Eyeriss : A Spatial Architecture
for Energy-Efficient Datatlow
for Convolutional Neural
Networks



Motivation

Convolutions dominate for over 90% of the CNN operations and dominate runtime. Although these
operations can leverage highly-parallel compute paradigms, throughput might not scale accordingly
due to the accompanying bandwidth requirement and the energy consumption remains high as data

movement can be more expensive than computation.

* Need to develop dataflows that support parallel processing with minimal data movement

 Differences in data movement energy cost based on where the data is stored also needs to be
accounted for



Spatial Architecture

Spatial architectures are a class of accelerators that can exploit high compute parallelism using direct
communication between an arrayof simple processing engines(PEs).

* Fine-grained SAs - in the form of an FPGA
* Coarse-grained SAs — tiled arrays of ALU style PEs connected together via on-chip networks

Coarse-grained SAs are a popular implementation choice for CNN accelerators-

* Operations in a CNN layer are uniform and exhibit high parallelism which can be computed with
parallel ALU-style PE

* Direct inter-PE communication can be used very effectively for passing partial sums and sharing
input data



The system provides four levels of storage hierarchy for data accesses —
DRAM

global buffer

array (inter-PE communication)

RF

Accessing data from a different level implies a different energy cost
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Figure 4. Die photo and spec of the Eyeriss chip [41].

Figure 1. Block diagram of a general CNN accelerator system consisting
of a spatial architecture accelerator and an off-chip DRAM. The zoom-in
shows the high-level structure of a PE.




CNN Background

* A convolutional neural network (CNN) 1s constructed by stacking multiple computation
layers as a directed acyclic graph

* The primary computation of CNN is in the convolutional (CONV) layers, which perform
high-dimensional convolutions.

A CONYV layer applies filters on the input fmaps (ifmaps) to extract embedded visual
characteristics and generate the output fmaps (ofmaps). The dimensions of both filters and
fmaps are 4D.

* A small number of fully-connected (FC) layers are typically stacked behind the CONV
layers for classification purposes.

* In between CONYV and FC layers, additional layers can be added optionally, such as the
pooling (POOL) and normalization (NORM) layers.
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Challenges in CNN processing

Data Handling

Exploiting different types of input data reuse

* Convolutional reuse- Due to the weight sharing property in CONV layers, a small amount of
unique input data can be shared across many operations.

* Filter data reuse

* ifmap reuse

Proper operation scheduling so that generated psums can be reduced as soon as possible

Adaptive Processing

The dataflow must be efficient for different shapes, and the hardware architecture must be
programmable to dynamically map to an efficient dataflow.



Existing CNN Datatlows

* Weight Stationary (WS) Dataflow
* Output Stationary (OS) Dataflow
* No Local Reuse (NLR) Dataflow

Dataflow

Data Handling

WS

Maximize convolutional reuse and filter reuse of
weights in the RF

SOC-MOP OS

Maximize psum accumulation in RF.
Convolutional reuse in array.

MOC-MOP OS

Maximize psum accumulation in RF.
Convolutional reuse and ifmap reuse in array.

MOC-SOP OS

Maximize psum accumulation in RE. Ifmap
reuse in array.

NLR

Psum accumulation and ifmap reuse in array.




Energy Efficient Datatlow : Row
Stationary

* 1D Convolution Primitives - It breaks the high-dimensional convolution down into 1D
convolution primitives that can run in parallel; each primitive operates on one row of filter
weights and one row of 1fmap pixels, and generates one row of psums. Psums from
different primitives are further accumulated together to generate the ofmap pixels.

* Two-step Primitive Mapping —

Logical mapping - deploys the primitives into a logical PE array, which has the same size
as the number of 1D convolution primitives and is usually much larger than the physical PE
array in hardware.

Physical mapping - folds the logical PE array so it fits into the physical PE array.

Folding - serializing the computation, and 1s determined by the amount of on-chip storage,
including both the global buffer and local RF.



* Energy-Efficient Data Handling

RF - There are convolutional reuse within the computation of each primitive, filter reuse and ifmap
reuse due to mput data sharing between folded primitives, and psum accumulation within each
primitive and across primitives.

Array(inter-PE communication) - Filter reuse and ifmap reuse can be achieved by having multiple
sets mapped spatially across the physical PE array.

Psum accumulation 1s done within each set as well as across sets that are mapped spatially.

Global Buffer - Used to exploit the rest of filter reuse, ifmap reuse and psum accumulation that
remain from the RF and array levels after the second phase folding.
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Figure 6. The dataflow in a logical PE set to process a 2D convolution. (a) rows of filter weight are reused across PEs horizontally. (b) rows of ifmap
pixel are reused across PEs diagonally. (c) rows of psum are accumulated across PEs vertically. In this example, R = 3 and H = 5.



Experimental Methodology

 All dataflows are given the same number of PEs with the same storage area, which includes the
global buffer and RF.

* The baseline storage area for a given number of PEs is calculated as
#PE x Area(512B RF) + Area((#PE % 512B) global buffer).

* The accelerator throughput is assumed to be proportional to the number of active PEs for a
dataflow.
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Figure 7. The trade-off between storage area allocation and the total storage
size. (a) A smaller memory have a higher cost on area utilization. (b) Due to
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Energy Efficiency Analysis

The way each MAC operation in Eq. (1) fetches inputs (filter weight and ifmap pixel) and
accumulates psums introduces different energy costs due to two factors:

* how the dataflow exploits input data reuse and psum accumulation scheduling

* fetching data from different storage elements in the architecture have different energy costs.

Data Movement Hierarchy

Global Buffer | Array (inter-PE) RF
DRAM | S 100kB) (1-2mm) (0.5kB)
g"m" 200 65 2% 1%
nergy
Table IV

NORMALIZED ENERGY COST RELATIVE TO A MAC OPERATION
EXTRACTED FROM A COMMERCIAL 65NM PROCESS.



Analysis Methodology

* Input Data Access Energy Cost:

Reuse at each level 1s defined as the number of times each data value 1s read from this level
to 1ts lower-cost levels during its lifetime. Suppose the total number of reuses for a data
value is axbxcxd, it can be split into reuses at DRAM, global buffer, array and RF for a, b,
c, and d times, respectively.

The energy cost estimation for this reuse pattern 1s

axEC(DRAM)+abxEC(global buffer)+ abc x EC(array) + abcd x EC(RF),
where EC(+) 1s the energy cost

* Psum Accumulation Energy Cost:

The number of accumulation at each level 1s defined as the number of times each data goes
in and out of its lower-cost levels during its lifetime.

The energy cost can then be estimated as

(2a—1)*EC(DRAM)+2a(b—1)xEC(global buffer)+ ab(c — 1) x EC(array) + 2abc(d — 1) X
EC(RF).
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Results

AlexNet 1s used as the CNN model for benchmarking.

Its 5 CONV and 3 FC layers provide a wide range of shapes that are suitable for testing the
adaptability of different dataflows.

The figure shows the energy breakdown across the storage hierarchy in the 5 CONV and 3 FC layers
of AlexNet. The energy is normalized to one ALU operation, i.e., a MAC.
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Dataflow Comparison in CONYV layers

 DRAM Accesses

* Energy Consumption - Overall, RS is 1.4x to 2.5% more energy efficient than other dataflows.
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Figure 12. Energy consumption of the six dataflows in CONV layers of AlexNet under PE array size of (a) 256, (b) 512 and (c) 1024. (d) is the same as
(c) but with energy breakdown in data types. The energy is normalized to that of RS at array size of 256 and batch size of 1. The RS dataflow is 1.4x to

2.5x more energy efficient than other dataflows.



* Energy Delay Product - Energy-delay product is used to verify that a dataflow does not achieve
high energy efficiency by sacrificing processing parallelism, 1.e., throughput. The delay 1s
calculated as the reciprocal of number of active PEs.
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Figure 13. Energy-delay product (EDP) of the six dataflows in CONV layers of AlexNet under PE array size of (a) 256, (b) 512 and (c) 1024. It is
normalized to the EDP of RS at PE array size of 256 and batch size of 1.
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Conclusion

* Compared with existing dataflows such as the output stationary (OS), weight stationary
(WS), and no local reuse (NLR) dataflows using AlexNet as a benchmark, the RS
dataflow 1s 1.4% to 2.5x more energy efficient in convolutional layers, and at least 1.3
more energy efficient in fully-connected layers for batch sizes of at least 16.

* For all dataflows, increasing the size of the PE array helps to improve the processing
throughput at similar or better energy efficiency.

* Larger batch sizes also result in better energy efficiency

* Finally, for the RS dataflow, the area allocation between processing and storage has a
limited effect on energy-efficiency, since more PEs allow for better data reuse, which
balances out the effect of less on-chip storage.



EIE: Efficient Inference Engine
on Compressed Deep Neural
Network



Motivation

* Fully Connected Layers
» Convolution is easy to accelerate - data reuse, extensively studied
* FC layers are bandwidth limited - no data reuse
» FC layers account for 96% of connections

* DRAM
* Power consumption dominated by fetching weights from DRAM
2 orders of magnitude more expensive than ALU operations

* Latency
 Targeting real-time inferencing

» Batching (throughput) is undesirable



Compression

n-—1|

* Pruning bi = ReLl Z Wija;

7=U
» Reduces the number of weights present

e 4-25% of original matrix

* Results in sparse matrices bi = ReLU Z S|I;;la;

* Sparsity jEX;NY

M

* Only do computations on non-zero inputs
* 70% zero activations => 65.16% energy savings
* Weight-Sharing
* Weights are typically stored as 32-bit floating point numbers
« Compressed and quantized into a 16-entry table of 16-bit fixed point numbers

* Weights stored as a 4-bit index into table



PEO
PE1
PE2
PE3

Representation

RelLU

* Modified compressed sparse column (CSC) format

* v = virtual weight = table index of non-zero weights

» 7 =relative row index = number of zeros before
non-zero weight

* p = column pointer = index into (v,x) to indicate the
start of each column



Insights

e Utilize on-chip SRAM
e Compressed models fit in SRAM
» 120x better energy savings over DRAM
 Dynamic Sparsity
* Not addressed by previous SPMV or DNN accelerators
* Compression needs custom hardware!!
« Compression is great, but it runs poorly on CPUs and GPUs
e Irregular Patterns =>Extra levels of indirection => added complexity => inefficiency

» Compression alone only yields 3x speedup



Parallelization

PEO
PE1
PE2
PE3

Rc___kU

* Input activations and weights evenly distributed
amongst an array of processing elements

* Partition by row to leverage sparsity

* Broadcast next non-zero element of input activation
to all PEs

 All other computation kept local



Processing Element

T

Sparse Matrix Access “"'n:; Arithmetic Unit

(b)
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Act R/W




Pointer Read Sparse Matrix Access

Relativ Arithmetic Unit ActR/W
Index

(b)

* Distributed Leading Non-Zero Detection
 Tree structure to detect and broadcast next non-zero input activation

e Activation Queue

* Load balancing for uneven non-zero elements in weight columns
e Pointer Read Unit

» Simultaneous read of column begin and column end
* Sparse Matrix Read Unit

 Store 8-bit elements of (v, X)

* 64-bit reads = 8 elements at a time



Pointer Read

Relativi

rse Matrix A
Sparse Mat: ccess Thdat

Arithmetic Unit

Act R/W

e Arithmetic Unit

(b)

» Operate on a single (v, x) element & activation at head of queue

 Table lookup to translate index v to real weight

« Multiple-accumulate operation
e Activation Read/Write

» Holds 64 16-bit activations (4K across 64 PEs)

» Source/Destination exchange roles each layer -> No data movement

e Central Control Unit (CCU)

 Communicates with Master

» I/O Mode to load data & Computing Mode to produce results



Evaluation

e Custom C++ Cycle Accurate Simulator
* Model RTL
* Assist with design space exploration
* Verilog RTL Implementation
« Area, power, critical path delay
 Comparisons
* CPU - Intel Core i-7 5930k
* GPU - NVIDIA GeForce GTX Titan X GPU
« Mobile GPU - NVIDIA Tegra K1

Table 111
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS
Layer Size Weight% Act% FLOP% | Description
9216, . ‘
sar- 35.1% 39
NP 4096 % A Compressed
Alex-7 4096, 05 353% 3% AlcxN.cl [l! for
4096 large scale image
Alex-8 | 100 259 37.5%  10% CRR
25
VGG-6 3()828 4% 18.3% 1% Compressed
T008 VGG-16 [3] for
VGG-7 4()%‘ 4% 37.5% 2% large scale image
3096 classification and
VGG-8 l()()()‘ 23% 41.1% 9% object detection
4096, . . . Compressed
-We 0% 00% 0%
NE 600 1% e 0% NeuralTalk [7]
600, p a % with RNN and
NT-Wd 8791 1% 100% 11% LSTM for
7. ‘ atie
NTLST™ | 29 1o 100% 11% L
2400 image captioning




Area / Power / Energy

Table 11
THE IMPLEMENTATION RESULTS OF ONE PE IN EIE AND THE
BREAKDOWN BY COMPONENT TYPE (LINE 3-7), BY MODULE (LINE
8-13). THE CRITICAL PATH OF EIE IS 1.15 NS

SpMat Power = Area &

p e (mW) (%) (pem?) %)
Total 9.157 638,024

At O Ax 1 memory 5416 (59.15%) 594786 (93.22%)
Ptr Even Arithm Ptr Odd clock network 1.874  (20.46%) 866 (0.14%)
== = register 1.026  (11.20%) 9,465 (1.48%)
combinational 0.841 (9.18%) 8.946 (1.40%)
filler cell 23,961 (3.76%)
Act_queue 0.112 (1.23%) 758 (0.12%)
SpM at PtrRead 1.807  (19.73%) 121,849  (19.10%)
SpmatRead 4955 (54.11%) 469412 (73.57%)
ArithmUnit 1.162 (12.68%) 3.110 (0.49%)
4 . ACIRW 1.122 (12.25%) 18.934 (2.97%)
Figure 5. Layout of one PE in EIE under TSMC 45nm process. filler cell 23.961 (3.76%)

Energy: 24,000x less than CPU. 3,400x less than GPU. 2,700x less than Mobile GPU.



Performance
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Figure 6. Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.
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Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

189x over CPU, 13x over GPU, 307x over Mobile GPU



Design Decisions
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Scalability
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Figure 11. System scalability. It measures the speedups with different numbers of PEs. The speedup is near-linear.
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Figure 12. As the number of PEs goes up. the number of padding zeros decreases, leading to less padding zeros and less redundant work, thus better
compute efficiency.
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Figure 13. Load efficiency is measured by the ratio of stalled cycles over total cycles in ALU. More PEs lead to worse load balance, but less padding
zeros and more useful computation.



Conclusion

* Accelerate matrix-vector multiplication for fully connected layers
 Flexible to other operations too

Operate on Compressed Neural Networks
* Pruning, weight sharing, sparsity, quantization

Single PE: 1.6 GOPS in 0.64mm? with 9mW power dissipation
64 PEs at 800MHz: 102 GOP/s equivalent to 3TOP/s for uncompressed network
Scalable to over 256 PEs



