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Abstract  
Exploiting parallelism to accelerate a computation typically in-
volves dividing it into many small tasks that can be assigned to 
different processing elements. An efficient execution schedule for 
these tasks can be difficult or impossible to determine in advance, 
however, if there is uncertainty as to when each task’s input data 
will be available. Ideally, each task would run in direct response 
to the arrival of its input data, thus allowing the computation to 
proceed in a fine-grained event-driven manner. Realizing this 
ideal is difficult in practice, and typically requires sacrificing 
flexibility for performance. 

In Anton 2, a massively parallel special-purpose supercomput-
er for molecular dynamics simulations, we addressed this chal-
lenge by including a hardware block, called the dispatch unit, that 
provides flexible and efficient support for fine-grained event-
driven computation. Its novel features include a many-to-many 
mapping from input data to a set of synchronization counters, and 
the ability to prioritize tasks based on their type. To solve the 
additional problem of using a fixed set of synchronization coun-
ters to track input data for a potentially large number of tasks, we 
created a software library that allows programmers to treat An-
ton 2 as an idealized machine with infinitely many synchroniza-
tion counters. The dispatch unit, together with this library, made it 
possible to simplify our molecular dynamics software by express-
ing it as a collection of independent tasks, and the resulting fine-
grained execution schedule improved overall performance by up 
to 16% relative to a coarse-grained schedule for precisely the 
same computation. 

Categories and Subject Descriptors  C.1.3 [Processor Archi-
tectures]: Other Architectural Styles—data-flow architectures; 
C.1.4 [Processor Architectures]: Parallel Architectures; C.3 
[Special-Purpose and Application-Based Systems]; D.1.3 [Pro-
gramming Techniques]: Concurrent Programming—parallel 
programming 

General Terms Performance, Design 

Keywords Event-driven, task scheduling, parallel, dispatch unit, 
Anton 2 

1. Introduction 
Many scientific computations naturally decompose into small 
tasks that can be assigned to different processors when the appli-
cation is parallelized. Examples of such tasks include modifying 
individual positions and velocities within a particle simulation, or 
updating the local state variables of a Navier-Stokes fluid dynam-
ics model. When the number of tasks per processor is large and 
the data is readily available, the tasks can be efficiently executed 
in a series of tight loops, each of which evaluates a single type of 
task for many different data inputs. The overhead of invoking 
these loops is small compared to the total compute time. When 
there are few tasks per processor, however, or when the tasks 
must wait for the arrival of data from other processors, the over-
heads of communication latency and synchronization can become 
a significant portion of the overall computation time, and it is 
much more challenging to keep the processors busy with useful 
work. 

The problem of scheduling tasks to minimize these overheads 
can be divided into three parts: determining when a task is ready 
to run, deciding where a task should be executed, and choosing an 
order for the tasks that are ready. Previous work on task schedul-
ing has primarily concentrated on software and hardware mecha-
nisms for dynamically assigning tasks to cores within a chip 
multiprocessor (e.g., [7,12,14,17,19,24,27]). In a massively paral-
lel machine with highly non-uniform memory access, however, 
tasks must be co-located with their data in order to maximize 
performance. As such, there is less flexibility in assigning tasks to 
cores, so the focus of task scheduling shifts to detecting and prior-
itizing tasks that are ready to run. Our work addresses these chal-
lenges. 

Much of the difficulty arises from the often-unpredictable or-
der in which data arrives at a processor. If an oracle were to pro-
vide this order in advance, then an optimal schedule for the tasks 
could be pre-determined. This would allow a processor to effi-
ciently detect the next input datum (for example by polling a 
single memory location) and immediately begin the appropriate 
computation when it arrives. In reality, processors must be able to 
handle an unknown arrival order and dynamically schedule tasks 
accordingly. Coarse-grained scheduling—waiting for and pro-
cessing large chunks of data at once—is the simplest approach, 
but reduces the overlap of communication with computation 
because it requires waiting for an entire data chunk to arrive be-
fore processing any of it.  

In theory, we can improve processor utilization by allowing 
each task to run as soon as its input data is available, that is, by 
formulating the computation in a fine-grained event-driven man-
ner. This is reminiscent of dataflow computing [4] and is similar 
to data-driven multithreading [28], but with scheduling performed 
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Figure 1. (a) Procedural implementation of an application with two types of computational tasks. (b) Execution schedule arising from this 
implementation. 
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at the task level rather than at the instruction or basic-block levels. 
This form of task scheduling is challenging in practice because it 
can be expensive to check for the presence of multiple smaller 
chunks of data and choose an execution order for the tasks whose 
data has arrived. Some amount of flexibility must generally be 
sacrificed in order to arrive at a practical implementation; mes-
sage-driven architectures, for example, impose a one-to-one map-
ping from messages to tasks and schedule tasks in strict first-in-
first-out order (e.g., [11,16,21]). 

We faced these considerations in designing the hardware and 
software for Anton 2, a massively parallel special-purpose super-
computer for molecular dynamics simulations. Like its predeces-
sor (referred to here as Anton 1) [26], Anton 2 maps part of the 
computation to hardwired pipelines and performs the remainder 
on programmable cores. This remaining computation has several 
characteristics that make it difficult to schedule: each core handles 
a small, heterogeneous set of fine-grained (tens to hundreds of 
instructions) tasks, the cores receive input data for these tasks via 
Anton 2’s communication network, the arrival order of this data is 
unpredictable, and some of the input data is consumed by multiple 
tasks. Anton 1, which dramatically accelerated molecular dynam-
ics relative to the previous state of the art, employed a batch pro-
cessing model, using coarse-grained hardware synchronization 
counters to detect the arrival of input data for the next group of 
tasks. One of the ways in which Anton 2 seeks to further improve 
performance is by reformulating molecular dynamics as a fine-
grained event-driven computation, resulting in a more aggressive 
task execution schedule. 

To this end, we introduced the dispatch unit—a hardware 
block with support for flexible dependency tracking and task 
dispatching. The dispatch unit differs from previous hardware 
accelerators for task scheduling by offering an arbitrary many-to-
many mapping from incoming data to a set of hardware synchro-
nization counters, providing the ability to categorize tasks by type 
and query for a subset of these types, and supporting flexible 
prioritization of different task types. The dispatch unit’s support 
for fine-grained event-driven computation arises from the ability 
to use a separate synchronization counter to track the arrival of 
input data for each task, but the fixed number of hardware coun-
ters raises the issue of how to support applications with arbitrarily 
many tasks. We address this problem with a software library that 
hides hardware resource limitations, allowing programmers to 

treat Anton 2 as an idealized machine containing infinitely many 
synchronization counters. 

The dispatch unit, together with this software library, makes 
fine-grained event-driven computation practical from both an 
architectural and a software standpoint. It allowed us to achieve 
an improved task execution schedule for our molecular dynamics 
application, increasing overall performance by up to 16% relative 
to a coarse-grained schedule for the same computation. Equally 
important, the dispatch unit and associated library made it possi-
ble to simplify our application software by expressing it as a 
collection of independent tasks, with most of the task sequencing 
logic moved into the hardware.  

2. Event-Driven Programming Model 
Consider a parallel application with two different types of compu-
tational tasks—call them A and B—each of whose input data 
arrives over some communication network. A conventional batch-
mode procedural implementation of the application waits for all 
task A data to arrive, evaluates all instances of task A, then re-
peats this process for task B. Pseudocode for this implementation, 
along with the resulting execution schedule, is shown in Figure 1. 

While straightforward, this implementation makes suboptimal 
use of the processor, which sits idle waiting for all the task A data 
to arrive, and then again waiting for all the task B data to arrive. 
We can achieve better processor utilization by adopting an event-
driven programming model in which each individual task runs in 
response to the arrival of its input data.1 An event-driven imple-
mentation consists of a collection of event handlers, as shown in 
Figure 2 alongside a hypothetical execution schedule. Because 
individual tasks are allowed to execute as soon as their data ar-
rives, this implementation achieves better overlap of communica-
tion with computation, resulting in improved processor utilization 
and faster overall execution. 

When multiple events are waiting to be handled, some scheme 
is required to determine the order in which the handlers run. The 
simplest approach is to handle the events in the order that they 
occur, for example, by keeping track of events within a first-in, 
first-out queue. This may not be optimal, however. In the previous 

                                                 
1 Here we use the term “event” to refer to the arrival of a task’s input data; 
events are handled by executing the appropriate task. 

    
Figure 2. (a) Event-driven implementation of an application with two types of computational tasks. (b) Possible execution schedule arising 
from this implementation. 
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example, suppose that task A is in the critical path of the overall 
computation, whereas task B is not. In this case, performance can 
be improved by statically prioritizing task A over task B. Figure 3 
shows how the execution schedule in Figure 2b changes with this 
prioritization. While the processor utilization stays the same, the 
last instance of task A finishes sooner, shortening the critical path. 

3. Support for Event-Driven Programming in 
Anton 2 
The previous section leaves some important questions unan-
swered. How are events detected? How are events mapped to their 
handlers? How are the event handlers scheduled? Anton 2 has 
been designed so that each of these activities can be performed 
within the dispatch unit. A full description of the Anton 2 archi-
tecture will be presented elsewhere; here we focus on the aspects 
related to event-driven computation. 

Anton 2 comprises a set of identical application-specific inte-
grated circuits (ASICs), which are directly connected to form a 
three-dimensional torus. The ASIC is a tiled architecture with two 
types of computational tiles connected by an on-chip mesh net-
work: High Throughput Interaction Subsystem (HTIS) tiles, 
which contain special-purpose datapaths for computing particle 
interactions, and Flexible Subsystem (flex) tiles, which each 
contain several programmable cores called Geometry Cores 
(GCs), 256 KB of local SRAM, a network interface, and a dis-
patch unit (Figure 4). The fundamental unit of data in Anton 2 for 
all communication and memory accesses is a 128-bit quad word, 
which we will refer to as a quad for brevity. 

Any flex tile can read or write the SRAM within any other flex 
tile. There is no memory hierarchy associated with this SRAM; in 
particular all addresses are physical and uncached, so Anton 2 is 
effectively a distributed, shared physical address machine. An-
ton 2 supports counted remote writes [10], which are remote 
writes of quads directly into another flex tile’s SRAM that cause a 
synchronization counter to be incremented upon receipt. Counted 
remote writes form the basis of event detection: after a counted 
remote write is processed by SRAM, the address is forwarded to 

the dispatch unit so that it can be mapped to a synchronization 
counter (Figure 4b). The synchronization counter is incremented; 
an event occurs when a counter reaches its threshold, indicating 
that all data required for a task has arrived. 

Each counter has a programmer-specified event type that can 
be used to dynamically select and prioritize events. When a GC 
queries the dispatch unit for work (this is referred to as a dispatch 
operation), it specifies the set of types that it is willing to accept 
in up to four priority levels. The dispatch unit selects a synchroni-
zation counter of an appropriate type that has reached its threshold 
(if one exists) and returns to the GC some programmer-specified 
data associated with the counter. This data is used to describe the 
event and includes a function pointer to the event handler, which 
is then invoked by the GC. The intended programming model is 
for each GC to run an event handling loop, alternately issuing a 
dispatch operation to fetch the next event and then handling the 
event (Figure 5). All of the GCs within a flex tile query the same 
dispatch unit for work, providing dynamic load-balancing across 
the flex tile. 

To summarize, in Anton 2 events are detected using hardware 
synchronization counters, events are mapped to their handlers via 
function pointers associated with these counters, and event 
handers are scheduled by prioritizing event types within dispatch 
operations. Events must also be assigned to synchronization coun-
ters; the dispatch unit is primarily designed to support this as-
signment for applications in which the set of events is known in 
advance (so that counters can be initialized before the application 

 
Figure 3. Modified execution schedule with task A statically 
prioritized over task B. 
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Figure 4. (a) The Anton 2 ASIC contains two types of computa-
tional tiles. (b) A flex tile comprises several GCs, local SRAM, a 
network interface, and a dispatch unit. Counted remote writes are 
first handled within SRAM (1), then forwarded to the dispatch 
unit to increment a synchronization counter (2). 
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Figure 5. (a) Simplified version of the event loop that runs on each GC. (b) Sequence of events leading to the execution of an event han-
dler: (1) input data is received via counted remote writes; (2) a counter starts at zero and is incremented by one with each counted remote 
write until it reaches its threshold; (3) a GC’s event loop issues a dispatch operation specifying a set of types that includes the counter’s 
type; (4) The dispatch unit responds with the counter’s data, which includes a pointer to the handler; (5) The GC invokes the handler. 
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runs) and repeats many times over the course of a computation (in 
particular, counters are automatically reset to zero upon reaching 
their threshold in preparation for the next occurrence of the same 
event). Dynamic events can be supported by introducing a level of 
indirection, for example by embedding a pointer within the count-
ed write data to a secondary function that is called by the initial 
event handler. When necessary, it is also possible modify the 
counters and their SRAM associations at run time. 

4. Dispatch Unit Implementation 
The previous section outlined the general operation of the dis-
patch unit; here we provide some additional details related to its 
implementation within Anton 2.  

4.1 Counters and counter lists 

A dispatch unit contains 128 hardware synchronization counters, 
each of which has a 32-bit count, a 32-bit threshold, a 5-bit type, 
and a quad of programmer-specified counter data that forms the 
result of a dispatch operation. A key feature of the dispatch unit is 
its ability to arbitrarily map the SRAM quad addresses of counted 
remote writes to synchronization counters. This reduces the 
amount of global information that must be shared and communi-
cated between tiles, since the sender of a counted remote write 
only needs to know the destination address and does not need to 
specify a counter ID.  

It is possible for multiple tasks to depend on the same input da-
ta, in which case it becomes desirable to increment multiple coun-
ters in response to a single counted remote write. The dispatch 
unit provides efficient support for this operation via 128 counter 
lists. Each counter list specifies an arbitrary subset of the 128 
counters; an SRAM quad can be mapped to either a single counter 
or a counter list (Figure 6). The mapping uses eight bits per 
SRAM quad—one bit to select a counter versus a counter list, and 
seven bits to specify one of the 128 counters or counter lists—
representing a ~6% overhead for the flex tile SRAM.  

4.2 Dispatch operations 

When a counter reaches its threshold it is marked as “active” and 
becomes a candidate for selection when a dispatch operation is 
processed. A GC issues a dispatch operation by atomically ex-
changing a quad with a special memory address, so in particular 
no hardware support for dispatch operations is required within the 
GCs beyond the ability to perform 128-bit atomic exchanges with 
memory. The request quad sent from the GC to the dispatch unit 
specifies the event types that the GC can accept in up to four 
priority levels. 

If a dispatch operation succeeds (i.e., at least one active coun-
ter’s type matches the request), then the dispatch unit selects one 
of the highest-priority matching counters and returns that coun-
ter’s data quad to the GC. If a dispatch operation fails, then it 
stalls until a matching counter becomes active, at which point the 

operation completes successfully. This blocking behavior obviates 
the need to run a polling loop on the GCs, and can cut the ex-
pected latency between counter activation and event handling 
roughly in half relative to a standard polling loop. Figure 7 illus-
trates the sequence of events involved in a blocking dispatch 
operation. 

4.3 Error detection 

There are a number of ways in which software errors and race 
conditions can lead to incorrect operation in the form of counters 
that become active prematurely or never at all. The dispatch unit 
contains three hardware error detectors designed to catch the 
majority of these errors, which would otherwise be extremely 
difficult to diagnose. 

1. Counter overflow. This error is generated when a counter is 
incremented past its threshold, which can be caused by a mis-
configured threshold, or an errant counted remote write (one 
that should have been omitted or that was directed to the 
wrong SRAM address). 

2. Phase mismatch. Every counted remote write includes a soft-
ware-generated single-bit phase that is generally expected to 
alternate in value between consecutive activations of a single 
counter. For example, a counter with threshold five expects 
five phase 0 counted remote writes, after which it becomes ac-
tive and is reset to zero in preparation for five phase 1 counted 
remote writes. A phase mismatch error is generated when a 
counted remote write is received with the wrong phase, indi-
cating a software race condition. 

 

Figure 6. SRAM quads can be mapped to either individual counters or lists of counters. 
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Figure 7. Typical blocking dispatch operation. (1) A GC issues a 
dispatch operation to the dispatch unit; no active counter is avail-
able so the operation stalls. (2) Counted remote writes are re-
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(3) The SRAM addresses are forwarded to the dispatch unit. The 
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become activated. (4) The dispatch unit returns the counter’s data 
quad to the GC. (5,6) The GC reads the data from SRAM when it 
handles the event. 
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3. Repeated activation. An active counter must be processed by a 
dispatch operation before it can become active again, since the 
dispatch unit does not maintain a queue of pending events, but 
simply keeps track of which counters are active. If an active 
counter reaches its threshold again before being dispatched 
then a repeated activation error is generated, indicating a 
software race condition. 

5. Software Support 
The raw dispatch hardware presents a difficult resource allocation 
problem: software must manage cases where there are more tasks 
than counters, the counters must be partitioned among the various 
task types, and only 128 counter lists are available when in princi-
ple each of the 16,384 SRAM quads could be associated with a 
different set of counters. To ease the burden on the programmer, 
we implemented a higher-level software library that abstracts 
away the finite hardware resources, allowing arbitrarily many 
events and counter-SRAM associations to be defined when the 
application is initialized. In addition, we reduced the run-time 
overhead of event handler dispatching by prefetching data from 
SRAM and employing a form of tail recursion. 

5.1 Prefetching task data 

The counter data quad returned from a dispatch operation is 
passed to the event handler in order to describe the corresponding 
task. In particular, if the task requires some SRAM data (which is 
generally the case), then the quad must include a pointer to this 
data. A simple convention for event handlers would be to accept a 
single argument (the counter data quad), and begin by reading the 
required data from SRAM (Figure 8). The drawback to this ap-
proach is that SRAM reads are expensive, requiring over 20 cy-
cles to complete, so most event handlers will immediately stall for 
a significant amount of time.  

To reduce this overhead, we adopt the (slightly more compli-
cated) convention of always prefetching the first data quad from 
SRAM before the event handler is called, and passing this 
“prefetch” quad as a second argument using a register calling 
convention (Figure 9). This allows some of the latency of the 
SRAM read to be hidden behind the latency of invoking the event 
handler (which is at least seven cycles). In some cases the prefetch 
quad is the only SRAM data that is required; in other cases addi-
tional quads must be read, but the latency of these reads can often 
be hidden behind computation involving the prefetch quad. 

5.2 Tail recursion for event handlers 

Conceptually, the software runs an event loop that invokes the 
event handlers, as shown in Figure 10. In order to reduce the 
overhead between handlers, we introduced a compiler transfor-
mation that modifies the end of a handler to jump directly to the 
next handler. This is essentially tail recursion for event handlers, 
and it eliminates the overhead of returning to an event loop. 

To enable this transformation, the programmer marks the han-
dler with a special attribute and places a dispatch operation at the 
end of the handler. The compiler then inserts code after this dis-
patch operation to clean up the stack (as if it were about to return 
from the handler), load the prefetch quad from SRAM, and jump 
to the next handler, using registers to pass the counter data quad 
and the prefetch quad as arguments. In addition to obviating the 
need for an explicit event loop, placing the next dispatch opera-
tion directly in the handler gives the compiler the opportunity to 
schedule it earlier so that some of the dispatch latency can be 
hidden. In our molecular dynamics software, we observed that the 
compiler was able to schedule the dispatch operation 20 cycles 
before the end of some handlers, reducing the time between back-
to-back event handlers from 46 cycles to as little as 26 cycles. 

5.3 Allocating and initializing counters 

The software library virtualizes the counter hardware, presenting 
the programmer with a seemingly unlimited number of counters 
and counter lists. The application software can allocate a separate 
virtual counter for each discrete task. A virtual counter is initial-
ized with a software task type and the counter data quad, which 
contains a function pointer to the event handler, an SRAM pointer 
to the task data (of which the first quad is prefetched), and 64 bits 
of arbitrary user data (Figure 11). 

The software task type is assigned by the programmer and is 
used by the library to categorize tasks. It is more general than the 
5-bit hardware event type associated with each physical counter. 
Software task types are mapped to hardware event types (as speci-
fied by the programmer), but this mapping can be many-to-one, so 
there is no limit on the number of software task types. Our molec-
ular dynamics software, for example, uses over 70 distinct soft-
ware task types. Different hardware event types are only required 
for tasks that are prioritized differently within dispatch operations.  

A counter can be associated with any data quad in SRAM by 
specifying the quad’s address as well as the total expected remote 
write count from that quad (Anton 2 supports accumulation into 

 
 
 
void some_handler (quad counter_data)  
{ 
    task_data = sram_read(counter_data.task_data); 
    process the task data 
} 

 
Figure 8. An event handler could take a single argument (the 
counter data quad) and begin by reading data from SRAM. 
 

void some_handler (quad counter_data, quad prefetch_data) 
{ 
    possibly read additional quads from SRAM 
    process the prefetch quad 
} 

 
Figure 9. Our software convention for event handlers prefetches 
the first SRAM data quad so that the SRAM read latency can be 
partially hidden. 

void event_loop ()  
{ 
   while (1)  
   { 
      quad counter_data = dispatch(); 
      quad prefetch_data = sram_read(counter_data.task_data);
      (counter_data.handler)(counter_data, prefetch_data); 
   } 
} 
 
Figure 10. An event loop repeatedly fetches the next event and 
invokes the event handler. 

 
127 64 32 0

user data task data handler 

Figure 11. Structure of the counter data quad that forms the 
result of a dispatch operation. The first 32-bit word is a function 
pointer to the event handler. The next 32-bit word is a pointer to 
the task data in SRAM. The remaining 64 bits can contain arbi-
trary event-specific information. 
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SRAM quads, so multiple counted writes may be directed to a 
single quad in order to add their values, resulting in multiple 
counter increments). The counter’s threshold is the sum of these 
expected counts. Figure 12 shows a very simple example for a 
task that adds two quads. The counter data is initialized with three 
SRAM pointers: two for the source operands, and one for the sum.  

5.4 Mapping virtual counters to physical counters 

Once the virtual counters have been allocated, they must be as-
signed to physical counters. A virtual counter’s flex tile is implic-
itly specified by the counter’s task data pointer and SRAM associ-
ations (which must all resolve to the same flex tile). When at most 
128 virtual counters are assigned to a flex tile, they can each be 
mapped to a separate physical counter. When a flex tile has more 
than 128 virtual counters, however, its physical counters must 
somehow be shared amongst them. 

In some cases it is possible to time-multiplex a physical coun-
ter between multiple virtual counters, for which the software 
library does provide some support, but doing so safely requires 
very specific knowledge of the application’s dataflow, as well as 
appropriately timed dynamic modifications to the counter state. 
More typically, time multiplexing is not an option because it is 
difficult or impossible to place restrictions on when a given task’s 
input data will arrive. Instead, we allow a group of tasks of the 
same type to use a single physical counter, coarsening the event 
granularity: an event occurs when the input data for all tasks in the 
group has arrived. 

Tasks can be grouped in this manner by assigning their virtual 
counters to the same physical counter. Their thresholds are added 
together, and the data for the individual tasks is stored in a linked 

list (Figure 13). The handler is responsible for iterating over the 
linked list to execute each of the tasks. 

While it is possible to perform this counter assignment manu-
ally, doing so is tedious and forms a difficult optimization prob-
lem. The library automates the process using counter pools, which 
are collections of tasks that all have the same type. The program-
mer can explicitly create a counter pool of a given type and add 
arbitrarily many tasks to this pool. The library decides how many 
physical counters to allot for each counter pool (assigning more 
physical counters to pools with more tasks), then within each 
counter pool partitions the tasks among the physical counters.  

Some care must be taken to avoid introducing deadlock. In 
particular, if two tasks are assigned to the same physical counter 
but one of them has an input dependency on the other, then the 
counter will never reach its threshold. The library prevents such 
deadlocks by imposing the restriction that any two tasks of the 
same type must be independent, that is, none of a task’s input data 
can be generated by another task of the same type. The program-
mer is responsible for ensuring that this is the case, so that it is 
safe to assign multiple tasks from a counter pool to a single physi-
cal counter. 

5.5 Counter lists 

The programmer can arbitrarily associate virtual counters with 
SRAM quads without having to explicitly create or manage coun-
ter lists. Once the virtual counters have been mapped to physical 
counters, the library automatically creates a counter list for any 
SRAM quad associated with two or more physical counters. The 
number of such implicitly generated counter lists may exceed the 
hardware limit of 128, however, in which case the library auto-

// initialization time 
void initialize_adder (sram_ptr pa, sram_ptr pb, sram_ptr psum)  
{ 
    cntr = cntr_new(ADDER_EVENT, adder_handler, pa /task data/, make_user_data(pb,psum) /user data/); 
    cntr->attach_to_sram(pa, 1 /expected count/); 
    cntr->attach_to_sram(pb, 1 /expected count/); 
} 
 
// run time 
void adder_handler (quad counter_data, quad prefetch_data /=a/)  
{ 
    quad b = sram_read(counter_data.user_data[0]); 
    quad sum = prefetch_data + b; 
    sram_write(counter_data.user_data[1], sum); 
}  
 
Figure 12. Simple counter example for a two-input adder. The counter is incremented by one with the arrival of each input data quad, so 
its threshold is two. In the run-time handler the first input is prefetched; the pointers to the second input and the sum are stored in the user 
data portion of the counter data quad. 
 

 

 

Figure 13. When multiple tasks are assigned to the same physical counter (b), the thresholds are added and the data for the tasks is stored 
as a linked list in SRAM. 
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matically merges certain groups of counter lists so that a smaller 
number of “union lists” are required (Figure 14). 

This operation preserves all original dependencies: a counter 
associated with an SRAM quad still depends on that quad for 
activation. It also introduces false dependencies that were not 
originally specified by the programmer. For example, the merged 
list in Figure 14b causes counter 1 to depend on quad 2 and coun-
ter 3 to depend on quad 1. The counter thresholds are automatical-
ly adjusted to account for the false dependencies, but there is 
another complication: false dependencies can lead to deadlock. In 
the same example, if the event triggered by counter 1 is responsi-
ble for sending data to quad 2, then merging the lists creates a 
circular dependency and none of the counters will ever reach their 
thresholds. To avoid this situation, the library only merges lists 
whose tasks are of the same type, again leveraging the restriction 
that any two tasks of the same type must be independent. In the 
extreme case, a single list is used for all counters of a given task 
type, so that none of the counters will be activated until the data 
for all the tasks of that type has arrived.  

The algorithm for merging counters lists on a given flex tile 
begins by counting, for each event type t, the number Nt of dis-
tinct lists of type-t counters. The 128 physical counter lists are 
then partitioned among the types such that the number Lt of physi-
cal lists allotted for type t is proportional to Nt. The task of merg-
ing lists for type t until only Lt remains can be formulated as the 
following covering problem: given Nt lists and an integer Lt < Nt, 
find Lt “covering lists” such that each of the original lists is con-
tained in one of the covering lists. We then merge each group of 
lists contained within a common covering list.  

The goal is to find covering lists that approximate the original 
lists as closely as possible. To define this metric more precisely, 
observe that whenever a list is contained in a covering list with 
more counters, the “extra” counters in the covering list lead to 
false dependencies as described above. The covering lists are 
generated using a greedy heuristic that attempts to minimize the 
total number of false dependencies. For example, two possible 2-
coverings of the lists {[0,1], [0,2], [3,4]} are {[0,1], [0,2,3,4]} and 
{[0,1,2], [3,4]}; of these, the latter is preferred as the covering 
lists contain fewer extra entries. 

6. Event-Driven Implementation of Molecular 
Dynamics 
A molecular dynamics (MD) simulation models the motions of 
individual atoms as a chemical system (e.g., a protein surrounded 
by water) evolves. The simulation steps through time, alternating 
between a force calculation phase that determines the force acting 
on each simulated atom, and an integration phase that advances 
the positions and velocities of the atoms according to the classical 

laws of motion. Each iteration through these phases is referred to 
as a time step. On Anton 2, the chemical system to be simulated is 
spatially divided into a regular grid of boxes, with each box as-
signed to one ASIC. 

There are several reasons that MD is well-suited to an event-
driven implementation in general, and the Anton 2 dispatch unit in 
particular: 

 An MD computation naturally consists of a large number of 
fine-grained tasks, which are known in advance and repeated 
in each time step, and can therefore be statically mapped to 
counters within the dispatch unit.  

 When a simulation runs on a large parallel machine, there may 
only be zero or one instances of a given task type executed on 
a given core, so a batch processing model (executing many 
tasks of the same type in a tight loop) is ineffective.  

 Statically scheduling these tasks when MD is parallelized is 
challenging, because the order in which input data arrives is 
unpredictable.  

 Prioritization is important when the tasks are dynamically 
scheduled because some affect the critical path more than oth-
ers.  

Figure 15 shows the dataflow of an MD simulation. The force 
calculation phase consumes atom positions and produces forces; 
the integration phase consumes forces and produces updated atom 
positions and velocities. The force calculation phase has three 
major components: various specific interactions that are computed 
by hardware within the HTIS tiles; bond terms, which involve 
small groups of atoms connected by one or more covalent bonds; 
and a three-dimensional fast Fourier transform (FFT), which 
forms part of an algorithm to efficiently compute long-range 
interactions. The bond terms, FFT, and position/velocity updates 
are computed within the flex tiles and are implemented in an 
event-driven manner, as described in the following sections. 

Figure 15. Dataflow of a molecular dynamics simulation. 
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Figure 14. Counter lists are merged by replacing two lists with their union. (a) The programmer specifies that counters 1 and 2 will receive 
two increments from quad 1, while counters 2 and 3 will receive three increments from quad 2, which implicitly defines two counter lists. 
(b) If the two lists are merged, then all three counters will receive two increments from quad 1 and three increments from quad 2. 
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6.1 Bond terms 

The set of bond terms does not change during the course of a 
simulation: on each time step, positions for the same groups of 
atoms must be brought together to compute forces. On Anton 2, 
this is accomplished by statically mapping the computation for 
each bond term to a task on a fixed flex tile. Each atom has an 
associated list of flex tiles to which its position must be sent using 
counted remote writes; the dispatch units track the arrival of these 
positions to determine when each bond term can be evaluated. An 
atom can participate in multiple bond terms mapped to the same 
tile, so counter lists are used to update the appropriate set of coun-
ters as each atom position is received (Figure 16). Bond term tasks 
are created within a pool; the software library automatically parti-
tions them among the available physical counters. 

6.2 Three-dimensional FFT 

The FFT comprises six “rounds” of computation. Rounds 1–3 
perform one-dimensional FFTs in each dimension, round 3 also 
performs a Fourier-space computation with the transformed data, 
then rounds 4–6 perform one-dimensional inverse FFTs. There is 
a communication phase between pairs of consecutive rounds, in 
which the output from the previous round is scattered over An-
ton 2’s communication network to the appropriate flex tiles for the 
next round. The FFT is mapped to exactly six counters per flex 
tile (one for each round); each round is triggered by the arrival of 
its input data (Figure 17).  

The FFT tends to affect the critical path more than bond terms 
because additional HTIS work is required to convert the output of 
the FFT into forces, as shown in Figure 15. We therefore statically 
prioritize FFT events above bond events within dispatch opera-
tions. This allows the GCs to work on bond terms during the 
communication phases of the FFT, then resume FFT work once 
all data has arrived for the next round. Without hardware support 
for this type of fine-grained prioritized event interleaving, the 
easiest way to give the FFT absolute priority over bond terms 

would be to wait for all rounds to complete before starting the 
bond computations. This would place the bond terms on the criti-
cal path following the FFT, degrading performance. 

Figure 18 shows GC activity for a single force calculation 
phase across all flex tiles that participate in the FFT. In Figure 
18a, FFT events are given absolute priority over bond events by 
delaying the bond work until the FFT has completed. In Figure 
18b, the bond event handlers are dynamically interleaved with the 
FFT event handlers using prioritized event types. Even though this 
interleaving causes the FFT to finish slightly later, the overall 
force calculation is accelerated as the majority of the bond work is 
removed from the critical path. 

6.3 Integration 

During the integration phase, small groups of 1–4 atoms (referred 
to as constraint groups) have their velocities and positions updat-
ed according to Newton’s laws of motion and certain rigid-body 
constraints. Each constraint group is mapped to a task within a 
counter pool, and depends on the accumulation (in SRAM) of 
forces for all atoms within the group. When a constraint group 
counter is associated with a force quad in SRAM, the total ex-
pected count for that quad is greater than 1, because the total force 
for an atom is the sum of multiple partial forces from bond terms 
and HTIS tiles (Figure 19). Each partial force arrives as a separate 
counted remote accumulation with the same destination address. 
Constraint groups are disjoint, so no counter lists are required.  

 

Figure 16. Two bond terms (A, B) involving three atoms (1, 2, 
3) are assigned to a flex tile. Three SRAM quads are allocated to 
receive the atom positions; the two bond term counters are incre-
mented as the positions arrive. Atom 2 participates in both bond 
terms, so a counter list is used to increment both counters when 
its position arrives. 
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Figure 17. Six arrays of SRAM quads are allocated to receive the 
input data for the six FFT rounds. A single counter is used for 
each round, whose threshold is the number of quads in the corre-
sponding array. 
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Figure 18. GC activity during force calculation. The communica-
tion phase between rounds 3 and 4 of the FFT is very short, caus-
ing these rounds to appear merged in the activity plots. (a) Bond 
events are delayed until the FFT has completed. (b) Prioritized 
event types are used to handle bond events in the background 
during the FFT.  
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Figure 19. Two SRAM quads are allocated to accumulate the 
partial forces (small arrows) for a constraint group with two  
atoms (1, 2). The constraint group’s counter is incremented as 
each partial force is accumulated, and its threshold is the total 
number of partial forces for both atoms. 
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6.4 Migration 

Because the simulation is spatially subdivided among the ASICs, 
as the system evolves and atoms move through space it becomes 
necessary to periodically migrate constraint groups from one 
ASIC to another. We implement migration using a six-stage algo-
rithm, shown in Figure 20. The first three stages propagate migra-
tion requests from source tiles to destination tiles via “master” 
tiles, which coordinate all migrations into and out of an ASIC. 
The destination tiles allocate SRAM storage and return destination 
addresses to the source tiles in stages four and five. Finally, the 
constraint groups are sent to these destination addresses in stage 
six. Each stage in the migration algorithm uses a distinct counter. 

Migration is pipelined across two integration phases: the deci-
sion to migrate a constraint group is made during the first phase, 
but the actual migration does not occur until the second. This 
allows the majority of the migration communication and synchro-
nization to be overlapped with force computation, removing it 
from the critical path. Migration events are given lower priority 
than the bond and FFT events so that they can be handled in the 
background. No software is required to schedule or sequence the 
stages; each event is simply handled once its data has arrived and 
there are no pending bond or FFT events. Without the dispatch 
unit, it would be necessary to explicitly schedule the migration 
stages in software, and it would be difficult to overlap the migra-
tion work with force computation. 

7. Performance Evaluation 
For our performance experiments, we used 11 sample chemical 
systems with varying characteristics: some are proteins surround-
ed by water while others are proteins embedded in membranes; 
the relative amount of bond and FFT work differs from system to 
system; and the overall sizes range from 23,558 atoms to 147,683 
atoms (this represents a typical range for long-timescale molecular 
dynamics simulations; Anton 2 will also support much larger 
simulations). We measured the average number of cycles required 
to complete a single time step (one force phase and one integra-
tion phase) for each system on simulated 512-node and 64-node 
Anton 2 machines (these are two of the physical configurations 
that will be supported). 

The performance advantages of the dispatch unit stem from its 
ability to dynamically generate an efficient execution schedule for 
a heterogeneous set of fine-grained tasks. To quantify this effect, 
we ran our molecular dynamics software using two different 
execution schedules: the more aggressive schedule enabled by the 

dispatch unit, and a coarse-grained schedule that fixes the order of 
task types within a time step, and executes all tasks of a given 
type as a single batch (by waiting for all of their input data to 
arrive before execution begins). This schedule is suitable for 
machines that provide a limited number of synchronization coun-
ters but no other hardware support for task scheduling.  

Figure 21 shows the result of this comparison. The perfor-
mance improvement afforded by the dispatch unit generally rang-
es from 2% to 10%, but is larger (~16%) on a 512-node machine 
for two systems in which bond terms constitute a higher fraction 
of the overall work. For these two systems, the primary advantage 
of the dispatch unit is the ability to dynamically interleave bond 
terms with FFT computation. On a 64-node machine this effect is 
much less pronounced because the bond terms represent a larger 
fraction of the total computation time (the FFT computation is 
communication-limited and takes about the same amount of time 
on 64- and 512-node machines), so there is less advantage to 
interleaving them with the FFT. 

One of the important design parameters of the dispatch unit is 
the number of physical counters. A certain minimum number of 
counters is required to support the set of distinct task types within 
an application (which, for our molecular dynamics software, is 
around 48). Beyond this minimum number we generally expect 
performance to improve with additional counters, since this per-
mits finer-grained task scheduling. 

In Figure 22 we vary the number of counters per dispatch unit 
from 48 to 128, showing the performance improvement relative to 
48 counters. Most of the performance gains occur in the first half 
of this range (48–88 counters); using more than 88 counters con-
fers little additional performance advantage. This indicates that 
128 counters are more than sufficient for our target application. 
More generally, it demonstrates that using only a limited number 
of counters, we can achieve the performance of a hypothetical 
machine with enough resources to assign each task to a distinct 
counter. Note that on a 512-node machine the smaller systems do 
not benefit at all from additional counters since few GCs have 
more than one task of any given type. For these systems, the 
primary benefit of the dispatch unit is the ability to dynamically 
schedule tasks of different types based on priority and the availa-
bility of input data. 

One specific performance advantage of the dispatch unit’s  
fine-grained scheduling is its support for efficiently processing 
background tasks using prioritized event types. The various mi-
gration events are given a lower priority, for example, and will be 
handled only when no higher-priority events are ready. Migration 

Figure 20. Constraint groups are migrated from a source tile on 
one ASIC to a destination tile on another ASIC using a six-stage 
algorithm involving migration “masters,” which coordinate all 
migrations into and out of an ASIC. 
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Figure 21. Percentage performance improvement relative to a 
coarse-grained task execution schedule. 
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uses a complex multi-stage algorithm with many different events, 
so one might expect it to have a significant performance impact. 
In Figure 23, however, we see that the maximum performance 
overhead (measured by running a small number of time steps both 
with and without migration) is just over 4%, and is less than 1.4% 
on average. By contrast, the migration overhead in Anton 1—
which does not have a dispatch unit and thus needs to explicitly 
schedule all migration activities in software—is typically closer to 
10%. 

8. Related work 
At the extreme end of fine-grained event-driven computation are 
static and dynamic dataflow machines [4], in which every single 
instruction is triggered by the arrival of its operands. Scheduling 
every instruction independently incurs significant overhead [22], 
so hybrid architectures have been described in which small groups 
of instructions are executed together, combining the dynamic 
parallelism of a dataflow architecture with the efficiency of se-
quential execution [3,13,23,28]. These architectures are geared 
towards chip multiprocessors and leverage basic-block-level 
dependencies that can be discovered by the compiler; they are less 
suitable for large parallel machines with explicit messages used to 
initiate user-defined task.  

Early work on hardware and software mechanisms for creating 
tasks in response to messages within a parallel machine, often 
referred to as active messages, dates back to the nineties 
[11,16,21]. These message-driven architectures assume a one-to-

one mapping from messages to tasks and always schedule tasks in 
the order that the corresponding messages were received. By 
contrast, the dispatch unit supports many-to-many mappings from 
messages to tasks as well as dynamic prioritization of tasks, both 
of which are important for our event-driven implementation of 
molecular dynamics. 

More recent work on task creation has focused on scheduling 
tasks among the cores of a chip multiprocessor using variations of 
work stealing [2,6,7,9,14,15,17]. This approach assigns a local 
task queue to each processor, but improves load-balancing of 
irregular algorithms by allowing processors to “steal work” from 
other queues once they complete their local tasks. Performing 
work stealing entirely in software is inefficient for fine-grained 
tasks because the overhead of task migration becomes comparable 
to the run time of each task, so several hardware mechanisms have 
been proposed to reduce this overhead [1,19,24,27]. The dispatch 
unit does not provide hardware support for task migration (which 
is undesirable in Anton 2 since each task’s data resides in SRAM 
on a specific flex tile), but it does provide some dynamic load 
balancing by virtue of being shared among the GCs within a flex 
tile. 

Software is typically responsible for determining when a task 
can be executed, although hardware mechanisms have also been 
proposed that perform this function by tracking inter-task depend-
encies [1,12,27]. While this approach is effective for tasks that 
communicate via shared memory in a cache-coherent single-chip 
multiprocessor, Anton 2 must directly track data dependencies 
across the nodes of a parallel machine, since most tasks receive 
their input data via counted remote writes.  

The dispatch unit provides flexible support for tracking count-
ed remote writes by allowing one or more hardware counters to be 
associated with every quad of SRAM. Word-level synchronization 
mechanisms have appeared previously in various architectures; 
examples include I-structures in the Tagged Token Dataflow 
Machine [5], presence tags in the J-Machine [21], message queue 
control words in the Cray T3E [25], and register-mapped hard-
ware receive queues in the Tile Processor [29]. Using a separate 
set of counters introduces a level of indirection that supports more 
powerful synchronization primitives. Hamlyn, Anton 1 and Blue 
Gene/P each allow incoming packets to be mapped to receiver 
synchronization counters [8,18,20]. In these architectures, howev-
er, the receiver can only poll individual synchronization counters 
rather than poll for any event within a set of types, so they are less 
suitable for fine-grained event-driven computation. 

 
Figure 22. Percentage performance improvement relative to a dispatch unit with only 48 counters. 
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Figure 23. Percentage performance overhead of migration. 
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9. Conclusion 
Event-driven computation is a powerful paradigm, but is difficult 
to realize efficiently due to the overheads of synchronization, 
scheduling, and task creation. Hardware support can reduce these 
overheads, but carries the additional challenge of mapping arbi-
trarily many tasks to a finite set of synchronization counters. The 
dispatch unit represents a practical event-driven architecture that 
improves both the performance and the programmability of  
Anton 2. Performance is improved by executing tasks as soon as 
their input data is available and scheduling non-critical-path tasks 
in the background with a lower priority. Programmability is en-
hanced by allowing applications to be formulated as a set of inde-
pendent tasks, largely eliminating the need to perform task sched-
uling and prioritization in software, and enabling the use of algo-
rithms with many fine-grained tasks and/or communication 
rounds (such as constraint group migration). 

Our software library simplifies the development of event-
driven applications and addresses the problem of supporting a 
potentially large number of tasks with a small set of synchroniza-
tion counters. By virtualizing the counters, providing a counter 
pool mechanism and automatically generating counter lists, the 
library presents an abstraction with unbounded resources and 
insulates the programmer from low-level details of counter and 
counter list allocation. The programmer simply creates a virtual 
counter for each task, initialized with the appropriate SRAM 
associations. 

Although the overheads of synchronization and task creation 
are much smaller in Anton 2 than in commodity processors, there 
is still room for improvement. More than 40 machine cycles are 
required to start a new task in the worst case. With typical task 
durations measured in hundreds of cycles, this overhead repre-
sents a significant fraction of the overall compute time. It may be 
possible to reduce this overhead by replacing the dispatch opera-
tion with a mechanism that pushes tasks directly to the GCs. We 
chose not to pursue this design in Anton 2 because of the addi-
tional complications that it introduces, such as deciding which GC 
should receive a task and what to do when a GC cannot process a 
task it receives. 

The motivation for the dispatch unit was specifically to accel-
erate molecular dynamics simulations, but the design consists of 
general primitives for event-driven computation. Other applica-
tions with similar characteristics—namely those that comprise a 
large, static set of fine-grained tasks whose input data is received 
in an unpredictable order from other processors—may be able to 
benefit from similar hardware mechanisms. 
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