
LEAP Scratchpads: Automatic Memory and Cache
Management for Reconfigurable Logic ∗

Michael Adler† Kermin E. Fleming¶ Angshuman Parashar† Michael Pellauer¶ Joel Emer†¶
†Intel Corporation

VSSAD Group
{michael.adler, angshuman.parashar,

joel.emer}@intel.com

¶Massachusetts Institute of Technology
Computer Science and A.I. Laboratory

Computation Structures Group
{kfleming, pellauer, emer}@csail.mit.edu

ABSTRACT
Developers accelerating applications on FPGAs or other re-
configurable logic have nothing but raw memory devices
in their standard toolkits. Each project typically includes
tedious development of single-use memory management. Soft-
ware developers expect a programming environment to in-
clude automatic memory management. Virtual memory pro-
vides the illusion of very large arrays and processor caches
reduce access latency without explicit programmer instruc-
tions.

LEAP scratchpads for reconfigurable logic dynamically
allocate and manage multiple, independent, memory arrays
in a large backing store. Scratchpad accesses are cached au-
tomatically in multiple levels, ranging from shared on-board,
RAM-based, set-associative caches to private caches stored
in FPGA RAM blocks. In the LEAP framework, scratch-
pads share the same interface as on-die RAM blocks and
are plug-in replacements. Additional libraries support heap
management within a storage set. Like software developers,
accelerator authors using scratchpads may focus more on
core algorithms and less on memory management.

Categories and Subject Descriptors
C.5.m [Computer System Implementation]: Miscella-
neous

General Terms
Algorithms, Performance

Keywords
FPGA, memory management, caches

∗An extended version of this paper showing experimental
results is available as MIT Technical Report MIT-CSAIL-
TR-2010-054

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’11, February 27–March 1, 2011, Monterey, California, USA.
Copyright 2011 ACM 978-1-4503-0554-9/11/02 ...$10.00.

1. INTRODUCTION
FPGAs are increasingly employed as coprocessors along-

side general purpose CPUs. The combination of large memory
and ease of programming a general purpose machine along
with the abundant parallelism and low communication latency
in an FPGA make the pair attractive for hybrid algorithms
that split computation across both engines.

Memory management in software development is supported
by a rich set of OS and library features. Software design-
ers targeting general purpose hardware long ago accepted
that the gain in programmer efficiency from using compilers,
support libraries and operating systems outweighs possible
performance gains of hand-coding raw instructions.

The memory subsystem in general purpose hardware offers
a hierarchy of storage, ranging from fast but small caches
embedded in the processor to large external RAM arrays
on memory buses, and to swap files on disks. Management
of cache state is controlled by fixed hardware algorithms
chosen for their overall performance. Explicit, hand-tuned
cache management instructions are typically added only to
the most performance-sensitive programs. Tremendous effort
has been spent building compilers capable of automatic cache-
management, e.g. [6, 7]. As general purpose processors add
more parallel processing, language designers continue to add
abstract memory management to design tools in order to
split algorithmic design from the grunt work of memory
management [2].

The gap between the programming environment on the
general purpose half and the reconfigurable half of a hybrid
machine is stark. Most FPGA developers still code in low
level languages equivalent to assembly language on general
purpose machines. Those optimizing a set of loop kernels
may use C or Java-like languages [4, 5, 8] and a handful
are beginning to use languages such as Bluespec [1, 11] that
support language-based static elaboration and polymorphic
module definitions.

The state of memory management on reconfigurable logic is
similarly primitive. FPGA synthesis tools support relatively
easy management of on-die memory arrays. The interface to
on-die RAM blocks is simple: a method for writing a value to
an address and a two-phase pair of read request and response
methods. This interface may be made timing insensitive by
predicating the methods with ready and enable flags and
buffering state on pipeline stalls [3].

25

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1950413.1950421&domain=pdf&date_stamp=2011-02-27

1.1 Scratchpad memory hierarchies
What if an algorithm needs more memory than is available

on-die? At best, designers are offered low-level device drivers
for embedded memory controllers, PCIe DMA controllers or
some other bus. Building an FPGA-side memory hierarchy is
treated as an application-specific problem. Even methods for
mapping memory management as basic as malloc and free to
on-die RAM for C-like synthesis languages are a very recent
innovation [12]. On general purpose hardware the memory
hierarchy is invisible to an application, except for timing.
A similar memory abstraction, identical to the interface to
on-die RAM blocks but implementing a full storage hierarchy,
is equally useful for a range of FPGA-based applications.

Our project began as an effort to accelerate processor
microarchitecture timing models using FPGAs. We quickly
realized that some effort writing a general programming
framework would make our task more tractable. The resulting
platform is in active use for timing models and has been
adopted for other algorithmic accelerators, such as an H.264
decoder.

We have written LEAP (Logic-based Environment for Ap-
plication Programming) [9], a platform for application devel-
opment on reconfigurable logic. LEAP runs on any set of
reconfigurable logic connected to general purpose machines.
Like an operating system, LEAP is layered on top of device-
specific drivers. It presents a consistent virtual platform
on any hardware. Application writers may then target the
virtual platform, rendering their code portable across com-
munication fabrics. LEAP presents the same interface over
connections as diverse as FPGAs plugged directly into Intel
Front Side Bus sockets and FPGAs connected to a host over
a JTAG cable. The virtual platform provides a rich set of
services, including streaming I/O devices, application control
primitives, and an asynchronous hybrid procedural interface
similar to remote procedure calls [10]. The platform also
provides automatic instantiation of processor-like memory hi-
erarchies, ranging from private caches, through shared caches
and down to host memory. In this paper we focus on the
automatically constructed memory stack.

LEAP defines a single, timing insensitive, interface to
scratchpad memory hierarchies. The same write, read re-
quest and read response interface methods are used for any
memory implementation defined by the platform, along with
the predicates governing whether the methods may be in-
voked in a given FPGA cycle. The simplest memory device
allocates an on-die RAM block. However, LEAP memory
stacks sharing the same interface can be configured for a
variety of hierarchies. The most complicated has three levels:
a large storage region such as virtual memory in a host sys-
tem, a medium sized intermediate latency memory such as
SDRAM controlled by an FPGA, and fast, small memories
such as on-FPGA RAM blocks. Converting a client from us-
ing on-die memory to a complex memory hierarchy is simply
a matter of instantiating a different memory module with
identical connections.

For a given set of hardware, low-level device drivers must
be provided for each level in a physical hierarchy. Virtual
devices and services are layered on top of these physical de-
vice drivers, thus providing a consistent programming model
independent of the underlying physical devices. Our goal is
to make programming an FPGA more like software develop-
ment on general purpose hardware. Programmers target an
abstract set of virtual services similar to general purpose ker-

nel and user-space libraries. Like general purpose hardware,
programmers may get an algorithm working with generic
code and then, optionally, tune their application for specific
hardware latencies and sizes.

1.2 Related work
Many researchers have considered the problem of cache

hierarchies in reconfigurable logic and embedded systems.
For a review of related work and analysis of workloads using
LEAP scratchpads please see the extended version of this
paper, released as MIT Technical Report MIT-CSAIL-TR-
2010-054.

2. SCRATCHPAD ARCHITECTURE

2.1 FPGA On-Die RAM Blocks
On-die FPGA RAM blocks can be configured quite flexibly.

Xilinx RAM blocks are organized as 18Kb or 36Kb blocks
in data widths of 1, 2, 4, 9, 18 or 36 bits [13]. Altera RAM
blocks have similar widths. Synthesis tools automatically
provide the illusion of arbitrary size and width by grouping
multiple blocks into a single logical block and mapping into
the closest available bit width. A large Xilinx Virtex 6 FPGA
has about 32Mb of RAM.

Access to RAM blocks is simple: a single cycle write oper-
ation and a two phase read request / read response protocol.
Even a näıve implementation can be dual ported, permitting
simultaneous reads and writes. RAM blocks are fast, flexible
and easy to access as private storage within a module. Unfor-
tunately, they are finite. What are we to do for algorithms
with memory footprints too large for on-FPGA RAM?

2.2 On-Board RAM
Many FPGA platforms have on-board RAM and have

memory controllers available as logic blocks. Compared to an
FPGA’s internal RAM blocks, on-board memory is plentiful:
typically measured in megabytes or gigabytes. Unlike FPGA
RAM blocks, on-board memory is a monolithic resource. At
most only a few banks are available, managed by individual
controllers. In order to share on-board RAM among multi-
ple clients the memory must be partitioned and managed
by a central controller. We call this service the scratchpad
controller. The controller is responsible for partitioning a
large memory into individual scratchpads, corresponding to
private memories requested by clients. The controller then
routes requests from scratchpads to their unique memory
segments. This is implemented using an indirection table,
mapping scratchpads to memory base offsets.

Except for latency, moving storage to a different level in the
memory hierarchy is invisible to software written for general
purpose hardware. The change could range from missing in
an L1 cache to suffering a page fault and swapping data in
from a disk. While not an absolute requirement for FPGA-
based scratchpads, having the ability to express memory I/O
operations independent of their underlying implementation
and latency is equally convenient on reconfigurable logic. In
our implementation, the difference between a client using
a private on-die RAM block and a scratchpad in a shared
memory is only a single source line. The client using a RAM
block invokes a module that instantiates on-die memory. To
use a scratchpad instead, the client replaces this instantia-
tion with a module that connects itself to the scratchpad
controller.

26

Client ClientClient

RAM

Block

A
p

p
lic

a
ti
o

n
P

la
tf
o

rm Scratchpad

Controller

Local

Memory

RAM

Block

Client ClientClient

Scratchpad

Interface

A
p

p
lic

a
ti
o

n

Platform

Connector

a) Private RAM blocks

b) Scratchpads with a ring interconnect

Request Ring

Response Ring

Scratchpad

Interface

ClientClient

RAM

Block

Memory Interface

Memory Interface

Client

Scratchpad

Interface

Figure 1: Transforming private RAM blocks to
scratchpads. The memory interface between clients
and storage is unchanged following the transforma-
tion. Only timing is different.

Each client requesting a scratchpad memory instantiates
a scratchpad interface. This interface is private to a single
client, transforming client-side references to requests in the
scratchpad controller. The scratchpad controller is a shared
resource. Connecting multiple clients to the controller re-
quires an interconnect and arbitration. For a small number of
scratchpads, a set of point-to-point connections from scratch-
pad interfaces to the controller along with a round-robin
arbiter works perfectly well. As the number of clients grows,
the burden on FPGA routing becomes too great and a more
sophisticated network is required. We have built a pair of
token rings, using self-assembling rings described in [11]. The
transformation from private RAM blocks to scratchpad mem-
ories is illustrated in Figure 1. Deadlocks are avoided by
assigning requests to one ring and responses to the other. A
pair of rings was chosen instead of a single ring with virtual
request and response channels both to increase network band-
width and because the FPGA overheads of channel buffering
and multiplexing are similar to the simpler, multi-ring, so-
lution. One ring stop is responsible for forwarding messages
between the rings and the scratchpad controller.

2.3 Marshaling
Astute readers will have noticed a problem in our transfor-

mation of RAM block clients to scratchpad clients. Synthesis
tools permit FPGA RAM allocation in any bit width. While
the underlying hardware does not support arbitrary width, it

is sufficiently flexible that memory is allocated relatively effi-
ciently. In contrast, on-board memory is presented in chunks
of words and lines, with some hardware adding write masks
to support byte-sized writes.

An easy, but unacceptably inefficient solution would be
fixed mapping of RAM block addresses to word-sized on-
board memory chunks. The fixed mapping would not support
data widths larger than a memory word. It would also waste
nearly the entire word for small data widths, turning a dense
1024 x 1-bit RAM block into a 64KB chunk, assuming a 64
bit word!

To solve this mapping problem, the scratchpad interface
interposes a marshaling layer between the client and requests
to the platform interface. When objects are smaller than the
memory word size, multiple objects are grouped into a single
memory word. When objects are larger than the memory
word size, the marshaling layer spreads objects across multiple
words. In the first case the marshaler is forced to request read-
modify-write operations in order to update an entry. In the
second case the marshaler must emit multiple read or write
requests in order to reference all memory words corresponding
to a scratchpad location. From the client’s perspective, the
word size remains the size originally requested.

The LEAP platform provides a marshaling library module.
Compile-time parameters declare the memory word size along
with the desired scratchpad width and number of elements.
The marshaler computes the dimensions of an on-board-
memory-sized container for holding the equivalent data and
determines whether read-modify-write or group reads and
writes are required. It also exports read and write methods
that act on the requested array’s data type. The methods
automatically trigger either read-modify-write or group reads
and writes when needed.

2.4 Private Caches
With the addition of marshaling we now have an architec-

tural description for replacing RAM blocks with on-board
memory scratchpads that is fully functional. Unfortunately,
it will perform terribly. RAM block references that were for-
merly single cycle references and parallel for each block have
been converted into a shared, high contention, higher latency
resource. A cache is needed, both to provide lower latency
and to reduce the number of requests that reach on-board
memory. LEAP provides low latency, direct mapped, caches,
though developers may specify their own cache implementa-
tions optimized for particular access patterns.

The position of the cache, above or below the marshaler, is
a compromise. Choosing to insert the cache between the client
and the marshaler would eliminate many read-modify-write
operations in the marshaler. However, read-modify-write
operations are required because the data width above the
marshaler is small. Consider a scratchpad of boolean values.
Caching above the marshaler would require tag sizes to cover
the address space but would have only one bit data buckets.
This ratio of meta-data to actual cache data is unacceptable.

In our implementation, both the private cache and the
marshaler present the same interface to the client. The rel-
ative order of the marshaler and a cache is invisible to the
scratchpad client. A compile-time heuristic could choose a lo-
cally optimal topology based on a scratchpad’s size and data
type, placing the cache either above or below the marshaler.
In our current implementation the cache is always inserted
below the marshaler.

27

2.5 Host Memory
The hierarchy has now expanded available FPGA-side

memory from the capacity of on-die RAM blocks to the
capacity of on-board RAM. This solution is fully functional
on both stand-alone FPGAs and on FPGAs connected to a
host computer. For scratchpad memories, on-die RAM block
usage is reduced to fixed sized caches. Now we face the same
question asked at the end of Section 2.1: What are we to do
for algorithms with memory footprints too large for on-board
RAM?

If the FPGA is connected via a high speed bus to a host
computer, the solution is the same as when we ran out of
on-die memory: push the backing storage one level down in
the hierarchy, using host memory as the home for scratchpad
data. Instead of reading and writing data from on-board
memory, the scratchpad controller reads and writes host
memory using either direct memory access or a protocol over
an I/O channel.

2.6 Central Cache
Moving the backing storage from on-board RAM to host

memory offers more space at the expense of access time.
Configuring the now unused on-board RAM as a last-level
cache can reduce this penalty. Because only one central cache
controller is instantiated we can afford a more complicated
controller. The platform’s central cache controller is set asso-
ciative with LRU replacement.

Like the scratchpad controller, the central cache constructs
a unique address space for each client by concatenating client
IDs and address requests from clients. This internal address
space enables the central cache to associate entries with
specific clients.

Clients connecting to the central cache must provide func-
tions for spilling and filling memory lines. Pushing the details
of spills and fills out of the central cache allows a variety of
clients to connect, all sharing the same on-board RAM, each
with unique methods of reading and writing their backing
storage. The LRU central cache policy automatically opti-
mizes the footprint of each client in the central cache based
on the global access pattern of all clients.

3. CONCLUSION
Automatic cache instantiation frees the FPGA application

developer to concentrate more on algorithmic design and less
on memory management. A platform-provided memory hier-
archy automatically partitions the on-board memory among
competing clients. Without it, application writers would be
forced to manage access to on-die RAM blocks and shared
DDR RAM explicitly. Designers would most likely hard par-
tition memory among clients. Like application development
on general purpose machines, core algorithms may be written
and then tuned for their particular memory access patterns.

LEAP scratchpads are in active use in projects as diverse
as H.264 decoders and micro-architectural timing models.
We have found them to be particularly useful for managing
storage in applications that require multiple, large, random
access buffers.

4. REFERENCES
[1] Arvind. Bluespec: A Language for Hardware Design,

Simulation, Synthesis and Verification. In
MEMOCODE ’03: Proceedings of the First ACM and

IEEE International Conference on Formal Methods and
Models for Co-Design, page 249. IEEE Computer
Society, 2003.

[2] Z. Budimlic, A. M. Chandramowlishwaran, K. Knobe,
G. N. Lowney, V. Sarkar, and L. Treggiari. Declarative
Aspects of Memory Management in the Concurrent
Collections Parallel Programming Model. In DAMP ’09:
Proceedings of the 4th Workshop on Declarative Aspects
of Multicore Programming, pages 47–58. ACM, 2008.

[3] N. Dave, M. C. Ng, M. Pellauer, and Arvind. A design
flow based on modular refinement. In Formal Methods
and Models for Codesign (MEMOCODE), 2010 8th
IEEE/ACM International Conference on, pages 11 –20,
Jul. 2010.

[4] M. B. Gokhale, J. M. Stone, J. Arnold, and
M. Kalinowski. Stream-Oriented FPGA Computing in
the Streams-C High Level Language. In FCCM ’00:
Proceedings of the 2000 IEEE Symposium on
Field-Programmable Custom Computing Machines,
page 49. IEEE Computer Society, 2000.

[5] S. S. Huang, A. Hormati, D. F. Bacon, and R. Rabbah.
Liquid Metal: Object-Oriented Programming Across
the Hardware/Software Boundary. In ECOOP ’08:
Proceedings of the 22nd European conference on
Object-Oriented Programming, pages 76–103.
Springer-Verlag, 2008.

[6] W. W. Hwu and P. P. Chang. Achieving High
Instruction Cache Performance with an Optimizing
Compiler. SIGARCH Comput. Archit. News,
17(3):242–251, 1989.

[7] C.-K. Luk and T. C. Mowry. Cooperative Prefetching:
Compiler and Hardware Support for Effective
Instruction Prefetching in Modern Processors. In
MICRO 31: Proceedings of the 31st Annual ACM/IEEE
International Symposium on Microarchitecture, pages
182–194. IEEE Computer Society Press, 1998.

[8] W. A. Najjar, W. Böhm, B. A. Draper, J. Hammes,
R. Rinker, J. R. Beveridge, M. Chawathe, and C. Ross.
High-Level Language Abstraction for Reconfigurable
Computing. Computer, 36(8):63–69, 2003.

[9] A. Parashar, M. Adler, K. Fleming, M. Pellauer, and
J. Emer. LEAP: A Virtual Platform Architecture for
FPGAs. In CARL ’10: The 1st Workshop on the
Intersections of Computer Architecture and
Reconfigurable Logic, 2010.

[10] A. Parashar, M. Adler, M. Pellauer, and J. Emer.
Hybrid CPU/FPGA Performance Models. In WARP
’08: The 3rd Workshop on Architectural Research
Prototyping, 2008.

[11] M. Pellauer, M. Adler, D. Chiou, and J. Emer. Soft
Connections: Addressing the Hardware-Design
Modularity Problem. In DAC ’09: Proceedings of the
46th Annual Design Automation Conference, pages
276–281. ACM, 2009.

[12] J. Simsa and S. Singh. Designing Hardware with
Dynamic Memory Abstraction. In FPGA ’10:
Proceedings of the 18th Annual ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays, pages 69–72. ACM, 2010.

[13] Xilinx, Inc. UG363: Virtex-6 FPGA Memory Resources
User Guide. 2010.

28

