
Load Value Approximation

Joshua San Miguel Mario Badr Natalie Enright Jerger

Edward S. Rogers Sr. Department of Electrical and Computer Engineering
University of Toronto, Toronto, Canada

{joshua.sanmiguel, mario.badr}@mail.utoronto.ca enright@ece.utoronto.ca

Abstract—Approximate computing explores opportunities
that emerge when applications can tolerate error or inex-
actness. These applications, which range from multimedia
processing to machine learning, operate on inherently noisy
and imprecise data. We can trade-off some loss in output value
integrity for improved processor performance and energy-
efficiency. As memory accesses consume substantial latency and
energy, we explore load value approximation, a microarchitec-
tural technique to learn value patterns and generate approx-
imations for the data. The processor uses these approximate
data values to continue executing without incurring the high
cost of accessing memory, removing load instructions from
the critical path. Load value approximation can also inhibit
approximated loads from accessing memory, resulting in energy
savings. On a range of PARSEC workloads, we observe up to
28.6% speedup (8.5% on average) and 44.1% energy savings
(12.6% on average), while maintaining low output error. By
exploiting the approximate nature of applications, we draw
closer to the ideal latency and energy of accessing memory.

I. INTRODUCTION

Approximate computing is an emerging paradigm for

energy-efficient processor design. A wide range of commer-

cial, multimedia and scientific applications are inherently ap-
proximate. They operate on noisy data and perform inexact

computations. These applications – which range from image

processing to recognition and mining applications [10, 25]

– can tolerate some error in their output values. This

allows architects to trade-off data value integrity for better

performance and energy savings. Recent work approximates

computations [1, 14], relaxes synchronization [33, 40] and

efficiently stores approximate data [22, 36]. Our work ex-

ploits approximate applications to reduce both the latency

and energy of accessing data in the memory hierarchy.

We propose load value approximation. Since many appli-

cations can tolerate inexactness, the values associated with

cache misses can be approximated. In traditional processors,

upon a load miss in the L1 cache, the data must be retrieved

from the next-level caches or from main memory. Cache

access combined with the long latency of traversing the

network-on-chip (NoC) results in many cycles between the

request and receipt of data by the processor. To overcome

this latency, we use a load value approximator, a hardware

mechanism that estimates memory values. By approximating

the load value on a cache miss, the processor can immedi-

ately proceed without waiting for the cache response.

Load value approximation follows from work on load

value prediction [6, 7, 16, 20, 21]. Applications exhibit value

locality; they tend to reuse common values. This is typically

due to runtime constants and redundancy in real-world input

data [20]. Load value prediction introduces complexity due

to supporting speculative values and performing rollbacks

upon mispredictions. Our work targets applications that

exhibit approximate value locality. Since inexactness is

acceptable, rollbacks are eliminated; there is no need to re-

execute a load instruction if the approximator generates a

value that does not exactly match the value in memory. We

show that without rollbacks, load value approximation still

maintains low error in the final application output.

In addition, load value approximation allows for relaxed
confidence estimation. In traditional value predictors, pre-

dictions are made only if confidence is high to minimize

rollbacks. The confidence of a predictor increases if its pre-

dictions frequently match the actual values in memory. High

confidence requirements limit the coverage of a value pre-

dictor; predictions that are not exact but are approximately

close to the actual values are deemed mispredictions, thus

decreasing confidence. Load value approximation achieves

greater coverage by employing relaxed confidence windows;

approximators can continue to generate values even if they

are not exact, as long as they fall within some acceptable

range. Relaxed confidence windows create a performance-
error tradeoff for approximators.

Furthermore, load value approximation decouples the

fetching of a cache block from the cache miss itself. Con-

ventionally, an L1 cache miss results in fetching the block

from the next-level cache or main memory. The processor

cannot proceed until it receives the data. However, with load

value approximation, the approximator generates a value so

the processor can continue immediately. As a result, it is

no longer necessary to fetch the block from memory. Note

that this is fundamentally impossible with traditional value

prediction since blocks must always be fetched to validate

the correctness of the prediction. Although blocks are still

fetched periodically to train the approximator, load value ap-

proximation eliminates the one-to-one ratio of cache misses

to cache fetches. We refer to this ratio as the approximation
degree. By foregoing the fetching of blocks upon cache

misses, load value approximation saves substantial energy

in the memory hierarchy through this energy-error tradeoff.

2014 47th Annual IEEE/ACM International Symposium on Microarchitecture

1072-4451/14 $31.00 © 2014 IEEE

DOI 10.1109/MICRO.2014.22

127

2014 47th Annual IEEE/ACM International Symposium on Microarchitecture

1072-4451/14 $31.00 © 2014 IEEE

DOI 10.1109/MICRO.2014.22

127

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 16,2023 at 16:42:18 UTC from IEEE Xplore. Restrictions apply.

(a) Precise execution.

(b) Execution with load value approximation.

Figure 1: Output of bodytrack.

Contributions. Our work identifies and exploits the fol-

lowing novel properties of load value approximation:

• Simplified implementation relative to traditional value

prediction due to the elimination of speculation and

rollbacks while still reaping performance benefits;

• Relaxed confidence estimation to facilitate trade-offs

along a performance-error spectrum;

• Approximation degree enabling trade-offs along an

energy-error spectrum.

We extend our preliminary work on load value approx-

imation [37] with an extensive approximator design space

exploration and a detailed evaluation of performance and

energy. We find that load value approximation can achieve

up to 28.6% speedup (8.5% on average) and 44.1% energy

savings (12.6% on average) with low output error; Figure 1

shows that the difference in application output with and

without approximation is nearly indiscernible.

II. LOAD VALUE PREDICTION

The presence of value locality [20] has led to significant

research in load value predictors [6, 7, 16, 21]. In these

schemes, a load miss in the L1 cache still fetches the data

from the next level of memory. However, instead of waiting

for the data, the predictor generates a value and allows the

processor to continue executing instructions speculatively.

When the data arrives, the prediction is validated against

the actual value. If they do not match, the processor must

rollback the speculatively executed instructions.

When the predicted value is correct, the predictor in-

creases its confidence for that value and the processor has

avoided the cache miss latency. If the predicted value is

incorrect, confidence is lowered and the processor must

rollback and recompute with the actual value. Implementing

such a scheme is complex, and requires managing specu-

lative values while risking costly rollbacks for inaccurate

predictions. Due to the long latencies of cache misses,

processors need large buffers to store all speculative values

since they must be validated later. Upon a misprediction,

the processor must be able to quickly restore its registers

and undo all speculative modifications to memory, either in

the store queue or the L1 cache. Recent work re-examines

the complexities associated with value prediction to move

towards more practical implementations [30, 31]; this work

improves confidence estimation and addresses timing issues

for back-to-back occurrences of the same instruction. We

address both of these issues in Section III. Load value

prediction typically performs poorly for floating-point val-

ues [16]. Since predicted values need to be identical to

the actual values, even small variations in floating-point

precision result in costly rollbacks; we explore reduced

precision for floating-point values in Section VII. Finally, in

multiprocessors, it is possible for another thread to modify

a speculative value, resulting in complications with the

memory consistency model [24]; we defer our discussion

of multiprocessor issues for load value approximation to

Section VII. Many of the challenges associated with im-

plementing load value prediction can be mitigated by taking

advantage of the approximate nature of applications.

III. LOAD VALUE APPROXIMATION

Load value approximation estimates data values to elim-

inate the latency and energy of retrieving the data from

memory. Figure 2 shows an overview of load value approx-

imation. When a load X misses in the L1 data cache 1 ,

the load value approximator generates X approx 2 .1 The

processor assumes this is the actual value of X and proceeds

with its execution 3a . A request is sent to the next level of

the memory hierarchy to fetch the cache block containing

X actual 3b . This request is off the critical path of the

application’s execution; the processor does not need to wait

for the actual data. X actual is then used to train the

approximator for better accuracy 4 .

Section III-A describes the generation of approximate

values 2 . To minimize error in the application’s final output,

we use confidence estimation to selectively make approxi-

mations only when the approximator is sufficiently accurate.

1Section IV describes how we select which loads to approximate.

128128

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 16,2023 at 16:42:18 UTC from IEEE Xplore. Restrictions apply.

Pr
oc

es
so

r

Private Data
Cache

Load Value
Approximator

M
ain M

em
ory

Load Miss X1

Gen. X_Approx2

G
et X_Actual

3b

Co
nt

in
ue

 w
ith

X_

Ap
pr

ox
3a

Train4

Figure 2: Load value approximation overview.

In Section III-B, we relax confidence estimation to achieve

high coverage; coverage is the percentage of loads that are

approximated. Section VI shows that high coverage leads to

large reduction in MPKI. Load value approximation can save

energy by decoupling cache fetches 3b from cache misses 1 .

In conventional caches, a miss always fetches the block from

the next-level in the memory hierarchy. However, with load

value approximation, the fetch is optional; fetching trains

the approximator 4 . By foregoing the fetch, we can trade-

off approximator accuracy for energy savings in the memory

hierarchy. Section III-C describes how we accomplish this

by varying the approximation degree.

A. Approximator Design
Traditional value predictors use the values of previous

loads to generate a prediction. Sazeides and Smith cate-

gorize value predictors as either computational or context-

based [38]. Computational predictors take the previous val-

ues of a given load instruction and generate a prediction

by computing some function, such as the stride between

the values. Context-based predictors generate predictions by

finding patterns in the value history. This taxonomy also

applies to load value approximators.

We explore the design space of approximators that com-

bine the computational and context-based ideas into a single

hardware structure. Figure 3 shows the general structure of

our load value approximator. The approximator consists of

a global history buffer (GHB) and an approximator table.

The GHB is a FIFO queue that stores the values accessed

by the most recent load instructions. This provides the

global context, which can improve accuracy by incorporating

global control path information [27]. GHB entries are not

approximate values but, rather, the precise values as loaded

from memory. Specifically, all X actual (Figure 2) values

accessed by a processor are pushed into the GHB as part of

the training process of the approximator 4 .

Upon a cache miss, to generate an approximate value, the

values in the GHB are hashed together – using some hash

function h (e.g., XOR) – along with the instruction address

of the load. This hash value forms the context and represents

a load value pattern. This hash value indexes the direct-

mapped approximator table. Each entry in the table consists

of a tag (the GHB hash value), a saturating confidence

tag conf degree f ()4.1 3.9 4.0

h (,)instruction
address

1.0 2.2 3.1
global history buffer

local history buffer

approximator table

Figure 3: Approximator design.

counter (Section III-B), a degree counter (Section III-C) and

a local history buffer (LHB). Unlike the GHB which tracks

all loads, the LHB stores the values accessed only by the

previous loads that match the entry’s tag. As a result, the

LHB tracks the load values that immediately followed the

GHB value pattern.

The example in Figure 3 shows that the last three loads

issued by the processor had X actual values of 1.0, 2.2 and

3.1. This value pattern maps to an entry in the approximator

table. The LHB values (4.1, 3.9 and 4.0) are the X actual
values of the three previous loads that have come immedi-

ately after this value pattern in the past. An approximate

value is then generated by employing some computation

function f (e.g., average) on the values in the LHB.

Due to their fine precision, floating-point values have low

exact predictability. For example, if a predictor generates

the value 1.000 but the actual value in memory is 1.001,

then a rollback is required since the values do not match

exactly. To address this, predictors such as the finite context

method [38], typically employ a selection mechanism that

decides which of the values in the LHB is most likely to

match the actual value. Load value approximation over-

comes this challenge since it is not concerned with exact

predictability; we simply compute the average of all the

values for use as an estimate. Furthermore, it is difficult

to achieve high coverage for floating-point values. Since

GHB values are hashed together to form the index to the

approximator table, small variations in precision result in

similar values (such as 1.000 and 1.001) being mapped to

different table entries. To address this, we can reduce the

number of mantissa bits in the GHB, effectively improving

floating-point value locality [1]. In our evaluations, we show

that our approximator design achieves better coverage than

traditional value predictors while maintaining low error.

Rollbacks. With traditional value predictors, X approx is

speculative and must be validated against X actual 4 . If they

are not identical, the processor must rollback its execution

and repeat the load instruction. Load value approximation

eliminates rollbacks since it does not need to validate the

correctness of its approximations. Thus cache blocks are

only fetched to improve the accuracy of the approximator 4 .

Value Delay. As in value prediction, an important challenge

in implementing approximators is value delay [49]. Value

delay occurs when the X actual values of previous loads

129129

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 16,2023 at 16:42:18 UTC from IEEE Xplore. Restrictions apply.

have not yet arrived at the L1 cache and thus have not

been inserted into the history buffers. The approximator must

generate an estimate based on older (potentially stale) values

in the GHB and LHB, limiting its accuracy. For example,

consider a load miss on A that results in a value prediction.

The processor saves its state and enters speculative execu-

tion. Now if we encounter a load miss on B, the prediction

for B may be less accurate since the predictor has not yet

been trained with the actual value of A. Value predictors

typically only save the processor state on the first load miss

(A) to keep complexity low [7]. Thus if B is mispredicted –

which is likely to happen due to value delay – the processor

rolls back to A, even if A was predicted correctly.
Value delay is more tolerable for load value approxima-

tion; stale values may affect the accuracy of the approx-

imator but would not trigger rollbacks. In Section VI-C,

we show that our approximators are resilient to high value

delays. This enables load value approximation to exploit en-

ergy optimizations when fetching blocks into the L1 cache.

Since approximation takes load misses off the critical path,

low-energy techniques – using heterogeneous NoCs [26]

and memory modules [32] – can be employed to fetch of

approximate data. These types of energy saving techniques

often sacrifice fetching latency; however, we can tolerate this

since our approximators are resilient to high value delays.

B. Relaxed Confidence Estimation
Traditional value predictors use confidence estimation

to improve accuracy and minimize costly rollbacks; how-

ever, confidence estimation typically decreases coverage.

Conversely, approximators can employ relaxed confidence

estimation to achieve high coverage while keeping error

low. The extent to which approximation can be tolerated is

called the relaxed confidence window. This window defines

how close X approx must be to X actual to increment the

confidence counter. For example, a confidence window of

10% means we increment the confidence counter only if

X approx is within ±10% of X actual. Traditional value

prediction employs a confidence window of 0%, since the

two values must be identical.
Each approximator table entry contains a saturating

(signed) confidence counter. Upon a cache miss, if the

counter is greater than or equal to 0, we make an approxima-

tion. When the block arrives at the cache, the approximator

is trained; X actual is pushed into both the LHB and GHB.

The confidence counter is incremented by one if X approx
is approximately close enough to X actual (decremented by

one otherwise). The confidence counter could be adjusted by

more than one depending on how far off the approximation

is; this feature cannot be used in traditional value prediction

since its correctness is a binary property. We leave the study

of this optimization for future work.

C. Approximation Degree
A key feature of load value approximation is its ability

to forego the fetching of blocks. In conventional caches, the

ratio of fetches to misses is 1:1. This ratio also holds true

for traditional value prediction. Even though value predictors

allow the processor to continue executing upon a cache miss,

the data block must still be fetched to validate the correctness

of the prediction.

Load value approximation does not enforce precise execu-

tion. For this reason, upon a cache miss, if an approximation

is made, it is possible to not fetch the data block at all.

Recall in Figure 2 that X actual serves no other purpose

than to train the approximator for better accuracy 4 . Thus

we can forego fetching a block by reusing the same ap-

proximate value multiple times. This effectively trades off

approximation accuracy for better energy efficiency in the

memory hierarchy. We control this trade-off through the

approximation degree. The approximation degree specifies

how many times we reuse a value generated by the approx-

imator before we train it. For example, an approximation

degree of 4 means that when a load misses in the cache, the

approximator generates a value that will be reused for the

next 4 load misses (in addition to the current miss). As a

result, the data block does not need to be fetched until the

last miss, since only then will the approximator be trained.

To implement the approximation degree, each entry in

the approximator table contains a degree counter, shown in

Figure 3. The degree counter is initialized to the maximum

approximation degree and is decremented every time an

approximation is made using this entry. Upon a cache miss,

if an approximation is made and the counter is greater than

0, the data block is not fetched. This implies that the next

approximation from this entry will return the same value.

The cache block is only fetched if the degree counter is

equal to 0, after which the entry is trained (both the LHB

and GHB are updated with the fetched value) and the degree

counter is reset to the maximum approximation degree.

Prefetching is an effective and widely used technique for

reducing the cache miss rate. However, this reduction typi-

cally comes at the expense of more fetches, wasting energy

when prefetching useless blocks. This trade-off is controlled

by the prefetch degree. The prefetch degree specifies how

many extra blocks to fetch on a cache miss. For example,

a prefetch degree of 4 means that when a load misses in

the cache, the prefetcher fetches up to 4 more blocks (in

addition to the missed block) to try to anticipate the next 4

load misses. This results in a 5:1 ratio of fetches to misses.

The approximation degree effectively yields the inverse

fetch-to-miss ratio as the prefetch degree. A prefetch degree

of 4 yields 5:1 fetches to misses, while an approximation

degree of 4 yields a ratio of 1:5. In Section VI-D, we

compare load value approximation to prefetching. Though

both techniques can reduce load miss rates, load value

approximation saves substantial energy by minimizing the

number of blocks fetched into the L1 cache.

130130

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 16,2023 at 16:42:18 UTC from IEEE Xplore. Restrictions apply.

IV. IDENTIFYING APPROXIMATE DATA

Programming and ISA support have been proposed for

identifying approximate computations [2, 13]. For example,

the EnerJ framework allows Java programmers to declare

data as either precise or approximate [35]. We leverage

this prior work by annotating data that can use load value

approximation; we make use of ISA extensions to indicate

which loads are approximate. In this section, we discuss

which regions of data can be approximated for a variety of

applications from PARSEC 3.0 [3], which represent a broad

range of modern and emerging application domains.

Load value approximation requires programmers to an-

notate their code. There are certain conditions where data

that can be approximated, should not be. In addition, it

is not necessary to approximate all data. In this section,

we discuss guidelines and recommendations programmers

should adhere to when annotating their code.

Control Flow: In general, one should not approximate

data that directly affects an application’s control flow. Ap-

proximating the value x for an application that contains the

code if(x == 42) will likely result in incorrect behaviour.

However, restricting programmers from annotating all data

that affects control flow is conservative [35]. For example,

a condition that leads to a region of code that further

updates approximate data can be approximated itself – as

data affected by the condition is approximate, the evaluation

of the condition may not significantly change the data values.

Divide-By-Zero: Data used in the denominator of a division

operation should not be approximated. An approximation of

zero will cause the program to crash; dividing by very small

values will result in a much larger number than expected.

Memory Addresses: Memory addresses and pointers

should never be approximated. Approximating memory ad-

dresses in an application that relies on pointer chasing, for

example, could have catastrophic results.

Common Case: Programmers should focus their attention

on expensive loops and functions rather than obscure and

rarely visited corner cases. Identifying approximate data in

frequently visited regions of code is the ideal scenario. This

removes cache misses from the critical path and allows

the application to continue rapidly with approximated data,

rather than flooding the network with data requests. Profiling

tools can be use to determine where the bulk of cache

misses occurs. We use profiling and previous work [39] with

PARSEC, to find frequently visited regions of code and then

determine if the data being used can be approximated.

The guidelines above may apply to certain regions of code

but not others. However, the data being used can span several

functions and classes. Therefore, simply identifying data as

approximate for the entire application may be unwise. It

is beneficial to identify data as approximate for only small

regions of code (such as the common case). We use this

strategy for several benchmarks, which we discuss below.

A. Benchmarks

Canneal is a kernel of a CAD application that uses

simulated annealing to place blocks on a two dimensional

grid. These blocks are interconnected via nets; the annealer

attempts to minimize the routing cost by randomly swapping

blocks and recalculating the cost. Cost is a function of the

distance between all blocks connected to (fan in) and from

(fan out) a given block. A naı̈ve approximation would anno-

tate every block’s <x,y> values. However, this is infeasible

due to the number of blocks; it is also unnecessary. Sig-

nificant load misses come when calculating the cost of the

swap. As a result, we choose to annotate the integer <x,y>
values only for cost functions. That is, we approximate the

<x,y> values of blocks that fan in or out from the block

in question. The output error for canneal is the difference

between the final routing cost for the approximated and exact

execution. The algorithm itself is a heuristic and inherently

approximate, therefore small errors are tolerable.

Both blackscholes and swaptions are financial analysis

applications that compute partial differential equations to

determine the prices of a portfolio. In both cases, the input

data consists of arrays of floating-point values that we target

for approximation. The input set contains a lot of redundant

values; for example, an underlying asset’s current price

in blackscholes’ simlarge input set takes on four possible

values, two of which occur over 98% of the time. Moreover,

the input values are used repeatedly throughout computation

but are not updated. Rather, they are copied to other variables

which are updated separately. This makes the input values

an ideal candidate for approximation. When the data set is

larger than the cache size, approximation is a useful tech-

nique for reducing cache misses and improving performance.

Upon completion, the benchmarks output a list of prices.

In swaptions, we compare the error of each approximated

price to its precise price, and then take an average where

all prices are weighted equally. In blackscholes, the error is

calculated as the percentage of prices with an error greater

than 1%. Errors in options pricing are tolerable [17]. For

example, blackscholes has Black’s approximation to quickly

determine an estimate of an option’s price [4].

Bodytrack is a computer vision application that takes

four camera feeds as its input and tracks a human body. It

uses an annealed particle filter, which samples and resamples

particles to estimate if a particular distribution is a body part.

A likelihood function determines a particle’s weight, which

influences the quality of this estimation. The likelihood

computation occurs every time step [12], which involves

two error calculations that are performed in long loops.

The x264 benchmark encodes raw data into a H.264 format.

Frames are divided into blocks, and the algorithm looks for

previously encoded frames that are similar to the current

block to estimate motion. This portion of code is frequently

visited [39]. In both benchmarks, the approximated data are

integer values of pixels. For bodytrack, we approximate the

131131

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 16,2023 at 16:42:18 UTC from IEEE Xplore. Restrictions apply.

value from the image map at an (x,y) point.
Bodytrack outputs vectors representing the position of the

bodies. We perform a pair-wise comparison of the vectors

from precise computation to approximate computation to

determine the error. Figure 1 shows a visualization of the

error as the actual image output (7.7% output error). For

x264, we compare the peak signal-to-noise ratio and bit rate,

weighted equally.
Ferret takes an image query and searches for similar

images in its database. Images are divided into segments; a

feature vector of floats describes each segment. We approx-

imate these feature vectors. The benchmark calculates the

distance between these segments to determine which images

in the database are most similar to the query. We calculate

the error by first determining the intersection of the images

found by the approximate run to the precise search results,

and then divide the size of this set by the size of the precise

set of search results [39]. Note that this is a conservative

error metric. Several images can satisfy a query; since the

search algorithm is inherently approximate, only a subset of

these images may be returned. When approximating, images

may be returned that were not in the precise subset, despite

satisfying the query. As a result, our error measurements for

ferret are pessimistic.
Fluidanimate simulates a fluid in a volume so that its

surface can be animated in interactive applications (such as

video games). The benchmark uses particles to model the

state of the fluid. A particle’s movement depends on the

density fields of other particles, which are updated at every

time step. Particles are partitioned into cells so that only

particles in the current and neighbouring cells are considered

when updating densities. We approximate the data of each

particle (e.g. location, density, etc) during the regions of code

that calculate densities and determine particle acceleration.

The final error is calculated as the percentage of particles

that are in the same cell as they are in with precise execution.

V. METHODOLOGY

We employ a two-phase methodology to evaluate load

value approximation. The first phase is a wide design

space exploration of different approximator implementations

(Section V-A). The second phase measures the performance

and energy of load value approximation in full-system

multiprocessor simulation (Section V-B). We perform our

evaluations on applications from PARSEC 3.0 [3], each

configured with 4 threads.

A. Design Space Exploration
First, we explore the approximator design space using

Pin, a dynamic binary instrumentation framework [23]. We

leverage the cache simulator in Pin to model 64 KB private

L1 data caches. We then implement our approximators

alongside the caches and compare them against value predic-

tors and prefetchers. Benchmarks are run with the simlarge

input set.

Benchmark L1 MPKI Instruction count variation
blackscholes 0.93 0.99%
bodytrack 4.93 0.05%
canneal 12.50 1.25%
ferret 3.28 0.60%
fluidanimate 1.23 0.17%
swaptions 4.92E-05 0.00%
x264 0.59 2.37%

Table I: Precise L1 MPKI and variation in dynamic instruc-

tion count when employing load value approximation.

Our Pin simulator catches all load instructions that access

approximate memory locations, as annotated in Section IV.

Blackscholes, ferret, fluidanimate and swaptions approx-

imate floating-point data, while bodytrack, canneal, and

x264 approximate integer data. We then directly clobber the

return values of these loads with our approximated values,

dynamically altering the execution of the application. This

allows us to measure the error due to approximation in the

final outputs of the applications. We utilize the error metrics

described in Section IV. All of our error results pertain

to the application’s final output, not the individual error

of each load instruction. In approximate computing, output

error below 10% is generally acceptable [36, 41].

Pin allows us to rapidly evaluate performance, energy

and output error across the vast approximator design space.

For performance, we measure the total load misses per

kilo-instructions (MPKI), normalized to that of the precise

execution without any approximations. The L1 MPKI of

precise execution is shown in Table I. In our evaluation,

MPKI incorporates both precise and approximate data. We

consider an approximated value to be a cache hit since the

value is immediately available to the processor; thus even

though the value still needs to be fetched from memory,

effective MPKI is reduced. For energy, we use reduction

in L1 cache line fetches as a first-order approximation of

energy savings. These metrics serve as proxies for estimating

the performance and energy of load value approximators in

our design space exploration. All measurements are averaged

from 5 simulation runs. Our current work focuses on load

misses; store misses are generally off of the critical path of

execution [19]. Table I also lists the variation in dynamic

instructions executed when employing approximation; vari-

ation is low across all workloads.

B. Full-System Simulation

In the second phase of our methodology, we use full-

system simulation to evaluate performance and energy sav-

ings for load value approximation after having pruned the

design space with Pin simulations. We use FeS2, a cycle-

level x86 simulator [28], configured as in Table II. We

use BookSim [18] to model the network-on-chip. All ap-

plications execute up to one billion user-mode instructions.

Note that the L1 cache size is scaled down; our full-system

simulations use simmedium input sets instead of simlarge.

132132

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 16,2023 at 16:42:18 UTC from IEEE Xplore. Restrictions apply.

Full System Configuration
Processor 4 IA-32 cores, 2 GHz,

4-wide OoO, 32-entry ROB
Private L1 cache 16 KB, 8-way, 1-cycle latency, 64 B blocks
Shared L2 cache 512 KB distributed, 16-way, 6-cycle latency

Main memory 1 GB, 160-cycle latency
Cache coherence MSI protocol
Network-on-chip 2×2 mesh, 3-cycle routers
Technology node 32 nm

Baseline Approximator Configuration
Approximator table 512 entries

Confidence bits 4 [min -8, max 7]
Confidence window +/- 10%

Context hash function XOR(PC, GHB)
Global history buffer 0 entries
Computation function AVERAGE(LHB)
Local history buffer 4 entries

Tag bits 21
Value delay 4 load instructions

Approximation degree 0

Table II: Configuration parameters used in evaluation.

For energy, we use CACTI [42] to measure the dynamic

energy consumption of the caches, main memory and the

approximator tables; overheads of the approximator tables

are factored into the energy results presented.

VI. EVALUATION

In this section, we explore several design considerations

for load value approximators: global history buffer size (Sec-

tion VI-A), relaxed confidence thresholds (Section VI-B),

value delay (Section VI-C) and approximation degree (Sec-

tion VI-D). Our design space exploration is based on three

metrics: misses-per-kilo-instructions (MPKI), blocks fetched

into the L1 cache (fetches), and output error. We then eval-

uate performance and energy of load value approximation

with full-system simulation (Section VI-E).

We compare load value approximation (LVA) to load

value prediction (LVP) and prefetching. For all evaluations,

our LVP implementation is idealized; for LVP, we assume

that a value is correctly predicted as long as one of the values

in the LHB matches the precise value in memory. A typical

predictor uses a mechanism to select the value most likely

to match the precise value in memory – the selection could

be wrong even though the correct value is in the LHB. We

assume a perfect selection mechanism for LVP to represent

an upper bound on LVP’s ability to reduce MPKI.

Table II details our baseline configuration for LVA. The

local history buffer (LHB) has four entries; LVP has four

values that can match the precise value in memory. To

generate an approximation, LVA takes an average of the

four entries in the LHB. We tried different LHB functions

such as strides and deltas and found average to be most

accurate; exploration of more complex functions is left

for future work. We assume a relaxed confidence window

of ±10% only for floating-point data. We do not employ

confidence for integer data (unless otherwise noted). We use

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d
M

PK
I

LVP-GHB-0 LVP-GHB-1 LVP-GHB-2 LVP-GHB-4

LVA-GHB-0 LVA-GHB-1 LVA-GHB-2 LVA-GHB-4

Figure 4: LVA vs. an idealized LVP for different GHB sizes.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

er
ro

r

GHB-0 GHB-1 GHB-2 GHB-4

Figure 5: Output error of LVA for different GHB sizes. Note

the near zero error for swaptions and x264.

512-entry approximator tables; to reduce hardware overhead,

Section VII-A shows that even smaller tables are effective.

A. The Effects of History

Different numbers of values stored in the global history

buffer (GHB) affect how loads index the approximator.

Figure 4 compares our baseline LVA with LVP for varying

GHB sizes. On average, LVA achieves lower MPKI than

LVP because we are not restricted to exact predictability.

By tolerating some error (confidence window of ±10%),

LVA still generates accurate approximations by taking the

average of the values in the LHB (without the need for a

selection mechanism). Figure 5 shows the impact of GHB

size on output error. Output error is around or below 10% for

all applications except for ferret, whose output error tends

to be pessimistic (as discussed previously in Section IV).

MPKI tends to increase with the GHB size. Hashing

more GHB values generates more unique values to index

the approximator table. This is particularly challenging for

floating-point values (e.g., fluidanimate) since their fine

precision reduces the redundancy of floating-point values

that we encounter (we show how to improve this in Sec-

tion VII-B). Though we use 512-entry approximator tables,

larger tables can be used to reduce destructive aliasing by

allowing similar floating point values to map to different

entries. However, LVA performs well even when using only

133133

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 16,2023 at 16:42:18 UTC from IEEE Xplore. Restrictions apply.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

no
rm

al
ize

d
M

PK
I

0% (ideal LVP) 5% 10% 20% infinite

(a) MPKI.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

er
ro

r

5% 10% 20% infinite

(b) Output Error.

Figure 6: Performance and error for varying approximator

confidence windows.

the PC to index into the approximator table (GHB 0),

demonstrating that our approximator need not be complex to

maintain low output error. In fluidanimate, LVA is accurate

with GHB 0, correlating a single property (e.g. position) of

a particle with its neighbouring particles. With larger GHB

sizes, LVA attempts to correlate different properties (e.g.

position, acceleration, density); such complex relationships

are difficult to capture, yielding high error. Future work can

explore more complex approximators, though we find that

simple, low-overhead approximators are sufficient for most

applications.

B. Relaxed Confidence Estimation

While LVP requires that the predicted value be identical

to the value in memory (a confidence window of 0%),

LVA allows for relaxed confidence. Figure 6 shows how

different confidence windows affect MPKI and error for

our baseline design. In these figures, both floating-point and

integer data values employ confidence. The main tradeoff is

between performance and output integrity. We can relax the

confidence window to tolerate more error in approximated

values. However, this does not mean that all approximated

values have high error. Since the approximation degree is 0,

values in the LHB are always updated. Relaxed confidence

changes how often we provide approximate data – with

infinitely relaxed confidence, the confidence counter is never

decremented, and data is always approximated according to

precise values in the LHB.

This study has some important takeaways. In x264, ap-

proximated pixel values occur during motion estimation,

which determines if two frames are similar. x264 sees

significant reductions in MPKI with almost no impact on

error because a pixel has a finite range of values. By taking

the average of the LHB values, the approximate value cannot

be outside this range, minimizing error. For this reason,

we find that integer values are generally more amenable to

approximation and thus do not employ confidence for integer

data in our baseline LVA configuration. Conversely, ferret

sees increasing error with relaxed confidence estimation

because we approximate vectors of floating-point data, with

no discrete range or apparent pattern. Even with an average

of the precise values of the LHB, errors occur in the

approximation because different feature vectors are loaded

by a single PC; with a GHB size of zero, this leads to

increased error.

C. Value Delay

Variations in value delay show us the impact of approxi-

mating with stale data. We assume a value delay of 4, which

means that, upon generating an approximation on an L1 data

cache miss, the actual block from memory does not arrive

at the cache until 4 load instructions later. Note that this is a

conservative assumption; from our full-system simulations,

we find that average value delay tends to only be ∼1.

LVA inherently tolerates inexactness; stale data due to

value delay does not have a significant impact on either

performance or error. Figure 7 shows the impact of different

value delay assumptions on MPKI and error. MPKI is

affected by value delay because the approximator is working

with stale data, skewing its confidence calculations that de-

termine whether or not data should be approximated. When

the approximator data becomes too stale (as in blackscholes

with value delay 32), the confidence mechanism may reject

all approximations, yielding no MPKI reduction and no

error. For swaptions and x264, output error is near zero

even for value delays of 32 load instructions. In fact, for

all benchmarks except canneal, value delay does not have

a significant impact on output error. In canneal, <x, y>
positions are constantly being swapped by the simulated

annealing, which means that having stale data can impact the

cost functions, which in turn determine whether two blocks

are swapped. The data annotated in other benchmarks are

less inter-dependent, hence we see negligible variation in

output error.

LVA’s resilience to value delay provides opportunities

for throughput and energy optimizations, since LVA takes

the fetching of the cache block off of the critical path of

execution. As a result, approximated cache blocks can be

deprioritized in the NoC [11, 26]. In addition, low energy

134134

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 16,2023 at 16:42:18 UTC from IEEE Xplore. Restrictions apply.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

no
rm

al
ize

d
M

PK
I

delay-4 delay-8 delay-16 delay-32

(a) MPKI.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

er
ro

r

delay-4 delay-8 delay-16 delay-32

(b) Output Error.

Figure 7: Performance and error for varying value delays.

techniques can be employed in the NoC [46] and memory

hierarchy [9, 32] since the cache block does not need to be

fetched with low latency.

D. Approximation Degree

A fundamental advantage of LVA is that it can selectively

decide not to fetch a block into the L1 cache. Approximation

degree determines how often it should fetch loads (i.e. train);

load miss fetches in between training loads can be cancelled

(i.e. never issued to the memory system). For example, an

approximation degree of 4 means that every 5th load to the

same entry in the approximator is used to train that entry.

The result is that the number of fetches and misses are

decoupled. Conversely, with precise execution, the number

of blocks fetched is synonymous with the number of misses.

To compare against LVA, we implement a GHB prefetcher

that uses local delta correlation and next-line prefetch-

ing [29], with 2048 entries for the GHB and 2048 entries

for the index table (which contain pointers into the GHB).

We use 2048 entries to make the comparison fair, since our

approximators contain 512 entries with 4 LHB values each.

GHB prefetching works better than conventional prefetching

tables because it naturally eliminates stale data by prior-

itizing the most recent accesses [29]. Prefetching degree

determines how many prefetches (based on the prefetcher’s

pattern) to issue on a cache miss. In our results, prefetching

is applied to all data, not just data that has been annotated as

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d
M

PK
I

prefetch-2 prefetch-4 prefetch-8 prefetch-16

approx-2 approx-4 approx-8 approx-16

(a) MPKI.

0.0
0.5
1.0
1.5
2.0
2.5
3.0

no
rm

al
ize

d
fe

tc
he

s

prefetch-2 prefetch-4 prefetch-8 prefetch-16

approx-2 approx-4 approx-8 approx-16

(b) Number of Fetches.

Figure 8: MPKI and number of fetches for varying approx-

imation and prefetch degrees.

approximate. The number of fetches is a reflection of both

useful and extraneous prefetches, while useful prefetches

lead to an MPKI reduction.

Figure 8 shows how approximation degree and prefetch

degree affect MPKI and the number of fetches. Prefetching

reduces MPKI at the expense of an increase in fetches.

Conversely, LVA reduces both MPKI and the number of

fetches. The tradeoff for LVA is in output error (Figure 9);

higher approximation degree leads to less frequent training

of the approximator which increases error. On average, LVA

(with approximation degree of 16) reduces the number of

blocks fetched by over 39%, while prefetching (also degree

of 16) increases the number of fetched blocks by 73%.

For canneal, the reduction in MPKI by prefetching is low

and does not change despite different degrees. The random

nature of canneal does not result in a discernible pattern

that the prefetcher can exploit. Prefetching with a higher

degree further reduces the MPKI for x264 and bodytrack. A

higher prefetching degree brings more useful image data into

the cache. However, using LVA we simply approximate this

image data and, instead of fetching more data than necessary

as a prefetcher would, significantly reduce the number of

fetches compared to precise execution. Prefetching reduces

MPKI at the expense of extra energy consumption due

to more memory accesses; in today’s power-constrained

135135

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 16,2023 at 16:42:18 UTC from IEEE Xplore. Restrictions apply.

0%
20%
40%
60%
80%

100%

er
ro

r

approx-0 approx-2 approx-4 approx-8 approx-16

Figure 9: LVA output error with different approximation

degrees.

computing environment, reducing MPKI with fewer memory

accesses is a significant win.

E. Full-System Performance and Energy

Though MPKI and blocks fetched provide estimates of

performance and energy, we further evaluate LVA in full-

system simulation. This provides deeper insight on the

impact of LVA in the presence of out-of-order scheduling,

contention and non-uniform memory access latencies. This

also allows our approximators to operate with realistic value

delays (∼1 on average), as opposed to the conservative value

delay of 4 that we assumed in our design space exploration.

Figure 10a shows how LVA affects overall application

performance, with varying approximation degrees. LVA

improves performance by 8.5% on average (as much as

13.3% and 28.6% for bodytrack and canneal), with an

approximation degree of 0. LVA reduces average L1 miss

latency by 41.0%. Bodytrack and canneal see 72.5% and

48.3% reductions in miss latency. Bodytrack sees a larger

improvement in L1 miss time, yet canneal sees a larger

overall speedup; the cost computation in canneal’s simu-

lated annealing algorithm is so simple that the out-of-order

processor is unable to fully mask the miss latency. For

applications with high miss rates (e.g., bodytrack, canneal

and fluidanimate), performance improves as approximation

degree increases. Reducing the number of blocks fetched

alleviates contention in the memory hierarchy. With approx-

imation degree 16, interconnect traffic is reduced by 37.2%

on average, lowering the average L1 miss latency by 47.2%.

Figure 10b shows that higher approximation degrees yield

greater dynamic energy savings in the memory hierarchy.

With approximation degree 16, the average number of blocks

fetched from the L2 cache and main memory is reduced by

33.7% and 12.1%. This lowers the energy per L1 miss by

30.2%, resulting in 12.6% overall energy savings on average

(up to 44.1% for bodytrack).

Summary. Unlike prefetchers which improve performance

at a cost of more energy from fetches, load value approxima-

tion changes this tradeoff by exploring a third axis: output

error. By allowing for some error in the application output,

LVA achieves performance and energy improvements simul-

taneously. Figure 11 shows how LVA affects the energy-

-5%
0%
5%

10%
15%
20%
25%
30%

sp
ee

du
p

approx-0 approx-2 approx-4 approx-8 approx-16

(a) Speedup.

-5%
0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

en
er

gy
 sa

vi
ng

s

approx-0 approx-2 approx-4 approx-8 approx-16

(b) Energy Savings.

Figure 10: Full-system performance and energy for varying

approximation degrees.

delay product (EDP) of L1 cache misses, under varying ap-

proximation degrees. These results are normalized to precise

execution. Some applications are computationally intensive

(e.g., swaptions) and some have data values that are difficult

to approximate (e.g., ferret), making them less amenable to

LVA. On average though, LVA exploits the inexactness of

applications to reduce the L1 miss EDP by 41.9%, 53.8%

and 63.8%, with approximation degrees of 0, 4 and 16.

These all yield speedups of ∼8.5% on average, with energy

savings of 7.2% and 12.6% for approximation degrees 4 and

16. By tuning the approximator design parameters (such as

relaxed confidence and approximation degree), load value

approximation improves both performance and energy by

allowing for some (tolerable) noise in the application output.

VII. DISCUSSION

This section discusses load value approximation over-

heads, opportunities for further improvement and issues

related to multiprocessors.

A. Hardware Overhead

Our baseline approximator design uses ∼18 KB or

∼10 KB of storage when considering 64- and 32-bit

datatypes for the LHB values. Though we use 512-entry

tables, hardware overhead can be reduced further. Figure 12

shows the number of static load instructions that access

136136

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 16,2023 at 16:42:18 UTC from IEEE Xplore. Restrictions apply.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

no
rm

al
ize

d
L1

 m
iss

 E
DP

baseline approx-0 approx-2 approx-4 approx-8 approx-16

Figure 11: L1 miss EDP of LVA for different approximation

degrees.

0
50

100
150
200
250
300

st
at

ic
ap

pr
ox

 lo
ad

in

st
ru

ct
io

ns

Figure 12: Number of static (distinct) PC values for approx-

imate loads.

approximate data. Since we are not approximating all ap-

plication data, the number of static load instructions to

approximate data is small. This is the main reason why a

GHB size of 0 works well in our evaluation (Section VI-A).

The approximator table only needs to be large enough to

store at most 300 entries (x264) and even lower for other

applications. This demonstrates that load value approxima-

tion is feasible even on a small hardware budget.

B. Exploiting Floating-Point Precision

Because we are working with approximate data, the

precision of traditional floating-point values is unnecessary.

Though we used full precision floating-point values in our

evaluations, it can be beneficial to reduce the number of bits

of the floating-point mantissa used by the approximator. This

improves our hash function with GHB sizes greater than zero

for floating-point data. In Figure 13, we show the impact on

fluidanimate’s MPKI when we reduce the mantissa by up

to 23 bits using a GHB size of 2 (we disable confidence to

omit its effect on coverage). As we remove more bits, MPKI

goes down. The error for fluidanimate remains low (around

10%) since fluidanimate can tolerate imprecision in its force

and density calculations.

C. Memory Consistency

Maintaining memory consistency introduces significant

complexity for traditional value prediction [24]. However,

0.5

0.6

0.7

0.8

0.9

1.0

0 5 11 17 23

no
rm

al
ize

d
M

PK
I

precision loss (bits)

Figure 13: MPKI (normalized to precise execution) for

varying floating-point (single) precision loss in fluidanimate.

this problem fundamentally does not apply in the con-

text of load approximation. We take inspiration from prior

work [33, 34, 40] that relaxes synchronization and memory

ordering to improve performance with approximate comput-

ing. As our approximate values are consumed by the proces-

sor and true values are only used to train the prediction, the

global order of these memory operations is not meaningful;

we cannot maintain strict consistency across approximated

values on multiple processors. Ordering of stores and all

non-approximate memory operations still follows the consis-

tency model of the underlying hardware. If consistency for

a particular application is a critical concern, this application

is unlikely to be a candidate for approximation.

VIII. RELATED WORK

This work extends our preliminary study of load value ap-

proximation [37]. As discussed in Section II, prior research

explores load value prediction [6, 7, 16, 20, 21]. We present

novel extensions – elimination of rollbacks, relaxed confi-

dence estimation and approximation degree – to trade-off

output integrity for better performance and energy savings.

In addition to load value prediction, we discuss some related

research in approximate computing and data below.

Approximate Computing. Research in approximate com-

puting spans all layers of the stack from circuits [8, 45] to

architecture to programming languages. Architectural tech-

niques include novel accelerator designs [14, 41]. Work in

programming languages include programming frameworks

to identify approximate data [5, 35], ISA extensions to

leverage approximation [13] and compiler support [34]. We

focus on a microarchitectural application of approximate

computing; our technique has low overhead and does not

require radical or complex changes to the processor pipeline

leading to a low barrier to entry.

Approximate Value Locality. Floating-point operations

can be made more energy-efficient by using fewer mantissa

bits, resulting in modest imprecision [44]. This improves

the value locality, since the loss in precision yields more

identical values [1]. Physics-based animations are inherently

error tolerant [48]; dynamically adapting floating point pre-

cision can accelerate physics simulation [47]. Sreeram and

137137

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 16,2023 at 16:42:18 UTC from IEEE Xplore. Restrictions apply.

Pande have explored approximate value locality [40] in the

context of approximate store instructions to reduce conflicts

in software transactional memory. This is similar to relaxed

synchronization, which selectively allows races to occur,

thus trading off output error for faster execution [33]. Our

work instead focuses on the approximate value locality of

load instructions. Recent work also proposes eliminating

rollbacks for value prediction [43] but does not explore

relaxed confidence mechanisms nor energy savings.

Approximate Data Storage. There has been significant re-

search on storing approximate data more efficiently. Drowsy

caches [15] reduce the supply voltage of SRAM cells to save

power at the cost of potential bit failures. Approximate data

in DRAM can be refreshed at lower rates, saving energy

while increasing the likelihood of data corruption [22]. PCM

performance and lifetime can be improved by reducing write

precision and reusing failed cells for storing approximate

data [36]. These techniques yield more efficient storage,

while our work reduces both the latency and energy of

fetching data from memory.

IX. CONCLUSION

We present load value approximation and evaluate its

feasibility across a diverse set of applications. By generating

approximate values on load misses, we can avoid the high

latency and energy of fetching data from memory. From

our design space exploration and full-system simulations,

we find that load value approximation achieves up to 28.6%

speedup (8.5% on average) and 44.1% energy savings

(12.6% on average) in the memory hierarchy, while main-

taining low output error. Load value approximation takes

its inspiration from value prediction; yet there are funda-

mental differences provided by the approximate computing

paradigm that lead to novel microarchitectural choices. We

explore relaxed confidence estimation and selective fetching

via approximation degree to exploit the performance-error

and energy-error tradeoffs. Load value approximation opens

up new possibilities for achieving both high performance

and energy-efficiency in future processors.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their

thorough suggestions on improving this work. The authors

also thank the members of the Enright Jerger research group

for their feedback. This work is supported by a Bell Graduate

Scholarship, the Natural Sciences and Engineering Research

Council of Canada, the Canadian Foundation for Innovation,

the Ministry of Research and Innovation Early Researcher

Award and the University of Toronto.

REFERENCES

[1] C. Alvarez, J. Corbal, and M. Valero, “Fuzzy memoization for
floating-point multimedia applications,” IEEE Transactions
on Computers, 2005.

[2] W. Baek and T. M. Chilimbi, “Green: a framework for
supporting energy-conscious programming using controlled
approximation,” in Proc. Conf. Programming Language De-
sign and Implementation, 2010.

[3] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D.
dissertation, Princeton University, January 2011.

[4] F. Black, “Fact and fantasy in the use of options,” Financial
Analysts Journal, pp. 36–72, 1975.

[5] J. Bornholt, T. Mytkowicz, and K. S. McKinley,
“Uncertain<T>: A first-order type for uncertain data,”
in Proc. of the Int. Conf. on Architectural Support for
Programming Languages and Operating Systems, 2014.

[6] M. Burtscher, “Improving context-based load value predic-
tion,” Ph.D. dissertation, University of Colorado, 2000.

[7] L. Ceze, K. Strauss, J. Tuck, J. Torrellas, and J. Renau,
“CAVA: using checkpoint-assisted value prediction to hide
L2 misses,” ACM Transactions on Architecture and Code
Optimization, 2006.

[8] A. Chandrakasan and R. Brodersen, “Minimizing power
consumption in digital CMOS circuits,” Proc. of the IEEE,
vol. 83, no. 4, pp. 498–523, 1995.

[9] N. Chatterjee, M. Shevgoor, R. Balasubramonian, A. Davis,
Z. Feng, R. Illikkal, and R. Iyer, “Leveraging heterogeneity
in DRAM main memories to accelerate critical word access,”
in Proc. of the Int. Symp. on Microarchitecture, 2012.

[10] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghu-
nathan, “Analysis and characterization of inherent application
resilience for approximate computing,” in Proc. Int. Design
Automation Conference, 2013.

[11] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, “Aergia:
exploting packet latency slack in on-chip networks,” in Proc.
Int. Symp. Computer Architecture, 2010.

[12] J. Deutscher, A. Blake, and I. Reid, “Articulated body motion
capture by annealed particle filtering,” in IEEE Conference on
Computer Vision and Pattern Recognition, vol. 2, 2000, pp.
126–133.

[13] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Ar-
chitecture support for disciplined approximate programming,”
in Proc. Int. Conf. Architectural Support for Programming
Languages and Operating Systems, 2012.

[14] ——, “Neural acceleration for general-purpose approximate
programs,” in Proc. Int. Symp. Microarchitecture, 2012.

[15] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge,
“Drowsy caches: simple techniques for reducing leakage
power,” in Proc. Int. Symp. Computer Architecture, 2002.

[16] F. Gabbay, “Speculative execution based on value prediction,”
Technion - Israel Institute of Technology, EE Department
Technical Report 1080, 1996.

[17] P. Glasserman and N. Merener, “Cap and swaption approx-
imations in libor market models with jumps,” Journal of
Computational Finance, vol. 7, no. 1, pp. 1–36, 2003.

[18] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour,
B. Towles, D. E. Shaw, J. Kim, and W. J. Dally, “A de-
tailed and flexible cycle-accurate network-on-chip simulator,”
in Proc. Int. Symp. Performance Analysis of Systems and
Software, 2013.

[19] S. Khan, A. Alameldeen, C. Wilkerson, O. Mutlu, and
D. Jimenez, “Improving cache performance by exploiting
read-write disparity,” in Proc. Int. Symp. High-Performance
Computer Architecture, 2014.

[20] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value locality
and load value prediction,” in Proc. Int. Conf. Architectural
Support for Programming Languages and Operating Systems,
1996.

138138

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 16,2023 at 16:42:18 UTC from IEEE Xplore. Restrictions apply.

[21] S. Liu and J. Gaudiot, “Potential impact of value prediction
on communication in many-core architectures,” IEEE Trans-
actions on Computers, 2009.

[22] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn,
“Flikker: saving DRAM refresh-power through critical data
partitioning,” in Int. Conf. Architectural Support for Program-
ming Languages and Operating Systems, 2011.

[23] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin:
building customized program analysis tools with dynamic
instrumentation,” in Proc. Conf. Programming Language De-
sign and Implementation, 2005.

[24] M. M. K. Martin, D. J. Sorin, H. W. Cain, M. D. Hill, and
M. H. Lipasti, “Correctly implementing value prediction in
microprocessors that support multithreading or multiprocess-
ing,” in Proc. Int. Symp. Microarchitecture, 2001.

[25] J. Meng, S. Chakradhar, and A. Raghunathan, “Best-effort
parallel execution framework for recognition and mining ap-
plications,” in Proc. Int. Parallel and Distributed Processing
Symposium, 2009.

[26] A. K. Mishra, O. Mutlu, and C. R. Das, “A heterogeneous
multiple network-on-chip design: an application-aware ap-
proach,” in Proc. Int. Design Automation Conference, 2013.

[27] T. Nakra, R. Gupta, and M. L. Soffa, “Global context-based
value prediction,” in Proc. Int. Symp. High-Performance Com-
puter Architecture, 1999.

[28] N. Neelakantam, C. Blundell, J. Devietti, M. M. K. Martin,
and C. Zilles, “FeS2: a full-system execution-driven simulator
for x86,” poster presented at Int. Conf. Architectural Support
for Programming Languages and Operating Systems, 2008.

[29] K. J. Nesbit and J. E. Smith, “Data cache prefetching using a
global history buffer,” Micro, IEEE, vol. 25, no. 1, pp. 90–97,
2005.

[30] A. Perais and A. Seznec, “EOLE: Paving the way for an
effective implementation of value prediction,” in Proc. of the
Int. Symp. on Computer Architecture, 2014.

[31] ——, “Practical data value speculation for future high-end
processors,” in Proc. of the Int. Symp. on High Performance
Computer Architecture, 2014.

[32] S. Phadke and S. Narayanasamy, “MLP aware heterogeneous
memory system,” in Int. Conf. on Design, Automation and
Test in Europe, 2011.

[33] L. Renganarayana, V. Srinivasan, R. Nair, and D. Prener,
“Programming with relaxed synchronization,” in Proc. Work-
shop on Relaxing Synchronization for Multicore and Many-
core Scalability, 2012.

[34] M. Samadi, J. Lee, D. Jamshidi, A. Hormati, and S. Mahlke,
“SAGE: Self-tuning approximation for graphics engines,” in
Proc. of the Int. Symp. on Microarchitecture, 2013.

[35] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam,
L. Ceze, and D. Grossman, “EnerJ: approximate data types
for safe and general low-power consumption,” in Proc. Conf.
Programming Language Design and Implementation, 2011.

[36] A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approx-
imate storage in solid-state memories,” in Proc. Int. Symp.
Microarchitecture, 2013.

[37] J. San Miguel and N. Enright Jerger, “Load value approx-
imation: Approaching the ideal memory access latency,” in
Workshop on Approximate Computing Across the System
Stack, 2014.

[38] Y. Sazeides and J. Smith, “The predictability of data values,”
in Proc. Int. Symp. Microarchitecture, 1997.

[39] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and
M. Rinard, “Managing performance vs. accuracy trade-offs
with loop perforation,” in Proc. of the 19th ACM SIGSOFT

Symposium and the 13th European Conf. on Foundations of
software engineering, 2011, pp. 124–134.

[40] J. Sreeram and S. Pande, “Exploiting approximate value
locality for data synchronization on multi-core processors,”
in Proc. Int. Symp. Workload Characterization, 2010.

[41] R. St. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Es-
maeilzadeh, A. Hassibi, L. Ceze, and D. Burger, “General-
purpose code acceleration with limited-precision analog com-
putation,” in Proc. of the Int. Symp. on Computer Architecture,
2014.

[42] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi,
“CACTI 5.1,” Technical Report HPL-2008-20, HP Labs,
2008.

[43] B. Thwaites, G. Pekhimenko, H. Esmaeilzadeh, A. Yaz-
danbakhsh, O. Mutlu, J. Park, G. Mururu, and T. Mowry,
“Rollback-free value prediction with approximate loads,”
poster presented at Int. Conf. Parallel Architectures and
Compilation Techniques, 2014.

[44] J. Y. F. Tong, D. Nagle, and R. A. Rutenbar, “Reducing power
by optimizing the necessary precision/range of floating-point
arithmetic,” IEEE Transactions on VLSI Systems, 2000.

[45] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and
A. Raghunathan, “SALSA: Systematic logic synthesis of ap-
proximate circuits,” in Design Automation Conference, 2012.

[46] J. Won, X. Chen, P. V. Gratz, J. Hu, and V. Soteriou, “Up by
their bootstraps: Online learning in artificial neural networks
for CMP uncore power management,” in Proc. Int. Symp. on
High Performance Computer Architecture, 2014.

[47] T. Yeh, P. Faloutsos, S. Patel, M. Ercegovac, and G. Reinman,
“The art of deception: Adaptive precision reduction for area
efficient physics acceleration,” in Int. Symp. on Microarchi-
tecture, Dec 2007.

[48] T. Yeh, G. Reinman, S. J. Patel, and P. Faloutsos, “Fool me
twice: Exploring and exploiting error tolerance in physics-
based animation,” ACM Transactions on Graphics, December
2009.

[49] H. Zhou, J. Flanagan, and T. M. Conte, “Detecting global
stride locality in value streams,” in Proc. Int. Symp. Computer
Architecture, 2003.

139139

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 16,2023 at 16:42:18 UTC from IEEE Xplore. Restrictions apply.

