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Power: A First-Class Architectural 
Design Constraint



Motivations

● IT was 8% of US electricity usage in 2000
○ Increasing over time

● Chip die power density increasing linearly
○ Eventually can’t cool them

● Very general motivations
○ Appropriate for a general overview



CMOS Power Basics

● P = ACV2f + 𝞃AVIshort + VIleak = Pswitching + Pshort + Pleakage

○ ACV2f    = Activity × Capacitance × Voltage2 × Frequency
○ 𝞃AVIshort = Short circuit time × Activity × Voltage × Short circuit current
○ VIleak      = Voltage × Leakage current

● Reduce voltage?
○ Reduces max frequency unless you reduce MOSFET Vth

○ Reducing Vth increases Ileak

● Reducing V will decrease Pswitching and increase Pleakage until Pleakage 
dominates



What Does Efficiency Mean?

● Portable devices carry fixed amount of energy in battery
○ Minimizing energy per operation better than minimizing power
○ MIPS/W a common metric (simplifies to instructions per Joule)
○ MIPS/W can be misleading for quadratic devices (CMOS)

● Non-portable devices should minimize power
○ Different from minimizing energy per operation



Power Reduction - Logic

Clock tree is a significant power consumer. What can you do about it?

● Clock gating - Turn off clocks to unused logic
○ Increases clock skew but solved by better tools

● Half frequency - Use rising and falling edges, run at half frequency
○ Increases logic complexity and area

● Half swing - Clock swing only half of supply voltage
○ “Increases the latch design’s requirements”
○ Hard to use when supply voltage is already low



Power Reduction - Logic (cont.)

● Asynchronous logic - Clocks use power, so don’t use clocks. Many problems.
○ Extra logic and wiring required for completion signals
○ Absence of design tools, difficult to test

■ Still true 20 years later?
○ Amulet - asynchronous ARM implementation

● Globally asynchronous, locally synchronous logic
○ Reduce clock power and skew on large chips
○ Ability to reduce frequency and voltage to specific parts of chip
○ Best of both worlds



Power Reduction - Architecture

Dynamic power loss upon memory access, leakage loss from being turned on.

● Memory - Filter cache
○ Extremely small cache ahead of L1 cache
○ Sacrifice performance but keep L1 cache at low power most of the time

● Memory - Banking
○ Split memory into banks, turn on bank being used
○ Requires spatial locality and disk backup for off banks



Power Reduction - Architecture (cont.)

Memory buses are a significant source of power usage.

● Gray code addresses reduces switching for sequential 
addresses.

● Compression reduces data transfer amounts
○ Presumably saves more power than compression and 

decompression



Power Reduction - Architecture (cont.)

● Pipelining is done to increase clock frequency (reduce critical path length)
○ Limits voltage reduction

● Parallel processing improves efficiency
○ General purpose computation (SPEC benchmarks) not very parallel
○ DSPs are highly parallel and power efficient

■ This points towards accelerators for further improvements



Power Reduction - Operating System

Operating system can support voltage scaling. How do we use it best?

● Application controlled - Apps use OS interface to scale voltage for itself
○ Requires app modification

● OS controlled - OS detects when to scale voltage
○ No app modification needed
○ Difficult to make detection optimal



Applications for Efficient Processors

● High MIPS/W (low energy per operation)
○ “The obvious applications [...] lie in mobile computing.”
○ “mobile phones will surpass the desktop as the defining application 

environment for computing”
■ Pretty accurate in 2020

● Low power
○ Servers and data centers
○ More compute for same power



Future Challenges

● Smaller FETs need lower Vth

● Lower Vth increases leakage current
○ Use low Vth FETs for high frequency paths
○ Use high Vth FETs for low frequency paths

● In general power must be considered early in design process
○ Currently happening

● Tools must support power analysis
○ Currently happening



            Strengths                              Weaknesses

● Broad overview of power saving 
techniques at different levels

● Distinguishes between power 
and energy

● Predicts rise of mobile computing

● Individual techniques vaguely 
described

● Heterogeneous designs not 
mentioned (ex. big.LITTLE)

● OS section only sort of discusses 
energy aware scheduling

● Nearly 20 years old, what’s new?



Power Struggles: Revisiting the RISC 
vs CISC Debate on Contemporary 
ARM and x86 Architectures



Motivation



RISC v. CISC pt.1

● First debates in 1980s
○ Focused on desktops and servers
○ Primary design constraints

■ Area
■ Chip design complexity



RISC v. CISC pt.1

● "RISC as exemplified by MIPS provides a significant processor performance advantage."

● " ... the Pentium Pro processor achieves 80% to 90% of the performance of the Alpha 21164 ... It 

uses an aggressive out-of-order design to overcome the instruction set level limitations of a CISC 
architecture. On floating-point intensive benchmarks, the Alpha 21164 does achieve over twice the 

performance of the Pentium Pro processor."

● "with aggressive microarchitectural techniques for ILP, CISC and RISC ISAs can be implemented to 

yield very similar performance."



RISC v. CISC pt.2 

● 2013
○ Smartphones and tablets in addition to desktops and servers
○ Primary design constraints

■ Energy
■ Power

○ New markets
■ ARM servers for energy efficiency
■ x86 for mobile and low power devices for performance



Does ISA affect 
performance, 
power,
energy efficiency?



Framing the Impacts



Choosing Platforms

● Want as many similarities as possible
○ Technology node
○ Frequency
○ High performance/low power transistors
○ L2-Cache
○ Memory Controller
○ Memory Size
○ Operating System
○ Compiler

● lntent: Keep non-processor features as similar as possible. 



Choosing Platforms: Best Effort

● ARM/RISC
○ Cortex-A9
○ Cortex-A8

●  x86/CISC
○ Sandy Bridge (Core i7)
○ Atom

● Differences in tech node and 
frequency handled by 
estimate scaling to 45nm 
and 1GHz



Choosing Workloads

● RISC and CISC both claim to be good for mobile, desktop, and server
● Single-threaded core-focused



Metrics

● Performance
○ Wall-Clock Time
○ Built-In Cycle Counters

● Power
○ Wattsup
○ Multiple runs for average system power; control run for board power
○ Chip power = system power - board power



Key Findings (Perf)

● Execution time varies greatly
● Upon normalization to CPI and 

instruction count/mix, performance 
differences are explicable by 
microarchitectural differences 
(branch pred/cache size)



Key Findings (Power)

● i7 core is not power optimized so it 
has exceptionally high power

● Generally, core power is based on 
its optimization level

● Most differences in energy can be 
explained by differences in 
performance (e.g. BP) and power 
(Optimized for or not)



Trade-Off Analysis

● Cubic trade-off in power and 
performance

● Quadratic trade-off in energy and 
performance

● Pareto optimality not dependent on 
ISA



ISA does NOT affect 
performance, 
power,
energy efficiency



Strengths

● Presents intuition first, then affirms with results
● Does a good job of drawing relevant data and conclusions with a severely 

limited scope
● Admit to several limitations in the paper itself



Weaknesses

● Comparison to performance optimized i7 Sandy Bridge core seems shaky -- 
could have used more similarly optimized technology for better results
○ Option 1: More test points so we can maybe group into power optimized, 

perf optimized, and somewhere in the middle
○ Option 2: Same number of test points but homogenous in use case

● Normalizing the cores to a specific frequency and technology node obfuscates 
the original purpose of the cores, which might differ from core to core (EDP?)

● Evaluation is now 7 years old, what differences might we expect to see in 
2020 v 2013?


