
A Simpler, Safer Programming and
Execution Model for Intermittent Systems

Brandon Lucia

Carnegie Mellon University, USA

blucia@cmu.edu

Benjamin Ransford

University of Washington, USA

ransford@cs.washington.edu

Abstract

Energy harvesting enables novel devices and applications without
batteries, but intermittent operation under energy harvesting poses
new challenges to memory consistency that threaten to leave appli-
cations in failed states not reachable in continuous execution. This
paper presents analytical models that aid in reasoning about inter-
mittence. Using these, we develop DINO (Death Is Not an Option),
a programming and execution model that simplifies programming
for intermittent systems and ensures volatile and nonvolatile data
consistency despite near-constant interruptions. DINO is the first
system to address these consistency problems in the context of in-
termittent execution. We evaluate DINO on three energy-harvesting
hardware platforms running different applications. The applica-
tions fail and exhibit error without DINO, but run correctly with
DINO’s modest 1.8–2.7× run-time overhead. DINO also dramati-
cally simplifies programming, reducing the set of possible failure-
related control transfers by 5–9×.

Categories and Subject Descriptors C.3 [Special-purpose and
application-based systems]: Real-time and embedded systems;
D.4.5 [Reliability]: Checkpoint/restart

Keywords Intermittent computing

1. Introduction

Increasing energy efficiency has lowered the energy cost of com-
putation so far that general-purpose microcontrollers can operate
solely on energy they can scavenge from their surroundings [14,
25]. Unlike traditional machines with tethered power or batteries,
energy-harvesting computers boot quickly from tiny energy buffers
and operate intermittently. Execution can be interrupted by a power
failure at any point.

Early prototypes of intermittently powered computers acted
as programmable, sensor-laden RFID tags and used on-chip flash
memory for program storage [31]. Subsequent efforts built applica-
tions such as handshake authentication [10], computer vision [40],
user interaction [36], and data logging [38, 39]. These applications

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, contact the Owner/Author.
Request permissions from permissions@acm.org or Publications Dept., ACM, Inc.,
fax +1 (212) 869-0481. Copyright 2015 held by Owner/Author. Publication Rights
Licensed to ACM.

PLDI’15 , June 13–17, 2015, Portland, OR, USA
Copyright c© 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00
DOI: http://dx.doi.org/10.1145/2737924.2737978

largely avoided using flash because of its unwieldy erase–write
semantics, write latency that is orders of magnitude slower than
RAM, limited durability, and high voltage requirements [30, 33].

Emerging nonvolatile memories ease the burden of on-chip per-
sistent storage for microcontrollers. Ferroelectric RAM (FRAM) in
production chips offers convenience, speed, durability, and energy
characteristics closer to those of RAM [34]. Programmers can use
memory-mapped FRAM to store variables that will survive power
failures. Recent work noted that fast, accessible nonvolatile storage
can simplify programming models by abstracting process lifecy-
cles and working sets [4, 8], appearing to the programmer to offer
persistence “for free.”

This paper demonstrates that intermittent execution will thwart
programmers tempted by “free” or cheap persistence. Embedded
ISAs and compilers do not distinguish between writes to non-
volatile and volatile memory, exposing simple load/store inter-
faces that assume the programmer will use hardware correctly—
and leaving programs responsible for data consistency. Under in-
termittent execution on real hardware platforms, partially executed
code and repeated code result in consistency violations that can
break program invariants or corrupt outputs. Power failures at ar-
bitrary times introduce implicit control flow that stymies auto-
mated analysis and complicate programmer reasoning. Worse, sud-
den power failures can lead to program states that are unreachable
in any continuous execution, rendering embedded systems unsafe
or unusable.

This paper presents DINO (Death Is Not an Option), a new pro-
gramming and execution model that addresses the challenges posed
above. In DINO’s programming model, programmers insert task
boundaries to subdivide long-running computations into semanti-
cally meaningful shorter tasks, such as sampling a sensor or manip-
ulating an important buffer. Tasks are dynamically formed spans
of instructions between task boundaries. Tasks have well-defined
transactional semantics: the program’s state at a task boundary is
guaranteed to be consistent with the completed execution of the
task that preceded it. In contrast to software transactional memo-
ries (STMs) that clearly distinguish operations protected by trans-
actions, in DINO every instruction executes in a transaction.

To support this programming model, DINO’s execution model
uses judicious checkpointing and recovery that tracks volatile and
nonvolatile state. This approach is unlike previous systems that
track only volatile state and permit consistency violations involving
nonvolatile state [16, 28]. By executing all instructions in transac-
tional tasks, DINO guarantees that intermittent execution behavior
is equivalent to continuous execution behavior. This guarantee sim-
plifies programming by eliminating potential failure-induced con-
trol transfers. When a failure occurs, execution simply resumes at
the task boundary that began the current task.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

PLDI’15, June 13–17, 2015, Portland, OR, USA
ACM. 978-1-4503-3468-6/15/06
http://dx.doi.org/10.1145/2737924.2737978

575

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2813885.2737978&domain=pdf&date_stamp=2015-06-03

This paper makes the following contributions:

• We define the Intermittent Execution Model and present two
ways to model intermittence, namely as concurrency and con-
trol flow. We use both models to characterize, for the first time,
several problems that threaten application consistency on inter-
mittently powered embedded devices.

• We resolve these problems with the DINO programming and
execution model, which provides task-based programming and
task-atomic execution to avoid consistency violations under
intermittent power.

• We evaluate a working prototype of DINO, including a com-
piler and runtime system for embedded energy-harvesting plat-
forms. We evaluate DINO on diverse real systems and applica-
tions and show that DINO provides its guarantees effectively
and efficiently.

2. Intermittent Execution: Key Challenges

Intermittent execution presents fundamental, unsolved challenges
to programmers of energy-harvesting systems that have volatile
and nonvolatile state. This work’s goal is to address these chal-
lenges and provide a reliable, intuitive foundation for such sys-
tems. This section describes an intermittent execution model to fa-
cilitate reasoning about programs on intermittently powered de-
vices. It formalizes and enriches the implicit model of previous
work [6, 16, 28] and explains with an example why prior ap-
proaches relying only on dynamic checkpointing are insufficient
to prevent consistency violations. We then present two equivalent
models for reasoning about intermittence: one that connects inter-
mittence to concurrency and one that frames intermittence as a
control-flow problem. We use the models to illustrate how inter-
mittence can lead to inconsistent memory states that cannot occur
in any continuous execution.

2.1 The Intermittent Execution Model

This work is premised on an intermittently powered hardware
platform with volatile and nonvolatile memory, e.g., TI’s Wolver-
ine [34]. As on other embedded systems, there is no OS; the pro-
gram has full access to all addresses and peripherals. The plat-
form runs on harvested energy held in a small buffer that smooths
fluctuations; it does not spend precious energy charging a battery.
Section 6 describes three systems that fit this description.

The intermittent execution model describes the behavior of de-
vices in this class. Figure 1 uses an example to contrast intermit-
tence with conventional execution. An intermittent execution of a
program is composed of periods of sequential execution interrupted
by reboots. A key difference between an intermittent execution and
a continuous one is that a reboot is not the end of an intermittent
execution. Between reboots, instructions execute sequentially, as in
a standard execution model. A reboot may occur before, during, or
after any instruction. Rebooting has two effects on execution: all
volatile memory is cleared, and control returns to the entry point of
main(). Nonvolatile state retains its contents across reboots. Peri-
ods of execution are on the order of a few hundred to a few thousand
machine instructions, in line with the intermittence characteristics
of prototype intermittently powered devices [6, 16, 28, 31, 40].
Thus, failures are the common case in intermittent execution.

2.1.1 Periodic Dynamic Checkpointing

Recent efforts used periodic dynamic checkpointing [16, 28] to fos-
ter computational progress despite intermittent execution. Dynamic
analysis determines when to copy the execution context—registers
and some parts of volatile memory—to a reserved area in non-

volatile memory. After a reboot, execution resumes at the check-
point rather than main().

Checkpointing is insufficient. Dynamic checkpointing enables
progress and ensures correctness for programs that use only volatile
state. However, past work does not address two problems that are
fundamental to the intermittent execution model. The first problem
is that dynamic checkpoints are opaque and implicit: a program-
mer or static program analysis is forced to guess where execution
will resume after a reboot, and every instruction that can execute
is a candidate. Inferring the set of possible resumption states re-
quires complex reasoning about many program scopes and func-
tions. Non-idempotent operations, like I/O and nonvolatile mem-
ory accesses, may be unpredictably repeated or partially completed.
Under dynamic checkpointing alone, these factors confound analy-
sis by programmers and compilers.

The second fundamental problem is that, despite its persistence,
nonvolatile memory does not necessarily remain consistent across
reboots—potentially leaving it in a state that is not permitted by any
continuous execution. Errors from partial or repeated execution can
accumulate in nonvolatile memory, with results ranging from data-
structure corruption to buffer overflows. Such problems may occur
even in code that is correct under continuous execution. The poten-
tial for memory inconsistency forces the programmer to manually
and onerously reason about, check, and enforce consistency wher-
ever nonvolatile data is accessed.

r1 = len

r1 = r1 + 1

len = r1

✓

Checkpoint

Reboot

buf[len] = ‘a’

r1 = len

r1 = r1 + 1

len = r1

buf[len] = ‘a’
-1

len

buf

Initial state:

0

len

buf

After reboot:

1

len

a

buf

Final state:

Wrong!

...

Figure 2: Intermittence causes surprising failures. The operations before
the reboot update len but not buf. When execution resumes—e.g., from a
checkpoint—r1 gets the incremented value of len and the code writes a
character into buf’s second entry, not its first. Updating buf leaves the data
inconsistent: only buf’s second entry contains a, which is impossible in a

continuous execution.

2.2 Intermittence Causes Surprising Failures

Figure 2 shows how intermittence causes a failure using the ex-
ample code from Figure 1. The code updating len and buf should
not be interrupted, but a reboot occurs after len’s update and before
buf’s update. Execution resumes at the previous checkpoint and len

is updated again. The timing of the reboot leads to data corruption:
len is updated twice, despite only one call to append() in the pro-
gram. When buf is finally updated using the value of len, its second
entry is updated, not its first, as should be the case. Crucially, the
final memory state is impossible in a continuous execution.

Reasoning only about sequential behaviors explicit in a program
does not reveal failures like the one in Figure 2. Even a program
that is provably free of buffer overflows can suffer one under inter-
mittent execution. In response to the shortcomings of conventional
reasoning, programmers need new models for reasoning about in-
termittent execution.

2.3 Reasoning about Intermittent Execution

We develop two new models for reasoning about intermittent ex-
ecution, one framing intermittence as a form of concurrency, the
other describing intermittence as control-flow. We later use these

576

NV int len = -1

NV char buf[]=“”;

main () {

 append();

}

append () {

 r1 = len;

 r1 = r1 + 1;

 len = r1;

 buf[len] = 'a';

}

Source program

main()

 append()

 r1 = len

 r1 = r1 + 1

 len = r1

 buf[len] = ‘a’

Continuous execution

...

Intermittent execution

main()

 append()

 r1 = len

 r1 = r1 + 1

 len = r1

main()

 append()

 r1 = len

main()

 append()

 r1 = len

 r1 = r1 + 1

Reboot

w/ Dynamic checkpoints

main()

 append()

 r1 = len

 r1 = r1 + 1

 len = r1

 r1 = len

 r1 = r1 + 1

 len = r1

 buf[len] = ‘a’

Reboot

✓

Checkpoint

✓

 buf[len] = ‘a’...

✓

Execution

periods

(a) (b) (c) (d)

Figure 1: Comparing execution models. (a) The program has nonvolatile variables len and buf; append() modifies both. (b) Continuous execution runs
the program to completion. (c) Intermittent execution experiences reboots that return control to the start of main(). (d) Intermittent execution with periodic
checkpointing preserves state across reboots and the program makes progress, completing.

models to address the problems described above. Seen as concur-
rency, intermittence leads to data races that lead to unintuitive re-
sults. Seen as control flow, intermittence introduces new control-
flows that are hard to reason about and can cause unintuitive data-
flow. Both models assume periodic checkpoints of volatile state.

2.3.1 Modeling Intermittence as Concurrency

We model an intermittent execution as a collection of concurrent
execution periods. Each period executes the same code, beginning
at the most recent checkpoint. Concurrent periods are scheduled;
At first, one period executes and all others unscheduled. A re-
boot corresponds to the executing period being pre-empted and
a pre-empting period begins executing. Pre-empted periods never
resume. Accesses to nonvolatile memory in pre-empting and pre-
empted are concurrent. Figure 3(a) illustrates an intermittent exe-
cution as a concurrent execution of execution periods that preempt
each other when the execution experiences a reboot.

r1 = len

r1 = r1 + 1

len = r1 r1 = len

r1 = r1 + 1

len = r1 r1 = len

r1 = r1 + 1

len = r1

P1

P2

P3

✓

✓

✓

Checkpoint

Reboot

Execution

periods

Figure 3: Intermittent execution as concurrent execution. The solid
arrow highlights two unintuitive consequences of intermittent execution:
(1) the second execution period P2 preempts the first period P1 after P1
completes the write to the nonvolatile variable len, causing a data race
with P2’s read of len. (2) Data flows along the solid arrow from P1 to P2,
resulting in the read of len receiving a value from a write that is lexically

later in the program—which is impossible in a continuous execution.

Concurrent accesses may form data races. A data race is a pair
of memory accesses, at least one of which is a write, that are not
happens-before ordered [18]. In general, data races can produce
unintuitive results [1, 21], and which races are problematic depends
on the system’s memory model.

Racing accesses to non-volatile memory in an intermittent exe-
cution can be problematic. A race leads to an unintuitive result if a

pre-empted execution period modifies a nonvolatile memory loca-
tion, a pre-empting execution period reads the same location, and
the pre-empting period’s read precedes all of its writes to the loca-
tion. Such a data race incorrectly exposes state modified by the pre-
empted execution period to the pre-empting one. Making matters
worse, errors compound over time because such unintuitive values
are used by subsequent computation.

Figure 3(b) illustrates how a data race between a pre-empted and
a pre-empting task can lead to such unintuitive outcomes. The value
written to len in the pre-empted task appears in the read of len in
the pre-empting task. Section 3.1 elaborates on the inconsistency in
this example.

2.3.2 Modeling Intermittence as Control Flow

We model intermittence as control flow, observing that a reboot
redirects control from an arbitrary failure point to some prior point.
Reboots introduce edges in the control-flow graph (CFG) that are
followed on a reboot. A CFG is a graph, G = (V,E), where each
node in V represents a static code point and E is the set of explicit
control-flow edges in the program.

enter main()

checkpoint?

r1 = len

r1 = r1 + 1

len = r1

buf[len] = 'a'

main()

enter append()

append()

call append()

checkpoint?

checkpoint?

checkpoint?

checkpoint?

Failure-

induced flow

(a) Control-flow Graph

r1 = len

r1 = r1 + 1

len = r1

buf[len] = 'a'

<initial values>

len

r1

r1

len

buf

(b) Data-flow Graph

buf

len

Explicit flow

Figure 4: Intermittent execution as control-flow. (a) The CFG for the
program in Figure 1(a) with implicit, failure-induced control-flow edges.
Possible checkpoints are dotted boxes. A failure-induced edge begins at
each code point and targets each possible checkpoint. (b) The DFG for the
CFG in (a) with failure-induced data-flows added.

We extend G to G′ = (V,E,F) where F is a set of failure-
induced control-flow edges. Each edge f ∈ F originates at a node

577

vreboot ∈ V and terminates at another node vresume ∈ V . For every
vreboot in V where a reboot may occur, there is an edge f ∈ F
for each possible vresume in V where a checkpoint may be taken
and f = (vreboot,vresume). A system may dynamically decide to
collect a checkpoint at any time, making the number of edges in F

approximately |V |2. Note that in our formulation of G′, a particular
edge (vreboot,vresume) ∈ F is followed when the system collects a
checkpoint at vresume and reboots at vreboot. Figure 4 depicts a CFG
augmented with failure-induced control-flow edges.
Failure-induced data flow. A CFG with nodes representing non-
volatile reads and writes has a corresponding NV data-flow graph
(NV DFG). The DFG encodes which writes’ results a read may
read. We assume nonvolatile memory locations are uniquely, glob-
ally identified, which is reasonable for embedded programs, and
build use–def chains as follows. An NV DFG, D = (VD,ED), has
vertices VD corresponding to the CFG nodes that represent non-
volatile memory accesses. A node records its type (i.e., read vs.
write), and the location it accesses. An edge in the DFG exists be-
tween nodes, ud ,vd ∈ VD, if ud writes some memory location, vd

accesses the same location, and there is a path in the CFG from the
node corresponding to ud to the one corresponding to vd that does
not pass through any other write to the same location. Such a CFG
path means vd could read or overwrite what ud wrote.

With intermittence, data can flow from one execution period
to another across a reboot. Such a flow exists if the CFG path
admitting a NV DFG edge includes a failure-induced control-flow
edge. Such failure-induced data flow can leave nonvolatile data in
a state that does not correspond to any continuous execution of the
program. Section 3 describes the types of inconsistencies that arise.

3. Intermittence Causes Data Inconsistency

We consider the state of an intermittent execution consistent if it
corresponds to one produced by some continuous execution, and
inconsistent otherwise. Under Section 2’s models of intermittent
execution, intermittence can lead to several kinds of inconsistency
in nonvolatile state. Atomicity violations occur when consecutive
executions accidentally share state because the earlier execution
did not complete. The broader category of idempotence violations
encompasses atomicity violations along with other application-
level problems that arise when updates occur more times than a
continuous execution would permit.

3.1 Atomicity Violations

In our model, a sequence of actions is atomic if code outside
the sequence—i.e., code executing after a reboot—cannot observe
its effects until all operations in the sequence complete. Such an
atomic sequence should also be isolated: operations in the sequence
can observe the results of operations in the sequence, or initial val-
ues from the start of the sequence, but no results from operations
that are not part of the sequence—including the same code execut-
ing before a reboot. For simplicity, we call code atomic when it
meets both conditions.

Using our concurrency model of intermittence (§2.3.1), we can
now reason about the surprising failure in Figure 2 as an atomicity
violation. The updates to len and buf should be atomic. The pre-
reboot and post-reboot periods are pre-empted and pre-empting
periods respectively. The pre-empting period violates the atomicity
of the pre-empted period because the reboot precedes the write to
buf. The pre-empting period observes the partially updated pair of
variables, manifesting the violation.

3.2 Idempotence Violations

A computation is idempotent if it can be repeatedly executed with-
out producing a new result. We say that an execution experiences

r1 = len

checkpoint

r1 = r1 + 1

len = r1

buf[len] = 'a'

r1 = len

checkpoint

r1 = r1 + 1

len = r1

buf[len] = 'a'

R
e

b
o

o
t

len
buf

This result is impossible

in a continuous execution!

Program control flow

Failure-induced

control flow

Failure-induced

data flow via x

x

-1

len buf
Initial state:

0

len

a

buf
Before reboot

1

len

a a

buf
Final state

E
x

e
c

u
te

s
 a

to
m

ic
a

ll
y

;

b
u

t
&

 l
e

n
 a

re
 c

o
n

s
is

te
n

t

Figure 5: Intermittence causes idempotence violations. In this intermit-
tent execution of the program in Figure 1(a), the updates to buf and len are
atomic, so the two values remain internally consistent. However, the update
is non-idempotently repeated after the failure. A failure-induced control-
flow edge creates a loop around the update, leaving buf and len inconsis-
tent with the execution context, unlike in any continuous execution.

an idempotence violation when non-idempotent computation is re-
peatedly executed, producing a new result each time. An intermit-
tent execution manifests an idempotence violation when it executes
non-idempotent code, reboots, resumes executing at a checkpoint,
and re-executes the non-idempotent code.

Figure 5 uses our control-flow model of intermittence (Sec-
tion 2.3.2) to illustrate an idempotence violation in an execution
of the code in Figure 1(a). The execution atomically updates len

and buf and then experiences a reboot, following a failure-induced
control-flow edge to the beginning of append(). The execution up-
dates len and buf a second time. The failure-induced control-flow
edge creates a loop in the otherwise straight-line code. The updated
value of the variables flows around the loop, from the accesses be-
fore the failure to the accesses after the failure. When the single call
to append() in the source code completes, len and buf reflect the
effect of two calls to append(). The resulting memory state is not
possible in a continuous execution of the code shown. Importantly,
this execution does not suffer an atomicity violation: both memory
locations are updated atomically in each execution of append().
The key is that the updates to these variables are not idempotent.
Each repeated execution of those updates incorrectly produces a
new result.

4. DINO Programming and Execution Model

DINO is a programming model and an execution model that, to-
gether, make intermittently powered systems robust to the prob-
lems resulting from frequent interruptions. Programmers place task
boundaries in their code. At runtime, dynamic spans of instruc-
tion between task boundaries form tasks. DINO’s programming
model assigns clear task-atomic semantics to programs to enable
simple reasoning—both human and automatic—about data consis-
tency and control flow. DINO’s execution model ensures that tasks
are atomic and data are consistent at task boundaries. DINO uses
data-flow analysis and compiler-aided task-cost analysis to help
programmers place task boundaries in a way that ensures consis-
tency and minimizes overhead.

4.1 Programming Model

DINO’s programming model assumes a C-like base language be-
cause such languages predominate in embedded development,
though it does not depend on language features that are unique
to C. DINO adds several features to the base programming model.

578

4.1.1 Task Boundaries and Atomic Tasks

DINO adds task-atomic semantics to C’s programming model. The
programmer statically defines task boundaries at code points where
they expect data consistency. Conceptually, programmers should
think of task boundaries like memory fences that are meaningful
at compile time, rather than thinking of tasks as statically defined
regions that happen to have delimiting boundaries, because task
boundaries are defined statically, while tasks (paths between task
boundaries) are formed dynamically. As with memory fences in
concurrent programs, programmers must be careful to include suf-
ficient task boundaries to provide the atomicity and consistency re-
quired by their application. Programmers should pay special atten-
tion to placing boundaries to cover all possible control-flow paths
when an application needs atomicity of control-dependent code re-
gions. Figure 6(a) shows part of an activity recognition (AR) pro-
gram (§6.1) decorated with task boundaries and slightly modified
for illustrative purposes. The figure shows statically placed task
boundaries in line with program code. Figure 6(b) shows how a task
is dynamically defined, during an execution, as a path from one task
boundary to the next. In the figure, one task spans from operation 6
to operation 4 including code on just one side of a branch and the
return from upd_stats().

(a)

void main(){

0: s = rd_sensor();

1: DINO_task()

2: c = classify(s);

3: upd_stats(c)

4: DINO_task()}

upd_stats(class c){

5: if(c == CLASS1){

6: DINO_task();

7: c1++;

 }else{

8: DINO_task();

9: c2++;

 }

10:total++;

11:assert(total==c1+c2)}

DINO Program

2

3

5

1

7

10

6

11

9

10

8

11

(b)DINO Tasks

6 4 4

Each task is a

path between

boundaries.
main()

2

3

4

1

0

upd_stats()

7

8

9

6

5

10

11

(c)DINO CFG

E
a

c
h

 t
a

s
k
 i
s
 a

to
m

ic

Figure 6: The DINO Programming Model. (a) shows static task bound-
aries in code. (b) shows tasks formed dynamically from the boundaries in
(a). Bold boxes are task boundaries. (c) shows how task boundaries are
failure-induced control-flow targets in a control-flow graph (CFG). Bold
CFG edges are failure-induced.

2 3 51 7 10 116 4

Updates private until

boundary crossed Reboot

76

After reboot: restore

checkpoint & versions

Checkpoint +
versions

NV vars: c1,c2,total

NV vars to version

stored w/ checkpoint:

Volatile state

On Crossing: checkpoint,

 version necessary NV vars

Checkpoint +
versions

NV vars: c1,c2,total

Volatile state

c1,c2,total

Figure 7: The DINO Execution Model. The boxes at the top show an
execution from Figure 6. Bold boxes are task boundaries. The tiles at the
bottom show how DINO checkpoints and versions data at a task boundary
and recovers to a task boundary after a failure.

Task boundaries in DINO have several important aspects. First,
operations in a task execute atomically and updates made in a task
are isolated until the task completes. Isolation implies that a task

sees the values in variables at its initial boundary or the results
of its own updates. Atomicity implies that one task’s updates are
not visible to other tasks (i.e., after a reboot) until its terminal
boundary executes. Second, both volatile and nonvolatile data are
guaranteed to be consistent at task boundaries, whose function
is analogous to that of synchronization, like memory fences or
barriers in conventional concurrent programs. Third, the boundary
from which execution will resume after a failure is the last one
crossed dynamically before the failure.

DINO’s tasks are akin to transaction regions in TCC [15], which
require only that programmers insert transaction boundaries into
their code and provides transactional semantics via hardware en-
hancements, or bulk-sequential chunks as in BulkSC [7]. Unlike
TCC and BulkSC, DINO does not require hardware support, mak-
ing it closer in spirit to software transactional memory (STM), but
without the need to statically demarcate regions of code as trans-
actions; DINO instead forms tasks dynamically and protects every
instruction with a transaction.

4.2 Execution Model

DINO provides runtime support for checkpointing and data ver-
sioning to keep data consistent despite reboots.

Checkpointing. State preservation across reboots is necessary to
ensure progress. At every task boundary, a checkpointing mecha-
nism (like that of QuickRecall [16] or Mementos [28]) in the DINO
runtime copies the registers and stack to a linker-reserved area in
nonvolatile memory. Checkpoints are double buffered so that newly
written checkpoints supersede prior ones only after being com-
pletely written. To protect against failures during checkpointing,
the final operation of a checkpoint is to write a canary value that
must be intact for a checkpoint to be considered restorable. In con-
trast to the dynamic checkpointing described above, DINO takes
checkpoints only at statically placed explicit task boundaries. Cap-
turing execution context in a nonvolatile checkpoint at each task
boundary ensures that volatile data are consistent across reboots.

Data versioning. A mechanism we call data versioning ensures
that nonvolatile data remain consistent across reboots. DINO’s ex-
ecution model ensures that, at task boundaries, nonvolatile data are
both internally consistent and consistent with the task boundary’s
checkpoint of volatile state. When execution reaches a task bound-
ary, immediately before checkpointing, DINO makes a volatile
copy of each nonvolatile variable that is potentially inconsistent—
i.e., may be written non-idempotently after a task boundary exe-
cutes and before another task boundary executes. Any variable with
a failure-induced data-flow edge is potentially inconsistent.

Copying nonvolatile variables to volatile memory on the stack
ensures that checkpoints include these variables’ values. DINO’s
implementation of task boundaries includes corresponding code
to restore nonvolatile variables from their checkpointed volatile
versions when execution resumes. Section 5.1.1 gives more details
on the data-flow analysis that informs versioning decisions.

Figure 7 illustrates checkpointing and versioning during an ex-
ecution with a reboot. The key idea is that data are preserved by
DINO when execution passes a task boundary and restored by
DINO at that task boundary after a reboot.

4.3 DINO Prevents Consistency Violations

DINO’s versioning and checkpointing prevent atomicity violations
and idempotence violations by design. From the perspective of
a programmer or program analysis, a task boundary represents
a point in the execution with guaranteed data consistency and
equivalence to the state of some continuous execution.

Figure 8 shows how DINO prevents an atomicity violation due
to intermittent execution. Note that when the failure occurs, mem-

579

ory is in an inconsistent state, but upon resumption DINO restores
the consistent state that is equivalent to a continuous execution.

if (c == …)

 c1++;

Reboot

if (c == …)

 c1++;

total++;

assert(total==c1+c2)

(a) Failing execution

 without DINO

0

c1

Initial state: 0

c2

0

total

1c1
if (c == …)

 c1++;

DINO_task():

 collect checkpoint;

 version

0

c1

0

c2

0

total

Reboot 1c1

if (c == …)

 c1++;

total++;

assert(total==c1+c2)

Pre-empted task

Pre-empting task

✔
✘

DINO_task():

 restore checkpoint;

 restore

0

c1

0

c2

0

total

(b) DINO prevents the failure

Figure 8: DINO prevents atomicity violations. (a) shows an execution
of the code in Figure 6. Without DINO, the reboot violates atomicity,
leaving total, c1, and c2 inconsistent. (b) shows how DINO prevents the
violation by versioning c1, c2, and total in the pre-empted task. After the
reboot DINO restores the versions, isolating the pre-empting task from the
incorrect partial update.

r1 = len

checkpoint

r1 = r1 + 1

len = r1

buf[len] = 'a'

r1 = len

checkpoint

r1 = r1 + 1

len = r1

buf[len] = 'a'

R
e

b
o

o
t

-1

len buf
Initial State

0

len

a

buf
Before Reboot

0

len

a

buf
Final State

Restore

versions

-1

len buf

Capture

versions

-1

len buf

The result is equivalent to

continuous execution!

Figure 9: DINO prevents idempotence violations. The figure shows an
execution of the program in Figure 1, where a reboot causes writes to buf
and len to erroneously re-execute. Here, DINO versions buf and len with
the checkpoint. After the reboot, DINO restores the versions, eliminating
the failure-induced data-flow.

Figure 9 illustrates how DINO’s data versioning prevents an
idempotence violation. Note that buf and len are mutually con-
sistent when the reboot occurs. The problem is that when execution
resumes, the data together are inconsistent with the checkpointed,
volatile execution context (i.e., register state and program counter).
Before DINO resumes application code, it restores buf and len to
the consistent values that correspond to a continuous execution.
Proof sketch: We sketch a formal proof that DINO is correct. We
refer to the non-volatile memory as NV and the volatile memory as
V . NV and V are consistent at a point in the execution if they are
equivalent to NV and V at that point in a continuous execution. The
proof is by induction on the number of failures.
—Base case: Before any failures, at a task T ’s initial boundary,
B, DINO versions locations in NV written by writes reachable on
any path starting from B that does not cross another task boundary,
producing NVv. At B, DINO also checkpoints V to Vc. NVv and
Vc are consistent at B, with no prior failures. If T is interrupted,
execution reverts to B and DINO restores NV from NVv and V from
Vc. Thus, after one failure, execution is at B, and NV and V are
consistent.
—Induction case: Arbitrary, repeated failures of task T each revert
NV to NVv and V to Vc at B, which is consistent. When T ends,
its terminal boundary B′ is the initial boundary of the next task T ′.

Upon reaching B′, NV and V are consistent (possibly having been
restored at B). B′ is the initial boundary of T ′, thus DINO captures
NV ′ to NV ′

v and V ′ to V ′
c at B′, which is consistent. Subsequent

failures in T ′ revert to NV ′
v and V ′

c at B′, which is consistent. �

4.4 DINO Reduces Control- and Data-flow Complexity

DINO uses statically defined task boundaries, addressing the high
control-flow complexity of systems that dynamically collect check-
points. Figure 6(c) illustrates the CFG for the program in Fig-
ure 6(a). A key advantage of DINO is that the target of each failure-
induced control-flow edge is statically known, lowering the CFG’s
complexity. With dynamic checkpointing, there is a CFG edge from
each point in a program where a reboot can occur to each earlier
point in the code that might be a checkpoint. With DINO, there
is a CFG edge from each point where a reboot can occur to only
those task boundaries that reach that point in the CFG without
first crossing another task boundary. In Figure 6(c), there are nine
failure-induced CFG edges. We omit the complex, full CFG for a
dynamic checkpointing system, which includes 27 failure-induced
edges, not including inter-procedural ones.

DINO’s task-atomicity eliminates the failure-induced, non-
volatile data-flow suffered by intermittent executions. These edges
are eliminated because tasks are atomic and isolated. DINO’s sim-
pler control flow and absence of failure-induced data flow simpli-
fies reasoning about failures.

Idempotence. The problem of preventing non-idempotent up-
dates to data structures, as in Figure 9, is distinct from the problem
of non-idempotent actions at higher layers. DINO cannot un-launch
a rocket or un-toast bread. Programmers must decide whether in-
termittent power is appropriate for a given use case. With care-
ful placement of task boundaries, DINO can allow for delicate
handling of certain regions of code. For example, placing a task
boundary immediately after a sensitive operation maximizes the
probability that the operation will not repeat, i.e., that DINO can
fully save the post-operation state before the next failure.

4.5 Feedback on Task Boundary Placement

DINO requires programmers to manually place task boundaries,
which makes implicit control flow explicit. It also suggests that
programmers think about the cost of tasks in two ways: task-
boundary overhead and failure-recovery cost. DINO exposes costs
with compiler warnings.

Task boundaries introduce checkpointing and versioning over-
heads. The checkpointing overhead increases with the size of the
stack. Versioning overhead increases with the size of nonvolatile
data accessed in a task. DINO’s compiler emits a warning for each
boundary that can be moved to a point of lower cost (e.g., where
the stack is smaller).

The second cost dimension is that failures of irrevocable ac-
tions such as I/O may be expensive to repair. Making such tasks
very short and minimizing unrelated actions minimizes this risk.
DINO’s compiler emits a warning when a task includes access to a
peripheral register (indicating likely non-idempotent hardware use)
and suggests that the programmer try to constrict task boundaries
as close as possible around the access. Section 5.1.3 gives details
on both cost analyses.

5. Architecture and Implementation

DINO implements the design described in Section 4. Its main
components are (1) a compiler that analyzes programs and inserts
DINO runtime code and (2) a runtime system that directly imple-
ments the DINO execution model, including checkpointing, data
versioning, and recovery.

580

5.1 Compiler

The DINO compiler is a series of passes for the LLVM com-
piler framework [19]. The DINO compiler uses data-flow analy-
sis to identify potentially inconsistent data that must be versioned
at a task boundary. It translates programmer-defined task bound-
aries into calls into the DINO runtime library. Finally, it analyzes
task boundary placement and suggests changes to reduce run-time
checkpointing cost.

5.1.1 Identifying Potentially Inconsistent Data

The compiler determines, for each task boundary, which potentially
inconsistent variables must be versioned to provide consistency
upon resumption. It uses an interprocedural context- and flow-
sensitive analysis to find these variables. For each nonvolatile store
S to a location LS, the analysis searches backward along all control-
flow paths until it hits a “most recent” task boundary on each
path. Since DINO tasks are task atomic, the analysis of each path
can stop when it finds a task boundary. Our prototype assumes
no nonvolatile accesses before the program’s first task boundary.
These task boundaries are points at which execution might resume
if a reboot follows S’s execution. Between each such task boundary
TB and S, the analysis looks for loads from LS that occur before S.
If a load from LS precedes the store S, then the analysis has found
a failure-induced data flow that would allow the load to observe
the value of S. The DINO compiler adds versioning for S at TB,
guaranteeing that the load between TB and S will observe the value
it had upon entry to TB—not the value written by S before the
reboot. Figure 7 depicts the addition of versioning.

DINO explores CFG paths that include loop backedges at most
once. When DINO encounters a call, its analysis descends into the
call and continues exploring paths. Likewise, when DINO reaches
the beginning of a function in its backward traversal, it contin-
ues along paths through call sites of the function. DINO’s analysis
therefore requires access to the full program code. Whole-program
analysis is not likely to be problematic because in embedded sys-
tems, complete source code is usually available.

5.1.2 Compiling Task Boundaries

The programmer inserts task boundaries as calls to a DINO_task()

function. Encountering such a call, the DINO compiler first de-
termines the set of nonvolatile variables to version using the
analysis in Section 5.1.1. It then replaces the call to DINO_task()

with calls into the DINO runtime library that version the relevant
nonvolatile state (dino_version()) and checkpoint volatile state
(dino_checkpoint()). The program is linked to the DINO runtime
library that implements these functions (§5.2).

5.1.3 Analyzing Task Cost

In this work, we use two simple heuristics to assess task cost.
We leave the development of other heuristics for DINO’s analy-
sis framework for future work. The first heuristic computes the size
of the stack DINO must checkpoint. It sums the size of LLVM IR
stack allocations (alloca instructions) in the function that contains
the task boundary, then compares that sum to the sizes of stack al-
locations in the function’s callers. If the count in a caller is smaller,
then moving the task boundary to the caller would decrease the
amount of stack data that needs to be checkpointed. The compiler
emits an actionable warning suggesting the programmer move the
task boundary into the caller.

The second heuristic estimates the likelihood that a task will
experience a reboot because it uses a power-hungry peripheral.
The compiler identifies accesses to peripherals, which are statically
memory mapped on most embedded systems, by finding memory
accesses with peripheral addresses as their arguments. Encounter-

Table 1: Overview of embedded systems used for evaluation. Each ap-
plication works under continuous power but fails under intermittent power
without DINO. The table also summarizes nonvolatile data use, lines of
code, and number of DINO task boundaries.

App. Description & Inconsistency Power NV Data LoC TBs

AR Classifies accelerometer data; atomic-
ity violation leaves stats inconsistent

RF 3x2B counters 250 5

DS Logs data into histogram sorted by
key; atomicity violation loses key’s
bin

RF 10x4B key/val 312 5

MI Self-powered MIDI interface; idem-
potence violation corrupts buffer

Rotor 4x5B msgs. +
4B Tx buf

210 4

ing such an access, the DINO compiler emits a warning that the task
accesses a peripheral and is more likely to experience a reboot.

5.2 Runtime System

DINO’s runtime system implements the checkpointing and ver-
sioning required by its execution model. Static checkpointing uses
a version of the checkpointing mechanism from Mementos [28]
that we ported to the Wolverine FRAM microcontroller [34]. This
mechanism checkpoints the contents of registers and the stack. It
does does not checkpoint heap data, and it currently checkpoints
only global variables that are explicitly tagged by the programmer,
but neither limitation is fundamental to our design.

When the program begins in main(), it first executes a call to
restore_state() inserted by the DINO compiler. This runtime
library function copies the data in the current checkpoint back
into the original, corresponding registers and memory locations,
saving the program counter, stack pointer, and frame pointer for
last. The function copies the versioned nonvolatile variables in the
checkpoint back into their original nonvolatile memory locations.
After restoring volatile and nonvolatile data, the function restores
instruction, stack, and frame pointer registers, redirecting control
to the point where DINO collected the checkpoint. From there,
execution continues.

5.3 Why not rely on hardware support?

Hardware support could be useful for implementing DINO. Hard-
ware could accelerate checkpointing, provide transactional mem-
ory, or aid energy-aware scheduling. We opted not to rely on hard-
ware support for several reasons. First, systems that suffer consis-
tency problems are already widely available [27, 31, 34, 36]. With-
out special hardware requirements, DINO is applicable to these
systems today, as well as to future systems. Second, new hardware
features can increase energy requirements when underutilized [13],
increase design complexity, and increase device cost. Third, spe-
cialized hardware support requiring ISA changes raises new pro-
grammability barriers and complicates compiler design [1, 32].

6. Applications

We built three hardware/software embedded systems to evaluate
DINO (Table 1). Each runs on a different energy-harvesting front
end. All three use nonvolatile data, demand consistency for correct-
ness, and fail or suffer error because of inconsistency under inter-
mittent execution.

6.1 Activity Recognition

We adapted a machine-learning–based activity-recognition (AR)
system from published work [17] to run on the intermittently pow-
ered WISP hardware platform [31]. The WISP harvests radio-
frequency (RF) energy with a dipole PCB antenna that charges
a small capacitor via a charge pump. The WISP has an Ana-
log Devices ADXL326z low-power accelerometer connected to an
MSP430FR5969 MCU [34] via 4-wire SPI. AR maintains a time

581

series of three-dimensional accelerometer values and converts them
to two features: mean and standard deviation vector magnitude. It
uses a variant of a nearest-neighbor classifier (trained with contin-
uous power) to distinguish shaking from resting (akin to tremor or
fall detection [11, 20, 29]). AR counts total and per-class classifica-
tions in nonvolatile memory. Each experiment collects and classi-
fies samples until the total count of classifications reaches 10,000,
then terminates, lighting an LED.

After classifying, AR’s code updates the total and per-class
counts. The sequence of operations that updates these counts must
execute atomically, or else only one of them will be updated. If
the counters fall out of sync, AR makes progress, but its counts
are inconsistent. We focus on that invariant of AR’s output: the
per-class counts should sum to the total count and any discrepancy
represents error.

6.2 Data Summarizer

We implemented a data-summarization (DS) application on TI’s
TS430RGZ-48C project board with an MSP430FR5969 microcon-
troller [34]. We connected the board to a Powercast Powerharvester
P2110 energy-harvester [27] and a half-wavelength wire antenna,
all mounted on a breadboard.

DS summarizes data as a key–value histogram in which each
key maps to a frequency value. One function adds a new data sam-
ple to the histogram by locating and incrementing the correspond-
ing bin. Another function sorts the histogram by value using inser-
tion sort. Our test harness for DS inserts random values, counting
2000 insertions with a nonvolatile counter and sorting after every
20 insertions. The sorting routine swaps histogram keys using a
volatile temporary variable. If a swap is interrupted before the key
in the temporary is re-inserted, that key is lost from the histogram,
and two bins end up with the same key. The structural invariant for
DS, which the test harness checks after each sorting step, is that
each key appears exactly once in the histogram. If the check fails,
the histogram is in an inconsistent state and DS halts, illuminating
an LED to indicate the error state.

6.3 MIDI Interface

We implemented a radial MIDI (Musical Instrument Digital Inter-
face [22]) interface (MI) on TI’s TS430RGZ-48C project board
with an MSP430FR5969 microcontroller [34]. We connected the
project board to a Peppermill power front end [36] that harvests
the mechanical power of a manually rotated DC motor for use by
the project board. We drove the Peppermill with a repurposed drill
motor. The Peppermill exposes an output pin whose voltage is pro-
portional to the motor’s rotational speed, which we connected to
the project board’s analog-to-digital converter.

MI generates batches of MIDI Note On messages with a fixed
pitch and a velocity proportional to the motor’s speed. It stores
messages in a circular-list data structure and tracks the index of the
message being assembled, incrementing the index to store each new
message. When all entries are populated, MI copies the messages
to a separate memory region,1 clears the old messages, and resets
the index. A power failure can trigger an idempotence violation that
increments the index multiple times, eventually leaving it referring
to a nonexistent entry. MI checks that the index is in bounds before
using the buffer and aborts with an error LED if it is not. In
each experiment, MI generated messages in batches of four and
terminated after 10,000 messages.

7. Evaluation

We evaluated DINO using the applications described in Section 6.
Our evaluation has several goals. First, we show that DINO keeps

1 This region would be a transmit buffer if our prototype included a radio.

Table 2: Failures and Error in AR, DS, and MI. The data count failing
(X) and non-failing (X) trials with and without DINO for MI and for DS
at 60cm, and error at 40cm for AR. The table also shows reboots and time
overhead for AR at 40cm and DS at 60cm. Reboots and time overhead are
not meaningful for MI, as it is a reactive UI.

AR DS MI

Config. Err. Rbts. Ovhd. X X Rbts. Ovhd. X X

Baseline 6.8% 1,970 1.0x 3 7 13.4 1.0x 10 0
DINO 0.0% 2,619 1.8x 0 11 72.5 2.7x 0 10

data consistent despite intermittence. Second, we show that DINO’s
overheads are reasonable, especially given its correctness gains.
Third, combining experimental observations and our control-flow
model for reasoning about intermittence 2.3, we show that DINO
reduces the complexity of reasoning about control flow. Fourth, we
show that the our task-cost analysis correctly reports costly tasks.

7.1 DINO Enforces Consistency

The main result of our experiments is that DINO prevents all of the
inconsistencies the applications suffer without DINO.

Columns 2–3 of Table 2 show the error AR experiences with
and without DINO at 40cm from RF power (mean of five trials).
To provide RF power, we use an Impinj Speedway Revolution
R220 commercial RFID reader with a circularly polarized Laird
S9028PCR panel antenna emitting a carrier wave at 30dBm (1W).
AR sees no error with DINO but suffers nearly 7% error without
DINO. A Student’s T-test confirms the difference is significant
(p < 0.05).

Columns 4–5 of Table 2 show failure data for DS running with
and without DINO at 60cm from RF power. DS does not fail
with DINO, but fails in three out of ten trials without DINO. A
χ2 test confirms the difference in failure rate is significant (p =
0.05). DS experiences no failures with DINO, but about 5.5× as
many reboots. The explanation is that DINO’s overheads (§7.2)
extend run time, during which the device sees more charges and
depletions. DINO keeps data consistent, regardless of the number
of reboots.

Columns 9–10 of Table 2 show failure data for MI with and
without DINO. MI does not fail with DINO, but fails 100% of the
time without DINO, processing just 975 messages on average be-
fore failing. MI reveals an important facet of DINO: naı̈vely porting
code to an intermittent context threatens functionality. With DINO,
failure-free porting requires placing just a few task boundaries.

To provide insight into how error accumulates under RF power
without DINO, we repeated our experiments with AR at 10, 20,
and 30cm from RF power. AR experienced no error with DINO
at any distance. Figure 10 plots the error rate versus distance for
AR without DINO, showing that it is non-zero beyond a trivial dis-
tance (10cm) and increases with distance. AR’s error is strongly
correlated with distance (R = 99.64). The plot also shows that,
as expected, the number of reboots is correlated with distance

(R = 93.93). The Friis transmission equation Pr = PtGtGr

(

λ
4πR

)

describes RF power availability at a distance. The available (analyt-
ical, not measured) power fell from 429.5mW at 10cm to 26.8mW
at 40cm, explaining the increased reboots. Frequent reboots ex-
plain the error trend: More frequent reboots mean more frequent
risk of interrupting sensitive code. Column 3 of Table 2 shows that
at 40cm, AR suffers even more reboots with DINO than with the
baseline. Despite the increased number of reboots, DINO keeps
data consistent, while the baseline’s errors rise sharply.

7.2 DINO Imposes Reasonable Overheads

There are two main sources of run-time overhead. The first is time
spent checkpointing and versioning data. The extra work costs

582

●

●

●
●

1
0

1
0

0
1

0
0

0

#
 B

o
o

ts

● ●

●

●

0
2

4
6

8

E
rr

o
r

(%
)

●

●

●
●

1
0

0
2

0
0

3
0

0
4

0
0

10 20 30 40
Distance (cm)

P
o
w

e
r

(m
W

)

Figure 10: Error vs. Distance for AR without DINO. Under RF harvest-
ing, AR without DINO experiences reboots (top, log scale) and error rates
(middle) that scale with distance. Error bars represent standard error. The
bottom plot shows analytical (computed) available power.

cycles and leads to more reboots. The second is the increase in
reboots when running on intermittent power. Reboots cost cycles
and require restoring data.

We externally timed each of our experiments’ executions with
and without DINO. The run time of DS with DINO is 2.7× higher
than without DINO. The run time of AR with DINO is 1.8× higher.
We omit time overhead for MI because MI is reactive and there
is not a clear external notion of time overhead; qualitatively, the
interface remained responsive throughout our trials. The number of
reboots with DINO is higher by 30% for AR and about 550% higher
for DS. There are two take-aways in these data. First, the overheads
using DINO are reasonable: the applications fail to run (MI, DS)
or suffer error (AR) without DINO. With DINO, they execute
correctly and usably, despite the increased number of reboots and
greater time overhead.

We also quantified DINO’s storage overhead. DINO uses a
checkpointing scheme that incurs a large, fixed 4KB (2× RAM)
storage cost to store checkpoints. DINO shares the statically allo-
cated checkpoint space for versions, so there is no additional non-
volatile memory overhead for versioning.

7.3 DINO Reduces Control Complexity

DINO simplifies reasoning about failures because it has lower
control-flow complexity than a dynamic checkpointing system like
Mementos. We implemented a compiler analysis that counts the
number of points at which execution may resume after a reboot for
each instruction in each test program. For dynamic checkpointing,
we treat loop headers and return instructions as potential check-
point sites, following related work [16, 28]. For each instruction,
we count sites reachable backwards, as execution may resume from
any prior checkpoint, depending on the system’s dynamic deci-
sions. For DINO, we count the number of task boundaries that are
reachable backwards from each instruction without first crossing
another task boundary.

Figure 11 shows a CDF of points where execution may resume
after a reboot for all instructions in AR, DS, and MI. For DINO,
the number of points where execution might resume is small: never
more than four and in most cases just two. For dynamic checkpoint-
ing like Mementos, the number is much higher, up to nine. For DS,
a reboot at a majority of instructions could resume at any of seven

●

●

●
● ● ● ● ● ● ●

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9
Number of Potential Checkpoints

F
ra

c
ti
o
n
 o

f
In

s
tr

u
c
ti
o
n
s

Variant

● AR+DINO

AR+Mementos

DS+DINO

DS+Mementos

MI+DINO

MI+Mementos

Figure 11: CDF of checkpoints reachable by each instruction. The x-
axis shows at how many points execution may resume after a reboot for
what fraction of instructions on the y-axis.

or more points. A reboot at 25% of instructions in AR and 20% of
instructions in MI could resume at any of six or more points. Dy-
namic checkpointing has more points because the runtime may or
may not take a checkpoint at each potential checkpoint site. The
dynamism in this decision means execution could resume at any
reachable site, rather than the just the nearest reachable site as with
DINO. The more points that are reachable, the more complex the
reasoning about the program.

7.4 DINO Helps Place Task Boundaries

DINO emits warnings when task boundaries could be easily moved
for lower overhead or when tasks include peripheral accesses. To
determine the extent to which DINO’s suggestions are actionable
and correct, we started with unmodified (non-DINO) application
code and scripted the addition of a single task boundary at every
possible program location that did not cause a compilation error.

We compiled each instrumented variant with DINO and parsed
the compiler’s output for warnings. First, we manually verified the
correct presence of warnings for tasks with peripherals in AR, DS,
and MI. Second, we characterized DINO’s cost-reduction sugges-
tions. For DS, 32% of variants generated a suggestion. Suggestions
garnered a maximum reduction of checkpointed data of 50 bytes—
the equivalent of 1.7× the minimum checkpoint size (registers only,
empty stack). The minimum savings per task boundary was 2 bytes
and the average was 8 bytes. For AR, following the compiler’s sug-
gestions yielded average savings of 6 bytes per task boundary, or
20% of the minimum checkpoint size. Importantly, for both AR
and DS, all suggestions were actionable because they concretely
described where to move each task boundary. For MI, there were
only two suggestions, with a maximum potential savings of 2 bytes
to checkpoint, or 7% the minimum checkpoint size. MI’s sugges-
tions were less useful than for the other programs’ because MI uses
less stack data than DS and has a shallower call tree than both AR
and DS, meaning less potential stack savings.

8. Related Work

Consistency despite failures is a cornerstone of reliable computing,
but most work assumes continuous power, leaving consistency in
intermittent systems unstudied.

Saving state on machines that are not fundamentally failure
prone is the focus of Whole-System Persistence [24], which uses
capacitance-backed volatile memory to provide flush-on-fail se-
mantics to an entire operating system. DINO provides persistence
for arbitrary data on intermittent embedded platforms without ad-
ditional fault-tolerance hardware.

583

QuickRecall [16] and Mementos [28] aim to make compu-
tational RFIDs (like the energy-harvesting WISP [31]) viable
for general-purpose applications. Both dynamically checkpoint
volatile data to nonvolatile memory, preserving it across failures.
Unlike DINO, neither system addresses inconsistencies in non-
volatile memory. Also, both dynamically decide when to check-
point, heuristically, at loop backedges and function returns. By con-
trast, DINO checkpoints at each programmer-defined task bound-
ary. DINO has fewer failure recovery targets (§7.3) and they are
explicit in the code.

Idetic [23] checkpoints state in ASICs that operate intermit-
tently. It optimizes checkpoint placement and frequency of check-
pointing at run time based on energy conditions. Idetic selec-
tively checkpoints volatile data, whereas DINO selectively ver-
sions nonvolatile data. Like DINO, Idetic computes the cost of
inserted checkpoint calls. Unlike DINO, Idetic does not target
programmable platforms, does not consider nonvolatile state con-
sistency, and suffers high control-flow complexity from dynamic
checkpointing decisions.

Other systems have proposed accessible persistence mecha-
nisms for nonvolatile memories, but none target embedded or in-
termittent systems, and some require hardware support. Mnemo-
syne [37] is an interface to persistent storage and heap data. It
provides persistence keywords for variables and a persistent mmap
that treats persistent memory as a block device. For consistency,
Mnemosyne uses fences that strictly order memory, as well as
transactional semantics that use hardware transactional memory.
DINO targets intermittent embedded devices and must operate
without OS or hardware support. Intermittence makes failures more
common than Mnemosyne was designed to face efficiently. Addi-
tionally, DINO exposes a load–store interface to persistent memory
rather than exposing it as block storage.

Memory persistency [26] characterizes memory consistency for
persistent memory, focusing on allowable consistency relaxations
and correctness despite explicit concurrency and failures. Its goals
are complementary to DINO’s, but persistency optimizations under
intermittence are a second-order concern for DINO which we leave
to future work. DINO adds another dimension to memory persis-
tency’s notions of persist epochs and persist barriers, which map
well to DINO’s tasks and boundaries: we consider implicit concur-
rency and frequent failures.

PMFS [12] adds a similar persistent-memory (PM) write bar-
rier and implements a filesystem for block PM. Like persis-
tency, PMFS’s main consistency goal is to order concurrent writes
reasonably—orthogonal to our consistency goal of constraining
program states to those reachable under continuous execution.

Persistency and PMFS owe their heritage to BPFS [9], which
addressed atomicity problems for filesystems on nonvolatile mem-
ory. BPFS proposed to add capacitance to DIMMs and write re-
dundantly to ensure the integrity of writes, under the assumption
that failures were relatively rare. In contrast, DINO embeds consis-
tency mechanisms in programs and expects these mechanisms to
be triggered frequently.

NV-Heaps [8] considers the safety of memory-mapped non-
volatile heaps, focusing on pointer integrity, and provides a pro-
gramming construct for nonvolatile transactions based on BPFS’s
architectural support. DINO’s task atomicity could be implemented
atop NV-Heaps’ generational locks, but DINO’s operation is oth-
erwise fundamentally different from heap management, espe-
cially since embedded systems generally avoid dynamic allocation.
Bridging this gap may be profitable in future work.

Kiln [41] adds nonvolatile cache to the memory hierarchy to
speed up persistent memory with in-place updates to large data
structures that persist in cache until they are flushed to backing stor-
age. DINO uses comparatively simple transactional mechanisms

(tasks) built into programs, not the memory hierarchy, and can
therefore analyze programs to determine how to apply versioning
to nonvolatile data without hardware modifications.

Venkataraman et al. describe NVRAM consistency challenges
from a data structures perspective and design consistent and
durable data structures (CDDSs) to recover safely from aborted
updates to in-NVRAM data structures [35]. They adopt a data ver-
sioning approach based on generational numbering. In contrast,
DINO applies versioning to data of any kind in a program, rather
than designing new data structures, and DINO uses static analysis
to automatically identify things that need to be versioned.

DINO traces some of its lineage to the literature on orthogonal
persistence (OP) [3], a form of persistence that is meant to be
transparent to applications. While one of DINO’s goals is to make
run-time failures harmless, it requires the programmer to identify
points where consistency is most important, placing DINO’s form
of persistence somewhere between that of orthogonal and non-
orthogonal persistence.

DINO does not support concurrency, a simplification that allows
it to sidestep the challenges that concurrency support poses for
orthogonal persistence [2, 5]. Concurrent applications are perhaps
a poor match for intermittently powered systems that resemble
today’s single-programmed embedded systems.

9. Conclusions and Future Work

Applications that work on continuously powered devices may ex-
hibit surprising failure modes when run on intermittent power be-
cause of inconsistencies in nonvolatile memory. As energy harvest-
ing becomes a viable way to power computing platforms with next-
generation nonvolatile memory, ensuring data consistency under in-
termittent power will be crucial. DINO guarantees data consistency,
constraining execution to states reachable in continuous execution
even when running intermittently. DINO simplifies programming
intermittently powered applications by reducing the complexity of
reasoning about failures, paving the way for low-power platforms.

DINO lays the basic groundwork that can serve as a basis for fu-
ture work on a programming and system stack for intermittently ex-
ecuting devices. Future efforts should focus on providing stronger
correctness guarantees in applications with mixtures of idempotent
and non-idempotent code. Future systems may also benefit from se-
lectively allowing data inconsistency (e.g., by eliding task bound-
aries) in exchange for reduced run-time overhead. Such future re-
search into DINO-like programming, system, and architecture sup-
port for simplifying intermittent devices is the key to bringing their
full potential to bear for future applications.

Acknowledgments

We thank our anonymous reviewers for their insightful and support-
ive comments. Shaz Qadeer and Adrian Sampson provided valu-
able feedback on early drafts, as did members of the Sampa group
at the University of Washington. This work was supported in part
by C-FAR, one of six centers of STARnet, a Semiconductor Re-
search Corporation program sponsored by MARCO and DARPA.

References

[1] S. V. Adve and H.-J. Boehm. Memory models: A case for rethinking
parallel languages and hardware. Commun. ACM, 53(8), Aug. 2010.
doi: http://dx.doi.org/10.1145/1787234.1787255.

[2] M. Atkinson and M. Jordan. Issues raised by three years of developing
PJama: An orthogonally persistent platform for Java. In Intl. Conf.

Database Theory (ICDT), Jan. 1999.

[3] M. Atkinson and R. Morrison. Orthogonally persistent object systems.
The VLDB Journal, 4(3), July 1995.

584

[4] K. Bailey, L. Ceze, S. D. Gribble, and H. M. Levy. Operating system
implications of fast, cheap, non-volatile memory. In Workshop on Hot

Topics in Operating Systems (HotOS), May 2011.

[5] S. Blackburn and J. N. Zigman. Concurrency – the fly in the ointment?
In 3rd Intl. Workshop on Persistence and Java (PJW3), Sept. 1999.

[6] M. Buettner, B. Greenstein, and D. Wetherall. Dewdrop: An energy-
aware task scheduler for computational RFID. In USENIX Symposium

on Networked Systems Design and Implementation (NSDI), Mar. 2011.

[7] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC: Bulk
enforcement of sequential consistency. In ISCA, June 2007.

[8] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta,
R. Jhala, and S. Swanson. NV-Heaps: making persistent objects fast
and safe with next-generation, non-volatile memories. In ASPLOS,
Mar. 2011. doi: http://dx.doi.org/10.1145/1950365.1950380.

[9] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee. Better I/O through byte-addressable, persistent memory.
In Symposium on Operating Systems Principles (SOSP), Oct. 2009.
doi: http://dx.doi.org/10.1145/1629575.1629589.

[10] A. Czeskis, K. Koscher, J. R. Smith, and T. Kohno. RFIDs and secret
handshakes: defending against ghost-and-leech attacks and unautho-
rized reads with context-aware communications. In ACM Conference

on Computer and Communications Security (CCS), Oct. 2008. doi:
http://dx.doi.org/10.1145/1455770.1455831.

[11] J. Dai, X. Bai, Z. Yang, Z. Shen, and D. Xuan. Mobile phone-based
pervasive fall detection. Personal Ubiquitous Computing, 14(7), Oct.
2010. doi: http://dx.doi.org/10.1007/s00779-010-0292-x.

[12] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson. System software for persistent memory.
In EuroSys ’14, Apr. 2014. doi: http://doi.acm.org/10.1145/2592798.
2592814.

[13] C. Ferri, A. Viescas, T. Moreshet, I. Bahar, and M. Herlihy. Energy
implications of transactional memory for embedded architectures. In
Workshop on Exploiting Parallelism with Transactional Memory and

other Hardware Assisted Methods (EPHAM’08), Apr. 2008.

[14] S. Gollakota, M. S. Reynolds, J. R. Smith, and D. J. Wetherall. The
emergence of RF-powered computing. Computer, 47(1), 2014. doi:
http://dx.doi.org/10.1109/MC.2013.404.

[15] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Oluko-
tun. Transactional memory coherence and consistency. In ISCA, June
2004.

[16] H. Jayakumar, A. Raha, and V. Raghunathan. QuickRecall: A low
overhead HW/SW approach for enabling computations across power
cycles in transiently powered computers. In Int’l Conf. on VLSI Design

and Int’l Conf. on Embedded Systems, Jan. 2014.

[17] A. Kansal, S. Saponas, A. B. Brush, K. S. McKinley, T. Mytkowicz,
and R. Ziola. The Latency, Accuracy, and Battery (LAB) abstraction:
Programmer productivity and energy efficiency for continuous mobile
context sensing. In OOPSLA, Oct. 2013. doi: http://dx.doi.org/10.
1145/2509136.2509541.

[18] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7), July 1978. doi: http://dx.doi.org/10.
1145/359545.359563.

[19] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In CGO, Mar. 2004.

[20] R. LeMoyne, T. Mastroianni, M. Cozza, C. Coroian, and W. Grundfest.
Implementation of an iPhone for characterizing Parkinson’s disease
tremor through a wireless accelerometer application. In Int’l Conf.

IEEE Engineering in Medicine and Biology Society (EMBC), Aug.
2010. doi: http://dx.doi.org/10.1109/IEMBS.2010.5627240.

[21] J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In
POPL, Jan. 2005. doi: http://dx.doi.org/10.1145/1040305.1040336.

[22] MIDI Manuf. Assoc. Summary of MIDI messages. http://www.
midi.org/techspecs/midimessages.php, 2014. Visited August
3, 2014.

[23] A. Mirhoseini, E. M. Songhori, and F. Koushanfar. Idetic: A high-level
synthesis approach for enabling long computations on transiently-
powered ASICs. In IEEE Pervasive Computing and Communication

Conference (PerCom), Mar. 2013. URL http://aceslab.org/
sites/default/files/Idetic.pdf.

[24] D. Narayanan and O. Hodson. Whole-system persistence with non-
volatile memories. In ASPLOS, Mar. 2012.

[25] J. A. Paradiso and T. Starner. Energy scavenging for mobile and
wireless electronics. IEEE Pervasive Computing, 4(1):18–27, 2005.
doi: http://dx.doi.org/10.1109/MPRV.2005.9.

[26] S. Pelley, P. M. Chen, and T. F. Wenisch. Memory persistency. In
ISCA, June 2014.

[27] Powercast Co. Development Kits - Wireless Power Solutions. http:
//www.powercastco.com/products/development-kits/. Vis-
ited July 30, 2014.

[28] B. Ransford, J. Sorber, and K. Fu. Mementos: System support for
long-running computation on RFID-scale devices. In ASPLOS, Mar.
2011.

[29] L. Ren, Q. Zhang, and W. Shi. Low-power fall detection in home-
based environments. In ACM International Workshop on Pervasive

Wireless Healthcare (MobileHealth), June 2012. doi: http://dx.doi.
org/10.1145/2248341.2248349.

[30] M. Salajegheh, S. S. Clark, B. Ransford, K. Fu, and A. Juels. CCCP:
secure remote storage for computational RFIDs. In USENIX Security

Symposium, Aug. 2009. URL https://spqr.eecs.umich.edu/
papers/salajegheh-CCCP-usenix09.pdf.

[31] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and J. R.
Smith. Design of an RFID-based battery-free programmable sensing
platform. IEEE Transactions on Instrumentation and Measurement,
57(11):2608–2615, Nov. 2008.

[32] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen.
x86-TSO: A rigorous and usable programmers model for x86 multi-
processors. Commun. ACM (Research Highlights), 53(7), July 2010.
doi: http://dx.doi.org/10.1145/1785414.1785443.

[33] Texas Instruments Inc. MSP430 flash memory characteris-
tics. http://www.ti.com/lit/an/slaa334a/slaa334a.pdf,
Apr. 2008. Visited August 5, 2014.

[34] TI Inc. Overview for MSP430FRxx FRAM. http://ti.com/
wolverine, 2014. Visited July 28, 2014.

[35] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Camp-
bell. Consistent and durable data structures for non-volatile
byte-addressable memory. In FAST, Feb. 2011. URL
https://www.usenix.org/legacy/events/fast11/tech/
full_papers/Venkataraman.pdf.

[36] N. Villar and S. Hodges. The Peppermill: A human-powered user in-
terface device. In Conference on Tangible, Embedded, and Embodied

Interaction (TEI), Jan. 2010. doi: http://dx.doi.org/10.1145/1709886.
1709893.

[37] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: lightweight
persistent memory. In ASPLOS, Mar. 2011. doi: http://dx.doi.org/
10.1145/1950365.1950379.

[38] D. Yeager, P. Powledge, R. Prasad, D. Wetherall, and J. Smith.
Wirelessly-charged UHF tags for sensor data collection. In IEEE Int’l

Conference on RFID, Apr. 2008.

[39] L. Yerva, B. Campbell, A. Bansal, T. Schmid, and P. Dutta. Grafting
energy-harvesting leaves onto the sensornet tree. In Conference on

Information Processing in Sensor Networks (IPSN), Apr. 2012. doi:
http://dx.doi.org/10.1145/2185677.2185733.

[40] P. Zhang, D. Ganesan, and B. Lu. QuarkOS: Pushing the operating
limits of micro-powered sensors. In HotOS, May 2013.

[41] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi. Kiln: Closing
the performance gap between systems with and without persistence
support. In MICRO, Dec. 2013.

585

