Check for
Updates

Session 3A: Programmable Devices and Co-processors

ASPLOS’18, March 24-28, 2018, Williamsburg, VA, USA

Darwin: A Genomics Co-processor Provides up to
15,000 acceleration on long read assembly

Yatish Turakhia Gill Bejerano William J. Dally
Stanford University Stanford University Stanford University
yatisht@stanford.edu bejerano@stanford.edu NVIDIA Research

Abstract

Genomics is transforming medicine and our understanding
of life in fundamental ways. Genomics data, however, is far
outpacing Moore’s Law. Third-generation sequencing tech-
nologies produce 100x longer reads than second generation
technologies and reveal a much broader mutation spectrum
of disease and evolution. However, these technologies
incur prohibitively high computational costs. Over 1,300
CPU hours are required for reference-guided assembly
of the human genome (using [47]), and over 15,600 CPU
hours are required for de novo assembly [57]. This paper
describes “Darwin” — a co-processor for genomic sequence
alignment that, without sacrificing sensitivity, provides
up to 15,000x speedup over the state-of-the-art software
for reference-guided assembly of third-generation reads.
Darwin achieves this speedup through hardware/algorithm
co-design, trading more easily accelerated alignment
for less memory-intensive filtering, and by optimizing
the memory system for filtering. Darwin combines a
hardware-accelerated version of D-SOFT, a novel filtering
algorithm, with a hardware-accelerated version of GACT, a
novel alignment algorithm. GACT generates near-optimal
alignments of arbitrarily long genomic sequences using
constant memory for the compute-intensive step. Dar-
win is adaptable, with tunable speed and sensitivity to
match emerging sequencing technologies and to meet the
requirements of genomic applications beyond read assembly.

Keywords Hardware-acceleration, Co-processor, Genome
assembly, Long reads.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ASPLOS’18, March 24-28, 2018, Williamsburg, VA, USA

© 2018 Association for Computing Machinery.

ACM ISBN ISBN 978-1-4503-4911-6/18/03...$15.00
https://doi.org/http://dx.doi.org/10.1145/3173162.3173193

199

dally@stanford.edu

ACM Reference Format:

Yatish Turakhia, Gill Bejerano, and William J. Dally. 2018. Darwin:
A Genomics Co-processor Provides up to 15,000x acceleration on
long read assembly. In Proceedings of 2018 Architectural Support for
Programming Languages and Operating Systems (ASPLOS’18). ACM,
New York, NY, USA, 15 pages. https://doi.org/http://dx.doi.org/10.
1145/3173162.3173193

1 Introduction

Since the completion of the first draft of the human genome
in 2001 [46, 79], genomic data has been doubling every 7
months - far outpacing Moore’s Law and is expected to reach
exabyte scale and surpass Youtube and Twitter by 2025 [73].
This growth has been primarily led by the massive improve-
ments in “genome sequencing” - technology that enables
reading the sequence of nucleotide bases in a DNA molecule.
Today, it is possible to sequence genomes on rack-size, high-
throughput machines at nearly 50 human genomes per day
[33], or on portable, USB-stick size sequencers that require
several days per human genome [21]. This data explosion has
been immensely valuable to the emerging field of personal-
ized medicine [28] and in detecting when genomic mutations
predispose humans to certain diseases, including cancer [64],
autism [44] and aging [52]. It has also contributed to the
understanding of the molecular factors leading to pheno-
typic diversity (such as eye and skin color, etc.) in humans
[72], their ancestry [49] and the genomic changes that made
humans different from related species [54, 80].

Third generation technologies produce much longer reads
of contiguous DNA — tens of kilobases compared to only a
few hundred bases in both first and second generation [67].
This drastically improves the quality of the genome assembly.
For example, contiguity in the gorilla genome assembly was
recently found to improve by over 800X using long reads
[24]. For personalized medicine, long reads are superior in
identifying structural variants i.e. large insertions, deletions
and re-arrangements in the genome spanning kilobases of
more which are sometimes associated with diseases; for hap-
lotype phasing, to distinguish mutations on maternal versus
paternal chromosomes; and for resolving highly repetitive
regions in the genome [67].

Despite several advantages, the long read technology suf-
fers from one major drawback - high error rate in sequenc-
ing. Mean error rates of 15% on Pacific Biosciences (PacBio)

https://doi.org/http://dx.doi.org/10.1145/3173162.3173193
https://doi.org/http://dx.doi.org/10.1145/3173162.3173193
https://doi.org/http://dx.doi.org/10.1145/3173162.3173193
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3296957.3173193&domain=pdf&date_stamp=2018-03-19

Session 3A: Programmable Devices and Co-processors

technology and up to 40% on Oxford Nanopore Technology
(ONT) have been reported [20, 23]. These errors are cor-
rected using computational methods that can be orders of
magnitude slower than those used for the second generation
technologies. For instance, using BWA [47], aligning 54x
coverage reads of the human genome to reference requires
over 1,300 CPU hours on PacBio reads (15% error rate), com-
pared to only 270 CPU hours for short Illumina reads (<2%
error rate).

In this paper, we describe Darwin, a hardware-acceleration
framework for genome sequence alignment, which accel-
erates the compute-intensive task of long-read assembly
by orders of magnitude. Darwin can also perform other
sequence-alignment tasks such as homology search [3] or
whole genome alignments [30].

This paper makes the following contributions:

1. We introduce Diagonal-band Seed Overlapping based
Filtration Technique (D-SOFT) which implements the
filtering (or seeding) stage of the alignment in a manner
that can be tuned to provide the required sensitivity
while maintaining high precision. We also describe a
hardware accelerator for D-SOFT that uses a memory
system tailored for the algorithm.

2. We introduce Genome Alignment using Constant
memory Traceback (GACT) - a novel algorithm using
dynamic programming for aligning arbitrarily long
sequences using constant memory for the compute
intensive step. We also present a hardware accelera-
tor for GACT. All previous hardware accelerators for
genomic sequence alignment have assumed an upper-
bound on sequence length (typically <10Kbp) [14, 59]
or have left the trace-back step to software [22, 36], un-
dermining the benefits of hardware-acceleration. We
empirically show that GACT provides optimal align-
ments even for error rates up to 40%.

3. We describe an FPGA prototype of Darwin, the D-
SOFT and GACT accelerators.

4. We describe the design of a Darwin ASIC in TSMC
40nm CMOS through place-and-route. The Darwin
ASIC requires 412mm? area and 15W of power.

5. We evaluate Darwin on 3 read types, with error rates
from 15% to 40%. In each case, we adjust Darwin’s
sensitivity to match or exceed that of state-of-the-art
software. On reference-guided assembly, the Darwin
ASIC achieves up to 15,000x speedup. For inferring
overlaps between reads in de novo assembly, Darwin
provides up to 710X speedup over state-of-the-art soft-
ware. On FPGA, Darwin achieves up to 183.8X speedup
for reference-guided assembly and up to 19.9x speedup
for inferring overlaps in de novo assembly over state-
of-the-art software.

The rest of the paper is organized as follows. Section 2 pro-
vides relevant background on genome sequence alignment,

200

ASPLOS’18, March 24-28, 2018, Williamsburg, VA, USA

sequencing, and read assembly. The D-SOFT and GACT al-
gorithms are described in Sections 3 and 4. Section 5 ex-
plains how Darwin combines D-SOFT and GACT to perform
reference-guided and de novo assembly of long reads. Sec-
tions 6 and 7 describe the hardware design of the D-SOFT
and GACT accelerators. Our experimental methodology is
described in Section 8, and we present our results in Section 9.
Section 10 discusses relevant related work and Section 11
concludes the paper.

2 Background

In this section, we provide some necessary background
on genome sequence alignment, genome sequencing and
genome assembly needed for the rest of this paper.

Genome sequence alignment: The sequence align-
ment problem can be formulated as follows: Given a query se-
quence Q = qi, ¢z, .., 4» and a reference sequence R = rq, 13,
.wrm (M > n), assign gaps (denoted by *-’) to R and Q to
maximize an alignment score. The alignment assigns letters
in R and Q to a single letter in the opposite sequence or to a
gap. For genomic sequences, the letters are in the alphabet
> = {A,C,G, T}, corresponding to the four nucleotide bases.

Sequence alignment often uses the Smith-Waterman al-
gorithm [69], since it provides optimal local alignments for
biologically-meaningful scoring schemes. A typical scoring
scheme rewards matching bases and penalizes mismatch-
ing bases, with these rewards and penalties specified by a
substitution matrix W of size X X X. The gaps in R and Q,
known as insertions and deletions, are penalized by another
parameter, gap. Smith-Waterman operates in two phases:
matrix-fill, in which a score H(i, j) and a traceback pointer is
computed for every cell (i,) of the dynamic programming
(DP) matrix having dimensions m X n using the DP equations
of Figure 1a, and traceback, which uses traceback pointers,
starting from the highest-scoring cell, to reconstruct the opti-
mal local alignment. Figure 1c shows an example DP-matrix
computed using the parameters in Figure 1b for sequences
R =°GCGACTTT’ and Q =‘GTCGTTT’. An arrow in each
cell represents the traceback pointer, which points to the
cell that led to its score, with no arrow for cells with score
0, where the traceback phase must terminate. Red arrows
indicate that traceback path from the highest-scoring cell
(highlighted using red) to reconstruct the optimal alignment
shown in Figure 1d.

Because Smith-Waterman is computationally expensive,
most alignment packages use a filtering step based on the
seed-and-extend paradigm, made popular by BLAST [3], to
reduce the work that must be done by Smith-Waterman. This
approach uses seeds, substrings of fixed size k from Q, and
finds their exact matches in R, called seed hits. Finding seed
hits is O(m) for each seed, but can be accelerated by pre-
processing R to compute an index [3]. Once the seed hits
are found, the extend step uses dynamic programming to

Session 3A: Programmable Devices and Co-processors

ASPLOS’18, March 24-28, 2018, Williamsburg, VA, USA

Reference
"|G C|G|[A[C|T|T|T
* od\o oJololololo]o
G [o [Pa¢ [Pag1 [o o o]0 Alignment
A[C[G]T| >[T[o T TS 0 P2 [t2x 2 ¢ 1 \
H(i—l,j71)+W(ri.qj) é -21 -21 :;l :1 g C | o,] o [Nagloe— [Naglz [*1 [M1 G-CGACTTT
HL i) = HOL i1 = GG o[22 Paeaedon 2 1x] 0 ' I 1 [1]
1,j) = max (i,j—1)—gap G[1[-1]2]- T o |1 | 1] 400,543 GTCG--TTT
H(Gi-1,j) - gap il -1]|-1]-1]2 ACE
s Tlofo]o|3l 88,5 7 s
gop=1 oo o[e T T T s

(a) (b)

Figure 1: Overview of Smith-Waterman alignment algorithm. (a) Smith-Waterman equations. (b) Smith-Waterman scoring
parameters (match=+2, mismatch=-1, gap=1). (c) DP-matrix with traceback pointers. (d) Optimal alignment.

compute DP-matrix scores for only the cells surrounding the
seed hit, thereby avoiding the high cost of computing every
cell of the DP-matrix. Alignments between R and Q having
no exactly-matching substrings of size k or larger will not
be discovered by this approach, resulting in lower sensitivity.
The seed-and-extend paradigm trades sensitivity for speed
but works well in practice and has been incorporated in a
large number of alignment heuristics since BLAST [30, 39,
47, 48, 57, 71].

Genome sequencing and assembly: Genome/DNA se-
quencing is the process of shearing DNA molecules of the
genome into a large number N of random fragments and
reading the sequence of bases in each fragment. The size of
the fragments depends on the sequencing technology. Long-
read sequencing technologies, such as Pacific Biosciences
and Oxford Nanopore Technologies (ONT), have a mean read
length L of about 10Kbp. Typically, N is chosen such that
each base-pair of the genome G is expected to be covered
more than once, i.e. where coverage C = (NL/G) > 1. With
high coverage, each base-pair is likely covered by several
reads and small errors in each read can be corrected using a
consensus of the reads. Despite an error-rate of 15% for each
base pair, Pacific Biosciences reads have consensus accuracy
of > 99.99% at a coverage of C = 50 [42].

Genome assembly is the computational process of recon-
structing a genome G from a set of reads S. In reference-
guided assembly a reference sequence R, which closely re-
sembles the sequenced genome, is used to assist the assembly.
Reference-guided assembly is O(N) for N reads, produces
fewer contigs compared to de novo assembly, and is good at
finding small changes, or variants, in the sequenced genome.
However, it can also introduce reference-bias and it does not
capture well the large structural variants between reference
and sequenced genome which are sometimes associated with
disease [55].

In de novo assembly, G is constructed only from S, with-
out the benefit (or bias) of R. The preferred approach to de
novo assembly of long reads is using overlap-layout-consensus

201

J Candidate bins x Filtered out bins . Seed hits
X X &4 X %X X

4 9 4 0
A1g V4 //
o e e 7
2 6| @y 7 AV 77, =
] p— 2 e T k=4 s ‘p' N =10
S 4
o3 7 . 4

1 @-

Bin1 | Bin2 | Bin3 | Bin4 | Bin5 | Bin6 |
Reference (R) "Ny =6

Figure 2: Illustration of D-SOFT algorithm for k=4, N=10,
h=8, Ng=6.

(OLC) [50]. In the overlap phase, all read pairs having a signif-
icant overlap are found. During the layout phase, overlapping
reads are merged to form larger contigs. Finally, in the con-
sensus phase, the final DNA sequence is derived by taking a
consensus of reads, which corrects the vast majority of read
errors. By far, the most time-consuming step of OLC is the
overlap step, which requires O(N?) time for N reads.

3 D-SOFT Filtering Algorithm

Motivation. For long reads with high error rates, simple
seeding algorithms like BLAST [4] give a high false positive
rate that results in excessive computation in the extend or
alignment stage. To address this issue, [57] uses multiple
seeds from Q, counting the number of matching bases in
a band of diagonals and then filtering on a fixed threshold.
We introduce D-SOFT, that uses this filtering strategy, but
differs in its implementation. We highlight the advantages
of D-SOFT versus [57] later in Section 10.

Description. Like [57], D-SOFT filters by counting the
number of unique bases in Q covered by seed hits in diagonal
bands. Bands in which the count exceeds h bases are selected
for alignment. Figure 2 illustrates D-SOFT. The X- and Y-axes
in the figure correspond to positions in R and Q, respectively.
Similar to [57], R is divided into Np bins, B bases wide (Ng =
[m/B]). In Figure 2, Np=6. Ten seeds with k=4 from Q are
used from consecutive positions, starting at position 1. The
seed start positions are marked by dotted horizontal lines.

Session 3A: Programmable Devices and Co-processors

For each seed, a red dot is marked on its horizontal line at the
position of each hit in R. The “tail" of the red dot covers k=4
bases in R and Q, showing the extent of the match. The count
over each diagonal band is equal to the number of bases in
Q covered by seed hits in that band. For instance, seeds at
positions 4, 5 and 6 in Q find a hit in bin 1 of R, but its count
is 6 since the seed hits cover only 6 bases (4-9) in Q. Bin 3
also has 3 seed hits, but the hits cover 9 bases (1-4 and 5-9).
With h = 8, only bin 3 is chosen as a candidate. However, if
a seed hit count strategy is used, both bin 1 and bin 3 would
have the same count (=3), even though bin 3, having more
matching bases, has a better probability of finding a high-
scoring alignment. Counting unique bases in a diagonal band
allows D-SOFT to be more precise at high sensitivity than
strategies that count seed hits [11, 71], because overlapping
bases are not counted multiple times.

Algorithm 1: D-SOFT

1 candidate_pos « [] ;

2 last_hit_pos < [—k for i in range(Npg)] ;
3 bp_count « [0 for i in range(Np)] ;

4 for jin start : stride : end do
5 seed «— Q[j: j+kJ;
6 hits « SeedLookup(R, seed) ;

7 for i in hits do
8 bin «— [(i—j)/B];
9 overlap < max(0, last_hit_pos[bin] + k — j);

last_hit_pos[bin] « j;

bp_count[bin] « bp_count[bin] + k — overlap ;
12 if (h + k — overlap > bp_count[bin] > h) then
‘ candidate_pos.append(< i,j >);

10

11

13

14 end

15 end

16 end

17 return candidate_pos;

As shown in Algorithm 1 D-SOFT operates using two
arrays, bp_count and last_hit_pos, each of size Ng to store
the total bases covered by seed hits and the last seed hit
position for every bin, respectively. Seeds of size k are drawn
from Q, with a specified stride between start and end (lines
4-5). For each seed, function SeedLookup finds all hits in R
(line 6). For each hit, its bin and its overlap with the last hit
in the bin is computed (lines 7-9). Non-overlapping bases
are added to bp_count (line 11). When the bp_count for a bin
first exceeds the threshold A, the last hit in the bin is added
to a filtered list of candidate positions, candidate_pos (lines
12-13). This list is returned at the end of the algorithm (line
17) and is used as input to the GACT algorithm.

D-SOFT implements SeedLookup using a seed position
table [30] as illustrated in Figure 3 for seed size k=3bp. For
each of the 4% possible seeds, a seed pointer table points to
the beginning of a list of hits in a position table. In Figure 3,

202

ASPLOS’18, March 24-28, 2018, Williamsburg, VA, USA

(=) <

o -] - ~
Reference: TACGCGTAGCCATATCACCTAGACTAG]

Seed Pointer Table Position Table

AAA
AAC .
: _ 19 0
TAC 19 20 6 Seed hits for
20 — 21 19 TAG
TAT 23 22 24
TTT

Figure 3: An example reference sequence and seed position
table used in SeedLookup.

lookups to ‘TAG’ and ‘TAT’ in the pointer table give the
start and end addresses in the position table for hits of “TAG’
in the reference. The seed position table has an advantage
over suffix trees [27], or compressed tables based on Bur-
rows Wheeler Transform [48], FM-index [45], etc in that the
seed hits are stored sequentially, enabling faster and fewer
memory accesses to DRAM.

4 GACT Alignment Algorithm

Motivation. Long-read technology requires the alignment
of two long genomic sequences. To accelerate this align-
ment in hardware, the memory footprint must be kept small
enough to be captured in on-chip SRAM. Smith-Waterman
requires O(mn) space to optimally align two sequences of
lengths m and n. Hirschberg’s algorithm [32] can improve
the space complexity to linear O(m + n), but is rarely used in
practice because of its performance. As a result, heuristics,
such as Banded Smith-Waterman [13], X-drop [84] and My-
ers bit-vector algorithm [56], that do not guarantee optimal
alignments but have linear space and time complexity, have
become popular. For long reads, these algorithms require
prohibitive traceback pointer storage for hardware imple-
mentation.

Description. GACT performs the alignment extension
part of a seed-and-extend system. It finds an arbitrarily long
alignment extension in linear time by following the optimal
path within overlapping tiles. GACT uses two parameters: a
tile size T and an overlap threshold O (< T). Empirically, we
have found that GACT gives an optimal result (identical to
Smith-Waterman) with reasonable values of T and O.

GACT for left extension, aligning R and Q to the left of
position i* in R and j* in Q, is shown in Algorithm 2. The
positions (i*, j*) are provided by D-SOFT. GACT maintains
the start and end positions of R (Q) in the current tile in
istart Ustart) and icyrr (eurr), respectively. The alignment
traceback path is maintained in tb_le ft. The function Align
(line 7) uses a modified Smith-Waterman to compute the
optimal alignment between R*//¢ and Q!¢ with traceback

Session 3A: Programmable Devices and Co-processors

Algorithm 2: GACT for Left Extension
1 th_left « [];

2 (currsjeurr) < (*,j);

3 t«1;
4 while ((icyrr > 0) and (jeyrr > 0)) do
5 (istartsJstart) < (max(0,icyrr — T), max(0, jeurr — T)) ;

6 (R“'le,Qtile) — (Rlistare : icurr)s Olistart : icurrl);
7 (TS, ioff,joff,imaxsjmamtb) «

Align(R*ile Qtile t T — 0);

8 tb_left.prepend(th) ;

9 if (t ==1) then

10 (currsjeurr) < (imaxsJjmax);

11 t«—0;

12 end

13 if ((ioff ==0) and (joff == 0)) then

14 ‘ break;

15 end

16 else

17 ‘ (currsjeurr) < (Gcurr — ioffajcurr _joff)
18 end

19 end

20 return (imax, jmax, tb_left);

starting from the bottom-right cell of the matrix except for
the first tile (where t is true) where traceback starts from
the highest-scoring cell. Align returns the tile alignment
score TS, the number of bases of R and Q consumed by this
tile (iof 7, jorf), traceback pointers tb, and (for the first tile)
the position of the highest-scoring cell (imax, jmax)- Align
restricts iorr and jorr in the traceback to at most (T — O)
bases to ensure successive tiles overlap by at least O bases
in both R and Q. GACT left extension terminates when it
reaches the start of R or Q (line 4), or when the traceback
results cannot further extend the alignment (line 13). Align
is the compute-intensive step of GACT and has a constant
traceback memory requirement, O(T?), that depends only
on the tile size T, and not on the length of sequences being
aligned. This facilitates compact hardware design. The full
traceback storage tb_left is linear in read length n but is
not performance critical. For right extension, GACT works
similar to Algorithm 2, but using reverse of R and Q.

Figure 4 shows GACT left extension on the example from
Figure 1 with T=4 and O=1. GACT begins traceback from the
highest-scoring cell (green) of the first tile (T1). Subsequent
tiles begin traceback from the bottom-right cell (yellow) in
the tile, where the traceback of previous tile terminates. This
GACT alignment is the same as the optimal alignment of
Figure 1d.

5 Darwin: System Overview

Darwin is a co-processor for genomic sequence alignment
that combines hardware-accelerated GACT and D-SOFT al-
gorithms. As shown in Figure 5a, Darwin accelerates D-SOFT

203

ASPLOS’18, March 24-28, 2018, Williamsburg, VA, USA

Reference (R) T1 T2 T3
*| G ‘ clg|a ‘ clolr|T clT|T|T cje|ajc G|c
G|0|0]|O0/0 G|0|2]|0|0 G20
G |4 T3 T2 *
— 1 r|of2]2/2||Tjolo|ojo||T|1]0
g T rlof2lalal|c|2]olol2]|c|o[3
=T Aof 4
Fali T|0|2]4]6]|6|1| 32| (iy=2
g G Tl (ioge=3, jOff=3)(ioff=3l Joge=1) Jote=3)
c T G-CGACTTT
T Alignment: | | | |11
GTCG--TTT
T —
T3 T2 T1

Figure 4: Illustration of left extension in GACT algorithm
using an example dynamic programming (DP) matrix for
parameters (T=4, O=1).

Seed Pointer Table
LPDDR4 || LPDDR4 || LPDDR4 | | LPDDR4 (4GB)

(326B) || (326B) || (326B) || (32GB)

I T

Darwin

Position Table
(16GB)

N
\ 4

,, Reference

| (4GB)

Query
(6GB)

Software

N
A 4

| : TB pointers
‘ (2GB)

(b)

Figure 5: (a) Overview of Darwin’s hardware. (b) DRAM
memory space organization.

algorithm for filtering and uses 64 independent GACT ar-
rays for alignments. Both D-SOFT and GACT parameters
are programmable through software.

Darwin uses four 32GB LPDDR4 DRAM memory channels
that store identical copies of the seed position table, the
reference sequence, and the query sequences (Figure 5b).
Replicating data structures helps keeping all DRAM channels
load-balanced and fully-utilized at all times. A 4GB seed
pointer table allows seed size k <15 (4B pointer each for
4k seeds), a 16GB position table stores positions for up to
4Gbp reference (larger reference can be divided across the
banks or split into blocks). The 4GB reference and 8GB query
partitions store up to a 4Gbp reference sequence and up to
8Gbp of query sequences (reads) in ASCII format. GACT
traceback (TB) pointers (tb_le ft) are written in a 2GB space.

Figure 6 shows how Darwin is used for both reference-
guided and de novo assembly. In both cases, the forward and
reverse-complement of P reads {R_1, R_2, ..., R_P} are used
as queries Q_I into a reference sequence R. For reference-
guided assembly an actual reference sequence is employed.
In de novo assembly the reads are concatenated to form the
reference sequence with each read padded to take up a whole

Session 3A: Programmable Devices and Co-processors

I D-SOFT I:I 1st GACT tile Extended /_/ GACT
‘candidate bin (from D-SOFT) GACT tiles traceback
GACT GACT H
i score=60 score=7500 Read alignment
Reference-guided | ' Reference
assembly o ; 2 = [
. V. 0T
Reference
GACT GACT
score=56 score=6300 Inferred overlap
De novo - 1
assembly o/ S R_J
(Overlap step) PO, !
> 0 I
R1R 2 ' R J _

Figure 6: Reference-guided and de novo assembly (overlap
step) using D-SOFT and GACT.

number of bins. N seeds from each query Q_I are fed to D-
SOFT and the last-hit position of each candidate bin is passed
to a GACT array. GACT extends and scores the alignment.
To filter out most D-SOFT false positives early, Darwin uses
a minimum threshold h;;;. for the alignment score of the
first GACT tile (see Section 9). In D-SOFT, Darwin uses B =
128, stride = 1 and discards high frequency seeds i.e. seeds
occurring more than 32 X |R|/4%, where |R| is the size of the
reference sequence.

The assembly algorithms are partitioned between hard-
ware and software as follows. Software initializes D-SOFT
and GACT parameters and receives candidate alignment po-
sitions from Algorithm 1 (D-SOFT), which is accelerated in
hardware (Section 6). Align - the compute-intensive step in
Algorithm 2 (GACT) - is hardware-accelerated (Section 7),
the remainder of the alignment step is performed in software.
Software also constructs the seed position table in de novo
assembly.

6 D-SOFT Accelerator Design

The D-SOFT accelerator (Figure 7) is organized to opti-
mize the memory references of Algorithm 1. D-SOFT soft-
ware spends 70-90% of its runtime updating the bin arrays,
bp_count and last_hit_pos (lines 10-11 in Algorithm 1) be-
cause these are largely random memory references to ta-
bles too big to fit in an LLC. In contrast SeedLookup is fast
because it makes mostly sequential memory accesses. To
optimize performance and energy, the D-SOFT accelerator
maps the sequentially-accessed seed tables to off-chip DRAM
and places the randomly-accessed bin-arrays in banks of on-
chip SRAM. To provide flexibility threshold k and bin size
B (power of 2) are programmable via software-accessible
registers.

For each query sequence, software initiates D-SOFT by
feeding N seed-offset pairs (seed, j) to the accelerator. In-
coming seeds are distributed over the DRAM channels. A
seed-position lookup (SPL) block takes each seed, looks up
its pointer in the seed-pointer table, reads the hits from
the position table and calculates the bin of each seed hit.

204

ASPLOS’18, March 24-28, 2018, Williamsburg, VA, USA

Bin-offset pairs for each hit (bin, j) are sent, via a NoC, to
an on-chip SRAM bank (Bin-count SRAM) associated with
the bin where bp_count and last_hit_pos are updated by the
update-bin logic (UBL). When bp_count first exceeds the pro-
grammed threshold h, the bin is enqueued in the candidate
FIFO. Whenever bp_count is first incremented to a non-zero
value, the bin is enqueued in a NZ queue to aid in the clear
operation between queries.

Darwin uses 2B (16b) for each bin 4AS- a 5b saturating
counter for bp_count and 11b for last_hit_pos. The bin count
SRAMs have a total capacity of 64MB divided into 16 banks
to enable parallel update. This capacity allows up to Ng=32M
bins to accommodate a 4Gbp reference sequence with B=128.

The NoC uses a butterfly topology [17] with 16 endpoints
and requires 4 hops to route each (bin, j) pair to its desti-
nation bank. To preserve sequential ordering between hits
corresponding to different offsets (j), the NoC waits for all
bins corresponding to one seed to arrive at the destination
before moving to the next seed. Because seeds are interleaved
over the DRAM channels, the hits associated with each seed
are located in separate per-channel FIFOs.

7 GACT Accelerator Design

The GACT array accelerates the compute-intensive Align
routine in GACT (Section 4). The rest of Algorithm 2, is
implemented in software. As shown in Figure 8a, the GACT
array consists of a systolic array of processing elements
(inspired by [51]), one traceback pointer SRAM per PE, and
traceback logic. Our current implementation uses Ny, = 64
and T4, = 512, which requires 128KB SRAM for traceback
memory per GACT array, with each of the 64 PEs connected
to one 2KB SRAM bank.

Before starting operation, the GACT array is configured
by loading 18 16-bit scoring parameters (16 parameters for
matrix W and one parameter each for gap open o and gap
extend e) and the tile size T. For each call to Align, the soft-
ware provides coordinates i and j into R and Q respectively,
and a bit ¢ that indicates the first tile of a query. The GACT
array accepts ASCII inputs for R and Q, but internally stores
the sequences using 3-bits for an extended DNA alphabet
Yext = {AC,G,T,N}, where N represents an unknown
nucleotide and does not contribute to the alignment score.

Depending on whether ¢ is set (unset), the GACT array out-
puts the score and coordinate (i*, j*) of the highest-scoring
(bottom-right) cell of the tile a series of traceback pointers
for the optimal alignment in the tile from the highest-scoring
(bottom-right) cell. Each pointer is encoded with 2-bits to
indicate an insert, a delete or a match.

A linear array of Ny, processing elements (PEs) exploits
wavefront parallelism to compute up to N, cells of the DP-
matrix for the Smith-Waterman algorithm with affine gap
penalties [25]. Each clock cycle, each PE computes three

Session 3A: Programmable Devices and Co-processors

ASPLOS’18, March 24-28, 2018, Williamsburg, VA, USA

Network-on-chip

Seed-position (16-endpoint Butterfly) Bin-count
H SRAM 1
DRAM lookup (SPL) :Dj‘) NZ bins
| Update-bin SR
Seed-position | L logic (UBL)
IDIRALY lookup (SPL) 11 ° e -
3 : H H Arbiter
Seed-position Update-bin 1D
Bl lookup (SPL) :D:» 3 logic (UBL) NZ bins ‘
| 2 3 SRAM
Seed-position 1 Bin-count
B lookup (SPL) :D:»] SRAM 16
(seed, j) candidate_pos
Figure 7: D-SOFT hardware design.
single GACT tile with T = 9.For T > N, the rows of the DP-
T ,”;’, L,’)l , Reference matrix are divided into a number of query blocks, where a
A|G|GIT|C|G|G|T|A block consists of up to Ny, rows, one row for each PE. During
A . o
G Block 1 the processing of one query block, each PE is initialized
(0,) > with the query base-pair corresponding to its row in the
g i — block. The reference sequence is then streamed through
o : ‘ Block2 the array, shifting one base-pair every cycle. The systolic
% array architecture helps exploit the wave-front parallelism
Traceback Logic ——) T }Block3 available in the computation of the query block. A FIFO is

@

(b)

Figure 8: GACT hardware design. (a) Systolic architecture of
GACT array with N,.=4. (b) Query blocking for T=9.

scores and one traceback pointer for one cell of the DP-
matrix. The three scores are:

I(i,j) = max{ ﬁz{i}j—_l;)—_eo 1)
DGij) = max{ e e @)
0
N I(i,)
H(i,j) = max D(i. j) 3)

H(l - 17.] - 1) + W(ri’ qj)

Equations 1 and 2 compute the affine gap penalty for inser-
tions I and deletions D respectively. Equation 3 computes
the overall score for the cell. A four-bit traceback pointer is
also computed for each cell: 1 bit each for equations 1 and 2
to indicate whether the insertion (deletion) score resulted
from opening or extending a gap, and 2 bits for equation 3
indicating how the final score was arrived at — null (termi-
nating), horizontal, vertical, or diagonal cell. When ¢ is set,
each PE maintains the maximum score and corresponding
position for the cells it has computed. On completion, the
global maximum score and position is computed in a systolic
fashion.

Figure 8a shows an example GACT array with N, = 4 PEs
computing the DP-matrix of Figure 8b, that corresponds to a

205

used to store the H and D scores of equations 3 and 2 of the
last PE of the array, which gets consumed by the first PE
during the computation of the next query block. The depth
of this FIFO is T;,,4x, corresponding to the maximum number
of columns in the DP-matrix.

A memory of 4T2, . bits stores the traceback pointers.
This memory is divided into N, independent single-port
SRAM banks, one bank for every PE as shown in Figure 8a.
Each cycle, each PE pushes the 4-bit traceback pointer for
the current cell, into this RAM.

The traceback (TB) logic starts at the bottom-right or
highest-scoring cell in the DP array and traces back the opti-
mal alignment by following the traceback pointers stored in
the per PE SRAMs. It takes three cycles to traverse each step
of the path: address computation, SRAM read, and pointer
computation. Each cycle generates two bits that indicate the
next step of the path: left, up, diagonal, or terminate. As it
follows the traceback path, the TB logic also computes offsets
iofr and jorr by keeping track of the number of bases of R
and Q consumed along the optimal path. The traceback ter-
minates when either: a terminating pointer is encountered,
ioff or jorr reaches (T — O) bases, or an edge of the DP-
matrix (first row or column) is reached. As each 2-bit pointer
is produced, it is pushed in a FIFO to be stored off-chip.

8 Experimental Methodology

Reference genome and read data. We used the latest hu-
man genome assembly GRCh38 using only the nuclear chro-
mosomes (chromosomes 1-22, X, and Y) (removing the mi-
tochondrial genome, unmapped and unlocalized contigs).

Session 3A: Programmable Devices and Co-processors

Read type | Substitution | Insertion | Deletion | Total
PacBio | 1.50% 9.02% 4.49% 15.01%

ONT_2D | 16.50% 5.10% 8.40% 30.0%

ONT_1D | 20.39% 4.39% 15.20% 39.98%

Table 1: Error profile of the reads sets.

The resulting assembly size is 3.08Gbp. We generate three
sets of reads using PBSIM [62] with length of 10Kbp each,
coverage of 30%, and error rates of (15%, 30% and 40%): to
match the error profiles of Pacific Biosciences (PacBio), Ox-
ford Nanopore 2D reads (ONT_2D) and Oxford Nanopore
1D reads (ONT_1D), respectively. Default settings of contin-
uous long read (CLR) model were used in PBSIM for PacBio
reads at an error rate of 15.0%, while the PBSIM settings
for ONT_2D and ONT_1D reads were taken from a previ-
ous study [71]. Table 1 shows the error profile for the three
sets of reads. These correspond roughly to the error pro-
files observed using P6-C4 chemistry for PacBio reads, and
R7.3 chemistry for Oxford Nanopore reads. Older Oxford
Nanopore chemistry is intentionally used to demonstrate
programmability for high-error reads. For de novo assembly,
we used PBSIM to generate PacBio reads for 30X coverage
of the WS220 assembly of the C. elegans genome, resulting
in 3.0Gbp of raw reads. Using these raw reads, we tuned
the settings in Darwin to exceed the sensitivity of baseline
algorithm for finding overlaps and estimated Darwin’s per-
formance for 54X coverage of the human genome using 3Gbp
read blocks.

Comparison baseline. All software comparison base-
lines were run with a single thread on a dual socket Intel
Xeon E5-2658 (v4) CPU operating at 2.2GHz with 128GB
DDR4 DRAM clocked at 2133MHz. A single thread on this
processor has a power consumption of about 10W (measured
using Intel’s PCM power utility [35]), which we found to
be the best iso-power comparison point to ASIC. Using all
32 threads on this processor gives 13X speedup for BWA-
MEM [47] but at many times (7X) the power consumption.
D-SOFT and GACT throughput on Darwin were compared
against a hand-optimized software implementation of the
algorithm, compiled with —~04 optimization level using the
g++-5. 4 compiler. GACT speedup was also compared to
Edlib [70] (version 1.1.2) with —p option for enabling trace-
back path computation. Edlib uses a more restrictive Leven-
shtein distance based scoring for finding alignments, but is
the fastest software aligner to our knowledge. Edlib through-
put was evaluated on PacBio reads, and the algorithm is
slower on more noisy ONT reads. GACT alignment scores
for different (T, O) settings were compared to the optimal
Smith-Waterman algorithm implemented using SeqAn li-
brary [18] (version 2.2.0) with 200,000 10Kbp reads for each
of the three read types. A simple scoring scheme (match=+1,
mismatch=-1, gap=1) was used in both GACT and software
alignments.

206

ASPLOS’18, March 24-28, 2018, Williamsburg, VA, USA

For reference-guided assembly of PacBio reads, Darwin
was compared to BWA-MEM [47] (version 0.7.14) using
its -x pacbio flag. For Oxford Nanopore reads, we used
GraphMap [71] (version 0.5.2), a highly-sensitive mapper
optimized for Oxford Nanopore reads with default mode. We
used DALIGNER [57] as a baseline technique for de novo
assembly of long reads. We tuned D-SOFT’s parameters to
match or exceed the sensitivity of each baseline technique.
We define sensitivity and precision as:

L TP
Sensitivity = ———— (4)
TP +FN
. TP
Precision = ——— (5)
TP+ FP

where TP, FP and FN are the number of true positives,
false positives and false negatives, respectively. For reference-
guided assembly, a true positive is when the read gets aligned
to the reference within 50bp of the region of the ground-
truth alignment reported by PBSIM. For de novo assembly, an
overlap between two reads is considered a true positive if the
two reads overlap by at least 1Kbp according to PBSIM, and if
at least 80% of that overlap is detected by the algorithm under
consideration. To evaluate the filtration ability of D-SOFT, we
have also defined false hit rate as the average number of false
hits (candidate alignment locations) for every true positive
resulting after D-SOFT filtration, without using GACT.

ASIC Synthesis, Layout and Frequency. We per-
formed ASIC synthesis using Synopsys Design Compiler
(DC) [75] in a TSMC 40nm CMOS process. We used
tcbn401pbwp standard cell library at the worst-case process-
voltage-temperature (PVT) corner. Placement and routing
were carried out using Synopsys IC compiler (ICC) [74] with
7 metal layers.

Frequency, power, and area of the ASIC are entirely deter-
mined by the SRAMs. For GACT, we synthesized one array
with N, = 64. D-SOFT logic was separately synthesized,
with the NoC generated using CONNECT [63]. SRAM mem-
ory was excluded during DC synthesis of GACT and D-SOFT.
Cacti [68] was used to estimate the area and power of the
SRAM memory. We generated a memory trace using a soft-
ware run of D-SOFT and GACT and used Ramulator [40] and
DRAMPower [12] to estimate DRAM timing and power re-
spectively. Since DRAMPower [12] does not model LPDDR4,
we estimated DRAM power conservatively using LPDDR3.

GACT throughput. We implemented a single GACT
array on Xilinx Kintex 7 FPGA [1], clocked at 250MHz,
to gather cycle counts for aligning sequences of different
lengths and different (T, O) settings. Using the cycle counts,
GACT array throughput on ASIC was estimated by scal-
ing to ASIC frequency. Darwin uses 64 independent GACT
arrays, and it’s throughput scales linearly. We used Ramula-
tor [40], with memory trace generated from a software run,
to estimate memory cycles consumed at peak throughput.

Session 3A: Programmable Devices and Co-processors

Component Configuration Area | Power

(mm?) | (W)

GACT | Logic 64 X (64PE array) 17.6 1.04
TB memory 64 X (64 X 2KB) 68.0 3.36

D-SOFT | Logic 2SPL + NoC+ 16UBL 6.2 0.41
Bin-count SRAM | 16 X 4MB 300.8 7.84

NZ-bin SRAM 16 X 256KB 19.5 0.96

DRAM | LPDDR4-2400 4 x 32GB - 1.64
Total 412.1 | 15.25

Table 2: Area and Power breakdown of individual compo-
nents in Darwin. The critical path of Darwin is 1.18ns.

Each LPDDR4-2400 channel in Darwin is shared by 16 GACT
arrays.

D-SOFT throughput. D-SOFT throughput is measured
in seeds per second, which depends on seed size k. We col-
lected memory traces for SeedLookup in D-SOFT using a
software run for each k and used Ramulator [40] to estimate
throughput accounting for memory cycles used by GACT
arrays at peak throughput. The FPGA implementation of
D-SOFT confirmed that the NoC and bin-count SRAM banks
consume hits faster than the DRAM channels produce them,
so that D-SOFT throughput is entirely memory-limited.

Darwin’s performance on assembly. To estimate the
ASIC performance of Darwin on read assembly, the assembly
was first carried out on a software implementation of D-SOFT
and GACT to determine D-SOFT parameters that match
or exceed the sensitivity of the baseline algorithm and to
compute statistics on the number of tiles to be processed by
GACT and the number of seeds to be processed by D-SOFT.
Combining these statistics with the previously derived ASIC
throughput of GACT and D-SOFT, assembly time for Darwin
was estimated using the slower of the two algorithms.

Darwin: FPGA performance. To estimate peak achiev-
able FPGA performance, we synthesized GACT arrays on
a single Intel Arria 10 [34] FPGA using the Microsoft Cat-
apult [65] framework. Because of limited on-chip memory
on FPGA, we used only 4 GACT arrays with traceback mem-
ory (remaining arrays were used only for single-tile GACT
filtering) and implemented D-SOFT in software.

9 Results and Discussion

Darwin: Area, Frequency and Power. Table 2 shows the
area and power breakdown of the different components of
the Darwin ASIC. The critical path of Darwin has a delay
of 1.18ns, enabling operation at 847MHz (3.4x the FPGA
frequency). While Darwin is large in area, about 412mm?, it’s
power consumption (including DRAM) is relatively small,
about 15W. This is despite being implemented in a 40nm
process. In a modern 14nm process, Darwin would be much
smaller (about 50mm?) and have much lower power (about
6.4W).

GACT: Performance and Throughput. Figure 9a
shows the (T, O) settings in GACT for different reads types

207

ASPLOS’18, March 24-28, 2018, Williamsburg, VA, USA

o o T=256 ® e T=384

‘.PaCBio @onT.20 (DONT_1D Loo0ol®®_ =0 oo T-448
— :
9500
T @ 9000 e
256 320 384 440 L gs00 . g
0 T 8000/ i e
g 7500 B
0 32 £ 7000 3 e. o~
“ 0| @ @ @ I Ty
6000
* 00 00 00 00 o
= 00 000000 000 5

@

Figure 9: (a) (T, O) settings of GACT for different read types
for which all 200,000 observed alignments were optimal. (b)
Throughput of a single GACT array for pairwise alignment
of 10Kbp sequences for different (T, O) settings.

5 GACT (software)

1.0E+07 -4297K
& 1.0E+06
® 1.0E+05
£ 1.0E+04
£ 1.0E+03 ¢
§,1.0E+02
T 1.0E+01

1.0E+00

"Edlib " GACT (Darwin)

809K

3148X
5177X

LT
I I
1.2 3 4 5 6 7 8 9 10

Sequence Length (Kbp)

401K

1392X

Figure 10: Throughput (alignments/second) comparison for
different sequence lengths between a software implementa-
tion of GACT, Edlib library and the hardware-acceleration
of GACT in Darwin.

for which all 200,000 observed alignments of 10Kbp reads to
corresponding reference position are optimal. In general, we
have observed that the deviations of GACT alignments from
optimal arise near the edges of the tile, where the traceback
path can be often affected by the DP-matrix cells exterior to
the tile. Terminating traceback early in a tile by increasing O
and recomputing the traceback pointers in the overlapping
cells of the subsequent tile improves the GACT alignment
scores. GACT provided optimal alignments for PacBio reads
for O > 64. For T > 320 and O = 128, GACT produced
optimal alignments for all three read types.

Figure 9b shows the throughput of a single GACT array in
aligning 10Kbp sequences for different (T, O) settings. Since
the number of GACT tiles for a fixed length alignment varies
inversely to (T —O), and each tile computation requires cycles
proportional to T?, the throughput varies proportional to
(T —0)/T?. We used (T=320, 0=128) setting of GACT for the
rest of the results in this paper since it provided empirically
optimal alignments for all read types at highest throughput.

Figure 10 compares the throughput (in alignments per
second) of the 64 GACT arrays on Darwin to Edlib [70] for

Session 3A: Programmable Devices and Co-processors

@@ (k=12,N=750) @@ (k=13, N=1000)
@®® (k=12,N=1000) --- Baseline

®-e (k=12,N=750) @ (k=13, N=1000)
@@ (k=12, N=1000)
100

A\ 129K
981" 77A \

96

94

92

Sensitivity (in %)

1
90 13 16 19 22 25 28 10 13 16 19 22 25

Threshold h (in bp) Threshold h (in bp)
(@ (b)

28

Figure 11: Tuning (a) sensitivity and (b) false hit rate (FHR)
of D-SOFT using threshold A for different settings of (k, N)
for ONT_2D reads.

alignments of different sequence lengths. The figure shows
that the throughput of GACT on Darwin (or in software)
indeed scales inversely with the length of the sequences
aligned — the throughput is reduced by roughly 10x, from
4,297,672 (54.3) to 401,040 (4.9) alignments per second when
the sequence length increased by a factor of 10, from 1Kbp to
10Kbp. In comparison, Edlib runtime is quadratic in sequence
length, and as a result, the speedup of Darwin with respect to
Edlib increases with sequence length — from 1392% for 1Kbp
sequences to 5177x for 10Kbp sequences. Moreover, unlike
Edlib, GACT has a flexible scoring scheme based on [25].

At peak throughput, 64 GACT arrays in Darwin process
20.8M tiles per second each requiring two 320B sequential
reads for R*¢ and Q*¥¢, and one 64B write for storing the
traceback path. This consumes 44.4% of the cycles of each of
the 4 LPDDR4 memory channels. Darwin achieves roughly
80,000x speedup using hardware-acceleration of GACT ver-
sus the software implementation of GACT.

D-SOFT: Throughput and Sensitivity/Precision. Ta-
ble 3 compares the throughput of D-SOFT on Darwin and
its software implementation for different seed sizes (k) us-
ing the seed position table for human genome assembly
(GRCh38). As k increases, the average number of hits per
seed decreases, resulting in higher throughput. However,

Size | hits/seed Throughput (Kseeds/sec)
(k) | (GRCh38) | Software | Darwin | Speedup
11 1866.1 16.6 1,426.9 85X
12 491.6 66.2 | 5,422.6 82X
13 127.3 259.3 | 19,081.7 73X
14 33.4 869.5 | 55,189.2 63X
15 8.7 2,257.1 | 91,138.7 40%

Table 3: Average number of seed hits for different seed sizes
(k) and throughput comparison of D-SOFT on Darwin and
its software implementation using human genome (GRCh38)
for seed position table. 45% of available memory cycles in
Darwin are reserved for GACT.

208

ASPLOS’18, March 24-28, 2018, Williamsburg, VA, USA

EE False hits
I PacBio true hits
T

I ONT_2D true hits
[ONT_1D true hits

Frequency
o

0 45 920

135
First GACT tile score

180 225 270 315

Figure 12: Histogram of the first GACT tile score (T = 384)
for D-SOFT false hits and true hits of different read sets.

benefits of hardware-acceleration of D-SOFT are highest for
short seeds with their longer sequential accesses to the seed
position table.

Darwin’s speedup on D-SOFT is due to three optimized
memory access factors. First, performing bin updates to on-
chip SRAM results in many times fewer random accesses to
DRAM. Second, the hardware has longer sequential accesses
to DRAM, resulting in higher effective bandwidth. Finally,
the hardware accesses multiple DRAM channels in paral-
lel. In our FPGA prototype, D-SOFT throughput is always
limited by the DRAM bandwidth and not the on-chip bin
updates, which occur at the rate of 5.1 updates/cycle (64% of
theoretical maximum).

Figure 11 shows the sensitivity and precision (false hit rate
(FHR)) of the D-SOFT filter for varying threshold (h), seed
size (k), and number of seeds (N) in the reference-guided
assembly of ONT_2D reads. Tuning D-SOFT parameters
appropriately allows the filter to be orders of magnitude more
precise (lower FHR), even at high sensitivity. Parameters k
and N provide coarse-grain adjustment of both sensitivity
and FHR while parameter h provides fine-grain control.

Figure 12 shows that it is easy to filter out a vast majority
of D-SOFT’s false hits using a simple threshold (h;;;.) on
the first GACT tile score itself — with h;;;, = 90, 97.3% of
D-SOFT’s false hits can be filtered out after the first GACT
tile itself, with less than 0.05% additional loss in sensitivity
over D-SOFT. A larger tile size T = 384 is used for the first
tile for easier distinction of true hits from false hits.

Darwin: Overall Performance. Table 4 compares Dar-
win’s performance with baseline algorithms for reference-
guided assembly of the human genome using 50,000 ran-
domly sampled reads for each of the three read sets. We
adjusted the D-SOFT parameters in Darwin to match or ex-
ceed the sensitivity of the baseline technique and still achieve
over 1,000% speedup for each read type.

Figure 13 shows how Darwin achieves speedup by trading
less work in the filtration stage — which is memory limited

Session 3A: Programmable Devices and Co-processors

ASPLOS’18, March 24-28, 2018, Williamsburg, VA, USA

Reference-guided assembly (human)

Read type D-SOFT Sensitivity Precision Reads/sec

(k, N, h) | Baseline | Darwin | Baseline | Darwin | Baseline Darwin
PacBio (14, 750, 24) 95.95% | +3.76% 95.95% | +3.96% 3.71 9,916X
ONT_2D | (12, 1000, 25) 98.11% | +0.09% 99.10% | +0.22% 0.18 15,062%
ONT_1D | (11, 1300, 22) 97.10% | +0.30% 98.20% | +0.72% 0.18 1,244X%

De novo assembly (C. elegans)

Read type D-SOFT Sensitivity Precision Runtime (sec)

(k, N, h) | Baseline | Darwin | Baseline | Darwin | Baseline | Darwin (Speedup)
PacBio (14, 1300, 24) 99.80% | +0.09% 88.30% | +1.80% 47,524 123X

De novo assembly (human)

Read type D-SOFT Estimated Runtime (hours)

(k, N, h) Baseline Darwin (Speedup)
PacBio | (14, 1300, 24) 15,600 710X

Table 4: Comparison of Darwin with baseline techniques on reference-guided and de novo assembly. Darwin values are relative

to the baseline technique.

¥ Filtration ™ Alignment Gl'aphmap Darwin
Time/read (ms) ~10K seeds ~2K Se§d5
01 1 10 100 1000 10000 100000 ~440M hits ~1M hits

Filtration
D-SOFT
~1680

hits

Filtration

~3 hits

Alignment

~1 hit

2.1X slowdown

Alignment
(GACT
~1 hit

380X speedup

. Graphmap (software)

. Replace by D-SOFT + GACT (software)
GACT hardware-acceleration

. Use 4 DRAM channels for D-SOFT

. Move bin updates in D-SOFT to SRAM
. Pipeline D-SOFT and GACT

oA WN =

Figure 13: Timing breakdown between filtration and align-
ment stages for reference alignment of a single ONT_2D
read in a series of steps going from Graphmap to Darwin.

and hence harder to accelerate — for more work in the align-
ment phase — which is easily hardware accelerated. The fig-
ure shows time on a log scale and shows the evolution from
Graphmap (top) to Darwin (bottom). Graphmap runtime is
dominated (99%) by the filtration stage. It spends enormous
effort on filtration to avoid alignment — which is expensive
in software. The next line shows Darwin implemented in
software. Using fewer seeds and a smaller seed position table,
D-SOFT achieves 182x speedup over Graphmap filter in soft-
ware, but allows 560X more false hits. Even with linear-time
GACT, doing alignment to filter the false hits takes 99.7%
of the runtime and results in a 2.1X slowdown compared to
Graphmap. Line 3 shows that accelerating GACT with 64
GACT arrays of 64 PEs each makes the alignment time negli-
gible and gives a speedup of 380X compared to line 2. Using
four DRAM channels (line 4) and performing bin updates in
SRAM (line 5) together provide 61X acceleration. Darwin also
pipelines D-SOFT and GACT for multiple reads, which adds
another 1.4x speedup. Trading less filtering (D-SOFT) for

209

more dynamic programming (GACT) is worse for software
but greatly benefits hardware-acceleration, where the costs
for dynamic programming, which requires few memory ref-
erences, are significantly lower. This algorithm-architecture
co-optimization is central to the speedup of Darwin.

Table 4 also shows the comparison of Darwin and DAL-
IGNER [57] for finding pairwise overlaps between PacBio
reads for de novo assembly of a 30X C. elegans genome.
DALIGNER detected 99.8% overlaps in 47,524 seconds, and
in comparison, Darwin required only 385 seconds to find
99.89% overlaps, nearly 123x speedup over DALIGNER. Of
this, 370 seconds were taken by the software for construc-
tion of the seed position table and 15 seconds were required
by Darwin to find overlaps. Since 54X coverage of human
genome (168Gbp) would require the seed position table for
read blocks of size 3Gbp to be constructed 56 times, and
for each block, require 56X more reads to be processed, we
estimate the overlap step in de novo assembly of 54X hu-
man genome to require roughly 22 hours on Darwin. In
comparison, DALIGNER is estimated to require 15,600 CPU
hours [57] for the same task. This implies a 710X speedup
using Darwin over software. We expect that accelerating the
construction of the seed position table in hardware can sub-
stantially improve these results but leave that optimization
for future work.

Darwin: FPGA performance. We synthesized 40 GACT
arrays of 32 PEs (4 arrays with traceback support), along with
the Shell components of the Catapult framework [65] on the
Arria 10 FPGA clocked at 150MHz. GACT arrays on FPGA
provided a peak throughput of 1.3M tiles per second with
T=320 (16X slower than ASIC) and D-SOFT was found to
be the bottleneck in all cases. Speedup for reference-guided
assembly ranged from 38.4x for ONT_1D reads to 183.8%

Session 3A: Programmable Devices and Co-processors

for ONT_2D reads. For de novo assembly on PacBio reads,
speedup is estimated at around 19.9% to DALIGNER.

10 Related Work

Alignment heuristics and hardware-acceleration.
Other heuristic approximations to the Smith-Waterman
algorithm for pairwise alignment of sequences include
Banded Smith-Waterman [13], X-drop [84] and Myers
bit-vector algorithm [56]. Navarro et. al [58] have provided
a detailed survey of algorithms used for approximate string
matching, with applications ranging from genome sequence
analysis to text retrieval. All existing heuristics complete
the matrix-fill step before starting traceback, and therefore,
have a memory requirement that grows at least linearly
with the length of sequences being aligned. GACT is the first
approximate Smith-Waterman algorithm with a constant
memory requirement for the compute-intensive step,
making it suitable for hardware acceleration of arbitrarily
long sequence alignment. Moreover, GACT alignments,
with sufficient overlap, are empirically optimal.

Acceleration of sequence alignment based on existing al-
gorithms has been well explored in hardware architecture
and compiler communities. Hardware architectures that ac-
celerate alignment of arbitrarily long sequences only handle
the matrix-fill step of Smith-Waterman algorithm. Lipton et.
al [51] were the first to propose a systolic array exploiting
wavefront parallelism in the matrix-fill step. A number of pa-
pers [15, 22, 36, 76, 81, 82] have implemented variants of this
architecture, particularly on FPGAs. They all leave the trace-
back step to software, which would require the software to
recompute the score matrix around high-scoring cells, under-
mining the benefits of hardware acceleration. Architectures
that also accelerate the traceback step [14, 59, 61, 78] restrict
the length of sequences they align based on available on-chip
memory for storing traceback state. For instance, Nawaz et.
al [59] accelerate Smith-Waterman in hardware that can align
reads up to 1Kbp to a reference of up to 10Kbp, but requires
2.5MB of traceback memory. In comparison, the proposed
GACT architecture requires only 128KB, and aligns arbitrar-
ily long sequences optimally. Compiler assisted high level
synthesis of systolic arrays has been studied in [10, 26]. This
work is orthogonal to GACT, but GACT hardware synthesis
could potentially improve from the proposed techniques.

Filtration heuristics. D-SOFT belongs to a category of
filtration heuristics based on the seed-and-extend paradigm,
first made popular by BLAST [3], and subsequent filtration
techniques based on counting the number of seed hits con-
served in a band of diagonals. These include two-hit BLAST
[4], GraphMap [71], and BLASR [11].

DALIGNER [57] was the first technique to directly count
the bases in the seed hits of a diagonal band, so overlapping
bases in the hits are not multiply counted. This allows DAL-
IGNER filtration to be more precise even at high sensitivity.

210

ASPLOS’18, March 24-28, 2018, Williamsburg, VA, USA

This algorithm inspired D-SOFT. D-SOFT and DALIGNER
differ in their implementation. DALIGNER uses sort and
merge operations on large pairs of read blocks to find over-
laps, requiring a large number of random accesses to off-chip
memory. In comparison, D-SOFT algorithm is better suited
to hardware acceleration, as it performs highly sequential
accesses using a seed position table to off-chip DRAM, and
random accesses during filtration are handled by fast on-chip
memory. The same speedup is not achievable using D-SOFT
in software, since random accesses to update bins occur over
a memory range of up to 64MB — too large to fit on-chip in
standard processors.

There are filtration techniques, such as BWA-MEM [47],
that are neither based on counting seeds in a band of diago-
nals nor the number of bases. Instead, BWA-MEM uses super
maximal seeds and its performance has been evaluated in
this paper. Other examples include Canu [43], M-HAP [6]
and LSH-ALL-PAIRS [9], which are based on probabilistic,
locality-sensitive hashing of seeds. While D-SOFT cannot
generalize to these techniques, as our results on other filtra-
tion techniques indicate, it is still possible to tune D-SOFT
parameters to match or exceed the sensitivity of these heuris-
tics.

Finally, there has been work on improving the sensitivity
of seed-based filtration and reducing the storage requirement
of seeds. These are orthogonal to D-SOFT since seed position
table and seeds are provided by software. Work on spaced
seeds [38], transition-constrained seeds [60] and vector seeds
[8], help improve seeding sensitivity. Minimizers [66] help
reduce the storage requirement of seeds.

Sequence alignment frameworks. Like Darwin, some
prior work has focused on implementation of a complete
sequence alignment framework, implementing filtration as
well as sequence alignment with relatively flexible parame-
ters, and aided by hardware acceleration. Examples include
TimeLogic [2], which provides FPGA-based framework for
BLAST [3] and HMMER [37], and Edico Genome [78], which
provides FPGA-based framework for acceleration of the
BWA-GATK pipeline for reference-guided assembly on sec-
ond generation sequencing, reportedly reducing the com-
putational time of whole human genome to under 20 min-
utes [19]. Darwin leverages the tunable sensitivity of D-SOFT,
and accelerates alignment of arbitrarily long sequences using
GACT, overcoming two major programmability limitations
of prior frameworks for long read assembly. Darwin handles
and provides high speedup versus hand-optimized software
for two distinct applications: reference-guided and de novo
assembly of reads, and can work with reads with very dif-
ferent error rates. To our knowledge, Darwin is the first
hardware-accelerated framework to demonstrate this level
of programmability and speedup in more than one class of
applications.

Session 3A: Programmable Devices and Co-processors

11 Conclusion And Future Work

With the slow demise of Moore’s law, hardware acceler-
ators are needed to meet the rapidly growing computa-
tional requirements of genomics. In this paper, we have de-
scribed Darwin, a hardware accelerator that speeds up long-
read, reference-guided assembly of human genome by up to
15,000%, and the overlap step in de novo assembly by over
710x compared to software. Darwin achieves this speedup
through hardware/algorithm co-design, trading more align-
ment (which is easy to accelerate) for less filtering (which
is memory limited), and by optimizing the memory system
for filtering. Darwin uses GACT, a novel tiled alignment al-
gorithm with overlap that requires linear time and constant
memory (for the compute-intensive step) as a function of
read length, making hardware acceleration of long read align-
ment with traceback feasible. Darwin performs filtering us-
ing D-SOFT which can be programmed (via parameters k, h,
and N) to match the sensitivity of baseline algorithms while
maintaining high precision. Darwin’s filtering and alignment
operations are general and can be applied to rapidly growing
sequence alignment applications beyond read assembly, such
as whole genome alignments [30], metagenomics [29] and
multiple sequence alignments [77].

Whole genome alignments [30] provide the rocket fuel
for comparative genomics — to study at the molecular level,
how different life forms are related and different from one
another [5, 16, 31, 53]. Thousands of new species will be
sequenced over the next decade and newer, more polished
assemblies would be generated for already available genomes
using better sequencing methods [41, 83]. We plan to extend
Darwin’s framework for handling whole genome alignments.
D-SOFT parameters can be tuned to mimic the seeding stage
of LASTZ [30], single-tile GACT filter replaces the bottle-
neck stage of ungapped extension — improving the sensitiv-
ity while still providing orders of magnitude speedup, and
GACT can be further improved to use Y-drop extension strat-
egy of LASTZ to align arbitrarily large genomes with smaller
on-chip memory while still providing near-optimal align-
ments for highly-divergent sequences. A similar approach
can be adapted in extending Darwin to metagenomics [29],
which involves taxonomic classification using a very large
seed table to estimate the microbial population from sequenc-
ing of an environment sample (such as human gut or soil)
and has far-reaching potential in medicine, industry and agri-
culture. Multiple sequence alignment has important appli-
cations in consensus step of overlap-layout-consensus (OLC)
assemblers [50] as well as in comparative genomics, such as
for ancestral genome reconstruction [7]. Progressive align-
ers [7, 77] use sequence-sequence alignment (like GACT)
during initial stages and profile-profile alignments in sub-
sequent stages. Profile-based alignments are challenging to
accelerate using systolic arrays but would be handled in our

211

ASPLOS’18, March 24-28, 2018, Williamsburg, VA, USA

future work. Future work will also accelerate construction
of seed position table in hardware.

Acknowledgments

We thank the anonymous reviewers for their helpful feed-
back. We thank Dr. Aaron Wenger, Prof. Derek Chiou, Prof.
Christos Kozyrakis and Dr. Amir Marcovitz for providing
valuable feedback on the manuscript. We thank Dr. Jason
Chin, Dr. Ivan Sovic, Prof. Gene Myers, Prof. Serafim Bat-
zoglou and Dr. Heng Li for their valuable insights into long
read sequencing and assembly tools. We thank Albert Ng
who generously shared the RTL code of his Smith-Waterman
accelerator. We thank Prof. Boris Murmann and Kevin Zheng,
who provided the access to ASIC CAD tools. We also thank
Microsoft Research, NVIDIA Research, Xilinx and the Plat-
form Lab (Stanford University) for supporting this work.

References

[1] Pico computing product brief: M-505-k325t.
poeWUA.

[2] TimeLogic Corporation. URL http://www.timelogic.com.

[3] S.E. Altschul, W. Gish, W. Miller, E. W. Myers, and D.]J. Lipman. Basic
local alignment search tool. Journal of molecular biology, 1990.

[4] S.F. Altschul, T.L. Madden, A. A. Schiffer, J. Zhang, Z. Zhang, W. Miller,

and D. J. Lipman. Gapped blast and psi-blast: a new generation of

protein database search programs. Nucleic acids research, 25(17):3389-

3402, 1997.

G. Bejerano, M. Pheasant, I. Makunin, S. Stephen, W. J. Kent, J. S.

Mattick, and D. Haussler. Ultraconserved elements in the human

genome. Science, 304(5675):1321-1325, 2004.

K. Berlin, S. Koren, C.-S. Chin, J. P. Drake, J. M. Landolin, and A. M.

Phillippy. Assembling large genomes with single-molecule sequencing

and locality-sensitive hashing. Nature biotechnology, 33(6):623-630,

2015.

[7] N. Bray and L. Pachter. Mavid: constrained ancestral alignment of
multiple sequences. Genome research, 14(4):693-699, 2004.

[8] B.Brejova, D. G. Brown, and T. Vinaf. Vector seeds: An extension to
spaced seeds. Journal of Computer and System Sciences, 70(3):364-380,
2005.

[9] J. Buhler. Efficient large-scale sequence comparison by locality-
sensitive hashing. Bioinformatics, 17(5):419-428, 2001.

[10] B. Buyukkurt and W. A. Najj. Compiler generated systolic arrays
for wavefront algorithm acceleration on fpgas. In 2008 International
Conference on Field Programmable Logic and Applications, pages 655—
658. IEEE, 2008.

M. J. Chaisson and G. Tesler. Mapping single molecule sequencing

URL https://goo.gl/

5

—

l6

—

[11]
reads using basic local alignment with successive refinement (blasr):
application and theory. BMC bioinformatics, 13(1):238, 2012.

[12] K. Chandrasekar, C. Weis, Y. Li, B. Akesson, N. Wehn, and K. Goossens.

Drampower: Open-source dram power & energy estimation tool. URL:

http://www. drampower. info.

K.-M. Chao, W. R. Pearson, and W. Miller. Aligning two sequences

within a specified diagonal band. Computer applications in the bio-

sciences: CABIOS, 8(5):481-487, 1992.

P. Chen, C. Wang, X. Li, and X. Zhou. Accelerating the next generation

long read mapping with the fpga-based system. IEEE/ACM Transactions

on Computational Biology and Bioinformatics (TCBB), 11(5):840-852,

2014.

Y.-T. Chen, J. Cong, J. Lei, and P. Wei. A novel high-throughput

acceleration engine for read alignment. In Field-Programmable Custom

[13]

[14]

[15]

https://goo.gl/poeWUA
https://goo.gl/poeWUA
http://www.timelogic.com

Session 3A: Programmable Devices and Co-processors

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]

[29]

(30]

(31]

(38]

(39]

Computing Machines (FCCM), 2015 IEEE 23rd Annual International
Symposium on, pages 199-202. IEEE, 2015.

S. L. Clarke, J. E. VanderMeer, A. M. Wenger, B. T. Schaar, N. Ahituv,
and G. Bejerano. Human developmental enhancers conserved between
deuterostomes and protostomes. PLoS genetics, 8(8):e1002852, 2012.
W. J. Dally and B. P. Towles. Principles and practices of interconnection
networks. Elsevier, 2004.

A. Doring, D. Weese, T. Rausch, and K. Reinert. Seqan an efficient,
generic c++ library for sequence analysis. BMC bioinformatics, 9(1):11,
2008.

Edico Genome. Dragen bio-it platform. URL http://edicogenome.com/
dragen-bioit-platform/.

J. Eid, A. Fehr,]J. Gray, K. Luong, J. Lyle, G. Otto, P. Peluso, D. Rank,
P. Baybayan, B. Bettman, et al. Real-time dna sequencing from single
polymerase molecules. Science, 323(5910):133-138, 2009.

M. Eisenstein. Oxford nanopore announcement sets sequencing sector
abuzz. Nature biotechnology, 30(4):295-296, 2012.

P. Faes, B. Minnaert, M. Christiaens, E. Bonnet, Y. Saeys, D. Stroobandt,
and Y. Van de Peer. Scalable hardware accelerator for comparing dna
and protein sequences. In Proceedings of the 1st international conference
on Scalable information systems, page 33. ACM, 2006.

S. Goodwin, J. Gurtowski, S. Ethe-Sayers, P. Deshpande, M. C. Schatz,
and W. R. McCombie. Oxford nanopore sequencing, hybrid error
correction, and de novo assembly of a eukaryotic genome. Genome
research, 25(11):1750-1756, 2015.

D. Gordon, J. Huddleston, M. J. Chaisson, C. M. Hill, Z. N. Kronenberg,
K. M. Munson, M. Malig, A. Raja, I. Fiddes, L. W. Hillier, et al. Long-read
sequence assembly of the gorilla genome. Science, 352(6281):aae0344,
2016.

O. Gotoh. An improved algorithm for matching biological sequences.
Journal of molecular biology, 162(3):705-708, 1982.

D. Greaves, S. Sanyal, and S. Singh. Synthesis of a parallel smith-
waterman sequence alignment kernel into fpga hardware. URL http:
//www.cl.cam.ac.uk/~djg11/pubs/mrsc09a.pdf.

D. Gusfield. Algorithms on strings, trees and sequences: computer science
and computational biology. Cambridge university press, 1997.

M. A. Hamburg and F. S. Collins. The path to personalized medicine.
New England Journal of Medicine, 363(4):301-304, 2010.

J. Handelsman. Metagenomics: application of genomics to uncultured
microorganisms. Microbiology and molecular biology reviews, 68(4):
669-685, 2004.

R. S. Harris. Improved pairwise alignment of genomic DNA. ProQuest,
2007.

M. Hiller, B. T. Schaar, V. B. Indjeian, D. M. Kingsley, L. R. Hagey, and
G. Bejerano. A aAlJforward genomicsaAl approach links genotype
to phenotype using independent phenotypic losses among related
species. Cell reports, 2(4):817-823, 2012.

D. S. Hirschberg. A linear space algorithm for computing maximal
common subsequences. Communications of the ACM, 18(6):341-343,
1975.

Mumina. Illumina hiseq x series of sequencing systems: Specification
sheet. URL https://goo.gl/paq2X5.

Intel. Intel arria 10 device overview. URL https://www.altera.com/en_
US/pdfs/literature/hb/arria-10/a10_overview.pdf.

Intel. Intel pcm power utility. URL https://goo.gl/4KumhA.

X. Jiang, X. Liu, L. Xu, P. Zhang, and N. Sun. A reconfigurable acceler-
ator for smith-waterman algorithm. IEEE Transactions on Circuits and
Systems II: Express Briefs, 54(12):1077-1081, 2007.

L.S.Johnson, S. R. Eddy, and E. Portugaly. Hidden markov model speed
heuristic and iterative hmm search procedure. BMC bioinformatics, 11
(1):431, 2010.

U. Keich, M. Li, B. Ma, and J. Tromp. On spaced seeds for similarity

search. Discrete Applied Mathematics, 138(3):253-263, 2004.
W. J. Kent. BLAT - the BLAST-like alignment tool. Genome research,

2002.

212

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

ASPLOS’18, March 24-28, 2018, Williamsburg, VA, USA

Y. Kim, W. Yang, and O. Mutlu. Ramulator: A fast and extensible dram
simulator. IEEE Computer Architecture Letters, 15(1):45-49, 2016.
K.-P. Koepfli, B. Paten, G. K. C. of Scientists, and S. J. O4AZBrien. The
genome 10k project: a way forward. Annu. Rev. Anim. Biosci., 3(1):
57-111, 2015.

S. Koren and A. M. Phillippy. One chromosome, one contig: complete
microbial genomes from long-read sequencing and assembly. Current
opinion in microbiology, 23:110-120, 2015.

S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, and A. M. Phillippy.
Canu: scalable and accurate long-read assembly via adaptive k-mer
weighting and repeat separation. bioRxiv, page 071282, 2016.

N. Krumm, T. N. Turner, C. Baker, L. Vives, K. Mohajeri, K. Wither-
spoon, A. Raja, B. P. Coe, H. A. Stessman, Z.-X. He, et al. Excess of
rare, inherited truncating mutations in autism. Nature genetics, 47(6):
582-588, 2015.

T. W. Lam, W.-K. Sung, S.-L. Tam, C.-K. Wong, and S.-M. Yiu. Com-
pressed indexing and local alignment of dna. Bioinformatics, 24(6):
791-797, 2008.

E.S.Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin,
K. Devon, K. Dewar, M. Doyle, W. FitzHugh, et al. Initial sequencing
and analysis of the human genome. Nature, 409(6822):860-921, 2001.
H. Li. Aligning sequence reads, clone sequences and assembly contigs
with bwa-mem. arXiv preprint arXiv:1303.3997, 2013.

H. Li and R. Durbin. Fast and accurate long-read alignment with
burrows—wheeler transform. Bioinformatics, 26(5):589-595, 2010.

J. Z.Li, D. M. Absher, H. Tang, A. M. Southwick, A. M. Casto, S. Ra-
machandran, H. M. Cann, G. S. Barsh, M. Feldman, L. L. Cavalli-Sforza,
et al. Worldwide human relationships inferred from genome-wide
patterns of variation. Science, 319(5866):1100—-1104, 2008.

Z.Li, Y. Chen, D. Mu, J. Yuan, Y. Shi, H. Zhang, J. Gan, N. Li, X. Hu,
B. Liu, et al. Comparison of the two major classes of assembly algo-
rithms: overlap-layout-consensus and de-bruijn-graph. Briefings in
functional genomics, 11(1):25-37, 2012.

R.J. Lipton and D. P. Lopresti. Comparing long strings on a short systolic
array. Princeton University, Department of Computer Science, 1986.
C. Lopez-Otin, M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer.
The hallmarks of aging. Cell, 153(6):1194-1217, 2013.

A. Marcovitz, Y. Turakhia, M. Gloudemans, B. A. Braun, H. I. Chen, and
G. Bejerano. A novel unbiased test for molecular convergent evolution
and discoveries in echolocating, aquatic and high-altitude mammals.
bioRxiv, page 170985, 2017.

C. Y. McLean, P. L. Reno, A. A. Pollen, A. L. Bassan, T. D. Capellini,
C. Guenther, V. B. Indjeian, X. Lim, D. B. Menke, B. T. Schaar, et al.
Human-specific loss of regulatory dna and the evolution of human-
specific traits. Nature, 471(7337):216-219, 2011.

J. D. Merker, A. M. Wenger, T. Sneddon, M. Grove, Z. Zappala, L. Fre-
sard, D. Waggott, S. Utiramerur, Y. Hou, K. S. Smith, et al. Long-
read genome sequencing identifies causal structural variation in a
mendelian disease. Genetics in medicine: official journal of the Ameri-
can College of Medical Genetics, 2017.

G. Myers. A fast bit-vector algorithm for approximate string matching
based on dynamic programming. Journal of the ACM (JACM), 46(3):
395-415, 1999.

G. Myers. Efficient local alignment discovery amongst noisy long reads.
In International Workshop on Algorithms in Bioinformatics, pages 52-67.
Springer, 2014.

G. Navarro. A guided tour to approximate string matching. ACM
computing surveys (CSUR), 33(1):31-88, 2001.

Z. Nawaz, M. Nadeem, H. van Someren, and K. Bertels. A parallel
fpga design of the smith-waterman traceback. In Field-Programmable
Technology (FPT), 2010 International Conference on, pages 454-459.
IEEE, 2010.

L. Noé and G. Kucherov. Yass: enhancing the sensitivity of dna simi-
larity search. Nucleic acids research, 33(suppl 2):W540-W543, 2005.

http://edicogenome.com/dragen-bioit-platform/
http://edicogenome.com/dragen-bioit-platform/
http://www.cl.cam.ac.uk/~djg11/pubs/mrsc09a.pdf
http://www.cl.cam.ac.uk/~djg11/pubs/mrsc09a.pdf
https://goo.gl/paq2X5
https://www.altera.com/en_US/pdfs/literature/hb/arria-10/a10_overview.pdf
https://www.altera.com/en_US/pdfs/literature/hb/arria-10/a10_overview.pdf
https://goo.gl/4KumhA

Session 3A: Programmable Devices and Co-processors

[61] C.B. Olson, M. Kim, C. Clauson, B. Kogon, C. Ebeling, S. Hauck, and
W. L. Ruzzo. Hardware acceleration of short read mapping. In Field-
Programmable Custom Computing Machines (FCCM), 2012 IEEE 20th
Annual International Symposium on, pages 161-168. IEEE, 2012.

[62] Y.Ono, K. Asai, and M. Hamada. Pbsim: Pacbio reads simulator-toward
accurate genome assembly. Bioinformatics, 29(1):119-121, 2013.

[63] M. K. Papamichael and J. C. Hoe. Connect: re-examining conventional
wisdom for designing nocs in the context of fpgas. In Proceedings of
the ACM/SIGDA international symposium on Field Programmable Gate
Arrays, pages 37-46. ACM, 2012.

[64] E. D. Pleasance, R. K. Cheetham, P. J. Stephens, D. J. McBride, S. J.
Humphray, C. D. Greenman, I. Varela, M.-L. Lin, G. R. Ordbéiiez, G. R.
Bignell, et al. A comprehensive catalogue of somatic mutations from
a human cancer genome. Nature, 463(7278):191-196, 2010.

[65] A.Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, et al. A
reconfigurable fabric for accelerating large-scale datacenter services.
In Computer Architecture (ISCA), 2014 ACM/IEEE 41st International
Symposium on, pages 13-24. IEEE, 2014.

[66] M. Roberts, W. Hayes, B. R. Hunt, S. M. Mount, and J. A. Yorke. Reduc-
ing storage requirements for biological sequence comparison. Bioin-
formatics, 20(18):3363-3369, 2004.

[67] E. E. Schadt, S. Turner, and A. Kasarskis. A window into third-
generation sequencing. Human molecular genetics, 19(R2):R227-R240,
2010.

[68] P. Shivakumar and N. P. Jouppi. Cacti 3.0: An integrated cache timing,
power, and area model. Technical report, Technical Report 2001/2,
Compaq Computer Corporation, 2001.

[69] T.F. Smith and M. S. Waterman. Identification of common molecular
subsequences. Journal of molecular biology, 147(1):195-197, 1981.

[70] M. Sosié¢ and M. Siki¢. Edlib: a c/c++ library for fast, exact sequence

alignment using edit distance. Bioinformatics, 2017.

L. Sovi¢, M. Siki¢, A. Wilm, S. N. Fenlon, S. Chen, and N. Nagarajan. Fast

and sensitive mapping of nanopore sequencing reads with graphmap.

Nature communications, 7, 2016.

O. Spichenok, Z. M. Budimlija, A. A. Mitchell, A. Jenny, L. Kovacevic,

D. Marjanovic, T. Caragine, M. Prinz, and E. Wurmbach. Prediction of

[71

—

(72

—

213

[73]

[74]
[75]

[76]

(77

[78]

[79]

[80]

[81]

(82]

[83]

[84]

ASPLOS’18, March 24-28, 2018, Williamsburg, VA, USA

eye and skin color in diverse populations using seven SNPs. Forensic
Science International: Genetics, 5(5):472-478, 2011.

Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai, M.].
Efron, R. Iyer, M. C. Schatz, S. Sinha, and G. E. Robinson. Big data:
astronomical or genomical? PLoS biology, 13(7):1002195, 2015.
Synopsys IC. Compiler user guide, 2013. URL http://www.synopsys.
com.

Synopsys Inc. Compiler, design and user, rtl and guide, modeling, 2001.
URL http://www.synopsys.com.

W. Tang, W. Wang, B. Duan, C. Zhang, G. Tan, P. Zhang, and N. Sun.
Accelerating millions of short reads mapping on a heterogeneous
architecture with fpga accelerator. In Field-Programmable Custom
Computing Machines (FCCM), 2012 IEEE 20th Annual International
Symposium on, pages 184-187. IEEE, 2012.

J. D. Thompson, D. G. Higgins, and T. J. Gibson. Clustal w: improving
the sensitivity of progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties and weight matrix
choice. Nucleic acids research, 22(22):4673-4680, 1994.

P. Van Rooyen, R. J. McMillen, and M. Ruehle. Bioinformatics systems,
apparatuses, and methods executed on an integrated circuit processing
platform, Jan. 5 2016. US Patent App. 14/988,666.

J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G.
Sutton, H. O. Smith, M. Yandell, C. A. Evans, R. A. Holt, et al. The
sequence of the human genome. science, 291(5507):1304-1351, 2001.
R. H. Waterson, E. S. Lander, R. K. Wilson, et al. Initial sequence of the
chimpanzee genome and comparison with the human genome. Nature,

437(7055):69, 2005.
Y. Yamaguchi, T. Maruyama, and A. Konagaya. High speed homology

search with fpgas. In Proceedings of the 7th Pacific Symposium on
Biocomputing (PSB’02), pages 271-282, 2001.

C. W. Yu, K. Kwong, K.-H. Lee, and P. H. W. Leong. A smith-waterman
systolic cell. In New Algorithms, Architectures and Applications for
Reconfigurable Computing, pages 291-300. Springer, 2005.

G. Zhang. Genomics: Bird sequencing project takes off. Nature, 522
(7554):34-34, 2015.

Z. Zhang, S. Schwartz, L. Wagner, and W. Miller. A greedy algorithm
for aligning dna sequences. Journal of Computational biology, 7(1-2):
203-214, 2000.

http://www. synopsys. com
http://www. synopsys. com
http://www. synopsys. com

	Abstract
	1 Introduction
	2 Background
	3 D-SOFT Filtering Algorithm
	4 GACT Alignment Algorithm
	5 Darwin: System Overview
	6 D-SOFT Accelerator Design
	7 GACT Accelerator Design
	8 Experimental Methodology
	9 Results and Discussion
	10 Related Work
	11 Conclusion And Future Work
	Acknowledgments
	References

