
Clank: Architectural Support for Intermittent Computation
Matthew Hicks
Virginia Tech

mdhicks@gmail.com

ABSTRACT
The processors that drive embedded systems are getting smaller;
meanwhile, the batteries used to provide power to those systems
have stagnated. If we are to realize the dream of ubiquitous com-
puting promised by the Internet of Things, processors must shed
large, heavy, expensive, and high maintenance batteries and, in-
stead, harvest energy from their environment. One challenge with
this transition is that harvested energy is insufficient for continuous
operation. Unfortunately, existing programs fail miserably when
executed intermittently.

This paper presents Clank: lightweight architectural support for
correct and efficient execution of long-running applications on har-
vested energy—without programmer intervention or extreme hard-
ware modifications. Clank is a set of hardware buffers and memory-
access monitors that dynamically maintain idempotency. Essentially,
Clank dynamically decomposes program execution into a stream of
restartable sub-executions connected via lightweight checkpoints.

To validate Clank’s ability to correctly stretch program execution
across frequent, random power cycles, and to explore the associated
hardware and software overheads, we implement Clank in Verilog,
formally verify it, and then add it to an ARM Cortex M0+ processor
which we use to run a set of 23 embedded systems benchmarks.
Experiments show run-time overheads as low as 2.5%, with run-time
overheads of 6% for a version of Clank that adds 1.7% hardware.
Clank minimizes checkpoints so much that re-execution time be-
comes the dominate contributor to run-time overhead.

CCS CONCEPTS
• Computer systems organization → Embedded hardware; Re-
liability; Processors and memory architectures; • Hardware →
Memory and dense storage;

KEYWORDS
Energy Harvesting, Intermittent Computation, Batteryless Devices,
Idempotence

ACM Reference format:
Matthew Hicks Virginia Tech. 2017. Clank: Architectural Support for In-
termittent Computation. In Proceedings of ISCA ’17, Toronto, ON, Canada,
June 24-28, 2017, 13 pages.
https://doi.org/10.1145/3079856.3080238

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’17, June 24-28, 2017, Toronto, ON, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.
ACM ISBN 978-1-4503-4892-8/17/06. . . $15.00
https://doi.org/10.1145/3079856.3080238

Figure 1: Overview of the tradeoff space for continuous checkpointing approaches
to intermittent computation. Previous approaches operate at fixed points in the
tradeoff space, depending on the location of non-volatility [28] or programmer de-
fined boundaries [27]. Clank applies to the entire spectrum of volatile/non-volatile
memory mixes with appropriate tradeoffs in checkpoint size and frequency and
responds dynamically to power-cycle frequency.

1 INTRODUCTION
Architects and circuit designers continually push the boundaries of
hardware, creating processors that are smaller, more energy efficient,
yet more computationally powerful than those of previous genera-
tions. This drive towards smaller chips allows the server rooms of the
1970’s to fit on the tip of your finger with recent millimeter-scale de-
vices [24]. The next major transition for processors is smart dust [19],
where processors are small enough to be embedded everywhere from
shoes [41], to groceries [4], to paint.

Unfortunately, batteries stand in the way of this progress. Bat-
teries are often the largest, heaviest, most expensive, and highest
maintenance part of Internet-of-Things (IoT) systems. For example,
consider a modern smartphone. In these phones, the main processor
is the size of an eraser while the battery is the size of a deck of cards.
Waiting for improvements in battery technology is a non-starter as
the gap between processor technology and battery technology is
growing, not declining. Thus, it is clear that mobile, embedded, and
IoT devices of today and the future must shed their batteries if we
are to see a dramatic shift in their use.

Energy harvesting techniques have emerged as a viable battery
replacement, drawing power from the environment rather than a
fixed source. In fact, many devices already integrate these methods
to power themselves [4, 11, 44]. Unfortunately, developers for these
intermittently powered computers observe that energy harvesting
provides insufficient power to perform long-running, continuous,
computation [35]. This results in frequent power losses, forcing the
program to restart, in hopes of more abundant power next time. Most
programs fail to execute completely or correctly with such frequent
power failures and requiring programmers to reason about the effects
or frequent power failures is error prone [36] and neglects existing
programs.

228

https://doi.org/10.1145/3079856.3080238
https://doi.org/10.1145/3079856.3080238
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3140659.3080238&domain=pdf&date_stamp=2017-06-24

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada M. Hicks

To address this fundamental limitation of running on harvested en-
ergy, previous research looks into an array of checkpointing schemes
that store partial computation to non-volatile memory. As Figure 1
shows, the key difference in previous work is the location of the
non-volatile memory. DINO [27] targets the majority of today’s
mixed-volatility platforms where Flash/FRAM is the first level of
non-volatility. DINO requires the programmer to decompose pro-
grams into a series of tasks backed by data versioning. This de-
composition is static, requiring the programmer to target a specific
deployment environment while programming. This forces the pro-
grammer to error on the side of forward progress by creating small
tasks or on the side of low overhead by creating larger tasks.

Researchers have also investigated future, wholly non-volatile,
energy harvesting systems. In the non-volatile processor [28], all
memory—down to the flip-flops—is non-volatile memory. In this
scenario (as shown in Figure 1), checkpoints are small but frequent.
The tradeoff here is that while the programmer does not have to
reason about the potential impact of power cycles, the cost in terms
of hardware (increased power consumption, increased area, and
decreased frequency) results in significant software slowdowns com-
pared to systems with SRAM-based flip-flops.

We envision a generalizable approach that works across a range
of volatile/non-volatile memory compositions. To fulfill this vision,
we offer Clank. Clank leverages the notion of idempotency to auto-
matically and dynamically make programs robust against frequent,
random, power cycles. Using idempotency means that Clank ap-
plies to devices with off-chip non-volatile memory and to wholly
non-volatile devices—and the range of devices in-between. Idem-
potency is a property that a sequence of instructions has that means
that they are arbitrarily restartable. Previous work shows that main-
taining the value of the inputs to a sequence of instructions is all
that is required to make that sequence restartable [29]. We adapt
these previous insights, targeted at registers, to non-volatile mem-
ory. Clank includes lightweight hardware that dynamically tracks
idempotency, buffering idempotency violations in volatile mem-
ory. When the buffer is full with idempotency-violating memory
writes, Clank creates a checkpoint (i.e., saves all modified volatile
state to non-volatile memory), essentially locking-in the effects of
the previous instruction stream. By doing this, Clank dynamically
decomposes unmodified programs into a continuous sequence of
idempotent instruction streams, connected by lightweight check-
points. Clank extends the natural idempotency of a program through
careful use of volatile buffers. To maximize the benefit of Clank’s
buffers, Clank includes a modified compiler that encodes in memory
access instructions if there is no risk of them violating idempotency.
Clank applies to a range of devices, with more frequent, but smaller
checkpoints as non-volatility moves towards the core and larger, but
fewer checkpoints as non-volatility moves off-chip.

To show that Clank is an effective way to stretch program exe-
cution across power cycles, we implement it for the next wave of
energy harvesting devices [3], where main memory is non-volatile,
but the rest of the system is volatile. This represents a node some-
where in the middle of the spectrum created by the non-volatile
processor and DINO, also targeted by Hibernus [2] and Ratchet [40].
We implement Clank for an ARM Cortex M0+ processor. Experi-
ments with 23 embedded systems benchmarks show that Clank is

Figure 2: The central component of Clank is a set of hardware buffers that track
memory accesses, identifying idempotency violations. Clank also has the ability
to condense several idempotency violations into a single checkpoint by storing
idempotency-violating writes in a write-back buffer. Optional components include
two watchdog timers to ensure forward progress and prevent overly large idempo-
tent sections and a compiler to insert checkpointing routines and identify memory
accesses that the hardware can ignore for idempotency purposes.

able to limit software run-time overhead to as little as 2.5% with the
aid of in-hardware buffers and compiler support.

Clank reduces total (see Section 2.1) run-time overhead almost
an order-of-magnitude compared to all previous approaches, while
requiring no programmer intervention, involving only minor hard-
ware modifications, and reducing memory footprint by 4x compared
to software-based, continuous checkpointing [40] and data version-
ing [5, 27] approaches, and dynamically adapting to environmental
conditions. Beyond this, Clank represents six high-level contribu-
tions:

• We create the first hardware support for idempotency track-
ing.

• We implement both an FPGA implementation using ARM
source code and a cycle-accurate ARM Cortex M0+ sim-
ulator. We use these implementations to explore Clank’s
design space.

• We formally verify the correctness of our Verilog Clank
implementation using bounded model checking. We also
dynamically verify the correctness of every experimental
trial on our Clank simulator using a reference monitor.

• We explore Clank’s performance on both wholly non-
volatile and mixed volatility systems and compare its per-
formance to previous approaches.

• We address the problems of oversized idempotent sections:
1) due to power cycles too short to make a forward progress
through a checkpoint (runt power cycles) or 2) due to in-
creasing the cost of re-execution beyond the cost of taking
a superfluous checkpoint (overhead inversion).

• We are the first work in the idempotency space to create
idempotent sections long enough to show that there is a
turning point where re-execution cost is greater than check-
pointing cost.

2 CLANK OVERVIEW
Clank automatically and efficiently stretches program execution
across frequent, random, power cycles. Figure 2 shows Clank’s key
components and how they fit into the development of software and
run-time operation of a batteryless device. Clank consists of both
hardware and compiler components. Clank hardware precisely tracks

229

Clank: Architectural Support for Intermittent Computation ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

memory accesses for idempotency violations, while Clank’s com-
piler takes unmodified and unrestricted C programs and produces a
binary that contains routines for checkpointing software state and
restarting execution after a power cycle. The binary that Clank pro-
duces is similar to what an unmodified compiler produces, but with
a small amount of reserved memory and some memory access in-
structions replaced with versions that carry semantic information to
hardware; namely, that the specified memory access is guaranteed
not to affect idempotency. The resulting binary is loaded (using
traditional methods) to an energy harvesting device.

At run time, every time the device has enough power to turn
on, it first executes the compiler-inserted restart routine. The restart
routine loads the last checkpoint or starts execution from main()
if no checkpoint exists. While software executes, Clank updates its
buffers and checks for idempotency violations. When the detector
determines a violation occurred, it signals the Write-back Buffer.
The Write-back Buffer holds address/value tuples that, if written to
non-volatile memory would violate idempotency of the currently
executing section. This allows Clank to delay a checkpoint until
enough idempotency violations occur to overflow the Write-back
Buffer. When the Write-back Buffer does overflow, it sends an excep-
tion to the processor. The processor delivers the exception to Clank’s
compiler-inserted checkpoint routine, which saves volatile software
state to non-volatile memory, resetting idempotency relationships,
and passes control back to the program.

Clank includes a set of watchdog timers that help ensure that a
program makes forward progress even with arbitrarily short power-
on times and to minimize run-time overhead by balancing checkpoint
and re-execution overhead.

2.1 Design Principles
The primary goal of Clank is to extend program execution across
frequent and random power cycles correctly. As Section 8 details,
there are many viable ways to meet this goal. To choose between the
different approaches we provide a set of design principles that apply
to all known approaches:

• Avoid slowing down the hardware: reducing the maximum
frequency of the processor directly slows the program. This
is one drawback of approaches that push non-volatility
down to the flip-flops [28]: non-volatile flip-flops switch
slower than their volatile counterparts [20]. Clank maintains
the processor’s original maximum frequency.

• Avoid executing additional instructions: every extra instruc-
tion that software has to execute to save its state is one
less instruction that is able to move software state forward.
Clank requires less than 1% extra instructions due to check-
pointing, even for small buffer sizes.

• Avoid increasing hardware’s power consumption: energy
spent on added hardware is not available to move software
state forward. This is a drawback of approaches that man-
date significant hardware changes [20, 28, 30]. Similarly,
approaches that use an analog-to-digital converter (ADC) to
measure the voltage (to determine if they are about to lose
power) [2, 18, 37] lose 40% of their energy to the ADC [6].

• Avoid lengthy re-execution: as checkpointing schemes ad-
vance, the overhead due to re-execution increases. In fact,

for many configurations of Clank, re-execution overhead
dominates and reducing checkpointing overhead only in-
creases the total run-time overhead.

The key here is to minimize the total impact of the proposed
system on the software. These four design principles are important
because they all impact the run-time overhead of software running on
energy harvesting devices. Section 7 contains experimental results
that show how Clank performs in relation to each of these principles.

2.2 Why Hardware?
Given the large body of work that exists for the compiler community
on compiler analysis passes for idempotency [7–10, 45], it is known
how to decompose programs into a series of idempotent sections
statically using only the compiler as opposed to the dynamic decom-
position of Clank. Why modify the hardware? The answer lies in
the difference between static (i.e., compile time) and dynamic alias
analysis. Alias analysis [38], a core component of idempotency anal-
ysis, is a challenge even for today’s most advanced compilers (e.g.,
LLVM). For example, the alias analysis passes that earlier idempo-
tency works use are intraprocedural (i.e., within a single function).
This results in a best case of a checkpoint every function call and
return [40]. Moving to interprocedural analysis is a non-starter due
to its lack of precision that results in many artificial aliases, each
of which causes a checkpoint. Making matters worse, common pro-
gramming features such as pointers result in large alias sets, which
results in in-function checkpoints. Comparing the overhead of Clank
to Ratchet [40], an idempotence-based compiler-only intermittent
computation approach, it is clear that most aliases reported by even
intraprocedural analysis are non-existent at run time. Clank thrives
on this asymmetry.

3 CLANK HARDWARE
To stretch program execution across power cycles, Clank dynami-
cally decomposes programs into a series of restartable instruction
sequences. To connect two restartable instruction sequences, Clank
uses a checkpoint that makes each idempotent sequence indepen-
dent of the memory accesses in all previous sequences. The key to
restartability is maintaining idempotence during execution. This is
the role of Clank’s hardware idempotency detectors. Clank’s hard-
ware is tasked with dynamically tracking idempotency and informing
the checkpoint routine in software when a checkpoint needs to be
created so that execution can move to the next restartable section.
The challenge is doing this as efficiently as possible, i.e., with a
few small checkpoints. Eventually, we introduce the idea of adding
checkpoints to balance re-execution overhead and checkpoint over-
head, but the ideal is to remove the need for any checkpoints and
only insert them as needed to minimize total run-time overhead.

In this section, we describe the design and operation of Clank’s
hardware components. We follow this with a discussion of a series
of optimizations that reduce Clank’s hardware overhead and increase
its effectiveness. Lastly, we cover our solution to a problem common
to all transaction systems, the output commit problem.

3.1 Key Components
As Figure 3 shows, the primary components of Clank are buffers
(Read-first and Write-first) and idempotency detection logic. To

230

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada M. Hicks

address[P-1:0]	tag	 temp	value	
Write-back	Buffer	.	.	.	

address[P-1:0]	tag	 temp	value	

address[P-1:0]	tag	

address[P-1:0]	tag	

Read-first	Buffer	
.	.	.	

address[P-1:0]	tag	

address[P-1:0]	tag	

Write-first	Buffer	
.	.	.	

address[N-1:P]	

address[N-1:P]	

Address	Prefix	Buffer	
.	.	.	

Detector	
+	

Management	
Logic	

IN:	
Memory	Address	

Access	Type	

OUT:	
ExcepGon	

Hit?	

Update	
Buffer?	

Figure 3: Clank in-hardware buffers and management logic. N is the number of
bits in a memory address, e.g., a 128K memory requires 17 bits. tag is an index
into the Address Prefix Buffer. Buffers are queried and updated in parallel.

this, we add a Write-back Buffer to reduce checkpoint frequency
by delaying idempotency violating writes by storing updated values
in a volatile buffer (as opposed to overwriting the original value in
non-volatile memory). To reduce the hardware overhead of Clank,
we leverage spatial locality of memory accesses by using an Address
Prefix Buffer that stores upper bits of memory address, allowing the
other buffers to store only a tag and the lower bits of each address—
effectively acting as de-duplication of common address prefixes.
Lastly, Clank adds two watchdog timers that help to extract more
performance by balancing checkpoint and re-execution overhead
and ensure that programs make forward progress during repeated
runt power cycles. We describe each hardware component next.

3.1.1 Idempotency Detection. An idempotency violation consists
of a write to a memory address that was first accessed by a read
instruction (during a given section of execution). In simpler terms,
think of each memory location as being either write dominated
or read dominated. Given a sequence of instructions, if the first
access to a memory address is a write, then that location is write
dominated. Conversely, if the first access to a memory address (in
a given instruction sequence) is a read, then that location is read
dominated. Expressing idempotency in these terms, an idempotency
violation is a write to a memory location that is read dominated. Note
that every memory address accessed during an instruction sequence
must either be write or read dominated.

From this definition, it follows that the hardware must track, for
each memory address accessed, if the address is write or read domi-
nated. For this, Clank includes a buffer for each list;1 the Read-first
Buffer holds read dominated addresses, while the Write-first Buffer
holds write dominated addresses. The last piece of the idempotency
violation detector is the detection logic. The detection logic (which
also serves as buffer management logic) checks the buffers on every
memory access. If the address of the access is not in either buffer,
then it gets added to the appropriate buffer, given the access type
(read or write). On the other hand, if the access is a write and the

1Note that the only component required to track idempotency is a Read-first Buffer. All
other components exist to improve performance.

address of the access is already in the Read-first Buffer (i.e., r->w in
Figure 2), then the detection logic signals an idempotency violation.
All other combinations of access types and Clank buffer states result
in that memory access being ignored.

Given that these idempotency tracking buffers are hardware re-
sources, they have limited capacity. When either buffer is full and
an address needs to be added (i.e., overflow), the detection logic
signals a full condition. Clank treats full conditions as an idempo-
tency violation, thus handled by Clank’s checkpointing routine. After
Clank commits the checkpoint to non-volatile memory, it returns
control to the instruction that caused the overflow-inducing memory
access; this time, with buffers empty. Section 3.2 describes optimiza-
tions to this policy that dramatically reduce the number of buffer
full exceptions—hence fewer checkpoints—while still maintaining
correctness.

Buffer overflows create checkpoints, but whether idempotency
violations do depends on the presence of other Clank hardware
components, namely, the Write-back Buffer. If there is no Write-
back Buffer, then Clank treats idempotency violations the same as a
buffer overflow, i.e., it results in a checkpoint. But, if there is a Write-
back Buffer, then the Write-back Buffer determines if a checkpoint
is needed based on if it has room to store the idempotency-violating
write.

3.1.2 Write-back Buffer. As shown in Section 7.1, creating a
checkpoint for every idempotency violation is costly. To avoid this,
we introduce a buffer that allows Clank to delay committing idem-
potency violating writes to non-volatile memory. This allows Clank
to stretch the execution of an idempotent section past its natural lim-
its. Our approach takes advantage of volatility in that idempotency-
violating writes stashed in the Write-back Buffer automatically disap-
pear during power-off periods—free rollback via redo logging [32].

When the detection logic signals an idempotency violation (which
only happens for a write), the Write-back Buffer first checks if
it already holds the address. If so, the value associated with that
address is updated. If not and there is room, the Write-back Buffer
adds the address and the new value—the value first read remains,
unchanged, in non-volatile memory. If not and there is no room in
the Write-back Buffer to store the address/value pair, the Write-back
Buffer signals an exception. The exception is handled in much the
same way as Read/Write-first Buffer overflows, but Clank must
also update the non-volatile memory with the values stored in the
Write-back Buffer. Doing so is complicated by the common case of
power failures in that it requires double buffering to prevent power-
cycle-induced corruption: first Clank copies the addresses and values
from the Write-back Buffer (possibly volatile) to a scratchpad in
non-volatile memory set aside by Clank’s compiler. Second, Clank
creates a new checkpoint so that a power cycle will restart post-copy
to the scratchpad. Third, Clank overwrites the given addresses with
their new values. Note that copying between non-volatile memory
locations (the scratchpad and the program’s memory) is naturally
idempotent. Lastly, Clank creates a checkpoint so that the program
will restart with the new values in place, otherwise, a restart while
the Write-back Buffer is being copied to the scratchpad for the next
section will result in an inconsistent state.

Clank: Architectural Support for Intermittent Computation ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Section 3.2 describes optimizations relating to the Write-back
Buffer that relieve pressure on the Write-first and Read-first buffers—
making them appear larger.

3.1.3 Address Prefix Buffer. Until now, the abstraction of Clank
presented had each buffer tracking entire memory addresses. We
observed that many of the entries had the same most significant bits
due to the spatial locality of memory accesses during the short bouts
of execution seen in intermittent execution. This is especially true
with the small memories of batteryless devices which may have up
to 256KB of system memory, but an address of 32-bits. This is an
opportunity for de-duplication to free resources to store unique data.

We add the Address Prefix Buffer to take advantage of this ob-
servation. The Address Prefix buffer replaces duplicate address pre-
fixes in Clank buffer’s entries with a small tag that points to that
prefix as stored in the Address Prefix Buffer. For example, in the
version of Clank that we build (Section 6), each buffer stores the
6 least-significant bits of a memory address and a 2-bit tag that
points to one of 4 Address Prefix Buffer entries, each storing the
24 most-significant bits of a memory address. Compare this 8-bit
requirement to each buffer entry requiring 30 bits.2 Thus, the Ad-
dress Prefix Buffer makes each bit of added memory for Clank’s
in-hardware buffers more effective by storing more unique informa-
tion. The downside of the Address Prefix Buffer is that it is another
in-hardware buffer that can fill, resulting in added checkpoints.

3.1.4 Watchdog Timers. Another optional hardware component
in Clank is a pair of watchdog timers. A watchdog timer is an in-
hardware timer that counts down every clock tick, starting from a
software-specified load value. When a watchdog timer reaches 0, it
signals an exception. There are two watchdog timers in Clank, one
that ensures that software makes forward progress and one that limits
the number of cycles between checkpoints to balance checkpoint
and re-execution overhead.

Progress. The most critical watchdog timer is tasked with en-
suring that software makes forward progress within a power cycle.
Harvested energy is unpredictable; therefore, it is possible that Clank
will create idempotent sections larger than the average power-on
time (i.e., a runt power cycle). Without a watchdog, a long idempo-
tent section would continually restart, only to never finish before the
next power cycle. Eventually, since power-on time is probabilistic,
there may be a long enough power cycle, but waiting for only long
power cycles wastes all of the other ones.

Clank reduces the number of wasted power cycles due to runt
power cycles through the addition of a Progress Watchdog. The role
of the Progress Watchdog is to break long idempotent sections by
inserting superfluous checkpoints. This means that even with very
short power-on times, software will make forward progress. The
progress watchdog is dynamic and automatic—able to respond to
changing power conditions without user or programmer intervention.
Initially, the progress watchdog is disabled. This both saves power
and avoids adding run-time overhead due to unneeded checkpoints.
The progress watchdog is enabled by the restart routine run at the
beginning of a power cycle. The restart routine checks the value of

2Clank tracks memory accesses at the word level, hence 30-bit addresses. This is still
safe as a byte read/write marks the entire word that that byte belongs to, but in cases
where byte-level accesses dominate, there is a risk of adding unneeded checkpoints.

a variable that is 0 if there was a checkpoint last power cycle and
1 if not. In the 0 case, the restart routine sets the variable to 1 and
leaves the Progress Watchdog disabled. In the 1 case, the restart
routine sets the load value of the watchdog timer and enables it.
The load value depends on if the existing load value in non-volatile
memory is non-zero (a non-zero load value represents the case where
the Progress Watchdog was enabled last power cycle, but still no
forward progress was made). If non-zero, then the current load value
is divided in half, otherwise, a default value is loaded. The last bit
of bookkeeping comes during the first checkpoint of a power cycle.
During the first checkpoint, Clank disables the progress watchdog,
sets its load value to 0, and then clears the variable (in non-volatile
memory) that indicates whether a checkpoint happened this power
cycle.

Performance. The second watchdog timer offered by Clank tar-
gets maximizing performance. As shown in Section 7.4, Clank is so
successful at increasing the number of instructions between check-
points that the overhead due to re-execution can dominate that of
checkpointing (overhead inversion). Thus, minimizing total run-time
overhead requires limiting the number of instructions between check-
points such that re-execution and checkpoint overhead are balanced.
That is the goal of Clank’s Performance Watchdog.

Unlike the Progress Watchdog, the Performance Watchdog’s load
value is fixed. To determine the load value for a given program
we assume the ideal scenario where there are no program-induced
checkpoints. Given this ideal, it is possible to calculate the optimal
watchdog value given the average on time, restart overhead, and the
average number of cycles required to save a checkpoint. The results
in Section 7.4 indicate that the optimal watchdog value balances
checkpoint and re-execution overhead. Any run-time deviations from
the ideal result in slight overhead imbalances that yield near-optimal
total overhead.

Clank’s compiler-inserted start-up routine loads the predefined
timer value into the Performance Watchdog and enables it. Then,
the checkpoint routine reloads the load value to the Performance
Watchdog (i.e., resets the watchdog) every checkpoint—it is always
enabled. If the Performance Watchdog ever reaches zero, it signals
an exception, which results in a checkpoint.

3.2 Optimizations
So far, the descriptions of Clank’s detection and buffer management
logic has been kept simple to aid understanding. But there are several
observations that we make that lead to performance optimizations.
The optimizations result in fewer checkpoints by reducing pressure
on Clank’s hardware buffers—making the structures seem larger
than their hardware cost—and delaying, to the last moment, when
Clank throws the checkpoint-inducing exception. This increases per-
formance relative to a given total buffer capacity while maintaining
correctness.

3.2.1 Ignore False Writes. One optimization opportunity is ig-
noring writes to non-volatile memory addresses that do not actually
change the value of that memory location. For example, if memory
location 0x00001234 contains 5 and, for whatever reason, software
attempts to write 5 to that location, Clank ignores that write for
purposes of idempotency violation detection. Note that the write still

232

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada M. Hicks

causes updates to the write buffer if, in fact, the location is write
dominated. This optimization requires saving values from addresses
as they are read which we do by co-opting the Write-back Buffer.
The effect of this optimization is reduced pressure on the Write-back
Buffer, resulting in fewer checkpoints.

3.2.2 Remove Duplicate Entries. What happens when an idem-
potency violation occurs but is buffered by the Write-back Buffer?
In such cases, it is possible to clear the address from the Read-first
Buffer (because addresses involved in idempotency violations must
be in that buffer) and ignore all future accesses to that address. In
general, memory addresses should only reside in a single buffer.
This optimization improves performance by relieving pressure on
the Read-first Buffer—Clank’s most critical resource.

3.2.3 No Write-first Overflows. In the description of the Write-
first and Read-first buffers, we stated that Clank signals an exception
when either buffer overflows. There is an opportunity to reduce
checkpoints by ignoring overflows to the Write-first Buffer. Real-
ize that the Write-first Buffer stores addresses of write-dominated
memory locations. Thus, Write-first entries only serve to avoid false
detections of idempotency violations. So ignoring new entries to a
full buffer just opens the door to false detections—Clank operates
correctly, just pessimistically. Since both a full buffer and a false de-
tection result in a checkpoint, it is better for performance reasons to
delay the checkpoint by ignoring write buffer overflows and, instead,
wait for a full read buffer or an idempotency violation to cause the
checkpoint.

3.2.4 Ignore TEXT Segment Accesses. Program binaries consist
of several sections, e.g., text, heap, and stack. We observe that, for
many programs, the text section is rarely the cause of idempotency
violations. Thus, there is an opportunity to reduce pressure on the
Read-first Buffer by ignoring all reads to addresses within the text
section.

To maintain correctness and support esoteric behaviors like self-
modifying code, every write to a memory address within the text
section causes Clank to create a checkpoint. The asymmetry between
the reads and writes to memory addresses in this region makes this
optimization effective, but only for small Read-first Buffers (see
Section 7.2).

3.2.5 Latest Checkpoint. The last optimization increases the
number of instructions between checkpoints by delaying checkpoints
for as long as possible while maintaining correctness. As opposed
to checkpointing when we can no longer track memory accesses,
we stop tracking memory accesses, allow any reads to go through,
and checkpoint before the first write. The observation driving this is
that only writes break idempotency. For example, in the case where
the Read-first Buffer fills, we can allow arbitrary/untracked reads
without a checkpoint and still maintain correctness. As long as Clank
checkpoints before the first write that follows a fill of any of Clank’s
buffers, Clank maintains correctness. This increases the effective
size of the Address Prefix and Read-first buffers.

3.3 Output Commit Problem
All replay and transaction systems suffer from the output commit
problem [12]. The output commit problem occurs when a system

creates an output that it cannot take back or does not want to be
replayed. Clank follows previous approaches and commits outputs,
at the word level, as soon as they occur by surrounding on output with
checkpoints. This minimizes the likelihood that a power cycle occurs
between writing an output and the ensuing checkpoint. To know
what constitutes an output, Clank relies on the device’s memory map.
Clank treats any writes outside of the physical memory range of the
device as an output.

A more robust solution to the output commit problem requires
measuring power to ensure enough energy remains to commit the
output or side-stepping the problem by making protocols and devices
robust to disruptions and replays. Our benchmarks indicate that
most programs do not require such complex solutions, but in the
rare cases where programs do require larger-granularity guarantees,
Clank provides a foundation for programmers to implement a more
advanced solution.

4 CLANK COMPILER
Like many embedded systems, energy harvesting devices execute
from a single binary. This means that it is reasonable to expect any
software loaded onto an energy harvesting device to be recompiled.
This opens the door for a compiler component to Clank that works
synergistically with Clank’s hardware components to increase their
effectiveness—without burdening programmers. To this end, we
provide a compiler that not only adds the required support routines
to respond to Clank’s hardware events but actually reduces pressure
on Clank’s hardware buffers by limiting the memory accesses that the
idempotency detector needs to react to. We describe the individual
compiler components below and Section 7.1 shows the effect on
run-time overhead that Clank’s relatively simple compiler affords.

4.1 Checkpoint
The primary compiler-inserted software routine required by Clank is
the checkpoint routine. The basic checkpoint routine is simple: back-
up to non-volatile memory all program state residing in volatile
memory that was modified since the last checkpoint. In the case
of wholly non-volatile microcontrollers, this consists of general-
purpose register values (including the stack pointer, link register,
and program counter) and device configuration/status registers. The
tricky bit is determining which of the two checkpoint slots to write
to in non-volatile memory. Two slots are required for cases where
the power cycles in the middle of writing a checkpoint. Given that it
takes many cycles (e.g., 40 for our implementation) to write an en-
tire checkpoint to non-volatile memory, but the act of committing a
checkpoint must appear atomic, we rely on double buffering: a check-
point only commits once a variable we call checkpoint pointer
points to it. The checkpoint routine updates checkpoint pointer
as the last thing it does. Thus, any power cycles in the middle of the
checkpoint routine cause the software to restart execution back at the
beginning of the section that was just being checkpointed—which
still has its checkpoint stored safely in the other checkpoint storage
slot.

After saving volatile state to non-volatile memory, the checkpoint
routine sets the checkpoint pointer to the start of the phase 2
checkpoint routine. The second phase of checkpointing resets all
of Clank’s in-hardware buffers. The checkpoint routine then resets

233

Clank: Architectural Support for Intermittent Computation ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

the Performance Watchdog and disables the Progress Watchdog.
Finally, the checkpoint routine updates checkpoint pointer with
a program address and returns control back to the program, at the
point it was interrupted.

In cases where there is a Write-back Buffer, checkpoints get
more complicated. In this case, the checkpoint routine must start
by copying the list of address, value tuples from the Write-back
Buffer to a compiler-reserved location in non-volatile memory. If a
power-cycle occurs during or directly after this process, those values
are safely ignored and the section that was just finishing execution
is restarted. Once all the tuples are double-buffered in non-volatile
memory, the previously described checkpointing process may start.
Having a Write-back Buffer also preempts the second phase of
checkpointing; before the second phase starts, the program values in
the non-volatile version of the Write-back Buffer are updated.

4.2 Start-up
The first thing a device does is start up. Normally, embedded software
incorporates a start-up routine that initializes the devices attached
to the processor, fixes the stack, and then passes control to main().
Stretching program execution across power cycles does not require
a more complex start-up routine, just a different one. The start-up
routine for energy harvesting devices must be able to restore state
from a checkpoint in non-volatile memory and use data in that
checkpoint to initialize the processor and device state. To reduce
the complexity of the start-up routine, the compiler creates the first
checkpoint in memory. This checkpoint essentially initializes the
state and runs main()—a traditional boot. Using this scheme, the
start-up routine does not have to worry about whether this is boot 1
or boot N.

The start-up routine proceeds as follows:

(1) read the last valid checkpoint variable to know which check-
point to load

(2) read the checkpointed last cycle variable to determine
if we need to enable the Progress Watchdog

(3) if the Progress Watchdog is enabled, read its load value and
divide by 2, then update the load value both in the watchdog
and in memory

(4) enable the Progress Watchdog
(5) load the checkpoint into the processor’s registers

4.3 Bridging the Semantic Gap
While the heart of this paper is architectural support for automat-
ically enabling existing programs to execute intermittently, there
is an opportunity for compiler analysis to make Clank hardware
more effective. Observe that Clank hardware examines all memory
accesses, but from software’s perspective, many memory accesses
have no impact on idempotency. This presents an opportunity for a
compiler to bridge the semantic gap between software and hardware:
the compiler can inform the hardware, via special memory access
instructions that a memory access is guaranteed not to impact the
idempotency of the currently executing sequence of instructions.
By doing this, Clank’s in-hardware buffers appear larger as they no
longer need to track the addresses of many memory accesses.

The challenge is that the dynamic idempotency analysis of Clank
makes it impossible to apply directly existing static idempotency

Figure 4: Formal verification setup. We formally verify an infinite-resource idem-
potence reference monitor using the listed properties. We then verify a property
on the reference monitor combined with a high-performance implementation of
Clank: there is no memory access pattern that can cause a violation in the refer-
ence monitor before Clank signals a violation.

analysis passes during compilation. The issue is that current static
idempotency analysis passes are intraprocedural, but Clank’s dy-
namic analysis is able to span multiple functions. Thus, while mem-
ory accesses may not affect idempotency inside a given function, it
is possible that the same access will affect the idempotency of past
or future functions.

Our goal here is only to show that there is benefit to combining
compiler analysis with hardware support; we see this as an area
of future exploration. Clank takes the first step in this direction
by identifying memory accesses that are Program Idempotent. A
Program Idempotent memory access is one where it is impossible,
under any possible re-execution or program control flow to cause
an idempotency violation. More simply, Clank identifies memory
accesses where there is never a write that follows a read. If such
a pattern exists, it is possible for a power cycle to occur after the
write, but before a checkpoint. This causes the read to get a different
value. Two access patterns that satisfy this constraint are read-only
locations and initial write(s) followed by only reads. Therefore,
Program Idempotence can be summed-up by the access pattern
W*->R*.

Clank’s analysis of Program Idempotent memory accesses is easy
to implement by profiling execution, but very limited in the amount
of memory accesses that it can identify as ignorable. We see a range
of future work on more sophisticated analyses that provide better
results; our goal is to provide a proof-of-concept. One can imagine
a compiler that inserts checkpoints to make analysis easier or to
break the relationship between memory accesses before and after
the checkpoint to make it possible to ignore more accesses.

5 VERIFICATION
Our goal here is to formally verify that our implementations of
Clank (both hardware and software) preserve idempotency. Proving
that our implementation preserves idempotency, for all possible
memory access patterns, allows us to be sure that it is impossible
for a power cycle—coming at any time—to result in a re-execution
that is inconsistent with a single, continuous execution. So, while
our goal in the previous sections was to relax constraints as much
as possible to improve performance, our goal here is to validate
that our high-performance implementations are correct (i.e., there
are no implementation bugs and all optimizations preserve program
semantics no matter the power cycle or memory access pattern).

The challenge is that our implementations are optimized for per-
formance, not verification. Adding the complexity required to make

234

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada M. Hicks

verification tractable results in large and slow hardware. Another
challenge is that the property that we want to verify requires keeping
a complete history of memory accesses made during the execution
of an idempotent section, but our implementation has the ability to
ignore certain accesses.

To address these challenges, we rely on an easy-to-verify, infi-
nite resource reference monitor as the centerpiece for verification.
Figure 4 shows our verification setup. We start by proving that this
reference monitor is correct using the 15 properties shown in Fig-
ure 4. To prove these properties correct, we implement them as
SystemVerilog assertions and use a bounded model checking tool
to verify that they hold for any possible memory access sequence
of length 32 or less [22]. When proven correct, we know that under
any possible power cycle and program memory access pattern, the
reference monitor tracks idempotence correctly. Then we connect
the reference monitor to each of our high-performance implementa-
tions and verify that for all possible power cycle and memory access
patterns up to 32 cycles, the high-performance implementation will
always signal an idempotency violation (i.e., initiate a checkpointing
operation and causing the reference monitor to reset) before the ref-
erence monitor signals an idempotency violation. Doing this proves
that the high-performance implementation is correct.

32 is our bound for the model checker. Increasing the bound
results in an exponential increase in the model checker state space.
At a bound of 32, we are able to size Clank’s buffers so that the
generated model is complete, i.e., there is no unique sequence of
events greater than 32 cycles not already represented and verified in
the first 32 cycles. If we assume that increasing Clank’s buffer sizes
does not interfere with correctness, then Clank is correct.

6 IMPLEMENTATION
To demonstrate that Clank works on today’s energy harvesting de-
vices, we implement Clank for the ARM Cortex-M0+ processor. We
select this processor because its ultra-low-power draw makes it a
popular choice for energy harvesting devices. The processor also has
its source code available, which bolsters our implementation. ARM
Cortex processors are currently used in the lowest power System-
on-Chips [17, 23, 24]. The Cortex-M0+ has a two-stage pipeline,
executes 16-bit instructions3 with a 32-bit data word. The processor
we implement has a 32-cycle hardware multiply unit. Being a low
complexity processor, there is no memory management unit (i.e., all
addresses are physical) and there is only a single privilege level.

Our implementation consists of three artifacts: 1) an FPGA proto-
type built on Xilinx’s VC709 development board [42] using ARM-
provided source code for the Cortex-M0+ [1]; 2) a cycle-accurate
instruction-set simulator for ARMv6-M enhanced with a timing
model that matches the Cortex-M0+ we implement on the FPGA;
and 3) a Clank policy simulator that takes in a memory access log
from a benchmark program (an output of our instruction set simu-
lator) and outputs a detailed run-time overhead analysis along with
a dynamic verification of correctness. We use the hardware imple-
mentation to evaluate the area, frequency, and power overheads of
Clank (see Section 7.3) and to validate our simulators. We use the
simulators to evaluate software run-time overheads due to Clank
and for a design space exploration of that examines the tradeoff of

3A limited number of special-purpose instructions require 32-bits.

Benchmark Running Time (ms) Size (bytes) Size Increase

adpcm_decode 2,062 382,869 0.04%
adpcm_encode 2,237 1,408,021 0.01%
aes 12 44,269 0.34%
basicmath 64,586 51,850 0.29%
bitcount 24,894 42,249 0.36%
blowfish 11,976 358,609 0.04%
crc 2 38,881 0.39%
dijkstra 26,320 79,601 0.19%
fft 16,336 46,245 0.33%
limits <1 1,360 11.18%
lzfx 36 112,101 0.14%
overflow <1 1,296 11.73%
patricia 9,565 392,513 0.04%
picojpeg 1,553 104,169 0.15%
qsort 17,601 313,846 0.05%
randmath <1 612 28.84%
rc4 11 7,484 2.03%
regress 28 864 17.59%
rsa 1 43,533 0.35%
sha 6,222 3,284,830 0.00%
stringsearch 4,859 55,321 0.27%
susan 6,417 75,038 0.20%
vcflags <1 1,800 8.44%
average 8,466 297,712 0.05%

Table 1: Cycle count and code size (in bytes) of MiBench2 [14] benchmarks. Also
shown is the percent increase in code size for a Clank configuration representative
of those listed in Table 2, including both watchdog timers.

hardware and run-time overheads at almost 1,000,000 configurations
for each of our 23 benchmarks.

7 EVALUATION
Here we evaluate Clank’s impact on existing programs and a com-
mercial low-power processor, showing that it cheaply stretches ex-
isting programs across power cycles correctly and efficiently. To
evaluate Clank we use the 23 programs listed in Table 1 that com-
prise the MiBench2 IoT benchmark suite [14]. Our goal in selecting
benchmarks it to build a diverse set of long-running programs that
one would expect to run on a resource constrained system. Our set of
benchmarks is the most diverse and extensive in the literature. When
looking at overheads, keep in mind that most of the benchmarks fail
to complete execution within a single power cycle—i.e., they are
impossible to run intermittently without Clank.

7.1 Clank Design Space
Hardware designers looking to add Clank to their processor have a
range of buffer sizes and buffer configurations to choose from. The
only component of Clank required is a Read-first Buffer; everything
else just boosts performance at the cost of increased hardware com-
plexity. Complicating matters is the fact that each buffer’s entries are
different sizes and perform different functions. Thus, the goal of this
section is to explore the software/hardware overhead tradeoff space
of Clank to help hardware designers select an optimal configuration.

Because implementing and running millions of configurations
on our FPGA implementation is impractical, we employ our cycle-
accurate instruction set simulator [15] in combination with our Clank
policy simulator [16] for this experiment. We use the instruction set
simulator to generate a memory access log for each benchmark,
then pass that log and the desired Clank buffer configuration to our

235

Clank: Architectural Support for Intermittent Computation ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

 0 200 400 600 800 1000

A
v
er

ag
e

C
h
ec

k
p
o
in

t
O

v
er

h
ea

d

Buffer Capacity (bits)

R
R+W

R+W+B
R+W+B+A

R+W+B+A+C

Figure 5: Pareto frontiers of Clank hardware size vs. average (across all 23 bench-
marks) run-time overhead for five different versions of Clank. R represents only
having a Read-first Buffer; R+W adds the ability to have a Write-first Buffer; R+W+B
adds the ability to have a Write-back Buffer; R+W+B+A adds the ability to have
an Address Prefix Buffer; and R+W+B+A+C shows the impact of ignoring Program
Idempotent memory accesses. The dashed vertical line represents the hardware
requirement of a single Read-first Buffer entry.

Clank policy simulator. The policy simulator executes the memory
trace adding checkpoints and re-executions as needed given the
buffer composition and size(s) and the power cycle distribution
(100ms average power-on time for our experiments4). The policy
simulator also dynamically verifies that it preserves idempotence.
The policy simulator outputs a detailed breakdown of checkpointing
and re-execution overheads. We explore over 32 policy optimization
settings, for 26,000 Clank hardware configurations, for two versions
(with and without Program Idempotent memory accesses) of each of
the 23 benchmarks (requiring over 8 CPU-months).

Figure 5 shows five Pareto frontiers of average checkpointing over-
head for varying levels of complexity of Clank hardware.5 Looking
at the frontiers, the value of the additional Clank buffer types and the
compiler is clear. Results show that adding a Write-first Buffer adds
value once there are at least two Read-first entries. Interestingly, the
results show that spending bits on Write-back Buffer entries is much
preferred over spending them on the Write-first Buffer. This makes
sense as the Write-back Buffer performs a superset of functions that
the Write-first Buffer performs. Results also show that adding the
Address Prefix buffer fundamentally changes the performance of
Clank by allowing more buffer entries for the same total number
of buffer bits. This enables the worst-case average checkpointing
overhead to go down from 50% with just 30 bits of buffer space
to 40%. Lastly, having the compiler remove Program Idempotent
memory accesses, while not a huge improvement, does improve
Clank’s performance, especially at small buffer sizes.

4Note that the key environmental factor that determines run-time overhead is average
power-on time. Outside of runt power cycles, Clank’s overhead is invariant of the timing
of power cycles.
5Even though our policy simulator also provides the total and re-execution overheads,
we focus on checkpointing overhead as re-execution overhead is controlled through
the Performance Watchdog, not buffer size. In general, processor designers should aim
to approach zero added checkpoints due to program behavior, instead of having all
checkpoints result from the Performance Watchdog. Doing so results in a program-
independent minimal total overhead.

0%

5%

10%

15%

20%

25%

30%

35%

40%

 0 200 400 600 800 1000

A
v
er

ag
e

C
h
ec

k
p
o
in

t
O

v
er

h
ea

d

Buffer Capacity (bits)

No Optimizations
All Optimizations

Profiled
Ignore False Writes
Remove Duplicates

No WF Overflow
Ignore TEXT
Latest Chkpt

Figure 6: Pareto frontiers of checkpointing overhead vs. buffer size tradeoff
space for the Clank policy optimizations discussed in Section 3.2. Except for
All Optimizations and Profiled, at most one optimization is enabled at a time.
Profiled represents selecting the best performing policy optimization setting of
the 32 possible for each benchmark when computing the average. The dashed ver-
tical line represents the hardware requirement of a single Read-first Buffer entry.

7.2 Effects of Clank Policy Optimizations
Section 3.2 details five optimizations to Clank’s policy on when
to take checkpoints. The design space experiment from the previ-
ous section included looking at benchmark performance at all 32
possible Clank policy optimizations settings. In this section, we
look at the same data differently to assess the value of each policy
optimization. Figure 6 shows the Pareto frontiers for eight policy
optimization settings, from all optimizations off, to all on, to only
enabling one optimization at a time, to picking the best performing
set of optimizations for each benchmark (profiled). The results
show that the optimal policy depends on the benchmark and Clank
buffer size—e.g., All Optimizations is sometimes the worst de-
cision. Fortunately, energy harvesting devices use a single, static
binary, so it is reasonable to expect profiling to choose the optimal
policy setting for a program.

7.3 Hardware Overhead
As mentioned in Section 2.1, hardware overheads are just as im-
portant to the total run-time overhead of long-running programs on
harvested energy as are software overheads. To measure hardware
overheads, we employ our FPGA implementation based on the ARM
Cortex-M0+. We construct four Pareto-optimal hardware configura-
tions that have a similar number of total buffer bits: Read-first Buffer
(R); Read-first and Write-first buffers (R+W); the detector buffers plus
the Write-back Buffer (R+W+B); and all buffer types (R+W+B+A). We
implement each hardware configuration using Xilinx Vivado [43].
We run Vivado with default settings except for synthesis, where
we instruct Vivado to use BlockRAM for all memory (as opposed
to LUT ram). This provides overhead numbers comparable to full-
custom chip design—the target of Clank. For delay, we set the clock
frequency to 50 MHz and validate that all designs still meet timing.
To determine power overhead, we first attempted to use Xilinx’s
Power Analyzer tool with default settings, but all hardware config-
urations were within the noise of the tool. So, instead, we rely on
the area overhead in determining realistic power overhead figures.

236

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada M. Hicks

Total Overhead (x baseline)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

adpcm_dec adpcm_enc aes basicmath bitcount blowfish crc dijkstra fft limits* lzfx overflow*

Re-execution
Checkpoint

Hardware

1
6
,0

,0
,0

8
,8

,0
,0

8
,4

,2
,0

1
6
,8

,4
,4

1
6
,8

,4
,4

+
C

+
W

D
T

1
.6

5
7

1.0

1.1

1.2

1.3

1.4

1.5

1.6

patricia picojpeg qsort randmath* rc4 regress rsa sha stringsearch susan vcflags* average

Benchmark

1
6
,0

,0
,0

8
,8

,0
,0

8
,4

,2
,0

1
6
,8

,4
,4

1
6
,8

,4
,4

+
C

+
W

D
T1
.7

2
7

1
.7

1
3

1
.7

4
9

2
.7

1
7

2
.6

8
4

Figure 7: Total run-time overhead (i.e., increased energy usage, plus cycles spent checkpointing, plus cycles wasted on re-executing previously executed instructions) for
each benchmark and each configuration of Clank shown in Table 2 at 100ms average power-on time. C+WDT represents using the compiler and Performance Watchdog timer.
Benchmarks marked with an asterisk reliably complete execution within a single power cycle—all other benchmarks fail to execute on intermittent power without Clank.

R, W, WB, AP LUT FF Memory Avg SW

16, 0, 0, 0 2.46% 0.74% 0.18% 1.13% 33.75%
8, 8, 0, 0 2.35% 0.74% 0.18% 1.09% 27.32%
8, 4, 2, 0 2.14% 0.70% 0.21% 1.01% 15.66%

16, 8, 4, 4 3.40% 1.52% 0.26% 1.73% 8.03%
16, 8, 4, 4 (+C+WDT) 3.40% 1.52% 0.26% 1.73% 5.98%

Table 2: Hardware overheads and associated software run time overhead (av-
erage across all benchmarks) of four Clank buffer compositions. The comma-
separated numbers represent the number of Read-first, Write-first, Write-back,
and Address Prefix buffer entries, respectively. All buffer compositions are glob-
ally Pareto-optimal and have a similar number of total buffer bits.

This is likely pessimistic given Clank’s buffers and logic switch less
often than the processor’s logic.

Table 2 shows the hardware overheads associated with the base-
line and four Clank configurations (we include a fifth row is to give
context of best achievable performance with the most complex hard-
ware configuration). These results show that Clank performs well
(less than 6% software overhead) with a modest amount of extra
hardware—less than 2%. Another important consideration is that
Clank’s buffers are fully-associative. While this is tolerable for the
small buffer sizes used by Clank, this will greatly increase hardware
cost for buffers with many entries.

Clank has minimal effect on circuit timing because the buffers
are accessed in parallel (as shown in Figure 2), with feedback for
buffer updates occurring in parallel to exception generation. When
considering timing it is important to consider that most energy har-
vesting microcontrollers are under-clocked compared to what the
silicon can support to match memory access timing.

Figure 7 combines both the hardware and software overhead data
together to provide the total run-time overhead for the Clank config-
urations listed in Table 2 for each benchmark. Note that while the
Clank buffer configurations selected in Table 2 are globally Pareto
optimal, they may not be Pareto optimal for a given benchmark. For
example, bitcount and adpcm_decode have worse performance
when adding the Write-back Buffer, while the average result shows
that adding the Write-back Buffer is a huge boon to performance.

7.4 Checkpoints vs. Re-execution
In most previous work on idempotency, the few cycles between idem-
potency violations meant that re-execution overhead approached
zero. Clank, through pushing idempotency to non-volatile memory
and with its Write-back Buffer, opens the door for re-execution cost
to dominate the cost of checkpointing. In this experiment, we ex-
plore the tradeoff between checkpoint overhead and re-execution
overhead with respect to power cycle frequency.

For this experiment we use the same infrastructure and bench-
marks as the design space exploration experiment, except we simu-
late a near infinitely large Clank buffer configuration. The goal of
this experiment is to find the point where re-execution time domi-
nates total run-time overhead and find the value of the Performance
Watchdog timer that achieves the minimal total overhead. Figure 8
shows the results of this experiment. The results show that the op-
timal overhead is one that is split evenly between checkpointing
and re-execution. Not shown is that the minimum possible run-time

237

Clank: Architectural Support for Intermittent Computation ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

1.00

1.05

1.10

1.15

1.20

1.25

 0 1000 2000 3000 4000 5000

O
v
er

h
ea

d
 (

x
 b

as
el

in
e)

Performance Watchdog Value

Checkpoint overhead
Re-execution overhead

Combined overhead

Figure 8: Assuming infinite-sized Clank buffers, this figures shows the general
tradeoff between checkpoint overhead and re-execution overhead and how the
Performance Watchdog timer imposes a balance of those overheads to minimize
total overhead. The dashed vertical line indicates the minimum total run-time
overhead. The tradeoff between checkpoint and re-execution overhead holds in-
general, regardless of average power-on time.

overhead for Clank, regardless of buffer size, is directly related to the
average power-on time of the energy harvesting device. This makes
sense as re-execution overhead is dictated by the number of power
cycles and the optimal total overhead occurs when checkpointing
overhead matches re-execution overhead. Given this, it is possible
to calculate the optimal seed value in the ideal case of checkpoints
only being added due to the Performance Watchdog (as opposed to
program behavior).

7.5 Clank Compared to Previous Approaches
There are several previous approaches that allow programs to tolerate
intermittent computation. To put Clank’s performance into perspec-
tive with earlier work, we find a common benchmark fft and report
the total run-time overhead of several approaches. Given that re-
execution overhead is a critical factor in total run-time overhead, we
ensure the average power-on time is the same for each result. Table 3
shows the drastic performance improvement of Clank.

7.6 Clank on Mixed-volatility Systems
The previous section framed Clank with respect to earlier work that
also targeted wholly non-volatile systems. Clank also applies to
mixed-volatility systems as targeted by DINO [27]. DINO targets
systems similar to the FLASH-based systems of today that have
large amounts volatile SRAM where commonly accessed memory,
like the stack, is located. Non-volatile Flash, due to its speed and
power disadvantages, is used to store infrequently accessed values.

To explore Clank’s performance on mixed-volatility systems and
to compare to DINO, we make several small modifications to Clank
to allow it to adapt to large amounts of volatile RAM. First, we
restrict it to tracking accesses to the range of memory that is non-
volatile. Second, we add a register that tracks how deeply the stack
was written to during an idempotent section. This allows Clank to
efficiently backup the stack by only writing what has changed to the
checkpoint—since the stack is now volatile.

Approach Total Overhead Burden

DINO not ported programmer
Mementos on FRAM 117%–145% V measurement
Hibernus 38% V measurement
Hibernus++ 36% V measurement
Ratchet 32% compiler
Clank 6% architecture

Table 3: Comparison of total run-time overhead of several intermittent computa-
tion approaches for fft with 100ms average power-on times.

Composition Buffer Bits Overhead

DINO mixed N/A 170%
30 3%*

Clank mixed <100 3%*
<400 3%*

30 24%
Clank wholly NV <100 5%

<400 3%*
Table 4: Clank’s run-time overhead on the DS benchmark used in DINO’s evalu-
ation [27] at 100ms average power-on time. Memory composition is either mixed
(i.e., both non-volatile and volatile) or wholly non-volatile. Results marked with
an asterisk are dominated by re-execution overhead.

To compare run-time overheads, we download the DS benchmark
from DINO’s public GIT repository. Table 4 shows the overhead
of running DS on both a wholly non-volatile version and a mixed-
volatility version of Clank at three different buffer sizes (denoted
by number of bits). 30 represents having a sole Read-first Buffer
entry. The results indicate that Clank actually performs better with
some volatility. This result is due to the reduction in checkpoints
outweighing the increase in checkpoint size. Experiments with other
programs produce similar results.

8 ADDITIONAL RELATED WORK
Clank is related most closely to the areas of checkpointing for energy
harvesting/energy-harvesting devices. But, because Clank leverages
the notion of idempotence, we cover those related works as well.
Finally, we expand our coverage to research on general-purpose
recovery techniques.

8.1 Energy Harvesting Devices
As this research has taken place, a new class of devices has emerged
in tandem with the shrinking size and power requirements of today’s
microcontrollers. These new ultra-low power devices are challenging
traditional power requirements and seem to be ideal candidates for
energy harvesting techniques. Unfortunately, these techniques pro-
vide unreliable power availability which can result in computation
prematurely being cut off.

Checkpointing techniques have been proposed to better mitigate
this unreliable power availability, but often impose overheads in
the 100’s of percent [37]. Recent work has greatly improved on
these overheads by asking the programmer to manually decompose
programs into a set of tasks [27] with well-defined interfaces [5]
that turn checkpointing into lighter-weight selective data version-
ing. While this tradeoff of programmer effort for lower overhead
works well for small programs operating in predictable and regular
environments, it is not a general solution to intermittent compu-
tation. Another constraint these techniques have is the low speed
and high power draw of Flash-based non-volatile memories. As

238

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada M. Hicks

emerging non-volatile memories, such as FRAM, have moved closer
and closer to the CPU [39], new checkpointing techniques have
shown the improvements that can be seen with quicker non-volatile
memory [2, 18].

Unfortunately, correctly mixing volatile and non-volatile mem-
ory in a checkpointing system is non-trivial and error prone [36].
Early systems like Mementos [37] (and later approaches based on
Mementos [2, 18]) were later revealed to be incorrect, leading to
semantically impossible states [27].

8.2 Idempotency
We leverage the notion of idempotency when creating restartable
execution traces. Mahlke et al. represents the first use of idempotent
code sections, targeted at speculative processors [29]. Mahlke et al.
denotes these restartable code sections being broken by irreversible
instructions, which "modifies an element of the processor state which
causes intolerable side effects, or the instruction may not be executed
more than one time." The paper uses this notion to define how to
handle a speculatively executing instruction that throws an excep-
tion and shows how to leverage the idempotence property to begin
execution from the start of a section of code and still move along the
control flow graph correctly.

Kim et al. follows on from Mahlke et al. to show that idempotency
can be used to reduce the amount of data stored in speculative storage
on speculatively multi-threaded architectures [21]. They note that
there are idempotent references that are independent of the memory
dependencies that result in errors in non-parallelizable code.

Encore is a software-only system that leverages idempotency
for probabilistic rollback-recovery [13]. Targeted at systems using
probabilistic fault detection schemes, Encore provides a platform
to provide rollback recovery without dedicated hardware. The key
insight of Encore is probabilistic idempotence: the length of idem-
potent sections can be increased by ignoring infrequently executed
instructions that break idempotence. While this kills correctness, En-
core is able to drastically improve performance compared to previous
work, while preventing recovery just 3% of the time.

De Kruijf et al. presents an algorithm for identifying idempotent
regions of code and show that it is possible to segment a program
into entirely idempotent regions with minimal overhead [10]. In this
initial work, the authors focus on soft faults that do not mangle the
register state and note that registers are usually protected by other
means.

As a follow-on, de Kruijf et al. presents algorithms to consume the
idempotence information generated by the initial compiler pass [10]
and use it to better inform the register allocation step, allowing the
new compiler to extend the live range of registers [9]. Extending
the live range of register values that are live-in to the idempotent
section all the way to the end of the section creates a free checkpoint
that enables recovery from side-effect-free faults. In contrast, faults
on energy harvesting devices have side effects (e.g., they wipe the
registers), complicating recovery.

These earlier works on idempotency focus on static, compiler-
implemented analysis. Unfortunately, compiler alias/idempotency
analysis passes are limited to analyzing at the function level. This
severely limits the number of instructions between checkpoints and

results in significant run-time overheads [26, 40]. Much like concur-
rent efforts for desktop-class systems [33], we expose hardware’s
ability to cheaply and effectively perform dynamic alias/idempo-
tency analysis. Our results show the power of hardware to fit thou-
sands of instructions between checkpoints; so much that, for the first
time, re-execution overhead becomes the limiting factor.

8.3 Other Recovery Techniques
Early research into fault tolerance for computer systems presents
the idea of Backward Error Recovery (BER), "backing up one or
more of the processes of a system to a previous state which is hoped
is error-free, before attempting to continue further operation" [34].
Systems have often chosen checkpointing as a technique to enable
the recovery points needed for BER [12]. CATCH is an example
of a checkpointing system that leveraged the compiler to provide
transparent roll-back recovery [25].

The problem with checkpointing is it requires an understanding
of what state the process might overwrite in the future [34], often
forcing systems to pessimistically checkpoint all state [37]. Research
into deterministic replay noticed that by combining concepts of
checkpointing and logging, the high overhead of taking a checkpoint
could be reduced by logging loads [31]. This reduction in state
necessary to enable correct restart improves overhead.

Future work noted that in the presence of reliable memory, undo
logging could be used to record stores instead of loads [32]. Work
in architecture has revealed that about 1

3 of instructions tend to be
memory operations, 2

3 of which are loads and the rest stores. By
logging stores instead of loads a further reduction in overhead was
enabled.

The notion of memory idempotency leveraged by Clank and
Ratchet [40] builds upon this trend. Noting that not all of the stores
must be included in the undo log reduces the set of information that
must be stored. By logging the stores that alias with the loads that
occurred since the last checkpoint, during recovery the system can
undo the side-effects of the stores and cause the program to begin
from conceptually the same state as it did before the interrupted
execution.

9 CONCLUSION
We build Clank, a hardware-based system that automatically and
dynamically adapts programs to the intermittent model of execution
of harvested energy. Clank does this by leveraging the idea of idem-
potency, i.e., that a sequence of instructions is re-executable as long
as the values read during that sequence are preserved. Experimental
results show that Clank supports a wide range of programs with no
programmer intervention or major hardware modification. Lastly,
experiments show that Clank has total run-time overheads of as
little as 2.5%—near one tenth of the previous best approach, expos-
ing re-execution time as a dominant component of total run-time
overhead.

We show that Clank applies to two different memory composi-
tions. The key to this is idempotency—programs implicitly tell the
processor the state that they depend on to re-execute correctly. Idem-
potency extends beyond energy harvesting devices; what is possible
by applying our approach to desktop/server-class systems?

239

Clank: Architectural Support for Intermittent Computation ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

REFERENCES
[1] ARM. 2016. DesignStart for Processor IP. (2016). http://www.arm.com/products/

processors/designstart-processor-ip/
[2] D. Balsamo, A.S. Weddell, G.V. Merrett, B.M. Al-Hashimi, D. Brunelli, and L.

Benini. 2014. Hibernus: Sustaining Computation during Intermittent Supply for
Energy-Harvesting Systems. Embedded Systems Letters, IEEE 7 (2014), 15–18.
Issue 1.

[3] S. C. Bartling, S. Khanna, M. P. Clinton, S. R. Summerfelt, J. A. Rodriguez, and
H. P. McAdams. 2013. An 8MHz 75 uA/MHz zero-leakage non-volatile logic-
based Cortex-M0 MCU SoC exhibiting 100% digital state retention at VDD=0V
with <400ns wakeup and sleep transitions. In International Solid-State Circuits
Conference. 432–433.

[4] Michael Buettner, Richa Prasad, Alanson Sample, Daniel Yeager, Ben Greenstein,
Joshua R. Smith, and David Wetherall. 2008. RFID Sensor Networks with the Intel
WISP. In Conference on Embedded Network Sensor Systems (SenSys). 393–394.

[5] Alexei Colin and Brandon Lucia. 2016. Chain: Tasks and Channels for Reliable
Intermittent Programs. In Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). 514–530.

[6] John H. Davies. 2008. MSP430 Microcontroller Basics. Newnes, Newton, MA,
USA.

[7] Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. 2010. Re-
lax: An Architectural Framework for Software Recovery of Hardware Faults. In
International Symposium on Computer Architecture (ISCA). 497–508.

[8] Marc de Kruijf and Karthikeyan Sankaralingam. 2011. Idempotent Processor
Architecture. In Symposium on Microarchitecture (MICRO). 140–151.

[9] M. de Kruijf and K. Sankaralingam. 2013. Idempotent code generation: Imple-
mentation, analysis, and evaluation. In Code Generation and Optimization (CGO),
2013 IEEE/ACM International Symposium on. 1–12.

[10] Marc A. de Kruijf, Karthikeyan Sankaralingam, and Somesh Jha. 2012. Static
Analysis and Compiler Design for Idempotent Processing. In Conference on
Programming Language Design and Implementation (PLDI). 475–486.

[11] Samuel DeBruin, Bradford Campbell, and Prabal Dutta. 2013. Monjolo: An
Energy-harvesting Energy Meter Architecture. In Conference on Embedded Net-
worked Sensor Systems (SenSys). 18:1–18:14.

[12] Elmootazbellah N. Elnozahy and Willy Zwaenepoel. 1992. Manetho: Transparent
Roll Back-Recovery with Low Overhead, Limited Rollback, and Fast Output
Commit. IEEE Transactions on Computing 41, 5 (May 1992), 526–531.

[13] Shuguang Feng, Shantanu Gupta, Amin Ansari, Scott A. Mahlke, and David I.
August. 2011. Encore: Low-cost, Fine-grained Transient Fault Recovery. In
International Symposium on Microarchitecture (MICRO). 398–409.

[14] Matthew Hicks. 2016. MiBench port targeted at IoT devices. https://github.com/
impedimentToProgress/MiBench2. (2016).

[15] Matthew Hicks. 2016. Thumbulator: Cycle accurate ARMv6-m instruction set
simulator. https://github.com/impedimentToProgress/thumbulator. (2016).

[16] Matthew Hicks. 2017. Clank research artifact code repository. https://github.com/
impedimentToProgress/ClankRepo. (2017).

[17] Texas Instruments. 2015. MSP432P401R. (March 2015).
[18] H. Jayakumar, A Raha, and V. Raghunathan. 2014. QUICKRECALL: A Low

Overhead HW/SW Approach for Enabling Computations across Power Cycles in
Transiently Powered Computers. In Conferences on Embedded Systems and VLSI
Design. 330–335.

[19] J. M. Kahn, R. H. Katz, and K. S. J. Pister. 1999. Next Century Challenges:
Mobile Networking for Smart Dust. In Conference on Mobile Computing and
Networking (MobiCom). 271–278.

[20] S. Khanna, S.C. Bartling, M. Clinton, S. Summerfelt, J.A. Rodriguez, and H.P.
McAdams. 2014. An FRAM-Based Nonvolatile Logic MCU SoC Exhibiting
100% Digital State Retention at VDD= 0 V Achieving Zero Leakage With <
400-ns Wakeup Time for ULP Applications. Solid-State Circuits, IEEE Journal
of 49, 1 (Jan 2014), 95–106.

[21] Seon Wook Kim, Chong liang Ooi, Rudolf Eigenmann, Babak Falsafi, and T. N.
Vijaykumar. 2006. Exploiting reference idempotency to reduce speculative storage
overflow. ACM Transactions on Programming Languages and Systems 28, 5
(2006), 942–965.

[22] Daniel Kroening and Mitra Purandare. 2016. EBMC: The Enhanced Bounded
Model Checker. (2016). http://www.cprover.org/ebmc/

[23] Silicon Labs. 2016. EFM32 Zero Gecko 32-bit Microcontroller. (2016).
http://www.silabs.com/products/mcu/32-bit/efm32-zero-gecko/Pages/efm32-
zero-gecko.aspx

[24] Yoonmyung Lee, Gyouho Kim, Suyoung Bang, Yejoong Kim, Inhee Lee, P. Dutta,
D. Sylvester, and D. Blaauw. 2012. A modular 1mm3 die-stacked sensing platform

with optical communication and multi-modal energy harvesting. In Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE International.
402–404.

[25] C.-C.J. Li and W.K. Fuchs. 1990. CATCH-compiler-assisted techniques for
checkpointing. In Symposium on Fault-Tolerant Computing (FTCS). 74–81.

[26] Q. Liu, C. Jung, D. Lee, and D. Tiwari. 2016. Compiler-Directed Lightweight
Checkpointing for Fine-Grained Guaranteed Soft Error Recovery. In International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC). 228–239.

[27] Brandon Lucia and Benjamin Ransford. 2015. A Simpler, Safer Programming
and Execution Model for Intermittent Systems. In Conference on Programming
Language Design and Implementation (PLDI).

[28] Kaisheng Ma, Yang Zheng, Shuangchen Li, K. Swaminathan, Xueqing Li, Yong-
pan Liu, J. Sampson, Yuan Xie, and V. Narayanan. 2015. Architecture exploration
for ambient energy harvesting nonvolatile processors. In High Performance Com-
puter Architecture (HPCA). 526–537.

[29] Scott A. Mahlke, William Y. Chen, Roger A. Bringmann, Richard E. Hank, Wen-
mei W. Hwu, B. Ramakrishna Rau, and Michael S. Schlansker. 1993. Sentinel
scheduling: a model for compiler-controlled speculative execution. ACM Transac-
tions on Computer Systems 11 (1993), 376–408.

[30] A. Mirhoseini, E.M. Songhori, and F. Koushanfar. 2013. Idetic: A high-level
synthesis approach for enabling long computations on transiently-powered ASICs.
In International Conference on Pervasive Computing and Communications (Per-
CoM). 216–224.

[31] Satish Narayanasamy, Gilles Pokam, and Brad Calder. 2005. BugNet: Con-
tinuously recording program execution for deterministic replay debugging. In
International Symposium on Computer Architecture (ISCA). 284–295.

[32] M. Prvulovic, Zheng Zhang, and J. Torrellas. 2002. ReVive: cost-effective ar-
chitectural support for rollback recovery in shared-memory multiprocessors. In
International Symposium on Computer Architecture (ISCA). 111–122.

[33] Qingrui Liu and Changhee Jung. 2016. Lightweight Hardware Support for Trans-
parent Consistency-Aware Checkpointing in Intermittent Energy-Harvesting sys-
tems. In Symposium on Non-Volatile Memory Systems and Applications (NVMSA),
Vol. 5.

[34] B. Randell, P. Lee, and P. C. Treleaven. 1978. Reliability Issues in Computing
System Design. Comput. Surveys 10, 2 (June 1978), 123–165.

[35] Benjamin Ransford, Shane Clark, Mastooreh Salajegheh, and Kevin Fu. 2008.
Getting Things Done on Computational RFIDs with Energy-aware Checkpointing
and Voltage-aware Scheduling. In Conference on Power Aware Computing and
Systems (HotPower). 5–5.

[36] Benjamin Ransford and Brandon Lucia. 2014. Nonvolatile Memory is a Broken
Time Machine. In Workshop on Memory Systems Performance and Correctness
(MSPC). Article 5, 3 pages.

[37] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: System
Support for Long-running Computation on RFID-scale Devices. In Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). 159–170.

[38] Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis. Foundations
and Trends in Programming Languages 2, 1 (2015), 1–69.

[39] Texas Instruments. MSP430FR59xx Datasheet. Texas Instruments. http://www.ti.
com/lit/ds/symlink/msp430fr5969.pdf

[40] Joel Van Der Woude and Matthew Hicks. 2016. Intermittent Computation without
Hardware Support or Programmer Intervention. In Symposium on Operating
System Design & Implementation (OSDI). 17–32.

[41] Yu-Chi Wu, Pei-Fan Chen, Zhi-Huang Hu, Chao-Hsu Chang, Gwo-Chuan Lee,
and Wen-Ching Yu. 2009. A Mobile Health Monitoring System Using RFID
Ring-Type Pulse Sensor. In Conference on Dependable, Autonomic and Secure
Computing (DASC). 317–322.

[42] Xilinx. 2016. Xilinx Virtex-7 FPGA VC709 Connectivity Kit. (2016). http:
//www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html

[43] Xilinx. 2016. Xilinx Vivado Design Suite. (2016). https://www.xilinx.com/
products/design-tools/vivado.html

[44] Hong Zhang, Jeremy Gummeson, Benjamin Ransford, and Kevin Fu. 2011. Moo:
A Batteryless Computational RFID and Sensing Platform. Technical Report UM-
CS-2011-020. Department of Computer Science, University of Massachusetts
Amherst, Amherst, MA. http://www.cs.umass.edu/publication/details.php?id=
2114

[45] Wei Zhang, Marc de Kruijf, Ang Li, Shan Lu, and Karthikeyan Sankaralingam.
2013. ConAir: Featherweight Concurrency Bug Recovery via Single-threaded
Idempotent Execution. In Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 113–126.

240

http://www.arm.com/products/processors/designstart-processor-ip/
http://www.arm.com/products/processors/designstart-processor-ip/
https://github.com/impedimentToProgress/MiBench2
https://github.com/impedimentToProgress/MiBench2
https://github.com/impedimentToProgress/thumbulator
https://github.com/impedimentToProgress/ClankRepo
https://github.com/impedimentToProgress/ClankRepo
http://www.cprover.org/ebmc/
http://www.silabs.com/products/mcu/32-bit/efm32-zero-gecko/Pages/efm32-zero-gecko.aspx
http://www.silabs.com/products/mcu/32-bit/efm32-zero-gecko/Pages/efm32-zero-gecko.aspx
http://www.ti.com/lit/ds/symlink/msp430fr5969.pdf
http://www.ti.com/lit/ds/symlink/msp430fr5969.pdf
http://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html
http://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
http://www.cs.umass.edu/publication/details.php?id=2114
http://www.cs.umass.edu/publication/details.php?id=2114

	Abstract
	1 Introduction
	2 Clank Overview
	2.1 Design Principles
	2.2 Why Hardware?

	3 Clank Hardware
	3.1 Key Components
	3.2 Optimizations
	3.3 Output Commit Problem

	4 Clank Compiler
	4.1 Checkpoint
	4.2 Start-up
	4.3 Bridging the Semantic Gap

	5 Verification
	6 Implementation
	7 Evaluation
	7.1 Clank Design Space
	7.2 Effects of Clank Policy Optimizations
	7.3 Hardware Overhead
	7.4 Checkpoints vs. Re-execution
	7.5 Clank Compared to Previous Approaches
	7.6 Clank on Mixed-volatility Systems

	8 Additional related work
	8.1 Energy Harvesting Devices
	8.2 Idempotency
	8.3 Other Recovery Techniques

	9 Conclusion
	References

