
Parallel Processing
Anirudh Krishna Villivalam, 

Jennifer Xiao



Agenda
Multiscalar Processors

The Case for a Single-Chip 
Multiprocessor

Paper Discussion



Multiscalar Processors



Motivation
● Long history (50 years) of sequential coding lead to a style of writing code 

assuming instructions execute in the order in which they are written.
● This changed with the introduction of processors that are able to perform 

out-of-order parallel execution (ILP).
● But out-of-order execution has few hazards, such as data and control, 

that can substantially slow the parallel execution.
● A control flow graph (CFG) can be used to tackle control dependencies.
● The paper focuses on a multiscalar approach with a CFG that can be used 

to exploit fine-grain or instruction level parallelism.



Main Contribution
● Describes a new multiscalar paradigm with the use of CFG.
● Provides insight on how to efficiently distribute processing unit cycles.
● Challenges the conventions regarding ILP.



Technical Assumptions
● Overhead involved in task synchronization is minimal.
● Sequencer does a good job identifying and assigning tasks.
● Tasks are either completely executed or squashed.



Merits
● Multiscalar processors can handle control dependencies efficiently.
● Useful for cases where dependency between instructions can not be 

determined before program execution.
● Provides high branch prediction across multiple branches.
● Reduces complexity for monitoring instructions.
● Reduces logic complexity required for n instructions.
● Allows loads and stores to be issued independently within one task.
● Uses both hardware and software for re-ordering instructions.



Failings
● High IPC because of aggressive processing units.
● Increased latency for cache hits.
● Additional instructions are required for multiscalar execution.
● Requires additional hardware as well.



Methodology
● Concept of Control Flow Graph and Multiscalar architecture is introduced.
● The multiscalar model uses partitions called tasks which are assigned to 

the processing units.
● Tasks are defined as part of CFG that corresponds to some contiguous 

region from the set of instructions.
● A microarchitecture is described with an example CFG.
● The distribution of available cycles is analyzed.
● A comparison of the multiscalar architecture with other paradigms is 

provided.
● The performance of the architecture is compared with other paradigms 

such as scalar, VLIW, superscalar and multiprocessors.
● Lastly, the performance of the architecture with respect to scalar 

architecture is presented.



Overview of the paradigm presented
● The purpose of the CFG is to ensure a large and accurate window from 

which instructions can be extracted and scheduled dynamically.
● A task is some part of this CFG which is assigned to a processing unit.
● All the instructions in each task are bounded by the first and last 

instruction in that task.
● Each processing unit executes instructions of the task.
● Tasks need not be independent of each other. To ensure communication 

among the tasks a unidirectional ring can be used.
● For maintaining overall sequential appearance, each processing unit 

executes instructions of the task sequentially.
● Additionally, the processing units themselves follow a loose sequential 

order



One possible architecture



Writing multiscalar programs
● The multiscalar program needs to ensure there is sufficient support for 

using the CFG
● The sequencer needs the information regarding program flow to enable 

prediction of the next task to be assigned. This allows for the next task to 
be assigned without spending time on inspecting the instructions of the 
present task.

● Additional tag bits are required for stopping and forwarding instructions.
● Writing multiscalar programs from existing code is possible by adding the 

required tag and task descriptor bits. This allows for some portability 
from one generation of hardware to another.



Distributing cycles

● The aim of the multiscalar approach is to ensure each processing unit 
executes multiple instructions in a given cycle

● Cycles in which the unit does not perform useful computation, performs 
no computation or remains idle causes the performance to drop from the 
best case.

● Non-useful computation occurs when a task needs to be squashed. This 
can happen due to either an incorrect value or an incorrect prediction.

● Synchronizing data communication and performing early prediction can 
help prevent some non-useful computation.



Distributing cycles
● Managing intra-task dependencies by using code scheduling, 

non-blocking cache and out-of-order execution can reduce no 
computation cycles.

● Inter-task dependencies are more prevalent in the multiscalar approach. 
This can somewhat be dealt with by using early data updation and 
forwarding.

● Ensuring each task has approximately the same size is useful in 
minimizing lost cycles. 



Evaluation
● The multiscalar processor simulator used performed all the tasks and 

operations with the exception of system calls.
● A 5 stage pipeline structure was used with the options to configure it as in 

order/ out of order and 1-way or 2-way issue.
● Ten programs were used with some of them having modifications. Almost 

all of them have a significant number of loops. Perhaps this was on 
purpose to highlight the aggressive parallel execution provided by the 
multiscalar approach.



Conclusions



Conclusions



The Case for a Single-Chip Multiprocessor



Motivation
● Diminishing returns on making superscalar processors wider

○ Wider superscalar processors require quadratically more logic and wires, limiting 
frequency and increasing power

○ Performance is only fractionally better for processors twice as wide 

● Single-Chip Multiprocessors allow for better extraction of parallelism by 
software developers, and better performance per chip area



Main Contribution
● Change in thought process about how to go about creating processors

○ One very wide superscalar processor or single-chip multiprocessor?

● Proposed an area efficient alternative to the single superscalar processor
● The single-chip multiprocessor architecture allows for fine-grained 

parallelism extraction by software developers / multithreaded software



Technical Assumptions
● IPC numbers are not actually given for multiprocessor results - only cache 

miss rates -- this somehow translates to speedup
● They assume they can directly compare the architectures when the 

microarchitectures that their architectures are based on are different.
● Assumed that a 6-way architecture, which the simulation code is not 

optimized for, was comparable to 4 2-way processors.



Merits
● Single-chip multiprocessor doesn’t imply not using superscalar processors

○ Retain the best of both architectures

● Extracts coarse-grained parallelism better than superscalar processors
● Power efficiency of multiple smaller cores became important when we hit 

the power wall



Failings
● Nonzero thread synchronization cost for multithreaded applications
● Purely sequential applications do not benefit from multiple cores, and 

perform better on larger superscalar cores
● Puts more of the burden of performance on software developers



Methodology
● Authors developed two microarchitectures for hypothetical machines in 

the future
● “Logical extension” of the current 4-way superscalar R10000 superscalar design into a 

6-way superscalar design
○ Additionally increased size of instruction buffers / instruction window

● Multiprocessor architecture: 4-way single chip multiprocessor with 4 2-way superscalar 
processors. Each is ~= the Alpha 21064

● Authors then simulated nine applications in the SimOS environment, 
measuring performance in the representative execution window 

○ SPEC95 compress and m88ksim, SPEC92 eqntott, MPsim, SPEC95 applu



Methodology
● Authors then simulated nine applications in the SimOS environment, 

measuring performance in the representative execution window using the 
most detailed simulator (MXS), and less detailed but faster simulators for 
the rest

○ Integer benchmarks: SPEC95 compress and m88ksim, SPEC92 eqntott, MPsim
○ FP benchmarks: SPEC95 applu, apsi, swim, and tomcatv
○ Multiprogramming benchmark: pmake (measured fully in MVS due to lack of clear 

representative window)



Proposed Floorplans



Proposed Characteristics



Conclusions



Conclusions



Discussion Questions



How relevant are these papers now?



How realistic is a task-based multiscalar processor? 



Would an aggressively speculative multiscalar 
processor be insecure / vulnerable to 

Spectre/Meltdown? 



How do you think the single-chip multiprocessor 
author feels about GPUs?



How do you think the single-chip multiprocessor 
author feels about modern CPUs?


