.02

0.025

0.03
Memory Writes
Memory Reads

Batch Size (N)
161 64

(b)

RS WS OS
A

OS
B

OS
C

NLR

D
R

A
M

 A
cc

es
s/

O
p

0

0.005

0.01

0.015
Memory Writes
Memory Reads

161 64
Batch Size (N)

(c)

Figure 11. Average DRAM accesses per operation of the six dataflows in CONV layers of AlexNet under PE array size of (a) 256, (b) 512 and (c) 1024.

RS WS OS
A

OS
B

OS
C

NLR

N
or

m
al

iz
ed

 E
ne

rg
y/

O
p

0

0.5

1

1.5

2

2.5 ALU
DRAM
Buffer
Array
RF

16
1

64
N =

(a)

RS WS OS
A

OS
B

OS
C

NLR

N
or

m
al

iz
ed

 E
ne

rg
y/

O
p

0

0.5

1

1.5

2

2.5 ALU
DRAM
Buffer
Array
RF

16
1

64
N =

(b)

RS WS OS
A

OS
B

OS
C

NLR

N
or

m
al

iz
ed

 E
ne

rg
y/

O
p

0

0.5

1

1.5

2

2.5 ALU
DRAM
Buffer
Array
RF

16
1

64
N =

(c)

RS WS OS
A

OS
B

OS
C

NLR

N
or

m
al

iz
ed

 E
ne

rg
y/

O
p

0

0.5

1

1.5

2

2.5 Ifmaps
Weights
Psums16

1

64
N =

(d)

Figure 12. Energy consumption of the six dataflows in CONV layers of AlexNet under PE array size of (a) 256, (b) 512 and (c) 1024. (d) is the same as
(c) but with energy breakdown in data types. The energy is normalized to that of RS at array size of 256 and batch size of 1. The RS dataflow is 1.4× to
2.5× more energy efficient than other dataflows.

Energy-Delay Product: Energy-delay product is used to

verify that a dataflow does not achieve high energy efficiency

by sacrificing processing parallelism, i.e., throughput. Fig. 13

shows the normalized EDP of the 6 dataflows. The delay

is calculated as the reciprocal of number of active PEs. A

dataflow may not utilize all available PEs due to the shape

quantization effects and mapping constraints. For example,

when batch size is 1, the maximum number of active PEs in

OSA and OSC are the size of 2D ofmap plane (E2) and the

number of ofmap channels (M), respectively. Compared with

the other dataflows, RS has the lowest EDP since its mapping

of 1D convolution primitives efficiently utilizes available PEs.

OSA and OSC show high EDP at batch size of 1 due to its

low PE utilization, especially at larger array sizes.

C. Dataflow Comparison in FC Layers

We run the same experiments as in Section VII-B but with

the FC layers of AlexNet. Fig. 14 shows the results of 6

dataflows under a PE array size of 1024. The results for other

PE array sizes show the same trend. The batch size now starts

from 16 since there is little data reuse with a batch size of 1,

in which case the energy consumptions of all dataflows

are dominated by DRAM accesses for weights and are

approximately the same. The DRAM accesses, however, can

be reduced by techniques such as pruning and quantization

of the values [38].

Compared with existing dataflows, the RS dataflow has

the lowest DRAM accesses, energy consumption and EDP

in the FC layers. Even though increasing batch size helps to

improve energy efficiency of all dataflows due to more filter

reuse, the gap between RS and the WS/OS dataflows becomes

even larger since the energy of the latter are dominated by

ifmap accesses. In fact, OSA runs FC layers very poorly

because its mapping requires ifmap pixels from the same

spatial plane, while the spatial size of FC layers is usually

very small. Overall, the RS dataflow is at least 1.3× more

energy efficient than other dataflows at a batch size of 16,

and can be up to 2.8× more energy efficient at a batch size

of 256.

D. Hardware Resource Allocation for RS

For the RS dataflow, we further experiment changing the

hardware resource allocation between processing and storage

under a fixed area. This is to determine its impact on energy

efficiency and throughput. The fixed area is based on the

setup using 256 PEs with the baseline storage area as defined

in Eq. (2). We sweep the number of PEs from 32 to 288 and

adjust the size of RF and global buffer to find the lowest

energy cost in CONV layers of AlexNet for each setup.

Fig. 15 shows the normalized energy and processing

delay of different resource allocations. First, although the

throughput increases by more than 10× by increasing the

number of PEs, the energy cost only increases by 13%. This

is because a larger PE array also creates more data reuse

opportunities. Second, the trade-off between throughput and

energy is not monotonic. The energy cost becomes higher

when the PE array size is too small due to (1) there is

little data reuse in the PE array, and (2) the global buffer is

already large enough that increasing the buffer size does not

contribute much to data reuse.

377377

RS WS OS
A

OS
B

OS
C

NLR

N
or

m
al

iz
ed

 E
D

P

0

1

3

5

161 64
Batch Size (N)

(a)

RS WS OS
A

OS
B

OS
C

NLR

N
or

m
al

iz
ed

 E
D

P

0

1

3

5

7

161 64
Batch Size (N)

(b)

RS WS OS
A

OS
B

OS
C

NLR

N
or

m
al

iz
ed

 E
D

P

0
1

3

5

7

9

11

13

161 64
Batch Size (N)

(c)

Figure 13. Energy-delay product (EDP) of the six dataflows in CONV layers of AlexNet under PE array size of (a) 256, (b) 512 and (c) 1024. It is
normalized to the EDP of RS at PE array size of 256 and batch size of 1.

RS WS OS
A

OS
B

OS
C

NLR

D
R

A
M

 A
cc

es
s/

O
p

0

0.02

0.04

0.06

0.08

0.1
Memory Writes
Memory Reads16

64

Batch Size (N)
256

(a)

RS WS OS
A

OS
B

OS
C

NLR

N
or

m
al

iz
ed

 E
ne

rg
y/

O
p

0

0.5

1

1.5

2
ALU
DRAM
Buffer
Array
RF

16 256
Batch Size (N)

64

(b)

RS WS OS
A

OS
B

OS
C

NLR

N
or

m
al

iz
ed

 E
ne

rg
y/

O
p

0

0.5

1

1.5

Ifmaps
Weights
Psums16 256

Batch Size (N)

64

(c)

RS WS OS
A

OS
B

OS
C

NLR

N
or

m
al

iz
ed

 E
D

P

0

0.5

1

1.5

2

2.5

3

16 256
Batch Size (N)

64

168
85

(d)

Figure 14. (a) average DRAM accesses per operation, energy consumption with breakdown in (b) storage hierarchy and (c) data types, and (d) EDP of the
six dataflows in FC layers of AlexNet under PE array size of 1024. The energy consumption and EDP are normalized to that of RS at batch size of 1.

Normalized Delay
0 5 10 15

N
or

m
al

iz
ed

 E
ne

rg
y/

O
p

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14
��������	
�
�
�������

���������	

�����������������

�
�
��	
�
��
�������

!��������	

��������������"
�

!
��!���	
�

!!�������

��#�������	

�����������������

Figure 15. Relationship between normalized energy per operation and
processing delay under the same area constraint but with different processing
area to storage area ratio.

VIII. CONCLUSIONS

This paper presents an analysis framework to evaluate the

energy cost of different CNN dataflows on a spatial architec-

ture. It accounts for the energy cost of different levels of the

storage hierarchy under fixed area and processing parallelism

constraints. It also can be used to search for the most energy-

efficient mapping for each dataflow. Under this framework,

a novel dataflow, called row stationary (RS), is presented

that minimizes energy consumption by maximizing input

data reuse (filters and feature maps) and minimizing partial

sum accumulation cost simultaneously, and by accounting

for the energy cost of different storage levels. Compared

with existing dataflows such as the output stationary (OS),

weight stationary (WS), and no local reuse (NLR) dataflows

using AlexNet as a benchmark, the RS dataflow is 1.4× to

2.5× more energy efficient in convolutional layers, and at

least 1.3× more energy efficient in fully-connected layers

for batch sizes of at least 16.

We also observe that DRAM bandwidth alone does

not dictate energy-efficiency; dataflows that require high

bandwidth to the on-chip global buffer can also result in

significant energy cost. For all dataflows, increasing the size

of the PE array helps to improve the processing throughput

at similar or better energy efficiency. Larger batch sizes also

result in better energy efficiency in all dataflows except for

WS, which suffers from insufficient global buffer size. Finally,

for the RS dataflow, the area allocation between processing

and storage has a limited effect on energy-efficiency, since

more PEs allow for better data reuse, which balances out the

effect of less on-chip storage.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, 2015.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
Classification with Deep Convolutional Neural Networks,” in
NIPS, 2012.

[3] K. Simonyan and A. Zisserman, “Very Deep Convolu-
tional Networks for Large-Scale Image Recognition,” CoRR,
vol. abs/1409.1556, 2014.

[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going Deeper
With Convolutions,” in IEEE CVPR, 2015.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” in IEEE CVPR, 2016.

378378

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich Feature
Hierarchies for Accurate Object Detection and Semantic
Segmentation,” in IEEE CVPR, 2014.

[7] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,
and Y. LeCun, “OverFeat: Integrated Recognition, Localiza-
tion and Detection using Convolutional Networks,” CoRR,
vol. abs/1312.6229, 2013.

[8] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva,
“Learning Deep Features for Scene Recognition using Places
Database,” in NIPS, 2014.

[9] Y. Le Cun, L. Jackel, B. Boser, J. Denker, H. Graf, I. Guyon,
D. Henderson, R. Howard, and W. Hubbard, “Handwritten
digit recognition: applications of neural network chips and
automatic learning,” IEEE Communications Magazine, vol. 27,
no. 11, 1989.

[10] J. Cong and B. Xiao, “Minimizing computation in convolu-
tional neural networks,” in ICANN, 2014.

[11] B. Dally, “Power, Programmability, and Granularity: The
Challenges of ExaScale Computing,” in IEEE IPDPS, 2011.

[12] M. Horowitz, “Computing’s energy problem (and what we
can do about it),” in IEEE ISSCC, 2014.

[13] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov,
B. C. Lee, S. Richardson, C. Kozyrakis, and M. Horowitz,
“Understanding Sources of Inefficiency in General-purpose
Chips,” in ISCA, 2010.

[14] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer, “cuDNN: Efficient Primitives
for Deep Learning,” CoRR, vol. abs/1410.0759, 2014.

[15] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar,
I. Durdanovic, E. Cosatto, and H. P. Graf, “A Massively
Parallel Coprocessor for Convolutional Neural Networks,” in
IEEE ASAP, 2009.

[16] V. Sriram, D. Cox, K. H. Tsoi, and W. Luk, “Towards an
embedded biologically-inspired machine vision processor,” in
FPT, 2010.

[17] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi,
“A Dynamically Configurable Coprocessor for Convolutional
Neural Networks,” in ISCA, 2010.

[18] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal,
“Memory-centric accelerator design for Convolutional Neural
Networks,” in IEEE ICCD, 2013.

[19] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello,
“A 240 G-ops/s Mobile Coprocessor for Deep Neural Net-
works,” in IEEE CVPRW, 2014.

[20] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan,
“Deep Learning with Limited Numerical Precision,” CoRR,
vol. abs/1502.02551, 2015.

[21] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,
“Optimizing FPGA-based Accelerator Design for Deep Con-
volutional Neural Networks,” in FPGA, 2015.

[22] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and
O. Temam, “DianNao: A Small-footprint High-throughput
Accelerator for Ubiquitous Machine-learning,” in ASPLOS,
2014.

[23] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo,
X. Feng, Y. Chen, and O. Temam, “ShiDianNao: Shifting
Vision Processing Closer to the Sensor,” in ISCA, 2015.

[24] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,
T. Chen, Z. Xu, N. Sun, and O. Temam, “DaDianNao: A
Machine-Learning Supercomputer,” in MICRO, 2014.

[25] S. Park, K. Bong, D. Shin, J. Lee, S. Choi, and H.-J. Yoo, “A
1.93TOPS/W scalable deep learning/inference processor with
tetra-parallel MIMD architecture for big-data applications,” in
IEEE ISSCC, 2015.

[26] L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim, and
L. Benini, “Origami: A Convolutional Network Accelerator,”
in GLSVLSI, 2015.

[27] E. Mirsky and A. DeHon, “MATRIX: a reconfigurable com-
puting architecture with configurable instruction distribution
and deployable resources,” in IEEE FCCM, 1996.

[28] J. R. Hauser and J. Wawrzynek, “Garp: a MIPS processor
with a reconfigurable coprocessor,” in IEEE FCCM, 1997.

[29] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwere-
ins, “ADRES: An Architecture with Tightly Coupled VLIW
Processor and Coarse-Grained Reconfigurable Matrix,” in FPL,
2003.

[30] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago,
D. Lustig, V. Pavlov, A. Zhai, M. Gambhir, A. Jaleel,
R. Allmon, R. Rayess, S. Maresh, and J. Emer, “Triggered
Instructions: A Control Paradigm for Spatially-programmed
Architectures,” in ISCA, 2013.

[31] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynami-
cally Specialized Datapaths for Energy Efficient Computing,”
in IEEE HPCA, 2011.

[32] S. Swanson, A. Schwerin, M. Mercaldi, A. Petersen, A. Put-
nam, K. Michelson, M. Oskin, and S. J. Eggers, “The
WaveScalar Architecture,” ACM TOCS, vol. 25, no. 2, 2007.

[33] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and
R. Reed Taylor, “PipeRench: A virtualized programmable
datapath in 0.18 micron technology,” in IEEE CICC, 2002.

[34] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K.
John, C. Lin, C. R. Moore, J. Burrill, R. G. McDonald,
and W. Yoder, “Scaling to the End of Silicon with EDGE
Architectures,” Computer, vol. 37, no. 7, 2004.

[35] T. Nowatzki, V. Gangadhar, and K. Sankaralingam, “Explor-
ing the Potential of Heterogeneous Von Neumann/Dataflow
Execution Models,” in ISCA, 2015.

[36] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional
networks and applications in vision,” in IEEE ISCAS, 2010.

[37] V. Nair and G. E. Hinton, “Rectified Linear Units Improve
Restricted Boltzmann Machines,” in ICML, 2010.

[38] S. Han, H. Mao, and W. J. Dally, “Deep Compression:
Compressing Deep Neural Network with Pruning, Trained
Quantization and Huffman Coding,” in ICLR, 2016.

[39] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional
Architecture for Fast Feature Embedding,” arXiv preprint
arXiv:1408.5093, 2014.

[40] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan,
C. Kozyrakis, and M. A. Horowitz, “Convolution Engine:
Balancing Efficiency and Flexibility in Specialized Computing,”
in ISCA, 2013.

[41] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss:
An Energy-Efficient Reconfigurable Accelerator for Deep
Convolutional Neural Networks,” in IEEE ISSCC, 2016.

[42] J. J. Tithi, N. C. Crago, and J. S. Emer, “Exploiting spatial
architectures for edit distance algorithms,” IEEE ISPASS, 2014.

[43] K. T. Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis, K. Periy-
athambi, and M. Horowitz, “Towards energy-proportional
datacenter memory with mobile dram,” in ISCA, 2012.

379379

