Memory Consistency Exceptions
18742-Computer Architecture and Systems

Nithin, Deepali Garg

Electrical and Computer Engineering
Carnegie Mellon University

February 18, 2020

ectrical & Computer
A ENGINEERIVE

Nithin, Deepali Garg CcMU Memory Consistency Exceptions February 18, 2020 1/20

Schedule

Overview

Conflict Exceptions

Motivation and Contribution

Conflict Exception

Architectural Support for Conflict Exception
Architectural Support for Conflict Exception
Why Invariants hold?

Results

DRFx
m Motivation
m Contribution

m Design
» Compiler Design
= Hardware Design

m Results

ectrical & Computer
A ENGINEERIVE

Nithin, Deepali Garg CcMU Memory Consistency Exceptions February 18, 2020 2/20

Overview

ectrical & Computer
O EREINEERIG

Deepali Garg CM Memory Consistency Exceptions February 18, 2020

Nithil

Overview
oe

Overview

Differences

Both the papers recognize Conflict Exceptions
that data races are hard to Doesn'’t care about the origin
avoid, and racy programs are of data races, requires no
hard to debug additional compiler changes
Stores meta-data per cache
Both identify that region line
conflict detection is sufficient
to identify data-races which DRFx
can cause sequential Eliminates data-races due to
consistency exceptions compiler re-ordering
Finite meta-data stored per
Both relies on hardware region for conflict detection,
dynamic detection of data in-turn constraints the
races, in these hardware optimizations
synchronization-free regions allowed per region

ectrical & Computer
A ENGINEERIVE

Nithin, Deepali Garg CcMU Memory Consistency Exceptions February 18, 2020 4/20

Conflict Exceptions
[

Conflict Exceptions

ectrical & Computer
O EREINEERIG

Nithin, Deepali Garg CcMU Memory Consistency Exceptions February 18, 2020

Conflict Exceptions
(]

Motivation and Contribution

m Data races are everywhere.

m Methods to handle data races.
m Define semantics to execute data race programs (causes unexpected behaviour.)

m Make the programming languages such that data race is avoided while writing program
itself.

m Monitor the execution and handle the data races in run time.

m The existing happen-before race detection can detect data races but at a cost of
time and space.

m Paper proposes a dynamic method to detect data races and raise exception,

ectrical & Computer
A ENGINEERIVE

Nithin, Deepali Garg CcMU Memory Consistency Exceptions February 18, 2020 6/20

Conflict Exceptions
L]

Conflict Exception

m Divide the program into sync free regions.

m whenever there is a conflict in regions between two concurrently executing threads
raise an exception.

= Advantages of Conflict Exception
m Simpler Programming Language semantics.
m Most debugging benefits of full data-race detection.
m Recovery action support.

Thread T, Thread T,

synchronization-free b,
regions

S -.._ exception

delivered here

Figure: Example of Conflict Exception

ectrical & Computer
A ENGINEERIVE

Nithin, Deepali Garg Memory Consistency Exceptions February 18, 2020

Conflict Exceptions
(]

Architectural Support for Conflict Exception

Hardware/Software Interface.
Regions are demarcated by special instructions: beginR and endR.
Instructions which are not in a region are singleton regions themselves.

Protocol State and Invariants

Name | What it records Seton Cleared on 7

Siaie] Type o bt
Tocal | Bytes read by 0 Tocal read T A
read bits | thread during a access (hit/miss) | End of region .
Tocal wiite in local thread 2 [Ay

write bits access (hit/miss)

L
[
Re
4| oos | re
R

Remote by other threads | Local read or | End of region 3 | MaE
read bits ive regions write miss in remote thread

Remote | Bytes written by other threads | Local read or | that originally

write bits | in their active regions write miss set the bit s | any

(a) Access bit vectors associated with each cache line (b) Invariants guaranteed by the protocol

ectrical & Computer
A ENGINEERIVE

Nithin, Deepali Garg CcMU Memory Consistency Exceptions February 18, 2020

Conflict Exceptions
[Jele}

Architectural Support for Conflict Exception

Adding Support to the Coherence Protocol

cache meta-data table line offset
[tag | local read bits
[tag | local write bits

remote read bits

o i
Hin-region bit *--...__ remote write bits

= -cache-level supplied bit _cache line
supplied bit

r-out-of-cache bit

global and local table pointers

ectrical & Computer
A ENGINEERIVE

Nithin, Deepali Garg CcMU Memory Consistency Exceptions February 18, 2020 9/20

Conflict Exceptions
oeo

Architectural Support for Conflict Exception

In-Cache Operation

[+ 1 [=] [e]

o 0 1 01 0 1

Wx.0 LR LR LR

) w w w
RR RR RR
AW RW AW
AOWwx1

M)
inv —]

() la—"

ack
(LR=00,LW=10]
01

(LR=10,LW=00)

Om
LR |
w down
RR grade
RW 01
(0) LR é endof | e
w Qag\on
RR © ack
R wxo O
P e
L™ i |
ack @

| ¢i—ack — |
(LR=10,LW=00) | |
W) Jexception!

01

[ectrical & Computer
) ERGINEERIG

Nithin, Deepali Garg

Memory Consistency Exceptions February 18, 2020

Conflict Exceptions
[e]e] J

Architectural Support for Conflict Exception

Out-Cache Operation

‘ Dir/Mem ‘

evict @

(LR=00,LW=10)

in-memory = 1

O
gl
in-memory

global
table walk

A: LR=00,
Lw=10

>

>

ectrical & Computer
A ENGINEERIVE

Nithin, Deepali Garg CcMU Memory Consistency Exceptions February 18, 2020 11/20

Conflict Exceptions
L]

Why Invariants hold?

Reason why a set bit implies an
| State Type of bit set access within an active region Reason why an access within an active region implies a bit is set
|1} any [ocalreadbits [poyo directy from local access actions. Bits are set on access and cleared when a region ends.
2 Local write bits
Read misses can only result in exclusive state if no local read bits
3 | MorE for the line are set for other threads. Transitions to M state require
. Remote bits are a combinati acl with local read and write bits from other threads.
Remote read bits .
of local bits from other threads.
4| 0ors end-of-region message clears Not enforced.
all remote bits previously set by
data supplied to other caches, T an access happens alter an in-region remote write, it will be
- including the local cache. satisfied with data supplied by the cache that wrote that byte or b;
5 | Any Remote write bits e Supp’ Y P Y Y
a cache that wrote it later. The combination of local and remote
write bits guarantees they are properly propagated.

Figure: Reasons why invariants hold

ectrical & Computer
O EREINEERIG

Memory Consistency Exceptions February 18, 2020 12/20

Nithin, Deepali Garg

Conflict Exceptions
L]

Regions False Sharing / EOR Messages Mem. MD Lkup/ || Mem.

App. Towl #] Mem- Ops7 1B Mem. Ops % Reg. [Avg. #] %10 || 100K Mem. Ops || Ovhd Traffic Ovhd (B/MB)
Region _|[WaW [WaR | RaW || w/ Msg. | Lines | Mem. |[Rem. Bits | Loc. Bits || (% Ftpt) [RAReply | Inv Ack | EOR Msgs | Evic.
blackscholes || 50 oM 0.0 [00 | 115][_2.00 i 100 0.01 70.81 042 255 [_0.00 T00_ | 60K
bodytrack || 37K TOK 80 | 34 | 156 || 002 3| 100 0.01 5841 229 063 | 046 087 | 31K
Tacesim 35K M 4870 0.1 22515 005 | 297 | 100 0.4 | 28509 || 858 | 6249 | 1352 360 | 58K
Terret STK 30K 0.0 | 0.0 | 00 0.00 0 0 0.00 | 76920 || 27.36 | 000 | 0.00 000 | 66K
idani 3M 996 00 | 00 | 14 0.00 T_[100 0.01 9.60 58 023 | 000 0.3 | 30K
Treqmine 96 5aM 97 | 08 [10480]| 521 | 112 | 100 005 | 21329 || 17.09 | 6389 | 0.64 1147 | 64K
swaptions 96 20M 1122 31.1 | 4604 || 833 21| 100 067 | 49253 || 046 | 27.76 | 8.64 929 | 69K
vips 7K 252K 21 [07 | 23 0.09 T 100 000 | 16378 || 132 006 | 007 028 | 59K
X264 K ™ 0.0 | 00 | 00 0.00 0 0 000 | 47493 || 689 000 | 000 000 | 69K
Canncal 118 30M 15 | 00 | 28 .69 7| 100 000 | 68344 || 509 006_| 003 011 | 60K
dedup 18K 204K 688 | 28.7] 965 .92 i 100 0.07 10496 || 101 363 367 185 | 49K
K ™ 0.0 | 00 | 28 0.08 2| 100 0.01__| 146545 ||_7.10 003_|_0.00 002__| 53K
MySQL ™ 7K 0.0 | 00 | 01 0.00 T 100 0.00 24.15 024 0.01 0.00 0.02__| 50K
Apache 62K 27K 59 [06 | 23 0.01 T_| 100 0.01 15386 || 6.13 007 | 020 045 | /K
Mean 304K oM 497 [47 [2782 | 139 32 [86 007 | 35496]| 611 1153 | 195 279 | 52K

Figure: Overheads in detecting exceptions

ectrical & Computer
O EREINEERIG

Deepali Garg CM Memory Consistency Exceptions February 18, 2020 13/20

Conflict Exceptions
o]]

Results reference

App. KLOC || % Vio. Regions | # Vio PCs | # Vio Lines [# Vio Fns
blackscholes | 0.5 0 0 0 0
bodytrack 59 5.6 161 22 16
facesim 22.6 6.8 101 21 13
ferret 9.2 1.4 1080 248 50
ferret? 9.2 0 0 0 0
fluidanimate [0.9 0 0 0 0
freqmine 2.7 0 0 0 0
swaptions 1.3 0 0 0 0
vips 109.3 2.6 234 133 41
X264 40.4 7.3 6 6 4
canneal 34 4.5 1 1 1
dedup 37 35.6 104 58 12
str 1 13 44.4 147 52 6
MySQL [1600.0 0.05 92 76 41
Apache 602.0 30.1 68 54 17
Mean 160.8 9.2 1329 44.7 134

Figure: Number of exceptions in benchmarks used

ectrical & Computer
O EREINEERIG

Deepali Garg CM Memory Consistency Exceptions February 18, 2020 14/20

Nithil

DRFx

ectrical & Computer
O EREINEERIG

Deepali Garg CM Memory Consistency Exceptions February 18, 2020 15/20

Nithil

Motivation

m Full SC : Precludes common compiler and hardware optimizations, in order to
ensure that the program semantics are respected. High performance overhead

m DRF models : Doesn’t provide semantics for programs that contains data races

m Racy execution can behave arbitrarily and violate desired safety properties

m Debugging erroneous programs is difficult since, programmers has to always assume
there may have been data races

m Debuggability
m Writing race free programs is hard

m Data races difficult to trigger, and even if triggered can manifest in many ways

m Interaction of data races with compiler/hardware (which can re-order), are unknown to
programmer

m [t suffices to determine only data races that causes SC violations, and these can
be determined in hardware using conflict detection

ectrical & Computer
O EREINEERIG

Nithin, Deepali Garg

Memory Consistency Exceptions February 18, 2020 16/20

Contribution

m Halts program’s execution on Dynamic Memory Model(MM) exception detection

= DRF : If a program is data-race free, then every execution of that program will be
sequentially consistent and doesn’t raise an MM exception

m DRFx Compiler doesn'’t introduce additional data races - eg., speculative reads and
writes and disables

m Programs is split into synchronization free regions and optimizations allowed only within
those regions, thus can't be reordered in a manner that violates SC
m Soundness : If SC is violated, program terminates with MM exception

m Sufficient to determine region conflict between concurrent regions

m Hardware based data race detection - software based slows down the execution of
program by 8 times

m Safety : If an execution invokes system call, the . observable kernel state is
reachable through SC

m System calls to be places within in its own region

ectrical & Computer
O EREINEERIG

Nithin, Deepali Garg Memory Consistency Exceptions February 18, 2020 17/20

Compiler Design

m Hard Fences - DRF and safety

m Compiler must insert hard fence before and after each synchronization access
m Hard fence for system call invocation, before entering and after exiting kernel
m LLVM fence - doesn’t allow memory reordering across fence

m Soft Fences - Boundedness (Finite hardware resources)

m Statically bound the number of memory operations in a region

m Before each function call and return , before each loop back-edge, and extra to bound
region sizes

m The max. number of memory operations = size of hardware buffer. Exposing hardware
information

m Prevents compiler optimizations across soft fences, eg., across loop iterations.

m Compiler Optimizations

m Instead of speculative read, specific prefetch instruction which hardware wouldn’t track
for conflict detection

m Loop invariant code motion is allowed, as long as loop body guarantees atomicity

ectrical & Computer
A ENGINEERIVE

Nithin, Deepali Garg Memory Consistency Exceptions February 18, 2

Hardware design

m Region Buffer

m Circular queue buffer, storing region start/end timestamps, and read/write operations,
with bits indicating the number of bytes per access (Allows granularity)

m Lazy Conflict detection
m When all of regions’s instructions have completed, processor broadcasts region’s
read/write to all other processors (High-traffic)
m Non-SC state for sometime before violation is detected
B Execution causes exception apart from MM exception - additional MM exception check has to be
done at this point
B Execution enters a non-terminating loop - Conflict detection if a region has executed for more
than C cycles

m Handling Hard fences

m Processor stalls until all memory executions and coherence as part of region completes,
then initiate conflict detection (Performance overhead)

= Handling Soft fences
m Can safely reorder memory operations across regions delimited by soft fences
m Can run out of region buffer case (since bounded), in that case core has to be stalled till
next commit () Elecmcal&Com uter
€7 ENGINEERING

Nithin, Deepali Garg CcMU Memory Consistency Exceptions February 18, 2020 19/20

1000 ®Hard Fence Compiler Cost Hard Fence Hardware Cost
= Soft Fence Compiler Cost Soft Fence Unoptimized Hardware Cost

°
g 100
2
© 10
3
> 1
5
& 01
9\0.0] .
0.001
blackscholes ferret facesim swaptions bodytrack canneal fldanimate X264 streameluster Avg

Figure 5. Performance overhead with respect to the performance of an uninstrumented binary, compiled with all the traditional compiler

optimizations enabled.

100,000,000 m Hard Fence only Regions Hard+Soft Fence Regions
1,000,000
., 10,000
8
2 100
1
blackscholes ferret swaptions bodytrack canneal fld.animate strm.cluster Avg

Figure 6. Maximum number of unique memory bytes accessed in any region.

® Hard Fence only Regions Hard+Soft Fence Regions

1,000,000
<
210,000 I

blackscholes ferret swaptions bodytrack canneal fid.animate strm.cluster

-
S
3

Instr/Regiol

Figure 7. Average number of instructions executed in a region.

~~

February 18, 2

Memory Consistency Exceptions

Deepali Gar

cal & Computer

—..JINEERING

	Overview
	Conflict Exceptions
	Motivation and Contribution
	Conflict Exception
	Architectural Support for Conflict Exception
	Architectural Support for Conflict Exception
	Why Invariants hold?
	Results

	DRFx
	Motivation
	Contribution
	Design
	Results

