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ABSTRACT
Homomorphic Encryption (HE) enables secure cloud offload pro-
cessing on encrypted data. HE schemes are limited in the complexity
and type of operations they can perform, motivating client-aided
implementations that distribute computation between client (unen-
crypted) and server (encrypted). Prior client-aided systems optimize
server performance, ignoring client costs: client-aided models put
encryption and decryption on the critical path and require com-
municating large ciphertexts. We introduce Client-aided HE for
Opaque Compute Offloading (CHOCO), a client-optimized system
for encrypted offload processing. CHOCO reduces ciphertext size,
reducing communication and computing costs through HE parame-
ter minimization and through “rotational redundancy”, a new HE al-
gorithm optimization.We present Client-aided HE for Opaque Com-
pute Offloading Through Accelerated Cryptographic Operations
(CHOCO-TACO), an accelerator for HE encryption and decryp-
tion, making client-aided HE feasible for even resource-constrained
clients. CHOCO supports two popular HE schemes (BFV and CKKS)
and several applications, including DNNs, PageRank, KNN, and K-
Means. CHOCO reduces communication by up to 2948× over prior
work. With CHOCO-TACO client enc-/decryption is up to 1094×
faster and uses up to 648× less energy.

CCS CONCEPTS
• Security and privacy→Cryptography; •Computer systems
organization→ Parallel architectures; • Software and its engi-
neering→ Designing software.
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1 INTRODUCTION
Data-producing client devices have a long history of decreasing in
size, energy storage, and processing capability [10, 16, 25, 35, 43, 49].
The sophistication of computations on sensor data is simultaneously
scaling up, often using complex machine learning (ML). Compute
offloading, e.g., “inference as a service”, is a way to overcome device
limitations and meet rising computation demands. Clients send
data to be processed by a robust server that may house aggregated
datasets or a collection of MLmodels. Centralization makes systems
easy to evolve, requiring server updates only, and avoiding the need
to re-distribute large applications (such as Deep Neural Network
models) to many fielded clients. Data privacy is the main barrier to
realizing these benefits of offload computing: offloading exposes
sensitive user data to a shared, potentially untrusted offload server.

Recent work offers several options for privacy-preserving compu-
tation, including trusted execution environments (TEEs)[34, 51, 68],
differential privacy (DP), multi-party computation (MPC)[2, 11, 60],
and homomorphic encryption (HE) [6, 8, 20, 22]. Of these, HE pro-
vides the strongest client security guarantees [8]. Unfortunately,
complete HE programs are inefficient and highly limited in the type
of computation that can be performed[8, 20, 22, 29, 31]. Instead,
client-aided, hybrid HE-MPC protocols have seen recent success,
mostly for DNN inference offloading [36, 41, 47, 55], by only using
HE to apply linear operations to encrypted user data (e.g. convolu-
tion). Obfuscated intermediate results are then sent to the client,
which applies non-linear operations (e.g. activation) using MPC.

Hybrid HE-MPC is promising, but currently infeasible for
resource-constrained clients. Existing solutions optimize HE-MPC
to benefit the offload server in both performance and privacy. These
systems use large ciphertexts (MBs) and require large amounts of
client-server comunication; e.g., GBs for a DNN inference. Prior
work neglects to optimize HE-MPC’s high compute and communi-
cation cost at the client.

This work proposes Client-aided HE for Opaque Compute Of-
floading (CHOCO), a new approach to client-privacy-preserving
computation that minimizes client costs. CHOCO is an alterna-
tive to local compute, with its resource limitations and inability
to use centralized ML models and data. CHOCO is also an alter-
native to the extreme client compute and communication costs of
server-optimized HE-MPC. CHOCO reduces client costs by orders of
magnitude over existing HE-MPC protocols, availing even resource-
constrained client devices of the benefits of privacy-preserving
compute offload.

CHOCO starts with client-aided HE, performing encrypted lin-
ear operations on the server and plaintext non-linear operations on
the client. CHOCO minimizes HE parameters to minimize cipher-
text communication costs, and introduces rotational redundancy, a
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new encrypted permutation algorithm that reduces communication
and resource costs. A unique facet of client-aided HE motivates
CHOCO: under typical HE assumptions encryption and decryp-
tion happen once per computation, but in client-aided HE (and
HE-MPC) encryption and decryption happen repeatedly on the
critical path. We quantitatively show that the prohibitively high
time and energy cost to encrypt and decrypt becomes the client’s
primary computation bottleneck. We propose Client-aided HE for
Opaque Compute Offloading Through Accelerated Cryptographic
Operations (CHOCO-TACO), a hardware accelerator for encryption
and decryption that virtually eliminates their time cost to the client.

Our evaluation of a complete hardware-software implementa-
tion demonstrates the benefits of CHOCO for two popular HE
schemes (CKKS and BFV) and for several applications that are
not limited to ML, many of which have no prior encrypted im-
plementation. Directly comparing to seven prior HE and/or MPC
approaches, CHOCO reduces client communication costs by or-
ders of magnitude, with improvements ranging from 14×–2948×.
CHOCO-TACO’s hardware acceleration improves active client com-
pute time by 123.27× compared to software[1] and 54.3× com-
pared to HEAX[59]. Our results show that with CHOCO, privacy-
preserving collaborative inference offloading performs comparably
to local inference in time and energy, while avoiding the limitations
of both local compute and full encrypted offload. We also show the
first encrypted implementation of distance-based algorithms and
PageRank, demonstrating their feasibility. Our main contributions
are:

• CHOCO, a client-optimized system for privacy-preserving
computation enabling encrypted computing for resource-
constrained devices.
• Rotational redundancy, an encrypted permutation algorithm
that minimizes client-server communication.
• CHOCO-TACO, a specialized hardware accelerator for client-
side HE primitives.
• A collection of CHOCO-based encrypted workloads (DNNs,
distance-based algorithms, PageRank) — several of which
with no prior encrypted implementation — that improve
client costs by orders of magnitude compared to HE-MPC
while benefitting from model centralization.

2 BACKGROUND & MOTIVATION
CHOCO is a client-privacy-preserving, encrypted computing sys-
tem based on client-aided homomorphic encryption (HE). In an HE
application, a client device offloads data to a server, which applies
encrypted Single Instruction Multiple Data (SIMD) operations on
those data using HE algorithms.
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Figure 1: Homomorphic Encryption allows for computation
directly on encrypted vectors of data.

2.1 Homomorphic Encryption
Homomorphic encryption is a class of cryptography schemes that
allow computing on encrypted data. For messages𝑚1 and𝑚2, an
operation ⊕, its homomorphic variant ⊕′, and encrypt/decrypt func-
tions 𝐸𝑛𝑐 () and 𝐷𝑒𝑐 (), the homomorphic operation on encrypted
data produces a result that, when decrypted, equals the operation
applied to unencrypted data:

𝐷𝑒𝑐 (𝐸𝑛𝑐 (𝑚1) ⊕′ 𝐸𝑛𝑐 (𝑚2)) =𝑚1 ⊕𝑚2 (1)
Modern HE schemes [7, 13, 23] are based on ring learning with

errors (RLWE). RLWE schemes encrypt a vector of values as the co-
efficients of a polynomial using modular arithmetic and by adding
random noise. The HE operations in Table 1 manipulate vector
ciphertexts, producing the encrypted result of an element-wise
operation applied to the input, as Figure 1 shows. Each operation
increases the ciphertext’s noise level, which must remain within a
noise budget. Some operations (multiplication) add a large amount
of noise while others (addition) add little. Noise growth limits arith-
metic depth. Exhausting the noise budget renders data undecrypt-
able. An HE system must schedule operations to limit noise growth.

HE can refresh a ciphertext to eliminate noise, replenishing its
budget. Fully Homomorphic Encryption (FHE) refreshes noise via
specialized bootstrapping operations. This approach avoids decryp-
tion but comes at an enormous cost for vector HE schemes [7, 26]. In
contrast, SomewhatHomomorphic Encryption (SHE) [13, 23, 36, 58]
refreshes noise by decrypting and re-encrypting at known intervals.

Table 1: The operations available in HE. All operations are
performed with a ciphertext, i.e. a plaintext multiply de-
notes the multiplication of a plaintext with a ciphertext.

Operation Complexity Noise Growth

Encrypt 𝑂 (𝑁 × log𝑁 × 𝑟 ) N/A

Decrypt 𝑂 (𝑁 × log𝑁 × 𝑟 ) N/A

Plaintext Add 𝑂 (𝑁 × 𝑟 ) Small

Ciphertext Add 𝑂 (𝑁 × 𝑟 ) Small

Plaintext Multiply 𝑂 (𝑁 × log𝑁 × 𝑟 ) Moderate

Ciphertext Multiply 𝑂 (𝑁 × log𝑁 × 𝑟2) Large

Ciphertext Rotate 𝑂 (𝑁 × log𝑁 × 𝑟2) Small

HE Schemes. HE schemes describe how to encrypt, decrypt, and
operate on data. CHOCO targets the SHE variants of the two
most prevalent vector HE schemes. Namely, the Brakerski/Fan-
Vercauteren (BFV) scheme[7, 23] and the Cheon/Kim/Kim/Song
(CKKS) scheme[13]. Both are included in SEAL[58], a highly-
optimized HE library. The schemes work differently, but share
many subcomputations. We focus on CHOCO for BFV here, but
CHOCO works for CKKS with few additions, which we call out
explicitly.

An HE scheme is defined by a set of parameters that dictate
security, computational complexity, noise budget, arithmetic depth,
and ciphertext size. Table 2 summarizes these parameters for BFV
and CKKS. The polynomial modulus, 𝑁 , is a power of two typically
between 211 and 215. A fresh ciphertext with 𝑠 = 2 is two poly-
nomials (vectors) with 𝑁 coefficients (elements) each. A smaller
coefficient modulus, 𝑞, is more secure but accommodates less noise;
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Table 2: HE Parameters for the BFV Scheme [7, 23, 39]

Parameter Name Description

𝑁 Polynomial Modulus # of coeffs per ciphertext.

𝑞 Coeff. Modulus Max value of ciphertext coefficient

𝑘 # Coprime Moduli Number of moduli residues in RNS

{𝑘 } Coprime Mod. Bits Bits per coprime modulus

𝑤 Word Size Bytes per encrypted coefficient

𝑡 Plaintext Modulus Max value of plaintext coeff. (BFV only)

𝑠 Ciphertext Components # polynomials per ciphertext

practical 𝑞 values have hundreds of bits. Operating directly on
such large values is inefficient and HE uses the Residual Number
System (RNS) [4] to represent numbers using 𝑘 smaller, co-prime
moduli. SEAL uses up to 60-bit moduli, which fit in a 64-bit word.
BFV supports integer operations modulo a plaintext modulus, 𝑡 .
Within a fixed 𝑞, a larger 𝑡 permits larger values but less noise.
CKKS supports fixed-point operations and has no plaintext modu-
lus. Parameter selection is application-dependent. It must allow for
sufficiently large quantized (BFV) or scaled (CKKS) plaintext values
and sufficient noise. Table 3 shows CHOCO’s parameter settings
and their associated ciphertext sizes.

Table 3: HE Parameter Selections: All parameters are chosen
to satisfy at least 128-bit security.

Label Scheme 𝑁 log2 𝑞 {𝑘 } log2 𝑡 Size (Bytes)

A BFV 8192 175 {58,58,59} 23 262,144

B BFV 4096 109 {36,36,37} 18 131,072

C CKKS 8192 140 {60,60,60} N/A 262,144

HE Algorithms. The HE operations in Table 1 perform encrypted
SIMD arithmetic on large vectors and are combined to create HE
algorithms e.g., encrypted convolution. An HE algorithm’s per-
formance depends on the packing of its inputs into ciphertexts.
Batching algorithms optimize for throughput and utilize SIMD pro-
cessing directly. They pack a ciphertext vector with a single element
(e.g. pixel) from many inputs (e.g. pictures) [22, 32]. In turn, they
are highly inefficient for few inputs. Packed algorithms optimize
for latency, packing one or more full inputs in a single cipher-
text. They use permutations to align and operate on specific ele-
ments [8, 28, 36]. Consequently, packed algorithms quickly suffer
from fragmentation as vectors are rearranged with each operation.
HE Applications. While FHE theoretically supports arbitrary
functions (by mapping to polynomial approximations and boot-
strapping at high computational cost [7, 20, 26]), practical applica-
tions use HE operations directly and are arithmetic-depth-limited.
Early work on HE applications, particularly for DNN inference,
operate on encrypted data only [8, 20, 22, 32]. To avoid intermedi-
ate client communication, they adapt network architectures and
approximate activations with linear functions. These techniques ac-
cumulate noise quickly and require large HE parameters, resulting
in multi-MB ciphertexts which are ultimately more costly to pro-
cess and communicate. Client-aided alternatives [6, 36, 55] offload
the linear convolution and fully-connected layers to an HE server,
sending intermediate results to the client to perform non-linear

operations. Client-aided HE has several benefits. For DNNs, Client-
aided HE supports unmodified networks with arbitrary activation
functions. Plaintext client operations also repack the ciphertext
vectors and refresh the noise budget, mostly eliminating the arith-
metic depth bound and obviating large, costly HE parameters. These
benefits, however, increase the cost to the client. The client must
frequently decrypt, re-encrypt, and communicate data. These client
costs are the key impediment to client-aided HE. CHOCO takes a
new approach, optimizing client-aided HE to minimize client costs
through HE algorithm design and hardware acceleration.

2.2 Motivation for Client-Aware Optimization
Encrypted offloading of complete programs often requires expen-
sive bootstrapping operations, infeasibly large parameters, and
inefficient algorithm adaptations to obey the limitations of HE
[8, 20, 28, 31]. Client-aided implementations circumvent these limi-
tations. Unfortunately, client-aided HE imposes a high burden on
client devices, motivating CHOCO’s client-optimized design.

Client-aided HE requires the client to frequently communicate,
decrypt and re-encrypt intermediate results to refresh the noise bud-
get, repack vectors, and perform plaintext non-linear operations.We
evaluate client costs for representative DNN workloads using a soft-
ware client-aided prototype. This system (which Section 3 describes
in detail) uses Gazelle’s server-optimized HE algorithms [36] and
SEAL’s [58] default parameters. We measured image classification
time for four DNNmodels running on the client using TFLite[1]. We
then repeat the measurements using our Client-aided HE system.
We find that HE client costs in both communication and computa-
tion scale with DNN complexity. Server costs are consistently high.
Existing, complementary work aims to reduce server costs with
HE algorithms [6, 8, 36, 41, 47, 55] and hardware [59, 63, 64, 70]
but neglects client costs. In contrast, CHOCO’s primary goal is to
reduce the client’s time and communication costs.

The main client compute costs are encryption and decryption.
Figure 2 breaks down client compute time: >99% of client compute

Figure 2: Characterization of active client compute time for
single image DNN inference. Default SEAL encrypted infer-
ence and local TFLite versions bound versions using limited
hardware support from HEAX [59] & FPGA [46].
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is in HE operations, not application operations (i.e., activations &
quantization). The plot also shows that existing hardware and FPGA
support, which primarily focuses on polynomial multiplication &
Number Theoretic Transform (NTT) [46, 59, 63, 70], is insufficient
to address client costs. We computed the best-case speedup with
hardware by scaling our software runtime of supported operations
by the reported speedups in HEAX [59] and a state-of-the-art en-
cryption FPGA [46]. Software profiling reveals that polynomial
multiplication and NTT account for only 60% of the total time in
SEAL’s encryption and decryption operations. Even using server-
focused hardware [59, 63, 70] for these operations, client encryption
and decryption time far exceeds local compute time.

A key insight in CHOCO is that in the client-aided model, client-
side encryption and decryption are not an insignificant one-time
cost; instead, they define the client’s critical path, demanding opti-
mization and acceleration.

3 CLIENT-OPTIMIZED CLIENT-AIDED HE
CHOCO is a client-optimized system model and implementation
for client-aided HE offloading, partitioning work between the client
and the offload device (e.g., layer-wise for DNNs) as depicted in
Figure 3. We introduce rotational redundancy, a new HE algorithm
for permuting a vector of encrypted data, which allows for smaller
parameter selections and correspondingly smaller ciphertexts.

Untrusted offload server
running encrypted lin. alg.

HE ML models optimized
w/ Rotational Redundancy

Client & server exchange encrypted data:
Client: sends enc. results of non-lin. ops.

Server sends enc. results of lin. ops.

Trusted client w/
sensitive data

CHOCO-TACO
Hardware-accelerated HE
encryption & decryption

Untrusted deployment environment

Figure 3: System architecture for CHOCO. A resource-
constrained sensor device and an untrusted offload device
communicate via ciphertexts to collaboratively and securely
process sensitive data.

3.1 Security Assumptions
The CHOCO model assumes a resource-constrained client device
and a more computationally capable, but untrusted, shared offload
server. Typical of HE systems, we assume a “semi-honest adversary
model” [36, 41, 48] for the offload device: the adversary may be
curious about the input data, but the system is trusted to faithfully
perform the specified operations. In contrast to computationally
expensive MPC protocols, CHOCO does not make any attempt
to hide data on the offload device from the client, including pre-
trained ML model data. Rather, CHOCO prioritizes optimizations
exclusively for the client, for both performance and privacy. It uses
HE alone to protect sensitive client data generated by IoT devices.
If server data privacy is strictly required, CHOCO’s HE algorithm
optimizations and hardware support also provide client benefits in
HE-MPC protocols.

3.2 Selecting Efficient HE Parameters
Choosing appropriate HE parameters is a key challenge to en-
crypted application development [19, 20]. Parameter selection de-
termines ciphertext size and noise budget, which together influ-
ence computation, encryption, decryption, and communication
costs in client-aided HE. An application can have the same security
level with different parameters. Thus, for a required security level,
CHOCO selects parameters to minimize ciphertext size through
aggressive 4-bit input quantization (BFV), optimal operation sched-
uling via the state-of-the-art EVA HE compiler [19] (CKKS), and
novel encrypted algorithm optimization (both).

3.3 HE Algorithm Optimization
CHOCO implements several HE algorithms for encrypted lin-
ear algebra that support the HE applications described in Sec-
tion 5. CHOCO’s algorithms are inspired by existing algorithms in
Gazelle [36] and LoLa [8] and target the SEAL HE library [58] for
BFV and CKKS (via EVA [19]). In CHOCO, all encrypted computa-
tion executes on the offload server.

As Section 2.1 introduces, an HE algorithm must assemble data
into a polynomial (vector) to be encrypted and computed on. As
proposed in Gazelle and LoLa, packed HE algorithms require per-
mutations to rearrange input elements in an encrypted vector. En-
crypted permutations align encrypted values so that subsequent
addition and multiplication operations implement an intended lin-
ear transformation, such as matrix multiplication or strided con-
volutions [36]. Because arbitrary permutations require a series of
encrypted rotations and multiplications [28], they quickly con-
sume the limited noise budget of a ciphertext. The depletion of a
ciphertext’s noise budget causes it to become undecryptable. Thus,
arbitrary encrypted permutations are a severe problem for systems,
like CHOCO, that prioritize small ciphertexts.

Masking Multipy

3 4 0 0

0 0 3 4

0 0 1 1

1 2 3 4 1 2

1 2 3 4 1 2

1 2 3 4

3 4 1 2

0 0 1 2

1 2 0 0

Add

Rotate << 2

(A) (B)

Rotate >> 2 Rotate << 2

Masking Multiply
1 1 0 0

Redundant EntriesEncrypted Operations

Encrypted Vectors Window of Interest

Figure 4: Encrypted windowed rotation using arbitrary per-
mutation (A) and rotational redundancy (B). Rotational re-
dundancy is a novel way of packing input values before en-
cryption that allows for fewer encrypted operations.

Rotational Redundancy. CHOCO avoids accumulating excessive
noise by introducing rotational redundancy to perform some en-
crypted permutations. The technique targets windowed rotation
permutations that rotate the elements in a sub-range of a vector,
wrapping elements around from the top of the sub-range to the
bottom and vice versa. This is in contrast to standard HE rotations
(Table 1) that rotate an entire ciphertext. Figure 4 (A) shows an
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implementation of windowed rotation using a standard HE per-
mutation that requires both masking multiplies and full ciphertext
rotations. In comparison, Figure 4 (B) shows the same windowed
rotation performed using rotational redundancy.

Rotational redundancy is a novel way of packing input vectors
before encryption such that values set to wrap around during a
windowed rotation are appended on either side of the window of
interest. Appending these redundant values avoids expensive mask-
ing multiplications and instead requires a single, relatively low-cost
encrypted rotation to achieve a complete windowed rotation. This
novel technique packs vectors with the unique goal of reducing
the number of encrypted operations required to run a computation.
This goal is particularly relevant to client-aided HE because the
client decrypts, unpacks, and repacks ciphertexts after each set of
encrypted, linear operations. Any values outside the window of in-
terest can simply be discarded from the plaintexts by the client and
new values can be explicitly packed for the next operation. The goal
of rotational redundancy is a contrast to LoLa[8] and other prior
work that pack vectors for multi-operation compatibility on the
server. Without client interaction, the output of one encrypted vec-
tor operation must be packed appropriately for the next encrypted
operation to receive as input.

Table 4: Noise Budget: The initial noise budget of a cipher-
text varies with different parameter selections. The noise
budget remaining after a single rotation versus an arbitrary
permutationwithmasking is also contrasted. Rotational Re-
dundancy eliminates masking multiplies and therefore has
noise behavior synonymous with just a single rotation.

Parameters Noise
𝑁 , log2 𝑡 , {𝑘} Initial Post-Rotate Post-Permute

8192, 20, {58,58,59} 68 66 42
8192, 23, {58,58,59} 62 59 33
8192, 28, {58,58,59} 52 50 18
4096, 16, {36,36,37} 33 31 12
4096, 18, {36,36,37} 29 26 5
4096, 20, {36,36,37} 25 22 0

Although the optimization reduces the density of useful input
values in a ciphertext, the amount of redundancy required depends
on the amount of rotation required, which is typically a small
fraction of the total vector size. Rotational redundancy trades the
use of more space in an encrypted vector for a slower depletion of
ciphertext noise. The optimization thus enables the use of better
HE parameter selections that permit smaller ciphertexts; Table 4
quantifies these benefits. Even within the same ciphertext size,
dictated by 𝑁 and 𝑘 , the use of rotational redundancy allows for
a larger BFV plaintext modulus 𝑡 . This increased capacity enables
larger quantization bitwidths and more encrypted accumulation.
Recall that the same security guarantees can be achieved with
different parameter selections (Table 3) and vectors are packed
before encryption. Therefore, rotational redundancy has no impact
on the security guarantee of the ciphertext. Ultimately, the benefit
of rotational redundancy in reducing ciphertext size is witnessed
by the client as greatly reduced computation and communication.

ApplyingRotational Redundancy inCHOCO.We applied rota-
tional redundancy in all of our applications that required windowed
rotations, and it provided substantial benefits. We implemented sev-
eral DNN image classifiers (Section 5) in which a ciphertext vector
is the concatenation of a vector per channel. Convolution requires
windowed rotation within each channel. Based on the amount of
rotation, CHOCO packs each channel of an image with sufficient
redundancy to keep values aligned throughout the encrypted con-
volution. CHOCO then stacks the redundant channel vectors into
evenly-spaced, power-of-two-sized slots in the final ciphertext vec-
tor. With this redundant, stacked packing of channels, all elements
can be properly aligned for convolution without any arbitrary per-
mutations or masking multiplies. Alignment requires only simple
encrypted rotations. Using rotational redundancy, convolution is
achieved with optimal multiplication efficiency - a single multipli-
cation of the weights with the inputs.

Algorithmic optimization, including rotational redundancy, and
CHOCO’s client-focused HE parameter selection provide a substan-
tial reduction in costs to the client. For encrypted DNN computa-
tions, CHOCO computes on ciphertexts with only 2 prime residues,
which is a 50% reduction in ciphertext size compared to SEAL’s
default with 𝑁 = 8192. Half of this improvement — eliminating
an entire RNS residue — comes from rotational redundancy alone.
As Section 5 shows, ciphertext size reduction results in substantial
client benefits.

4 HARDWARE ACCELERATION
CHOCO-TACO is a hardware accelerator for homomorphic encryp-
tion and decryption operations, designed for client-aided HE. Recall
from Figure 2 that accelerating NTT/INTT and polynomial multi-
plication alone insufficiently reduces the dominant client costs of
encryption and decryption. CHOCO-TACO, instead, accelerates all
of the component sub-operations of HE encryption and decryption,
virtually eliminating these client costs.

4.1 HE Encryption
𝐸𝑛𝑐 ( [𝑃0, 𝑃1],𝑚) = ( [Δ𝑚 + 𝑃0𝑢 + 𝑒1]𝑞, [𝑃1𝑢 + 𝑒2]𝑞)

𝑤ℎ𝑒𝑟𝑒 𝑢
$← 𝑅2 𝑎𝑛𝑑 𝑒1, 𝑒2← 𝜒

(2)

CHOCO-TACO targets asymmetric encryption and decryption in
BFV and CKKS. Equation 2 [39] is BFV’s encryption kernel, where
𝑚 is a message to encrypt, Δ𝑚 is the encoded message, 𝑃0, 𝑃1 are
public keys, 𝑢, 𝑒1, 𝑒2 are vectors of randomly sampled numbers,
and []𝑞 denotes modulation by the coefficient modulus 𝑞. Figure 5
diagrams the RNS implementation of equation 2 from SEAL [58].
The algorithm first encrypts the value zero by combining randomly
sampled vectors with the public encryption keys via polynomial
multiplication and addition. The algorithm then encrypts Δ𝑚 by
adding it to the encrypted zero to produce the final ciphertext.

4.2 Accelerator Architecture
CHOCO-TACO is a straightforward, parallel, pipelined hardware
mapping of the sub-computations used in BFV and CKKS encryp-
tion and decryption. Figure 6 shows the full encryption and de-
cryption accelerator, including datapath arcs concretely illustrating
the BFV functions. The design’s main modules are Pseudo-Random
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Figure 5: Pipeline of the BFV encryption operation to sam-
ple random noise, perform polynomial arithmetic, scale the
input message, and ultimately create a ciphertext of two
polynomials, each in RNS form. [39, 70]

Number Generation, Polynomial Multiplication, Polynomial Ad-
dition, Modulus Switching, and Message Encoding. Each module
contains memories and functional blocks. Within each block, Pro-
cessing elements carry out a computation on individual coefficients.
Both functional blocks and processing elements are pipelined and
replicated for data parallelism.
Pseudo-Random Number Generation. CHOCO-TACO has a
dedicated PRNG module that implements the Blake3 [50] cryp-
tographic hash. The CHOCO-TACO configuration in Figure 6, re-
quries 565 MB/s of random values at peak and 201 MB/s on average,
drawn from either a ternary or normal distribution and represented
in RNS form. We modified SEAL’s software to also use Blake3 in-
stead of Blake2, providing consistent performance increases to both
CHOCO-TACO and the baseline.
Polynomial Multiplication. CHOCO-TACO includes a module
for polynomial multiplication of two polynomials, (i.e., 𝑢 and each
public key). Like prior work [46, 59, 63, 70], the module converts
inputs to NTT form, computes element-wise dyadic products, and
converts results back to a polynomial via INTT. CHOCO-TACO uses
iterative NTT and INTT modules [46, 57, 59], performing pipelined,
SIMD memory accesses, following a butterfly dataflow pattern.

PolynomialAddition andModulus Switching.The polynomial
addition module performs coefficient-wise addition, passing results
to the modulus switching module. Modulus switching runs a se-
ries of modular multiplications and reductions, which removes the
key-prime residue from the RNS encoding, resulting in 𝑘 − 1 poly-
nomials. Modulus switching is the only operation that requires
interaction across RNS residues, which precludes straightforward
data parallelism across residues.
Message Encoding. The encode/decode module includes a pair of
small NTT and INTT blocks. The encoder computes each coefficient
modulus using the plaintext modulus 𝑡 , and reorders coefficients
into plaintext slots. The hardware scales and converts the encoded
message into RNS with 𝑘 − 1 residues only. A polynomial addition
block adds the result to the 𝑘 − 1 intermediate residues of 𝑐0.
Memory. Each module includes embedded SRAM to store in-
puts and ouputs. All modules except NTT accept a stream of in-
puts/outputs. The optimal size of their SRAM buffers is empirically
found to be sub-1kb (Section 4.4). NTT and INTT algorithmically
operate on a full polynomial, requiring their SRAM to match the
full polynomial size, e.g., 64kB with 𝑁 = 8192 and 𝑘 = 3. We model
memories using Destiny, ported for single-reader, single-writer
64-byte data accesses.
Parallelism. CHOCO-TACO exploits pipelining and data paral-
lelism of independent RNS residues and coefficients. CHOCO-TACO
processes a polynomial’s RNS residues in parallel in multiplication
and addition, using full replicas of these operations’ modules. RNS
data parallelism eliminates the need to buffer large random vectors
throughout an execution. Instead, 𝑢, 𝑒1, and 𝑒2 are immediately
consumed and distributed to all residues in parallel as they are
generated. Figure 6 shows RNS residue parallelism through layer-
ing. Within an RNS layer, thousands of coefficients per polynomial
afford data parallelism. A key accelerator design parameter is the
degree to which each module exploits this data parallelism with
repeated processing elements. Within power and area limitations,
CHOCO-TACO can grow a module’s blocks, sizing memories to
match, to enable higher coefficient processing throughput.
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4.3 Encryption Operation Example
BFV encryption generates an encrypted "zero" which is then added
to the scaled message to produce the final ciphertext. To start,
the accelerator samples 𝑁 bytes from the PRNG according to a
ternary distribution and stores them in the NTT working buffer
as 𝑢. Polynomial multiplication with the first public key can then
begin. The NTT block produces the NTT of𝑢 in place, and the value
becomes the input to the dyadic product block. Both ciphertext
components (𝑐0 and 𝑐1) use the same NTT encoding of 𝑢, allowing
it to remain in the NTT working buffer throughout encryption. The
other input to the dyadic product block comes from the accelerator’s
input buffer, which software initializes with the NTT-transformed
residues of 𝑃1. Dyadic multiply produces the element-wise product
of𝑢 and 𝑃1 in the INTT working buffer, which the INTT block then
processes in place.

In parallel with the multiplication of 𝑢 and 𝑃1, the PRNG starts
producing 𝑒2, a sequence of 8-byte, normally distributed samples.
These are sent through a small buffer to the cipher addition module.
The results of the completed INTT operation are then streamed in
as the second input to this module. Element-wise addition is per-
formed, and the results are sent, via another small streaming buffer,
through the modulus switching module as 𝑐1. As one component
of the final ciphertext, 𝑐1 is then output to the CPU’s host memory.

Meanwhile, the accelerator begins encoding the input message
and producing 𝑐0 in the polynomial multiplication module. Comput-
ing 𝑐0 reuses the NTT of𝑢, performing element-wise multiplication
with public key 𝑃0. The accelerator samples a sequence of normally-
distributed 8-byte 𝑒1 values (like 𝑒2) and adds them element-wise
with the INTT transformed product of 𝑢 and 𝑃0. The result is a
partially-computed version of 𝑐0 which again undergoes modulus
switching. The last step is the polynomial addition of the encoded
input message with 𝑐0. This final sum, together with 𝑐1, completes
the final ciphertext.

4.4 Design Space Exploration
With abundant parallelism available, it is important to optimally
allocate resources within the modest constraints of IoT client de-
vices. We explore this design space of the CHOCO-TACO hardware
using a custom simulation infrastructure. The hardware model cap-
tures the effects of parallelism and pipelining and estimates time,
power, area, and energy. We implemented individual hardware com-
ponents in RTL and synthesized them with Cadence Genus in a

Figure 7: Design space for encryption hardware with respect
to power, area, and energy. Parallelism tradeoffs are avail-
able in multiple dimensions at each stage of encryption.

generic 45nm technology node. To model memory, we used Des-
tiny [53], modeling SRAMs using its aggressive wire technology,
optimized for read energy with 8-word, 64-byte, memory accesses.
The access latency of our energy-optimized memories limits clock
frequency, and we clocked the design at 100 MHz.

We quantified the tradeoff of area, time, and power, with a sys-
tematic exploration of the CHOCO-TACO hardware design space.
Using our simulator, we swept across 31,340 different architectural
configurations. For each configuration, the study assessed power
(leakage & average dynamic), area, energy and compute time for a
single encryption operation. Results from the design exploration
are presented in Figure 7. Overall, the design space shows signif-
icant variation in power and area, with a marked Pareto Frontier
along which power, time, and area balance. We selected an oper-
ating point for CHOCO-TACO by limiting power to 200 mW, and
choosing the smallest design that had a run time within 1% of the
optimal time (and energy). The chosen configuration has 19.3 mm2

area and consumes .1228 mJ to perform a single encryption in .66
ms for 𝑁 = 8192 and 𝑘 = 3. Figure 6 illustrates this configuration.

4.5 Scalable Benefits of CHOCO-TACO
We evaluated the benefit in time and energy of CHOCO-TACO for
encryption compared to a software encryption baseline and found
that hardware support provides substantial improvements across
a range of HE parameter settings. For larger 𝑁 , NTT and INTT
working buffers are expanded to hold all 𝑁 elements of a single
polynomial. More "layers" are added for larger 𝑘 values. Pipeline
logic and sub-1kb streaming SRAM buffers within a single CHOCO-
TACO layer remain the same regardless of parameter selection
because they operate element-wise.

Results are shown in Figure 8 compared to a software baseline
of 100 SEAL encryption operations running on our IMX6 hardware
(Section 5.2). We omit baseline data for the (𝑁 ,𝑘)=(32768,16) param-
eter setting because the IMX6 board does not have enough memory
to encrypt data with these parameters. Notably, this configuration
with its prohibitive memory requirements is not uncommon in
existing encrypted inference solutions [8, 20].

For the CHOCO (8192, 3) configuration, CHOCO-TACO provides
an improvement over the software baseline of 417× in time and
603× in energy. The data also show a performance scaling trend:
With hardware support, encryption time scales up directly with 𝑁 ,
while software scales up with both 𝑁 and 𝑘 . The scalability benefits

Figure 8: Logarithmic comparison of time & energy across
varying encryption parameters (𝑁 , 𝑘) between the CHOCO-
TACO architecture presented in Figure 6 and a 528MHz IoT
device without dedicated hardware support.
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come from parallelism in the accelerator architecture: Replicated
modules process 𝑘 independent RNS residues in parallel.

Overall, CHOCO-TACO provides up to 1094× and 648× savings
in time and energy, respectively, with consistent gains across all
HE parameter settings.

4.6 Decryption Support
BFV decryption is operationally very similar to encryption. Equa-
tion 3 shows decryption mathematically.

𝐷𝑒𝑐 (𝑠𝑘, [𝑐0, 𝑐1]) =
[ ⌊

𝑡

𝑞
[𝑐0 + 𝑐1𝑠𝑘]𝑞

⌉]
𝑡

(3)

Figure 6 shows the flow of control and data for decryption with
black lines. Decryption requires a few additional hardware com-
ponents, but reuses the existing polynomial multiplication and
addition modules to process 𝑐1, the secret key 𝑠𝑘 , and 𝑐0. After addi-
tion, these intermediate results undergo base conversion and error
correction. At that point the message need only be decoded. Decod-
ing uses the message encodingmodule to performNTT and take the
plaintext modulus 𝑡 of each coefficient. The result is the decrypted
message, which the hardware conveys to the CPU’s memory.

Again, we compare hardware acceleration to our IMX6 SEAL
baseline. Decryption sees less benefit from hardware acceleration
than encryption, with only a 125× speedup over software, taking
.65 ms for the (8192,3) CHOCO parameter selection. This decrease
in speedup is contributed to limited parallelism because decryption
operates on only a single polynomial at this parameter selection.

4.7 CKKS Support
Leveraging the underlying similarities in both encryption schemes,
most importantly the RNS polynomial representation of cipher-
texts, the BFV hardware presented in Figure 6 can be modified to
support CKKS encryption and decryption as well. Namely, the same
hardware modules are utilized in both schemes, but for CKKS an
additional datapath has to be added to route intermediate results
through the modules in a different order.

Software profiling of the CKKS functions reveals that 59% of
CKKS encoding and 46% of decoding are NTT and INTT operations,
respectively. These portions can also be accelerated via the existing
hardware. The remaining portions of CKKS encoding and decoding
require processing of complex conjugates. We leave these parts
un-accelerated in software.

Overall, 95% (56%) of CKKS encrypt & encode (decrypt & decode)
execution time is supported by the previously presented hardware
with an additional datapath. For these portions we assume speedups
proportional to those witnessed for BFV. Using this methodology,
we find that hardware support for CKKS reduces encrypt & encode
time by 18× from 310 ms to 18 ms and decrypt & decode by 2.3×
from 37 ms to 16 ms over our IMX6 client baseline. Additional
speedup could be expected if additional modules were incorporated
to cover the CKKS operations in their entirety.

5 EVALUATION
We evaluate CHOCO, comparing directly to priorwork and showing
substantial benefits from architectural acceleration and algorithmic

improvements. The main result is that CHOCO reduces communi-
cation costs by up to three orders of magnitude over state-of-the-art
privacy-preserving computation solutions. CHOCO-TACOprovides
an additional 28.6× speedup for client compute over limited client-
side support in existing FPGA solutions [46, 59]. The benefits apply
to both BFV and CKKS and a variety of applications. We ultimately
show that CHOCO’s client-focused optimizations, largely neglected
by prior work, provide significant end-to-end benefits.

5.1 Applications
We fully developed several client-aided encrypted computing appli-
cations. We built four neural networks in BFV that are comparable
to or larger than encrypted DNNs from prior work [8, 20, 22, 36]. Us-
ing CKKS, we implemented distance-based algorithms — K-Nearest
Neighbors (KNN) and K-Means clustering — and PageRank. We are
aware of no prior implementation of the latter applications, and we
developed several algorithmic variants to study their efficiency.
Deep Neural Networks. We implemented four image classifica-
tion DNN inference models in BFV, which we list in Table 5. Consis-
tent with existing literature , the LeNet variants operate on MNIST
data [40], and the other, larger networks classify CIFAR-10 im-
ages [38]. We trained the DNNs on unencrypted data using standard
quantization-aware training in Tensorflow 2.2.0 [1]. Each experi-
ment utilizes client-aided HE to run inference on a single image. All
linear layers are performed over encrypted data on the server using
HE, while the client computes all non-linear operations locally on
plaintext data. Encrypted intermediate results are communicated
at layer boundaries. As mentioned in Section 2.1, this client-aided
implementation allows for unmodified networks with unbounded
depth that would normally be prohibited in a server-only encrypted
inference implementation.

Table 5: Neural Networks used for system evaluation

Network # Layers MACs % Acc. Mod. Sz. (MB) Comm.

Cnv FC Act Pl (×106) Float 8b 4b Float 4b (MB)

LeNetSm[24] 2 1 2 2 0.24 99.0 94.9 93.8 0.02 0.01 0.66

LeNetLg [69] 2 2 3 2 12.27 98.7 97.2 96.4 8.22 2.07 2.6

SqzNet [17] 10 0 10 3 32.60 76.5 74.0 15.0 0.57 0.16 13.8

VGG16 [42] 13 2 14 5 313.26 70.0 66.0 21.0 56.40 14.13 22.2

PageRank. We implemented encrypted PageRank algorithms in
both BFV and CKKS. Exploiting similarities in ciphertext construc-
tion, this demonstrates the generality of encrypted algorithms to
both schemes. The PageRank algorithm relies completely on linear
algebra operations that can run entirely in encrypted space. For
continuous encrypted operation, we use alternating sparse and
dense dot-product representations from LoLa [8]. In addition to
continuous encrypted execution, we also consider a client-aided
version of the algorithm in which the client periodically decrypts
and re-encrypts ciphertexts to refresh their noise budget.
Distance-based Algorithms. We implemented K-Nearest Neigh-
bors (KNN) and K-Means clustering, both using encrypted distance
calculations in CKKS. We modify their Euclidean distance kernel
to use a simple summation of squared differences, eliminating the
square root and enabling offloaded calculation on an HE server.
The client handles only classification data and newly collected (e.g.
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Figure 9: Encrypted vector packing for distance calculations.

new point in KNN) or computed (e.g. updated K-Means centroids)
coordinate data. The client sends new coordinate data to the server,
which runs encrypted distance calculations. The client decrypts the
results and performs algorithm-specific non-linear operations, i.e.
min(). K-Means iterates client-server interaction until convergence.
In KNN, classifying a new point requires just a single interaction. A
key advantage of HE for distance-based algorithms is that the server
can store and query against points from many clients, providing
the client with results unavailable to a local computation.

For KNN and K-Means, encrypted distance calculations require
one-to-many interactions between a point or centroid, and all other
points. For each pairwise calculation, all dimensions of the two
points interact and are accumulated. This follows the same access
pattern as matrix-vector multiplication. We implement five variants
of the distance calculation kernel, inspired by the matrix-vector
products from LoLa [8]. As shown in Figure 9, point(dimension)-
major packs vectors with a single point (dimension). For small in-
puts, stacked variations include multiple input points (dimensions)
in one ciphertext. With the exception of the collapsed algorithm,
which packs both its input and output as point-major, point-major
inputs produce dimension-major outputs and vice versa.

5.2 Methodology
Consistent with our target of resource-constrained IoT clients, we
perform baseline client evaluations for software running on an
NXP IMX6 evaluation kit with an ARM Cortex-A7 CPU at 528MHz,
32/128 kB of L1/L2 cache, and 4 GB DDR3L SDRAM. We estimate
power and energy using an average power characterization (run-
ning Dhrystone) of 269.5 mW from the manufacturer’s Application
Note AN5345 [66]. Server results are collected from an Intel Xeon
processor running at 2.50 GHz. We follow the methodology from
Section 2 to estimate acceleration from existing FPGA implementa-
tions and use the hardware configuration from Figure 6 to model
CHOCO-TACO acceleration. We compute time and energy savings
for client computation by counting the number of encryption and
decryption operations necessary to run the application. Counts are
then multiplied by the hardware cost of each operation as presented
in Sections 4.4 (BFV) and 4.7 (CKKS).

5.3 CHOCO Reduces Communication
The algorithmic optimizations presented in Section 3.3, including
rotational redundancy, minimize noise growth to enable smaller
parameter selections and correspondingly smaller ciphertexts. As
discussed in Section 2.1, all of the networks included in Table 5 can
be evaluated in CHOCO using ciphertexts with no more than 8192
elements (𝑁 = 8192). This is in contrast to existing HE solutions
[8, 20, 22, 36, 41, 55] which commonly use ciphertexts of 16 or even

Figure 10: Comparison of total communication require-
ments to perform single image inference via the Lenet-
5-Large (MNIST) and SqueezeNet (CIFAR-10) implementa-
tions in CHOCO and comparable networks in several state
of the art privacy-preserving DNN protocols.

32 thousand elements. By eliminating unnecessary prime residues,
CHOCO further reduces ciphertext size by another 50% over SEAL’s
default parameters at 𝑁 = 8192.

CHOCO’s reduction of both ciphertext size and quantity di-
rectly translates to improvements in server runtime, client re-
sponsibility (Figure 12), and communication overhead. Figure 10
demonstrates the communication improvement over several state-
of-the-art privacy-preserving DNN protocols. Comparisons are
evaluated between the CHOCO implementations of Lenet-5-Large
and SqueezeNet and comparable networks performing MNIST and
CIFAR-10 single-image inference, respectively. They include com-
munication for both offline preprocessing and online computation.
Although the networks evaluated in this work are substantially
larger (more model parameters) in all cases, CHOCO outperforms
existing protocols by up to three orders of magnitude. In the worst
cases, many MPC protocols manipulate single values, not vectors,
already giving an advantage to vector HE schemes, like the ones
CHOCO targets. Even compared to LoLa[8], a non-client-aided
encrypted inference protocol with complete HE offloading, bene-
fits are witnessed because of the smaller parameter selections and
more efficient ciphertext packing. For the most closely comparable
protocol, namely Gazelle [36], CHOCO still provides a nearly 90×
improvement in communication overhead. This reduction dramati-
cally reduces end-to-end latency, especially for IoT devices often
communicating over low bandwidth channels such as Bluetooth.

5.4 CHOCO Optimizes for Clients
Within a single encrypted algorithm, there can be many variations
and alternate approaches. Prioritization of the client versus the
server can lead to divergent implementation decisions. These trade-
offs are evaluated using the five variations of distance calculations
presented in Section 5.1. Figure 11 presents results for several rep-
resentative dimension-point pairs in the context of KNN.

For small dimensions the stacked algorithms allow more data to
be packed, communicated, and processed with fewer ciphertexts.
This high ciphertext utilization produces favorable results across all
three components (server time, client time, and communication) of
the collaborative algorithm. However, for a client-optimized imple-
mentation it is clear that the collapsed point-major implementation
is the best choice. Unlike the other algorithms which trade high
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Figure 11: Performance tradeoffs for encrypted distance cal-
culations with varying vector packing and encrypted opera-
tions using CHOCO. Results include server execution time,
client execution time, and communication.

ciphertext utilization in the input for low utilization in the output
ciphertext(s), i.e. few input ciphers for many output ciphers and
vice versa, the collapsed algorithm both produces and consumes
high-utilization ciphers. This is because it employs an extra round
of masking multiplications and accumulations to combine results
from several ciphers before communicating just a single cipher.
This approach places extra work on the offload server, and would
therefore likely be disregarded in a server-optimized system. How-
ever, from the client perspective it dramatically reduces the number
of ciphertexts being communicated and processed.

5.5 CHOCO-TACO Accelerates Client Compute
We evaluate our hardware setup running single-image inference.
We compare it to both the software optimized baseline and the
baseline equipped with limited hardware support from existing
FPGA solutions. The software optimized baseline includes the algo-
rithmic optimizations of CHOCO, namely rotational redundancy,
and already demonstrates an average 1.7× improvement over the
SEAL baseline software with standard permutations and default
parameter selections. A baseline that runs local inference on the
ARM Cortex-A7 CPU using TensorFlow Lite (TFLite) software is
also included as a lower-bound. Figure 12 reports the resulting
execution times, breaking down the total time into its constituent
components. We assume that the time for client computation and
quantization, including ReLu and Pooling, stays the same across
all implementations. The data show an average speedup of 121×
over the optimized software baseline for computations on the client,
which is consistent with the 417× and 125× speedups observed for
encryption and decryption, respectively.

The data clearly show that encryption and decryption are the
client bottleneck. Even with limited hardware support for poly-
nomial multiplication and NTT, these cryptographic operations
for a client-aided protocol are still 14.5× slower on average than
computing the full network locally with TF Lite.

Comprehensive hardware acceleration for encryption and de-
cryption is imperative. CHOCO-TACO recognizes this and uses an
optimal allocation of compute resources, minimal buffering, tightly
integrated memories, and multiple levels of parallelism to address
the remaining 40% of computation. With the acceleration provided
by CHOCO-TACO, the active client computation time in client-
aided encrypted DNN inference becomes 2.2× faster on average
than local inference.

Figure 12: Characterization of active computation time
on the client for DNN inference, extended from Figure 2.
CHOCO includes software optimizations only. TACO in-
cludes comprehensive hardware acceleration.

5.6 CHOCO-TACO Enables General Algorithms
With the configuration depicted in Figure 6, CHOCO-TACO sup-
ports encryption and decryption for parameters sets with 𝑁 ≤ 8192
and 𝑘 ≤ 3. In the following evaluation, centered on our client-aided
PageRank, we find that this limitation on parameter selection does
not limit application selection.

Unlike DNN implementations which require communication
at pre-determined locations because of non-linear ReLu opera-
tions, the client-aided PageRank algorithm presents optional op-
portunities for communication after each iteration. We exploit this
flexibility to determine client-optimal implementations and their
corresponding parameter selections. Recognizing the correlation
between communication and client responsibility, we use commu-
nication as our evaluation metric.

For a given number of total PageRank iterations, we allow that
total to be achieved via any suitable combination of fully encrypted
iteration sets. For example, a total of 24 iterations can be achieved
entirely in encrypted space with a single set of 24, or it can be done
with two smaller sets of 12 iterations each and a round of com-
munication in between. In the extreme case, communication, and
corresponding noise refresh, is performed between each iteration.
With less frequent communication, one must use larger parameters
to achieve more continuous encrypted iterations, and vice versa.

Figure 13 shows the total communication (y-axis) necessary to
achieve a variety of total PageRank iterations (x-axis). Each dot
represents a unique combination of encrypted iteration sets, i.e. 1
set of 24, 2 sets of 12, etc. It is found that CKKS can achieve the
same encrypted iteration set with smaller parameters, compared to
BFV. This leads to reduced communication across the board when
using CKKS.

Although the PageRank algorithm allows for continuous en-
crypted operation with larger parameter sets, it is found that fre-
quent communication of smaller ciphertexts is consistently fa-
vorable for both schemes. The client-aided implementations are
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Figure 13: Client-aided encrypted PageRank implementa-
tions in both BFV and CKKs with varying frequency of com-
munication between iterations

counter-intuitively more efficient than the fully-offloaded server-
only alternatives. These optimal client-aided combinations, high-
lighted with red and gold diamonds in Figure 13, are synonymous
with the combinations supported by CHOCO-TACO because they
use parameter sets with 𝑁 ≤ 8192 and 𝑘 ≤ 3. Hardware support
for these parameter sets thus provides a synergy, not a limitation,
with client-aided encrypted algorithm optimization.

This conclusion is further recognized in both the DNN and
distance-based algorithms as well. The LoLa results in Figure 10
show very high communication costs even though it is a non-
client aided protocol. Furthermore, all of the CHOCO DNN and
distance-based implementations, and their corresponding results,
are achieved with hardware compatible parameters.

5.7 CHOCO is Competitive w/ Local Compute
To understand the end-to-end benefits, we study a reference im-
plementation of CHOCO that communicates between the client
and the offload server using 10 mW Bluetooth communication at
22 Mbps[45]. Timing and energy results follow analytically from
the data communication requirements, included in Table 5, of each
network. End-to-end time and energy results are compared against
the TFLite baseline in Figure 14. In a full implementation communi-
cation time begins to dominate. For low-power, low-data-rate proto-
cols such as Bluetooth, communication presents a 24× average time
overhead compared to local compute. However, in small devices
battery preservation often outweighs the need for fast compute. In
energy consumption, CHOCO is competitive with the TFLite base-
line. For VGG, the largest and most complex of the DNNs evaluated,
CHOCO earns up to a 37% end-to-end energy savings.

This data shows that intentional client-aware optimizations are
essential to bring encrypted computation to resource-constrained
IoT clients. Although communication remains a key bottleneck in
time and energy, the algorithmic optimizations of CHOCO reduce
this cost by up to three orders of magnitude. Furthermore, our
hardware support accelerates the entire encryption and decryption
computation, driving its cost down, eliminating it as the bottleneck,
and making CHOCO feasible. For the first time, this dramatic reduc-
tion makes client time and energy competitive with local inference,
even displaying the possibility of end-to-end gains.

Figure 14: Client execution time & energy for single image
inference via local compute using TFLite software and of-
floaded compute using a full hardware-software reference
implementation of CHOCO-TACO using Bluetooth commu-
nication.

5.8 Workload Dependent Benefits of CHOCO
Different workloads see different benefit from the CHOCO model,
due to the varying rates of computation and communication re-
quired by each workload. Using CHOCO with Bluetooth commu-
nication, VGG sees substantial performance and energy improve-
ments, while SqueezeNet sees a break-even or loss. We performed
a microbenchmarking study to evaluate this influence of workload
structure. We constructed workloads with a variety of different
convolutional DNN layers of different dimensions. The structure of
the convolutional layers varies the number of multiply-accumulate
(MAC) operations performed by each layer, as well as the amount
of communication required to send and receive the ciphertexts that
contain each layer’s inputs.

Figure 15: Communication vs Computation for Convolution
Layers of a DNN with different parameters

Figure 15 shows the results of this study, plotting these mi-
crobenchmark convolution points, as well as each of the layers
from VGG and from SqueezeNet. For the microbenchmark points,
we varied image size from 2 to 32 by powers of two, varied im-
age channel values from 32 to 512 by powers of 2. Following the
implementations of SqueezeNet and VGG16, we used filter sizes
of 3 or 1. Many different layer configurations will use the same
number of MACs (x-axis) but vary in the amount of communication
required to send and receive intermediate results (y-axis). The data
show that workloads like VGG (which are likely to see its same
energy benefits) are ones that maximize the number of MACs per
MB of communication. One way to do this is to use larger filters,
as those contribute to more MACs, more classification power, but
have no impact on communication with the client. Workloads like
SqueezeNet (which are likely to see a break-even or overhead in
costs) are ones that have fewer MACs per MB of communication.
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These data provide two main benefits in interpreting CHOCO.
First, the data show that a quick analytical comparison of com-
putation (MACs) versus communication (MBs) per layer helps an
application designer decide if their DNN application will see an
energy benefit in the CHOCO client-aided model. Second, the data
point to an opportunity for future work, optimizing DNN structure
to maximize compute per communication for the CHOCO model.

6 RELATEDWORK
Several classes of work relate to CHOCO: low-power ML, HE hard-
ware, hardware security, and privacy-preserving ML.
Privacy Preserving DNN Inference.ML offloading requires data
privacy. Recent work optimized server-centric metrics, including
usability [20, 22], training [48], throughput (via batching) [6, 22, 32],
latency (via packing) [8, 20, 36, 61], network complexity [6, 36, 41],
performance [59, 63, 70], and model privacy [2, 11, 36, 41, 47, 55, 60].
Unlike prior work that focused on the server, to the best of our
knowledge, CHOCO is the first work optimizing for resource-
constrained client devices in client-aided HE. Client-aided HE is
quickly favorable over complete HE offload because it can circum-
vent fundamental depth and operation limitations of HE without
employing expensive bootstrapping operations. Furthermore, as
shown in Sections 5.3 and 5.6, frequent communication of smaller ci-
phertexts results in substantially less communication overall while
gaining the crucial ability to pack and repack ciphertext vectors for
efficient encrypted computation.
HE Hardware Support. Some prior work used hardware to accel-
erate kernels for lattice-based cryptography schemes [21, 44, 57, 62],
including current state-of-art HE schemes [7, 13, 23, 26]. Others
accelerate HE directly [37, 46, 55, 59, 64, 70], focusing primarily
on hardware NTT and server-side operations. As we show in Fig-
ure 2, NTT acceleration helps but is insufficient. Our work is the
first to comprehensively optimize client-side HE cryptographic prim-
itives, which is crucial in client-aided HE. Furthermore, unlike
prior work targeting large, high-power GPUs [3, 18, 54] and FPGAs
[46, 59, 63, 70], CHOCO-TACO empirically optimizes for a small
ASIC implementation, directly addressing the need for low-power,
energy-efficient operation at the client device.
Hardware Security. Recent architectures offer privacy-preserving
offloaded computation. Data privacy techniques include Trusted
Execution Environments (TEEs) [34, 51, 68], as well as memory
access control and obfuscation [33, 56, 65, 67]. While these prior
techniques are vulnerable to side channel attacks, HE is not. Data
remain provably hidden while offloaded. HE is favorable thanks
to its strong, proven privacy guarantee. Moreover, client-aided HE
welcomes interactions between the client and server, e.g. to provide
proprietary services, that are not allowed by TEEs.
Low-Power ML Acceleration. Client DNN inference perfor-
mance is improving through software [1, 52] and hardware op-
timization [12, 30]. One alternative to HE for private inference is to
simply outfit IoT devices with ML acceleration and compute locally.
However, as we argue in Section 2, local compute imposes tight
resource limits and requires maintaining (i.e., updating) models
on a potentially very large number of client devices, rather than
an offload server’s centralized model. In contrast, CHOCO targets

encrypted offload of ML (and other) computations, imposing few
restrictions on centrally managed models. Furthermore, CHOCO’s
support straightforwardly generalizes beyond ML: outfitting a de-
vice with a HE cryptographic acclerator, rather than specialized
DNN hardware, enables participating in any client-aided, encrypted
computation, not only ML. Encrypted applications research is an
emerging area [5, 9, 29, 31, 48, 71, 72]; CHOCO-TACO benefits
existing and future applications.

7 CONCLUSION AND FUTUREWORK
CHOCO is a client-optimized system for collaborative encrypted
compute offloading. We showed that minimizing client costs re-
quires new HE algorithms (rotational redundancy) and client-
friendly selection of HE parameters. Owing to the ability to use
smaller ciphertexts, CHOCO reduces communication costs — a dom-
inant end-to-end cost — by three orders of magnitude over existing
client-aided privacy-preserving schemes. The pivot to client-focus
puts encryption and decryption on the critical path, necessitating
our CHOCO-TACO hardware accelerator for HE encryption primi-
tives beyond the partial hardware support of prior work. Compared
to software, CHOCO-TACO’s hardware yields 417× speedup and a
603× energy savings for encryption. CHOCO enabled development
of several full-scale, real-world DNN inference applications, as well
as several new HE applications — KNN, KMeans, and PageRank —
that have not been explored in the literature previously. CHOCO’s
support for client-aided HE thus makes possible efficient new appli-
cations of encrypted offload computing and enables participation
from IoT clients.
Future Work. The future is bright for encrypted computing as
system support matures. While FHE was once many orders of
magnitude too slow to be practical [26], the performance gap has
narrowed to the point of practicality with new work on hardware
acceleration, such as F1 [64] (which was concurrent with our work).
Moving forward, our community is likely to see improvements on
many fronts. Client-aided HE, as CHOCO enables, evades many
downfalls of complete vector HE offload (e.g. expensive bootstrap-
ping, operation limitations, and fragmented vector packing) and
makes possible the participation of edge devices in encrypted com-
puting. Partitioning encrypted workloads between client and server
andmanaging communication of encrypted data remains a key com-
pilers, software, architecture, and networks challenge for future
systems. New schemes lead to new applications by eliminating the
cost of bootstrapping [14, 73] and enabling more complex oper-
ations [15, 27], but new schemes require new hardware support
and a restructuring of applications to fit these schemes. Hardware
for existing operations is likely to continue to improve in energy,
performance, and scale. Together, these changes mark an exciting
shift toward the practical utility of encrypted computing.
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