

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
ASPLOS’13, March 16–20, 2013, Houston, Texas, USA.
Copyright © 2013 ACM 978-1-4503-1870-9/13/03...$15.00.

Hardware Support for Fine-Grained Event-Driven Computation
in Anton 2

J. P. Grossman,1,† Jeffrey S. Kuskin,1 Joseph A. Bank,1 Michael Theobald,1

Ron O. Dror,1 Douglas J. Ierardi,1 Richard H. Larson,1 U. Ben Schafer,1
Brian Towles,1 Cliff Young,1 David E. Shaw1,2,†

1 D. E. Shaw Research, New York, NY 10036, USA.
2 Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA.

† Correspondence: JP.Grossman@DEShawResearch.com and David.Shaw@DEShawResearch.com

Abstract
Exploiting parallelism to accelerate a computation typically in-
volves dividing it into many small tasks that can be assigned to
different processing elements. An efficient execution schedule for
these tasks can be difficult or impossible to determine in advance,
however, if there is uncertainty as to when each task’s input data
will be available. Ideally, each task would run in direct response
to the arrival of its input data, thus allowing the computation to
proceed in a fine-grained event-driven manner. Realizing this
ideal is difficult in practice, and typically requires sacrificing
flexibility for performance.

In Anton 2, a massively parallel special-purpose supercomput-
er for molecular dynamics simulations, we addressed this chal-
lenge by including a hardware block, called the dispatch unit, that
provides flexible and efficient support for fine-grained event-
driven computation. Its novel features include a many-to-many
mapping from input data to a set of synchronization counters, and
the ability to prioritize tasks based on their type. To solve the
additional problem of using a fixed set of synchronization coun-
ters to track input data for a potentially large number of tasks, we
created a software library that allows programmers to treat An-
ton 2 as an idealized machine with infinitely many synchroniza-
tion counters. The dispatch unit, together with this library, made it
possible to simplify our molecular dynamics software by express-
ing it as a collection of independent tasks, and the resulting fine-
grained execution schedule improved overall performance by up
to 16% relative to a coarse-grained schedule for precisely the
same computation.

Categories and Subject Descriptors C.1.3 [Processor Archi-
tectures]: Other Architectural Styles—data-flow architectures;
C.1.4 [Processor Architectures]: Parallel Architectures; C.3
[Special-Purpose and Application-Based Systems]; D.1.3 [Pro-
gramming Techniques]: Concurrent Programming—parallel
programming

General Terms Performance, Design

Keywords Event-driven, task scheduling, parallel, dispatch unit,
Anton 2

1. Introduction
Many scientific computations naturally decompose into small
tasks that can be assigned to different processors when the appli-
cation is parallelized. Examples of such tasks include modifying
individual positions and velocities within a particle simulation, or
updating the local state variables of a Navier-Stokes fluid dynam-
ics model. When the number of tasks per processor is large and
the data is readily available, the tasks can be efficiently executed
in a series of tight loops, each of which evaluates a single type of
task for many different data inputs. The overhead of invoking
these loops is small compared to the total compute time. When
there are few tasks per processor, however, or when the tasks
must wait for the arrival of data from other processors, the over-
heads of communication latency and synchronization can become
a significant portion of the overall computation time, and it is
much more challenging to keep the processors busy with useful
work.

The problem of scheduling tasks to minimize these overheads
can be divided into three parts: determining when a task is ready
to run, deciding where a task should be executed, and choosing an
order for the tasks that are ready. Previous work on task schedul-
ing has primarily concentrated on software and hardware mecha-
nisms for dynamically assigning tasks to cores within a chip
multiprocessor (e.g., [7,12,14,17,19,24,27]). In a massively paral-
lel machine with highly non-uniform memory access, however,
tasks must be co-located with their data in order to maximize
performance. As such, there is less flexibility in assigning tasks to
cores, so the focus of task scheduling shifts to detecting and prior-
itizing tasks that are ready to run. Our work addresses these chal-
lenges.

Much of the difficulty arises from the often-unpredictable or-
der in which data arrives at a processor. If an oracle were to pro-
vide this order in advance, then an optimal schedule for the tasks
could be pre-determined. This would allow a processor to effi-
ciently detect the next input datum (for example by polling a
single memory location) and immediately begin the appropriate
computation when it arrives. In reality, processors must be able to
handle an unknown arrival order and dynamically schedule tasks
accordingly. Coarse-grained scheduling—waiting for and pro-
cessing large chunks of data at once—is the simplest approach,
but reduces the overlap of communication with computation
because it requires waiting for an entire data chunk to arrive be-
fore processing any of it.

In theory, we can improve processor utilization by allowing
each task to run as soon as its input data is available, that is, by
formulating the computation in a fine-grained event-driven man-
ner. This is reminiscent of dataflow computing [4] and is similar
to data-driven multithreading [28], but with scheduling performed

549

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2451116.2451175&domain=pdf&date_stamp=2013-03-16

Figure 1. (a) Procedural implementation of an application with two types of computational tasks. (b) Execution schedule arising from this
implementation.

wait for data for task A
for i = 0 ... a.size() – 1

a[i].eval()
wait for data for task B
for i = 0 ... b.size() – 1

b[i].eval()

task A data arrives

task B data arrives

A1 A2 A3 An B1 B2 B3 Bm

time

communication

computation

(a)

... ...
→

(b)

at the task level rather than at the instruction or basic-block levels.
This form of task scheduling is challenging in practice because it
can be expensive to check for the presence of multiple smaller
chunks of data and choose an execution order for the tasks whose
data has arrived. Some amount of flexibility must generally be
sacrificed in order to arrive at a practical implementation; mes-
sage-driven architectures, for example, impose a one-to-one map-
ping from messages to tasks and schedule tasks in strict first-in-
first-out order (e.g., [11,16,21]).

We faced these considerations in designing the hardware and
software for Anton 2, a massively parallel special-purpose super-
computer for molecular dynamics simulations. Like its predeces-
sor (referred to here as Anton 1) [26], Anton 2 maps part of the
computation to hardwired pipelines and performs the remainder
on programmable cores. This remaining computation has several
characteristics that make it difficult to schedule: each core handles
a small, heterogeneous set of fine-grained (tens to hundreds of
instructions) tasks, the cores receive input data for these tasks via
Anton 2’s communication network, the arrival order of this data is
unpredictable, and some of the input data is consumed by multiple
tasks. Anton 1, which dramatically accelerated molecular dynam-
ics relative to the previous state of the art, employed a batch pro-
cessing model, using coarse-grained hardware synchronization
counters to detect the arrival of input data for the next group of
tasks. One of the ways in which Anton 2 seeks to further improve
performance is by reformulating molecular dynamics as a fine-
grained event-driven computation, resulting in a more aggressive
task execution schedule.

To this end, we introduced the dispatch unit—a hardware
block with support for flexible dependency tracking and task
dispatching. The dispatch unit differs from previous hardware
accelerators for task scheduling by offering an arbitrary many-to-
many mapping from incoming data to a set of hardware synchro-
nization counters, providing the ability to categorize tasks by type
and query for a subset of these types, and supporting flexible
prioritization of different task types. The dispatch unit’s support
for fine-grained event-driven computation arises from the ability
to use a separate synchronization counter to track the arrival of
input data for each task, but the fixed number of hardware coun-
ters raises the issue of how to support applications with arbitrarily
many tasks. We address this problem with a software library that
hides hardware resource limitations, allowing programmers to

treat Anton 2 as an idealized machine containing infinitely many
synchronization counters.

The dispatch unit, together with this software library, makes
fine-grained event-driven computation practical from both an
architectural and a software standpoint. It allowed us to achieve
an improved task execution schedule for our molecular dynamics
application, increasing overall performance by up to 16% relative
to a coarse-grained schedule for the same computation. Equally
important, the dispatch unit and associated library made it possi-
ble to simplify our application software by expressing it as a
collection of independent tasks, with most of the task sequencing
logic moved into the hardware.

2. Event-Driven Programming Model
Consider a parallel application with two different types of compu-
tational tasks—call them A and B—each of whose input data
arrives over some communication network. A conventional batch-
mode procedural implementation of the application waits for all
task A data to arrive, evaluates all instances of task A, then re-
peats this process for task B. Pseudocode for this implementation,
along with the resulting execution schedule, is shown in Figure 1.

While straightforward, this implementation makes suboptimal
use of the processor, which sits idle waiting for all the task A data
to arrive, and then again waiting for all the task B data to arrive.
We can achieve better processor utilization by adopting an event-
driven programming model in which each individual task runs in
response to the arrival of its input data.1 An event-driven imple-
mentation consists of a collection of event handlers, as shown in
Figure 2 alongside a hypothetical execution schedule. Because
individual tasks are allowed to execute as soon as their data ar-
rives, this implementation achieves better overlap of communica-
tion with computation, resulting in improved processor utilization
and faster overall execution.

When multiple events are waiting to be handled, some scheme
is required to determine the order in which the handlers run. The
simplest approach is to handle the events in the order that they
occur, for example, by keeping track of events within a first-in,
first-out queue. This may not be optimal, however. In the previous

1 Here we use the term “event” to refer to the arrival of a task’s input data;
events are handled by executing the appropriate task.

Figure 2. (a) Event-driven implementation of an application with two types of computational tasks. (b) Possible execution schedule arising
from this implementation.

• • •• • •

void handleA (A ∗a)
a->eval();

void handleB (B ∗b)
b->eval();

task A data arrives

task B data arrives

A1 A2 A3 AnB1 B2 B3 Bm

time →

communication

computation

(a) (b)

550

example, suppose that task A is in the critical path of the overall
computation, whereas task B is not. In this case, performance can
be improved by statically prioritizing task A over task B. Figure 3
shows how the execution schedule in Figure 2b changes with this
prioritization. While the processor utilization stays the same, the
last instance of task A finishes sooner, shortening the critical path.

3. Support for Event-Driven Programming in
Anton 2
The previous section leaves some important questions unan-
swered. How are events detected? How are events mapped to their
handlers? How are the event handlers scheduled? Anton 2 has
been designed so that each of these activities can be performed
within the dispatch unit. A full description of the Anton 2 archi-
tecture will be presented elsewhere; here we focus on the aspects
related to event-driven computation.

Anton 2 comprises a set of identical application-specific inte-
grated circuits (ASICs), which are directly connected to form a
three-dimensional torus. The ASIC is a tiled architecture with two
types of computational tiles connected by an on-chip mesh net-
work: High Throughput Interaction Subsystem (HTIS) tiles,
which contain special-purpose datapaths for computing particle
interactions, and Flexible Subsystem (flex) tiles, which each
contain several programmable cores called Geometry Cores
(GCs), 256 KB of local SRAM, a network interface, and a dis-
patch unit (Figure 4). The fundamental unit of data in Anton 2 for
all communication and memory accesses is a 128-bit quad word,
which we will refer to as a quad for brevity.

Any flex tile can read or write the SRAM within any other flex
tile. There is no memory hierarchy associated with this SRAM; in
particular all addresses are physical and uncached, so Anton 2 is
effectively a distributed, shared physical address machine. An-
ton 2 supports counted remote writes [10], which are remote
writes of quads directly into another flex tile’s SRAM that cause a
synchronization counter to be incremented upon receipt. Counted
remote writes form the basis of event detection: after a counted
remote write is processed by SRAM, the address is forwarded to

the dispatch unit so that it can be mapped to a synchronization
counter (Figure 4b). The synchronization counter is incremented;
an event occurs when a counter reaches its threshold, indicating
that all data required for a task has arrived.

Each counter has a programmer-specified event type that can
be used to dynamically select and prioritize events. When a GC
queries the dispatch unit for work (this is referred to as a dispatch
operation), it specifies the set of types that it is willing to accept
in up to four priority levels. The dispatch unit selects a synchroni-
zation counter of an appropriate type that has reached its threshold
(if one exists) and returns to the GC some programmer-specified
data associated with the counter. This data is used to describe the
event and includes a function pointer to the event handler, which
is then invoked by the GC. The intended programming model is
for each GC to run an event handling loop, alternately issuing a
dispatch operation to fetch the next event and then handling the
event (Figure 5). All of the GCs within a flex tile query the same
dispatch unit for work, providing dynamic load-balancing across
the flex tile.

To summarize, in Anton 2 events are detected using hardware
synchronization counters, events are mapped to their handlers via
function pointers associated with these counters, and event
handers are scheduled by prioritizing event types within dispatch
operations. Events must also be assigned to synchronization coun-
ters; the dispatch unit is primarily designed to support this as-
signment for applications in which the set of events is known in
advance (so that counters can be initialized before the application

Figure 3. Modified execution schedule with task A statically
prioritized over task B.

• • •• • •

task A data arrives

task B data arrives

A1 A2 A3 AnB1 B2 B3 Bm

time →

communication

computation

Figure 4. (a) The Anton 2 ASIC contains two types of computa-
tional tiles. (b) A flex tile comprises several GCs, local SRAM, a
network interface, and a dispatch unit. Counted remote writes are
first handled within SRAM (1), then forwarded to the dispatch
unit to increment a synchronization counter (2).

HTIS

HTIS flex

flexflex

flex

GC GC

NET
256 KB

SRAM
DISP

+
1 2

(a) (b)

counted remote write

Figure 5. (a) Simplified version of the event loop that runs on each GC. (b) Sequence of events leading to the execution of an event han-
dler: (1) input data is received via counted remote writes; (2) a counter starts at zero and is incremented by one with each counted remote
write until it reaches its threshold; (3) a GC’s event loop issues a dispatch operation specifying a set of types that includes the counter’s
type; (4) The dispatch unit responds with the counter’s data, which includes a pointer to the handler; (5) The GC invokes the handler.

data

1. counted

remote

writes

count ∈ {0, 1, 2}
threshold = 2

type = 2

handler = foo()

+

2. increment

counter

foo()
event
loop

3. dispatch operation

type ∈ {2,3,4}

4. counter

data

SRAM DISPATCH GC

(a) (b)

event

void event_loop ()
{
 while (1)
 {
 data = dispatch();
 (*data.handler)(data);
 }
}

551

runs) and repeats many times over the course of a computation (in
particular, counters are automatically reset to zero upon reaching
their threshold in preparation for the next occurrence of the same
event). Dynamic events can be supported by introducing a level of
indirection, for example by embedding a pointer within the count-
ed write data to a secondary function that is called by the initial
event handler. When necessary, it is also possible modify the
counters and their SRAM associations at run time.

4. Dispatch Unit Implementation
The previous section outlined the general operation of the dis-
patch unit; here we provide some additional details related to its
implementation within Anton 2.

4.1 Counters and counter lists

A dispatch unit contains 128 hardware synchronization counters,
each of which has a 32-bit count, a 32-bit threshold, a 5-bit type,
and a quad of programmer-specified counter data that forms the
result of a dispatch operation. A key feature of the dispatch unit is
its ability to arbitrarily map the SRAM quad addresses of counted
remote writes to synchronization counters. This reduces the
amount of global information that must be shared and communi-
cated between tiles, since the sender of a counted remote write
only needs to know the destination address and does not need to
specify a counter ID.

It is possible for multiple tasks to depend on the same input da-
ta, in which case it becomes desirable to increment multiple coun-
ters in response to a single counted remote write. The dispatch
unit provides efficient support for this operation via 128 counter
lists. Each counter list specifies an arbitrary subset of the 128
counters; an SRAM quad can be mapped to either a single counter
or a counter list (Figure 6). The mapping uses eight bits per
SRAM quad—one bit to select a counter versus a counter list, and
seven bits to specify one of the 128 counters or counter lists—
representing a ~6% overhead for the flex tile SRAM.

4.2 Dispatch operations

When a counter reaches its threshold it is marked as “active” and
becomes a candidate for selection when a dispatch operation is
processed. A GC issues a dispatch operation by atomically ex-
changing a quad with a special memory address, so in particular
no hardware support for dispatch operations is required within the
GCs beyond the ability to perform 128-bit atomic exchanges with
memory. The request quad sent from the GC to the dispatch unit
specifies the event types that the GC can accept in up to four
priority levels.

If a dispatch operation succeeds (i.e., at least one active coun-
ter’s type matches the request), then the dispatch unit selects one
of the highest-priority matching counters and returns that coun-
ter’s data quad to the GC. If a dispatch operation fails, then it
stalls until a matching counter becomes active, at which point the

operation completes successfully. This blocking behavior obviates
the need to run a polling loop on the GCs, and can cut the ex-
pected latency between counter activation and event handling
roughly in half relative to a standard polling loop. Figure 7 illus-
trates the sequence of events involved in a blocking dispatch
operation.

4.3 Error detection

There are a number of ways in which software errors and race
conditions can lead to incorrect operation in the form of counters
that become active prematurely or never at all. The dispatch unit
contains three hardware error detectors designed to catch the
majority of these errors, which would otherwise be extremely
difficult to diagnose.

1. Counter overflow. This error is generated when a counter is
incremented past its threshold, which can be caused by a mis-
configured threshold, or an errant counted remote write (one
that should have been omitted or that was directed to the
wrong SRAM address).

2. Phase mismatch. Every counted remote write includes a soft-
ware-generated single-bit phase that is generally expected to
alternate in value between consecutive activations of a single
counter. For example, a counter with threshold five expects
five phase 0 counted remote writes, after which it becomes ac-
tive and is reset to zero in preparation for five phase 1 counted
remote writes. A phase mismatch error is generated when a
counted remote write is received with the wrong phase, indi-
cating a software race condition.

Figure 6. SRAM quads can be mapped to either individual counters or lists of counters.

quad 1

count ∈ {0, 1, 2}

threshold = 2
+

handle event when

count reaches 21

quad 2

quad 3

quad 4

1, 2

data counter(s)

2

2 count ∈ {0, 1, 2, 3}

threshold = 3
+

handle event when

count reaches 3

counted remote writes

Figure 7. Typical blocking dispatch operation. (1) A GC issues a
dispatch operation to the dispatch unit; no active counter is avail-
able so the operation stalls. (2) Counted remote writes are re-
ceived from the network containing the data required for a task.
(3) The SRAM addresses are forwarded to the dispatch unit. The
task’s counter is incremented, causing it to reach its threshold and
become activated. (4) The dispatch unit returns the counter’s data
quad to the GC. (5,6) The GC reads the data from SRAM when it
handles the event.

SRAM

DISPATCH GC

+

1

4

5

2

3

6

counted

remote

writes

552

3. Repeated activation. An active counter must be processed by a
dispatch operation before it can become active again, since the
dispatch unit does not maintain a queue of pending events, but
simply keeps track of which counters are active. If an active
counter reaches its threshold again before being dispatched
then a repeated activation error is generated, indicating a
software race condition.

5. Software Support
The raw dispatch hardware presents a difficult resource allocation
problem: software must manage cases where there are more tasks
than counters, the counters must be partitioned among the various
task types, and only 128 counter lists are available when in princi-
ple each of the 16,384 SRAM quads could be associated with a
different set of counters. To ease the burden on the programmer,
we implemented a higher-level software library that abstracts
away the finite hardware resources, allowing arbitrarily many
events and counter-SRAM associations to be defined when the
application is initialized. In addition, we reduced the run-time
overhead of event handler dispatching by prefetching data from
SRAM and employing a form of tail recursion.

5.1 Prefetching task data

The counter data quad returned from a dispatch operation is
passed to the event handler in order to describe the corresponding
task. In particular, if the task requires some SRAM data (which is
generally the case), then the quad must include a pointer to this
data. A simple convention for event handlers would be to accept a
single argument (the counter data quad), and begin by reading the
required data from SRAM (Figure 8). The drawback to this ap-
proach is that SRAM reads are expensive, requiring over 20 cy-
cles to complete, so most event handlers will immediately stall for
a significant amount of time.

To reduce this overhead, we adopt the (slightly more compli-
cated) convention of always prefetching the first data quad from
SRAM before the event handler is called, and passing this
“prefetch” quad as a second argument using a register calling
convention (Figure 9). This allows some of the latency of the
SRAM read to be hidden behind the latency of invoking the event
handler (which is at least seven cycles). In some cases the prefetch
quad is the only SRAM data that is required; in other cases addi-
tional quads must be read, but the latency of these reads can often
be hidden behind computation involving the prefetch quad.

5.2 Tail recursion for event handlers

Conceptually, the software runs an event loop that invokes the
event handlers, as shown in Figure 10. In order to reduce the
overhead between handlers, we introduced a compiler transfor-
mation that modifies the end of a handler to jump directly to the
next handler. This is essentially tail recursion for event handlers,
and it eliminates the overhead of returning to an event loop.

To enable this transformation, the programmer marks the han-
dler with a special attribute and places a dispatch operation at the
end of the handler. The compiler then inserts code after this dis-
patch operation to clean up the stack (as if it were about to return
from the handler), load the prefetch quad from SRAM, and jump
to the next handler, using registers to pass the counter data quad
and the prefetch quad as arguments. In addition to obviating the
need for an explicit event loop, placing the next dispatch opera-
tion directly in the handler gives the compiler the opportunity to
schedule it earlier so that some of the dispatch latency can be
hidden. In our molecular dynamics software, we observed that the
compiler was able to schedule the dispatch operation 20 cycles
before the end of some handlers, reducing the time between back-
to-back event handlers from 46 cycles to as little as 26 cycles.

5.3 Allocating and initializing counters

The software library virtualizes the counter hardware, presenting
the programmer with a seemingly unlimited number of counters
and counter lists. The application software can allocate a separate
virtual counter for each discrete task. A virtual counter is initial-
ized with a software task type and the counter data quad, which
contains a function pointer to the event handler, an SRAM pointer
to the task data (of which the first quad is prefetched), and 64 bits
of arbitrary user data (Figure 11).

The software task type is assigned by the programmer and is
used by the library to categorize tasks. It is more general than the
5-bit hardware event type associated with each physical counter.
Software task types are mapped to hardware event types (as speci-
fied by the programmer), but this mapping can be many-to-one, so
there is no limit on the number of software task types. Our molec-
ular dynamics software, for example, uses over 70 distinct soft-
ware task types. Different hardware event types are only required
for tasks that are prioritized differently within dispatch operations.

A counter can be associated with any data quad in SRAM by
specifying the quad’s address as well as the total expected remote
write count from that quad (Anton 2 supports accumulation into

void some_handler (quad counter_data)
{
 task_data = sram_read(counter_data.task_data);
 process the task data
}

Figure 8. An event handler could take a single argument (the
counter data quad) and begin by reading data from SRAM.

void some_handler (quad counter_data, quad prefetch_data)
{
 possibly read additional quads from SRAM
 process the prefetch quad
}

Figure 9. Our software convention for event handlers prefetches
the first SRAM data quad so that the SRAM read latency can be
partially hidden.

void event_loop ()
{
 while (1)
 {
 quad counter_data = dispatch();
 quad prefetch_data = sram_read(counter_data.task_data);
 (counter_data.handler)(counter_data, prefetch_data);
 }
}

Figure 10. An event loop repeatedly fetches the next event and
invokes the event handler.

127 64 32 0

user data task data handler

Figure 11. Structure of the counter data quad that forms the
result of a dispatch operation. The first 32-bit word is a function
pointer to the event handler. The next 32-bit word is a pointer to
the task data in SRAM. The remaining 64 bits can contain arbi-
trary event-specific information.

553

SRAM quads, so multiple counted writes may be directed to a
single quad in order to add their values, resulting in multiple
counter increments). The counter’s threshold is the sum of these
expected counts. Figure 12 shows a very simple example for a
task that adds two quads. The counter data is initialized with three
SRAM pointers: two for the source operands, and one for the sum.

5.4 Mapping virtual counters to physical counters

Once the virtual counters have been allocated, they must be as-
signed to physical counters. A virtual counter’s flex tile is implic-
itly specified by the counter’s task data pointer and SRAM associ-
ations (which must all resolve to the same flex tile). When at most
128 virtual counters are assigned to a flex tile, they can each be
mapped to a separate physical counter. When a flex tile has more
than 128 virtual counters, however, its physical counters must
somehow be shared amongst them.

In some cases it is possible to time-multiplex a physical coun-
ter between multiple virtual counters, for which the software
library does provide some support, but doing so safely requires
very specific knowledge of the application’s dataflow, as well as
appropriately timed dynamic modifications to the counter state.
More typically, time multiplexing is not an option because it is
difficult or impossible to place restrictions on when a given task’s
input data will arrive. Instead, we allow a group of tasks of the
same type to use a single physical counter, coarsening the event
granularity: an event occurs when the input data for all tasks in the
group has arrived.

Tasks can be grouped in this manner by assigning their virtual
counters to the same physical counter. Their thresholds are added
together, and the data for the individual tasks is stored in a linked

list (Figure 13). The handler is responsible for iterating over the
linked list to execute each of the tasks.

While it is possible to perform this counter assignment manu-
ally, doing so is tedious and forms a difficult optimization prob-
lem. The library automates the process using counter pools, which
are collections of tasks that all have the same type. The program-
mer can explicitly create a counter pool of a given type and add
arbitrarily many tasks to this pool. The library decides how many
physical counters to allot for each counter pool (assigning more
physical counters to pools with more tasks), then within each
counter pool partitions the tasks among the physical counters.

Some care must be taken to avoid introducing deadlock. In
particular, if two tasks are assigned to the same physical counter
but one of them has an input dependency on the other, then the
counter will never reach its threshold. The library prevents such
deadlocks by imposing the restriction that any two tasks of the
same type must be independent, that is, none of a task’s input data
can be generated by another task of the same type. The program-
mer is responsible for ensuring that this is the case, so that it is
safe to assign multiple tasks from a counter pool to a single physi-
cal counter.

5.5 Counter lists

The programmer can arbitrarily associate virtual counters with
SRAM quads without having to explicitly create or manage coun-
ter lists. Once the virtual counters have been mapped to physical
counters, the library automatically creates a counter list for any
SRAM quad associated with two or more physical counters. The
number of such implicitly generated counter lists may exceed the
hardware limit of 128, however, in which case the library auto-

// initialization time
void initialize_adder (sram_ptr pa, sram_ptr pb, sram_ptr psum)
{
 cntr = cntr_new(ADDER_EVENT, adder_handler, pa /task data/, make_user_data(pb,psum) /user data/);
 cntr->attach_to_sram(pa, 1 /expected count/);
 cntr->attach_to_sram(pb, 1 /expected count/);
}

// run time
void adder_handler (quad counter_data, quad prefetch_data /=a/)
{
 quad b = sram_read(counter_data.user_data[0]);
 quad sum = prefetch_data + b;
 sram_write(counter_data.user_data[1], sum);
}

Figure 12. Simple counter example for a two-input adder. The counter is incremented by one with the arrival of each input data quad, so
its threshold is two. In the run-time handler the first input is prefetched; the pointers to the second input and the sum are stored in the user
data portion of the counter data quad.

Figure 13. When multiple tasks are assigned to the same physical counter (b), the thresholds are added and the data for the tasks is stored
as a linked list in SRAM.

task 1 data

(a) one task per counter (b) multiple tasks per counter

counter 1

threshold = 2

counter 2

threshold = 3

counter 3

threshold = 5

counter 1

threshold = 10
counter 1 data quad

counter 2 data quad

counter 3 data quad

counter 1 data quad
task 2 data

task 3 data

task 1 data

task 3 data

task 2 data

554

matically merges certain groups of counter lists so that a smaller
number of “union lists” are required (Figure 14).

This operation preserves all original dependencies: a counter
associated with an SRAM quad still depends on that quad for
activation. It also introduces false dependencies that were not
originally specified by the programmer. For example, the merged
list in Figure 14b causes counter 1 to depend on quad 2 and coun-
ter 3 to depend on quad 1. The counter thresholds are automatical-
ly adjusted to account for the false dependencies, but there is
another complication: false dependencies can lead to deadlock. In
the same example, if the event triggered by counter 1 is responsi-
ble for sending data to quad 2, then merging the lists creates a
circular dependency and none of the counters will ever reach their
thresholds. To avoid this situation, the library only merges lists
whose tasks are of the same type, again leveraging the restriction
that any two tasks of the same type must be independent. In the
extreme case, a single list is used for all counters of a given task
type, so that none of the counters will be activated until the data
for all the tasks of that type has arrived.

The algorithm for merging counters lists on a given flex tile
begins by counting, for each event type t, the number Nt of dis-
tinct lists of type-t counters. The 128 physical counter lists are
then partitioned among the types such that the number Lt of physi-
cal lists allotted for type t is proportional to Nt. The task of merg-
ing lists for type t until only Lt remains can be formulated as the
following covering problem: given Nt lists and an integer Lt < Nt,
find Lt “covering lists” such that each of the original lists is con-
tained in one of the covering lists. We then merge each group of
lists contained within a common covering list.

The goal is to find covering lists that approximate the original
lists as closely as possible. To define this metric more precisely,
observe that whenever a list is contained in a covering list with
more counters, the “extra” counters in the covering list lead to
false dependencies as described above. The covering lists are
generated using a greedy heuristic that attempts to minimize the
total number of false dependencies. For example, two possible 2-
coverings of the lists {[0,1], [0,2], [3,4]} are {[0,1], [0,2,3,4]} and
{[0,1,2], [3,4]}; of these, the latter is preferred as the covering
lists contain fewer extra entries.

6. Event-Driven Implementation of Molecular
Dynamics
A molecular dynamics (MD) simulation models the motions of
individual atoms as a chemical system (e.g., a protein surrounded
by water) evolves. The simulation steps through time, alternating
between a force calculation phase that determines the force acting
on each simulated atom, and an integration phase that advances
the positions and velocities of the atoms according to the classical

laws of motion. Each iteration through these phases is referred to
as a time step. On Anton 2, the chemical system to be simulated is
spatially divided into a regular grid of boxes, with each box as-
signed to one ASIC.

There are several reasons that MD is well-suited to an event-
driven implementation in general, and the Anton 2 dispatch unit in
particular:

 An MD computation naturally consists of a large number of
fine-grained tasks, which are known in advance and repeated
in each time step, and can therefore be statically mapped to
counters within the dispatch unit.

 When a simulation runs on a large parallel machine, there may
only be zero or one instances of a given task type executed on
a given core, so a batch processing model (executing many
tasks of the same type in a tight loop) is ineffective.

 Statically scheduling these tasks when MD is parallelized is
challenging, because the order in which input data arrives is
unpredictable.

 Prioritization is important when the tasks are dynamically
scheduled because some affect the critical path more than oth-
ers.

Figure 15 shows the dataflow of an MD simulation. The force
calculation phase consumes atom positions and produces forces;
the integration phase consumes forces and produces updated atom
positions and velocities. The force calculation phase has three
major components: various specific interactions that are computed
by hardware within the HTIS tiles; bond terms, which involve
small groups of atoms connected by one or more covalent bonds;
and a three-dimensional fast Fourier transform (FFT), which
forms part of an algorithm to efficiently compute long-range
interactions. The bond terms, FFT, and position/velocity updates
are computed within the flex tiles and are implemented in an
event-driven manner, as described in the following sections.

Figure 15. Dataflow of a molecular dynamics simulation.

Update positions
and velocities

Integration

Force
calculation

FFT
Bond terms Interactions

Interactions

Interactions

forces

Figure 14. Counter lists are merged by replacing two lists with their union. (a) The programmer specifies that counters 1 and 2 will receive
two increments from quad 1, while counters 2 and 3 will receive three increments from quad 2, which implicitly defines two counter lists.
(b) If the two lists are merged, then all three counters will receive two increments from quad 1 and three increments from quad 2.

quad 1 quad 2

list 0list 1 list 0list 2

quad 1 quad 2

list 0list 1

(b) merged(a) original

2 3 32

counter 1

threshold = 2

counter 2

threshold = 5

counter 3

threshold = 3

counter 1

threshold = 5

counter 2

threshold = 5

counter 3

threshold = 5

list 1

555

6.1 Bond terms

The set of bond terms does not change during the course of a
simulation: on each time step, positions for the same groups of
atoms must be brought together to compute forces. On Anton 2,
this is accomplished by statically mapping the computation for
each bond term to a task on a fixed flex tile. Each atom has an
associated list of flex tiles to which its position must be sent using
counted remote writes; the dispatch units track the arrival of these
positions to determine when each bond term can be evaluated. An
atom can participate in multiple bond terms mapped to the same
tile, so counter lists are used to update the appropriate set of coun-
ters as each atom position is received (Figure 16). Bond term tasks
are created within a pool; the software library automatically parti-
tions them among the available physical counters.

6.2 Three-dimensional FFT

The FFT comprises six “rounds” of computation. Rounds 1–3
perform one-dimensional FFTs in each dimension, round 3 also
performs a Fourier-space computation with the transformed data,
then rounds 4–6 perform one-dimensional inverse FFTs. There is
a communication phase between pairs of consecutive rounds, in
which the output from the previous round is scattered over An-
ton 2’s communication network to the appropriate flex tiles for the
next round. The FFT is mapped to exactly six counters per flex
tile (one for each round); each round is triggered by the arrival of
its input data (Figure 17).

The FFT tends to affect the critical path more than bond terms
because additional HTIS work is required to convert the output of
the FFT into forces, as shown in Figure 15. We therefore statically
prioritize FFT events above bond events within dispatch opera-
tions. This allows the GCs to work on bond terms during the
communication phases of the FFT, then resume FFT work once
all data has arrived for the next round. Without hardware support
for this type of fine-grained prioritized event interleaving, the
easiest way to give the FFT absolute priority over bond terms

would be to wait for all rounds to complete before starting the
bond computations. This would place the bond terms on the criti-
cal path following the FFT, degrading performance.

Figure 18 shows GC activity for a single force calculation
phase across all flex tiles that participate in the FFT. In Figure
18a, FFT events are given absolute priority over bond events by
delaying the bond work until the FFT has completed. In Figure
18b, the bond event handlers are dynamically interleaved with the
FFT event handlers using prioritized event types. Even though this
interleaving causes the FFT to finish slightly later, the overall
force calculation is accelerated as the majority of the bond work is
removed from the critical path.

6.3 Integration

During the integration phase, small groups of 1–4 atoms (referred
to as constraint groups) have their velocities and positions updat-
ed according to Newton’s laws of motion and certain rigid-body
constraints. Each constraint group is mapped to a task within a
counter pool, and depends on the accumulation (in SRAM) of
forces for all atoms within the group. When a constraint group
counter is associated with a force quad in SRAM, the total ex-
pected count for that quad is greater than 1, because the total force
for an atom is the sum of multiple partial forces from bond terms
and HTIS tiles (Figure 19). Each partial force arrives as a separate
counted remote accumulation with the same destination address.
Constraint groups are disjoint, so no counter lists are required.

Figure 16. Two bond terms (A, B) involving three atoms (1, 2,
3) are assigned to a flex tile. Three SRAM quads are allocated to
receive the atom positions; the two bond term counters are incre-
mented as the positions arrive. Atom 2 participates in both bond
terms, so a counter list is used to increment both counters when
its position arrives.

counter B

threshold = 2

counter A

threshold = 2position 1 +

position 2

position 3 +

1

2

3

A

B

Figure 17. Six arrays of SRAM quads are allocated to receive the
input data for the six FFT rounds. A single counter is used for
each round, whose threshold is the number of quads in the corre-
sponding array.

round 1

round 2

round 6

threshold = # quads+

threshold = # quads+

threshold = # quads+

from

round 1

Figure 18. GC activity during force calculation. The communica-
tion phase between rounds 3 and 4 of the FFT is very short, caus-
ing these rounds to appear merged in the activity plots. (a) Bond
events are delayed until the FFT has completed. (b) Prioritized
event types are used to handle bond events in the background
during the FFT.

integration

integration

FFT

bond

terms

integration

FFT

bond

 terms

integration

(a) (b)

Figure 19. Two SRAM quads are allocated to accumulate the
partial forces (small arrows) for a constraint group with two
atoms (1, 2). The constraint group’s counter is incremented as
each partial force is accumulated, and its threshold is the total
number of partial forces for both atoms.

force 1 threshold =

partial forces
+

force 2

2

1

+

+

556

6.4 Migration

Because the simulation is spatially subdivided among the ASICs,
as the system evolves and atoms move through space it becomes
necessary to periodically migrate constraint groups from one
ASIC to another. We implement migration using a six-stage algo-
rithm, shown in Figure 20. The first three stages propagate migra-
tion requests from source tiles to destination tiles via “master”
tiles, which coordinate all migrations into and out of an ASIC.
The destination tiles allocate SRAM storage and return destination
addresses to the source tiles in stages four and five. Finally, the
constraint groups are sent to these destination addresses in stage
six. Each stage in the migration algorithm uses a distinct counter.

Migration is pipelined across two integration phases: the deci-
sion to migrate a constraint group is made during the first phase,
but the actual migration does not occur until the second. This
allows the majority of the migration communication and synchro-
nization to be overlapped with force computation, removing it
from the critical path. Migration events are given lower priority
than the bond and FFT events so that they can be handled in the
background. No software is required to schedule or sequence the
stages; each event is simply handled once its data has arrived and
there are no pending bond or FFT events. Without the dispatch
unit, it would be necessary to explicitly schedule the migration
stages in software, and it would be difficult to overlap the migra-
tion work with force computation.

7. Performance Evaluation
For our performance experiments, we used 11 sample chemical
systems with varying characteristics: some are proteins surround-
ed by water while others are proteins embedded in membranes;
the relative amount of bond and FFT work differs from system to
system; and the overall sizes range from 23,558 atoms to 147,683
atoms (this represents a typical range for long-timescale molecular
dynamics simulations; Anton 2 will also support much larger
simulations). We measured the average number of cycles required
to complete a single time step (one force phase and one integra-
tion phase) for each system on simulated 512-node and 64-node
Anton 2 machines (these are two of the physical configurations
that will be supported).

The performance advantages of the dispatch unit stem from its
ability to dynamically generate an efficient execution schedule for
a heterogeneous set of fine-grained tasks. To quantify this effect,
we ran our molecular dynamics software using two different
execution schedules: the more aggressive schedule enabled by the

dispatch unit, and a coarse-grained schedule that fixes the order of
task types within a time step, and executes all tasks of a given
type as a single batch (by waiting for all of their input data to
arrive before execution begins). This schedule is suitable for
machines that provide a limited number of synchronization coun-
ters but no other hardware support for task scheduling.

Figure 21 shows the result of this comparison. The perfor-
mance improvement afforded by the dispatch unit generally rang-
es from 2% to 10%, but is larger (~16%) on a 512-node machine
for two systems in which bond terms constitute a higher fraction
of the overall work. For these two systems, the primary advantage
of the dispatch unit is the ability to dynamically interleave bond
terms with FFT computation. On a 64-node machine this effect is
much less pronounced because the bond terms represent a larger
fraction of the total computation time (the FFT computation is
communication-limited and takes about the same amount of time
on 64- and 512-node machines), so there is less advantage to
interleaving them with the FFT.

One of the important design parameters of the dispatch unit is
the number of physical counters. A certain minimum number of
counters is required to support the set of distinct task types within
an application (which, for our molecular dynamics software, is
around 48). Beyond this minimum number we generally expect
performance to improve with additional counters, since this per-
mits finer-grained task scheduling.

In Figure 22 we vary the number of counters per dispatch unit
from 48 to 128, showing the performance improvement relative to
48 counters. Most of the performance gains occur in the first half
of this range (48–88 counters); using more than 88 counters con-
fers little additional performance advantage. This indicates that
128 counters are more than sufficient for our target application.
More generally, it demonstrates that using only a limited number
of counters, we can achieve the performance of a hypothetical
machine with enough resources to assign each task to a distinct
counter. Note that on a 512-node machine the smaller systems do
not benefit at all from additional counters since few GCs have
more than one task of any given type. For these systems, the
primary benefit of the dispatch unit is the ability to dynamically
schedule tasks of different types based on priority and the availa-
bility of input data.

One specific performance advantage of the dispatch unit’s
fine-grained scheduling is its support for efficiently processing
background tasks using prioritized event types. The various mi-
gration events are given a lower priority, for example, and will be
handled only when no higher-priority events are ready. Migration

Figure 20. Constraint groups are migrated from a source tile on
one ASIC to a destination tile on another ASIC using a six-stage
algorithm involving migration “masters,” which coordinate all
migrations into and out of an ASIC.

counts
3. Migration requests

2. Migration1. Migration counts

4. Constraint group destinations

integration

5. Destinations

6. Constraint groups

integration

source

tile

source

master

destination

master

destination

tile

Figure 21. Percentage performance improvement relative to a
coarse-grained task execution schedule.

0

2

4

6

8

10

12

14

16

18

%
p

e
rf

o
rm

a
n
c
e

im
p
ro

v
e
m

e
n
t

chemical system

512 nodes

64 nodes

557

uses a complex multi-stage algorithm with many different events,
so one might expect it to have a significant performance impact.
In Figure 23, however, we see that the maximum performance
overhead (measured by running a small number of time steps both
with and without migration) is just over 4%, and is less than 1.4%
on average. By contrast, the migration overhead in Anton 1—
which does not have a dispatch unit and thus needs to explicitly
schedule all migration activities in software—is typically closer to
10%.

8. Related work
At the extreme end of fine-grained event-driven computation are
static and dynamic dataflow machines [4], in which every single
instruction is triggered by the arrival of its operands. Scheduling
every instruction independently incurs significant overhead [22],
so hybrid architectures have been described in which small groups
of instructions are executed together, combining the dynamic
parallelism of a dataflow architecture with the efficiency of se-
quential execution [3,13,23,28]. These architectures are geared
towards chip multiprocessors and leverage basic-block-level
dependencies that can be discovered by the compiler; they are less
suitable for large parallel machines with explicit messages used to
initiate user-defined task.

Early work on hardware and software mechanisms for creating
tasks in response to messages within a parallel machine, often
referred to as active messages, dates back to the nineties
[11,16,21]. These message-driven architectures assume a one-to-

one mapping from messages to tasks and always schedule tasks in
the order that the corresponding messages were received. By
contrast, the dispatch unit supports many-to-many mappings from
messages to tasks as well as dynamic prioritization of tasks, both
of which are important for our event-driven implementation of
molecular dynamics.

More recent work on task creation has focused on scheduling
tasks among the cores of a chip multiprocessor using variations of
work stealing [2,6,7,9,14,15,17]. This approach assigns a local
task queue to each processor, but improves load-balancing of
irregular algorithms by allowing processors to “steal work” from
other queues once they complete their local tasks. Performing
work stealing entirely in software is inefficient for fine-grained
tasks because the overhead of task migration becomes comparable
to the run time of each task, so several hardware mechanisms have
been proposed to reduce this overhead [1,19,24,27]. The dispatch
unit does not provide hardware support for task migration (which
is undesirable in Anton 2 since each task’s data resides in SRAM
on a specific flex tile), but it does provide some dynamic load
balancing by virtue of being shared among the GCs within a flex
tile.

Software is typically responsible for determining when a task
can be executed, although hardware mechanisms have also been
proposed that perform this function by tracking inter-task depend-
encies [1,12,27]. While this approach is effective for tasks that
communicate via shared memory in a cache-coherent single-chip
multiprocessor, Anton 2 must directly track data dependencies
across the nodes of a parallel machine, since most tasks receive
their input data via counted remote writes.

The dispatch unit provides flexible support for tracking count-
ed remote writes by allowing one or more hardware counters to be
associated with every quad of SRAM. Word-level synchronization
mechanisms have appeared previously in various architectures;
examples include I-structures in the Tagged Token Dataflow
Machine [5], presence tags in the J-Machine [21], message queue
control words in the Cray T3E [25], and register-mapped hard-
ware receive queues in the Tile Processor [29]. Using a separate
set of counters introduces a level of indirection that supports more
powerful synchronization primitives. Hamlyn, Anton 1 and Blue
Gene/P each allow incoming packets to be mapped to receiver
synchronization counters [8,18,20]. In these architectures, howev-
er, the receiver can only poll individual synchronization counters
rather than poll for any event within a set of types, so they are less
suitable for fine-grained event-driven computation.

Figure 22. Percentage performance improvement relative to a dispatch unit with only 48 counters.

-2

0

2

4

6

8

10

12

48 56 64 72 80 88 96 104 112 120 128%
 i
m

p
ro

v
e
m

e
n
t
re

la
ti
v
e
 t
o

 4
8

 c
o

u
n
te

rs

Number of counters per dispatch unit

512 nodes

-2

0

2

4

6

8

10

12

48 56 64 72 80 88 96 104 112 120 128%
 i
m

p
ro

v
e
m

e
n
t
re

la
ti
v
e
 t
o

 4
8

 c
o

u
n
te

rs

Number of counters per dispatch unit

64 nodes

Figure 23. Percentage performance overhead of migration.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

%
 p

e
rf

o
rm

a
n

c
e

 o
v
e

rh
e

a
d

chemical system

512 nodes

64 nodes

558

9. Conclusion
Event-driven computation is a powerful paradigm, but is difficult
to realize efficiently due to the overheads of synchronization,
scheduling, and task creation. Hardware support can reduce these
overheads, but carries the additional challenge of mapping arbi-
trarily many tasks to a finite set of synchronization counters. The
dispatch unit represents a practical event-driven architecture that
improves both the performance and the programmability of
Anton 2. Performance is improved by executing tasks as soon as
their input data is available and scheduling non-critical-path tasks
in the background with a lower priority. Programmability is en-
hanced by allowing applications to be formulated as a set of inde-
pendent tasks, largely eliminating the need to perform task sched-
uling and prioritization in software, and enabling the use of algo-
rithms with many fine-grained tasks and/or communication
rounds (such as constraint group migration).

Our software library simplifies the development of event-
driven applications and addresses the problem of supporting a
potentially large number of tasks with a small set of synchroniza-
tion counters. By virtualizing the counters, providing a counter
pool mechanism and automatically generating counter lists, the
library presents an abstraction with unbounded resources and
insulates the programmer from low-level details of counter and
counter list allocation. The programmer simply creates a virtual
counter for each task, initialized with the appropriate SRAM
associations.

Although the overheads of synchronization and task creation
are much smaller in Anton 2 than in commodity processors, there
is still room for improvement. More than 40 machine cycles are
required to start a new task in the worst case. With typical task
durations measured in hundreds of cycles, this overhead repre-
sents a significant fraction of the overall compute time. It may be
possible to reduce this overhead by replacing the dispatch opera-
tion with a mechanism that pushes tasks directly to the GCs. We
chose not to pursue this design in Anton 2 because of the addi-
tional complications that it introduces, such as deciding which GC
should receive a task and what to do when a GC cannot process a
task it receives.

The motivation for the dispatch unit was specifically to accel-
erate molecular dynamics simulations, but the design consists of
general primitives for event-driven computation. Other applica-
tions with similar characteristics—namely those that comprise a
large, static set of fine-grained tasks whose input data is received
in an unpredictable order from other processors—may be able to
benefit from similar hardware mechanisms.

Acknowledgments
We thank the anonymous reviewers for their helpful sugges-

tions and Mollie Kirk for editorial assistance.

 References
[1] Ghiath Al-Kadi and Andrei Sergeevich Terechko, “A hardware task

scheduler for embedded video processing,” 4th International Confer-
ence on High Performance Embedded Architectures and Compilers
(HiPEAC ’09), Paphos, Cyprus, January 25–28, 2009, pp. 140–152.

[2] Nimar S. Arora, Robert D. Blumofe and C. Greg Plaxton, “Thread
scheduling for multiprogrammed multiprocessors,” 10th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA ’98),
Puerto Vallarta, Mexico, June 28–July 2, 1998, pp. 119–129.

[3] Joseph M. Arul and Krishna M. Kavi, “Scalability of scheduled
dataflow architecture (SDF) with register contexts,” 5th International
Conference on Algorithms and Architectures for Parallel Processing
(ICA3PP 2002), Beijing, China, October 23–25, 2002, pp. 214–221.

[4] Arvind and David E. Culler, “Dataflow architectures,” Annual
Review of Computer Science, Volume 1, June, 1986, pp. 225–253.

[5] Arvind and Rishiyur S. Nikhil, “Executing a program on the MIT
tagged-token dataflow architecture,” IEEE Transactions on Comput-
ers, Volume 39, Issue 3, March, 1990, pp. 300–318.

[6] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall and Yuli Zhou, “Cilk: an ef-
ficient multithreaded runtime system,” Journal of Parallel and Dis-
tributed Computing, Volume 37, Issue 1, August, 1996, pp. 55–69.

[7] Robert D. Blumofe and Charles E. Leiserson, “Scheduling multi-
threaded computations by work stealing,” Journal of the ACM, Vol-
ume 46, Number 5, September, 1999, pp. 720-748.

[8] Greg Buzzard, David Jacobson, Milon Mackay, Scott Marovich and
John Wilkes, “An implementation of the Hamlyn sender-managed
interface architecture,” 2nd USENIX Symposium on Operating System
Design and Implementation (OSDI ’96), Seattle, WA, October 28–
31, 1996, pp. 245–259.

[9] David Chase and Yossi Lev, “Dynamic circular work-stealing
deque,” 17th Annual ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA 2005), Las Vegas, NV, July 18–20, 2005,
pp. 21–28.

[10] Ron O. Dror, J.P. Grossman, Kenneth M. Mackenzie, Brian Towles,
Edmond Chow, John K. Salmon, Cliff Young, Joseph A. Bank,
Brannon Batson, Martin M. Deneroff, Jeffrey S. Kuskin, Richard H.
Larson, Mark A. Moraes and David E. Shaw, “Exploiting 162-
nanosecond end-to-end communication latency on Anton,” Interna-
tional Conference on High Performance Computing, Networking,
Storage and Analysis (SC10), New Orleans, LA, November 15–18,
2010.

[11] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein and
Klaus Erik Schauser, “Active messages: a mechanism for integrated
communication and computation,” 19th International Symposium on
Computer Architecture (ISCA 1992), Gold Coast, Australia, May
19–21, 1992, pp. 430–440.

[12] Yoav Etsion, Felipe Cabarcas, Alejandro Rico, Alex Ramirez, Rosa
M. Badia, Eduard Ayguade, Jesus Labarta and Mateo Valero, “Task
superscalar: an out-of-order task pipeline,” 43rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO ’43), Atlan-
ta, Georgia, December 4–8, 2010, pp. 89–100.

[13] Mark Gebhart, Bertrand A. Maher, Katherine E. Coons, Jeff Dia-
mond, Paul Gratz, Mario Marino, Nitya Ranganathan, Behnam
Robatimili, Aaron Smith, James Burrill, Stephen W. Keckler, Doug
Berger and Kathryn S. McKinley, “An evaluation of the TRIPS
computer system,” 14th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS 2009), Washington, D.C., March 7–11, 2009, pp. 1–12.

[14] Danny Hendler and Nir Shavit, “Non-blocking steal-half work
queues,” 21st Annual ACM Symposium on Principles of Distributed
Computing (PODC 2002), Monterey, CA, July 21–24, 2002, pp.
280–289.

[15] Ralf Hoffmann, Matthias Korch and Thomas Rauber, “Performance
evaluation of task pools based on hardware synchronization,”
ACM/IEEE Conference on High Performance Networking and Com-
puting (SC04), Pittsburgh, PA, November 6–12, 2004.

[16] Laxmikant V. Kale and Sanjeev Krishnan, “CHARM++: a portable
concurrent object oriented system based on C++,” 8th Annual Con-
ference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA 1993), Washington, D.C., September 26–
October 1, 1993, pp. 91–108.

[17] Matthias Korch and Thomas Rauber, “A comparison of task pools
for dynamic load balancing of irregular algorithms,” Journal of Con-
currency and Computation: Practice & Experience, Volume 16, Is-
sue 1, December, 2003, pp. 1–47.

[18] Sameer Kumar, Gabor Dozsa, Gheorghe Almasi, Dong Chen, Mark
E. Giampapa, Philip Heidelberger, Michael Blocksome, Ahmad Fa-

559

raj, Jeff Parker, Joseph Ratterman, Brian Smith and Charles Archer,
“The deep computing messaging framework: Generalized scalable
message passing on the Blue Gene/P supercomputer,” 22nd Interna-
tional Conference on Supercomputing (ICS ’08), Island of Kos,
Greece, June 7–12, 2008, pp. 94–103.

[19] Sanjeev Kumar, Christopher J. Hughes and Anthony Nguyen, “Car-
bon: architectural support for fine-grained parallelism on chip multi-
processors,” 34th International Symposium on Computer Architecture
(ISCA 2007), San Diego, CA, June 9–13, 2007, pp. 162–173.

[20] Jeffrey S. Kuskin, Cliff Young, J.P. Grossman, Brannon Batson,
Martin M. Deneroff, Ron O. Dror and David E. Shaw, “Incorporat-
ing flexibility in Anton, a specialized machine for molecular dynam-
ics simulation,” 14th International Symposium on High Performance
Computer Architecture (HPCA-14), Salt Lake City, UT, February
16–20, 2008, pp. 343–354.

[21] Michael D. Noakes, Deborah A. Wallach and William J. Dally, “The
J-Machine multicomputer: an architectural evaluation,” 20th Interna-
tional Symposium on Computer Architecture (ISCA 1993), San Die-
go, CA, May 16–19, 1993, pp. 224–235.

[22] Gregory M. Papadopoulos and Kenneth R. Traub, “Multithreading: a
revisionist view of dataflow architectures,” 18th Annual International
Symposium on Computer Architecture (ISCA 1991), Toronto, Cana-
da, May 27–30, 1991, pp. 342–251.

[23] Shuichi Sakai, Yoshinori Yamaguchi, Kei Hiraki, Yuetsu Kodama
and Toshitsugu Yuba, “An architecture of a dataflow single chip
processor,” 16th Annual International Symposium on Computer Ar-
chitecture (ISCA 1989), Jerusalem, Israel, June, 1989, pp. 46–53.

[24] Daniel Sanchez, Richard M. Yoo and Christos Kozyrakis, “Flexible
architectural support for fine-grain scheduling,” 15th International
Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS 2010), Pittsburgh, PA, March 13–
17, 2010, pp. 311–322.

[25] Steven L. Scott, “Synchronization and communication in the T3E
multiprocessor,” 7th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS
1996), Cambridge, MA, October 1–5, 1996, pp. 26–36.

[26] David E. Shaw, Martin M. Deneroff, Ron O. Dror, Jeffrey S. Kuskin,
Richard H. Larson, John K. Salmon, Cliff Young, Brannon Batson,
Kevin J. Bowers, Jack C. Chao, Michael P. Eastwood, Joseph
Gagliardo, J.P. Grossman, C. Richard Ho, Douglas J. Ierardi, István
Kolossváry, John L. Klepeis, Timothy Layman, Christine
McLeavey, Mark A. Moraes, Rolf Mueller, Edward C. Priest, Yibing
Shan, Jochen Spengler, Michael Theobald, Brian Towles and Stanley
C. Wang, “Anton, a special-purpose machine for molecular dynam-
ics simulation,” 34th Annual International Symposium on Computer
Architecture (ISCA 2007), San Diego, CA, June 9–13, 2007, pp. 1–
12.

[27] Magnus Själander, Andrei Terechko and Marc Duranton, “A look-
ahead task management unit for embedded multi-core architectures,”
11th Euromicro Conference on Digital System Design Architectures,
Methods and Tools (DSD 2008), Parma, Italy, September 3–5, 2008,
pp. 149–157.

[28] Kyriakos Stavrou, Costas Kyriacou, Paraskevas Evripidou and Pedro
Trancoso, “Chip multiprocessor based on data-driven multithreading
model,” International Journal of High Performance Systems Archi-
tectures, Volume 1, Number 1, 2007, pp. 24–43.

[29] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao,
Bruce Edwards, Carl Ramey, Matthew Mattina, Chyi-Chang Miao,
John F. Brown III and Anant Agarwal, “On-chip interconnection ar-
chitecture of the Tile Processor,” IEEE Micro, Volume 27, Issue 5,
September, 2007, pp. 15–31.

560

