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Motivation
Convolutions dominate for over 90% of the CNN operations and dominate runtime. Although these 
operations can leverage highly-parallel compute paradigms, throughput might not scale accordingly 
due to the accompanying bandwidth requirement and the energy consumption remains high as data 
movement can be more expensive than computation.

• Need to develop dataflows that support parallel processing with minimal data movement
• Differences in data movement energy cost based on where the data is stored also needs to be 

accounted for



Spatial Architecture
Spatial architectures are a class of accelerators that can exploit high compute parallelism using direct 
communication between an arrayof simple processing engines(PEs).
• Fine-grained SAs - in the form of an FPGA
• Coarse-grained SAs – tiled arrays of ALU style PEs connected together via on-chip networks 

Coarse-grained SAs are a popular implementation choice for CNN accelerators-
• Operations in a CNN layer are uniform and exhibit high parallelism which can be computed with 

parallel ALU-style PE
• Direct inter-PE communication can be used very effectively for passing partial sums and sharing 

input data



The system provides four levels of storage hierarchy for data accesses –
DRAM 
global buffer
array (inter-PE communication)
RF
Accessing data from a different level implies a different energy cost



CNN Background
• A convolutional neural network (CNN) is constructed by stacking multiple computation 

layers as a directed acyclic graph 
• The primary computation of CNN is in the convolutional (CONV) layers, which perform 

high-dimensional convolutions. 
• A CONV layer applies filters on the input fmaps (ifmaps) to extract embedded visual 

characteristics and generate the output fmaps (ofmaps). The dimensions of both filters and 
fmaps are 4D.

• A small number of fully-connected (FC) layers are typically stacked behind the CONV 
layers for classification purposes. 

• In between CONV and FC layers, additional layers can be added optionally, such as the 
pooling (POOL) and normalization (NORM) layers. 



Challenges in CNN processing

Data Handling
Exploiting different types of input data reuse
• Convolutional reuse- Due to the weight sharing property in CONV layers, a small amount of 

unique input data can be shared across many operations. 
• Filter data reuse
• ifmap reuse
Proper operation scheduling so that generated psums can be reduced as soon as possible

Adaptive Processing
The dataflow must be efficient for different shapes, and the hardware architecture must be 
programmable to dynamically map to an efficient dataflow. 



Existing CNN Dataflows
• Weight Stationary (WS) Dataflow 
• Output Stationary (OS) Dataflow
• No Local Reuse (NLR) Dataflow



Energy Efficient Dataflow : Row 
Stationary
• 1D Convolution Primitives - It breaks the high-dimensional convolution down into 1D 

convolution primitives that can run in parallel; each primitive operates on one row of filter 
weights and one row of ifmap pixels, and generates one row of psums. Psums from 
different primitives are further accumulated together to generate the ofmap pixels. 

• Two-step Primitive Mapping – 
Logical mapping - deploys the primitives into a logical PE array, which has the same size 
as the number of 1D convolution primitives and is usually much larger than the physical PE 
array in hardware. 
Physical mapping - folds the logical PE array so it fits into the physical PE array. 
Folding - serializing the computation, and is determined by the amount of on-chip storage, 
including both the global buffer and local RF. 



• Energy-Efficient Data Handling
RF - There are convolutional reuse within the computation of each primitive, filter reuse and ifmap 
reuse due to input data sharing between folded primitives, and psum accumulation within each 
primitive and across primitives. 
Array(inter-PE communication) - Filter reuse and ifmap reuse can be achieved by having multiple 
sets mapped spatially across the physical PE array. 
Psum accumulation is done within each set as well as across sets that are mapped spatially. 
Global Buffer - Used to exploit the rest of filter reuse, ifmap reuse and psum accumulation that 
remain from the RF and array levels after the second phase folding. 



Experimental Methodology
• All dataflows are given the same number of PEs with the same storage area, which includes the 

global buffer and RF. 
• The baseline storage area for a given number of PEs is calculated as 

#PE × Area(512B RF) + Area((#PE × 512B) global buffer). 
• The accelerator throughput is assumed to be proportional to the number of active PEs for a 

dataflow. 



Energy Efficiency Analysis
The way each MAC operation in Eq. (1) fetches inputs (filter weight and ifmap pixel) and 
accumulates psums introduces different energy costs due to two factors: 
• how the dataflow exploits input data reuse and psum accumulation scheduling
• fetching data from different storage elements in the architecture have different energy costs.

Data Movement Hierarchy



Analysis Methodology

• Input Data Access Energy Cost: 
Reuse at each level is defined as the number of times each data value is read from this level 
to its lower-cost levels during its lifetime. Suppose the total number of reuses for a data 
value is a×b×c×d, it can be split into reuses at DRAM, global buffer, array and RF for a, b, 
c, and d times, respectively. 
The energy cost estimation for this reuse pattern is
a×EC(DRAM)+ab×EC(global buffer)+ abc × EC(array) + abcd × EC(RF), 
where EC(·) is the energy cost

• Psum Accumulation Energy Cost: 
The number of accumulation at each level is defined as the number of times each data goes 
in and out of its lower-cost levels during its lifetime. 
The energy cost can then be estimated as 
(2a−1)×EC(DRAM)+2a(b−1)×EC(global buffer)+ ab(c − 1) × EC(array) + 2abc(d − 1) × 
EC(RF). 





Results
AlexNet is used as the CNN model for benchmarking. 
Its 5 CONV and 3 FC layers provide a wide range of shapes that are suitable for testing the 
adaptability of different dataflows. 
The figure shows the energy breakdown across the storage hierarchy in the 5 CONV and 3 FC layers 
of AlexNet. The energy is normalized to one ALU operation, i.e., a MAC. 



Dataflow Comparison in CONV layers

• DRAM Accesses
• Energy Consumption - Overall, RS is 1.4× to 2.5× more energy efficient than other dataflows. 



• Energy Delay Product - Energy-delay product is used to verify that a dataflow does not achieve 
high energy efficiency by sacrificing processing parallelism, i.e., throughput. The delay is 
calculated as the reciprocal of number of active PEs. 



Conclusion
• Compared with existing dataflows such as the output stationary (OS), weight stationary 

(WS), and no local reuse (NLR) dataflows using AlexNet as a benchmark, the RS 
dataflow is 1.4× to 2.5× more energy efficient in convolutional layers, and at least 1.3× 
more energy efficient in fully-connected layers for batch sizes of at least 16. 

• For all dataflows, increasing the size of the PE array helps to improve the processing 
throughput at similar or better energy efficiency. 

• Larger batch sizes also result in better energy efficiency 
• Finally, for the RS dataflow, the area allocation between processing and storage has a 

limited effect on energy-efficiency, since more PEs allow for better data reuse, which 
balances out the effect of less on-chip storage. 



EIE: Efficient Inference Engine 
on Compressed Deep Neural 

Network



Motivation

• Fully Connected Layers
• Convolution is easy to accelerate - data reuse, extensively studied
• FC layers are bandwidth limited - no data reuse
• FC layers account for 96% of connections

• DRAM
• Power consumption dominated by fetching weights from DRAM
• 2 orders of magnitude more expensive than ALU operations

• Latency
• Targeting real-time inferencing
• Batching (throughput) is undesirable



Compression

• Pruning
• Reduces the number of weights present
•  4 - 25% of original matrix
• Results in sparse matrices

• Sparsity
• Only do computations on non-zero inputs
• 70% zero activations => 65.16% energy savings

• Weight-Sharing
• Weights are typically stored as 32-bit floating point numbers
• Compressed and quantized into a 16-entry table of 16-bit fixed point numbers
• Weights stored as a 4-bit index into table



Representation

• Modified compressed sparse column (CSC) format
• v = virtual weight = table index of non-zero weights
• z = relative row index = number of zeros before 

non-zero weight
• p = column pointer = index into (v,x) to indicate the 

start of each column



Insights
• Utilize on-chip SRAM

• Compressed models fit in SRAM
• 120x better energy savings over DRAM

• Dynamic Sparsity
• Not addressed by previous SPMV or DNN accelerators

• Compression needs custom hardware!!
• Compression is great, but it runs poorly on CPUs and GPUs
• Irregular Patterns =>Extra levels of indirection => added complexity => inefficiency
• Compression alone only yields 3x speedup



Parallelization

• Input activations and weights evenly distributed 
amongst an array of processing elements

• Partition by row to leverage sparsity
• Broadcast next non-zero element of input activation 

to all PEs
• All other computation kept local



Processing Element



• Distributed Leading Non-Zero Detection
• Tree structure to detect and broadcast next non-zero input activation

• Activation Queue
• Load balancing for uneven non-zero elements in weight columns

• Pointer Read Unit
• Simultaneous read of column begin and column end

• Sparse Matrix Read Unit
• Store 8-bit elements of (v, x)
• 64-bit reads = 8 elements at a time



• Arithmetic Unit
• Operate on a single (v, x) element & activation at head of queue
• Table lookup to translate index v to real weight
• Multiple-accumulate operation

• Activation Read/Write
• Holds 64 16-bit activations (4K across 64 PEs)
• Source/Destination exchange roles each layer -> No data movement

• Central Control Unit (CCU)
• Communicates with Master
• I/O Mode to load data & Computing Mode to produce results



Evaluation
• Custom C++ Cycle Accurate Simulator

• Model RTL
• Assist with design space exploration

• Verilog RTL Implementation
• Area, power, critical path delay

• Comparisons
• CPU - Intel Core i-7 5930k
• GPU - NVIDIA GeForce GTX Titan X GPU
• Mobile GPU - NVIDIA Tegra K1



Area / Power / Energy

Energy: 24,000x less than CPU. 3,400x less than GPU. 2,700x less than Mobile GPU.



Performance

189x over CPU, 13x over GPU, 307x over Mobile GPU



Design Decisions



Scalability



Conclusion
• Accelerate matrix-vector multiplication for fully connected layers

• Flexible to other operations too
• Operate on Compressed Neural Networks

• Pruning, weight sharing, sparsity, quantization
• Single PE: 1.6 GOPS in 0.64mm2 with 9mW power dissipation
• 64 PEs at 800MHz: 102 GOP/s equivalent to 3TOP/s for uncompressed network
• Scalable to over 256 PEs


