
Overview Conflict Exceptions DRFx

Memory Consistency Exceptions
18742-Computer Architecture and Systems

Nithin, Deepali Garg

Electrical and Computer Engineering
Carnegie Mellon University

February 18, 2020

Nithin, Deepali Garg CMU Memory Consistency Exceptions February 18, 2020 1 / 20



Overview Conflict Exceptions DRFx

Schedule

1 Overview

2 Conflict Exceptions
Motivation and Contribution
Conflict Exception
Architectural Support for Conflict Exception
Architectural Support for Conflict Exception
Why Invariants hold?
Results

3 DRFx
Motivation
Contribution
Design

Compiler Design
Hardware Design

Results

Nithin, Deepali Garg CMU Memory Consistency Exceptions February 18, 2020 2 / 20



Overview Conflict Exceptions DRFx

Overview

Nithin, Deepali Garg CMU Memory Consistency Exceptions February 18, 2020 3 / 20



Overview Conflict Exceptions DRFx

Overview

Similarities

1 Both the papers recognize
that data races are hard to
avoid, and racy programs are
hard to debug

2 Both identify that region
conflict detection is sufficient
to identify data-races which
can cause sequential
consistency exceptions

3 Both relies on hardware
dynamic detection of data
races, in these
synchronization-free regions

Differences

1 Conflict Exceptions
Doesn’t care about the origin
of data races, requires no
additional compiler changes
Stores meta-data per cache
line

2 DRFx
Eliminates data-races due to
compiler re-ordering
Finite meta-data stored per
region for conflict detection,
in-turn constraints the
hardware optimizations
allowed per region

Nithin, Deepali Garg CMU Memory Consistency Exceptions February 18, 2020 4 / 20



Overview Conflict Exceptions DRFx

Conflict Exceptions

Nithin, Deepali Garg CMU Memory Consistency Exceptions February 18, 2020 5 / 20



Overview Conflict Exceptions DRFx

Motivation and Contribution

Data races are everywhere.

Methods to handle data races.
Define semantics to execute data race programs (causes unexpected behaviour.)

Make the programming languages such that data race is avoided while writing program
itself.

Monitor the execution and handle the data races in run time.

The existing happen-before race detection can detect data races but at a cost of
time and space.

Paper proposes a dynamic method to detect data races and raise exception,

Nithin, Deepali Garg CMU Memory Consistency Exceptions February 18, 2020 6 / 20



Overview Conflict Exceptions DRFx

Conflict Exception

Divide the program into sync free regions.

whenever there is a conflict in regions between two concurrently executing threads
raise an exception.

Advantages of Conflict Exception
Simpler Programming Language semantics.
Most debugging benefits of full data-race detection.
Recovery action support.

Figure: Example of Conflict Exception

Nithin, Deepali Garg CMU Memory Consistency Exceptions February 18, 2020 7 / 20



Overview Conflict Exceptions DRFx

Architectural Support for Conflict Exception

Hardware/Software Interface.

1 Regions are demarcated by special instructions: beginR and endR.

2 Instructions which are not in a region are singleton regions themselves.

Protocol State and Invariants

(a) Access bit vectors associated with each cache line (b) Invariants guaranteed by the protocol

Nithin, Deepali Garg CMU Memory Consistency Exceptions February 18, 2020 8 / 20



Overview Conflict Exceptions DRFx

Architectural Support for Conflict Exception

Adding Support to the Coherence Protocol

Nithin, Deepali Garg CMU Memory Consistency Exceptions February 18, 2020 9 / 20



Overview Conflict Exceptions DRFx

Architectural Support for Conflict Exception

In-Cache Operation

Nithin, Deepali Garg CMU Memory Consistency Exceptions February 18, 2020 10 / 20



Overview Conflict Exceptions DRFx

Architectural Support for Conflict Exception

Out-Cache Operation

Nithin, Deepali Garg CMU Memory Consistency Exceptions February 18, 2020 11 / 20



Overview Conflict Exceptions DRFx

Why Invariants hold?

Figure: Reasons why invariants hold

Nithin, Deepali Garg CMU Memory Consistency Exceptions February 18, 2020 12 / 20



Overview Conflict Exceptions DRFx

Results

Figure: Overheads in detecting exceptions

Nithin, Deepali Garg CMU Memory Consistency Exceptions February 18, 2020 13 / 20



Overview Conflict Exceptions DRFx

Results reference

Figure: Number of exceptions in benchmarks used

Nithin, Deepali Garg CMU Memory Consistency Exceptions February 18, 2020 14 / 20



Overview Conflict Exceptions DRFx

DRFx

Nithin, Deepali Garg CMU Memory Consistency Exceptions February 18, 2020 15 / 20



Overview Conflict Exceptions DRFx

Motivation

Full SC : Precludes common compiler and hardware optimizations, in order to
ensure that the program semantics are respected. High performance overhead

DRF models : Doesn’t provide semantics for programs that contains data races

Racy execution can behave arbitrarily and violate desired safety properties

Debugging erroneous programs is difficult since, programmers has to always assume
there may have been data races

Debuggability
Writing race free programs is hard

Data races difficult to trigger, and even if triggered can manifest in many ways

Interaction of data races with compiler/hardware (which can re-order), are unknown to
programmer

It suffices to determine only data races that causes SC violations, and these can
be determined in hardware using conflict detection

Nithin, Deepali Garg CMU Memory Consistency Exceptions February 18, 2020 16 / 20



Overview Conflict Exceptions DRFx

Contribution

Halts program’s execution on Dynamic Memory Model(MM) exception detection

DRF : If a program is data-race free, then every execution of that program will be
sequentially consistent and doesn’t raise an MM exception

DRFx Compiler doesn’t introduce additional data races - eg., speculative reads and
writes and disables

Programs is split into synchronization free regions and optimizations allowed only within
those regions, thus can’t be reordered in a manner that violates SC

Soundness : If SC is violated, program terminates with MM exception

Sufficient to determine region conflict between concurrent regions

Hardware based data race detection - software based slows down the execution of
program by 8 times

Safety : If an execution invokes system call, the . observable kernel state is
reachable through SC

System calls to be places within in its own region

Nithin, Deepali Garg CMU Memory Consistency Exceptions February 18, 2020 17 / 20



Overview Conflict Exceptions DRFx

Compiler Design

Hard Fences - DRF and safety

Compiler must insert hard fence before and after each synchronization access

Hard fence for system call invocation, before entering and after exiting kernel

LLVM fence - doesn’t allow memory reordering across fence

Soft Fences - Boundedness (Finite hardware resources)

Statically bound the number of memory operations in a region

Before each function call and return , before each loop back-edge, and extra to bound
region sizes

The max. number of memory operations = size of hardware buffer. Exposing hardware
information

Prevents compiler optimizations across soft fences, eg., across loop iterations.

Compiler Optimizations

Instead of speculative read, specific prefetch instruction which hardware wouldn’t track
for conflict detection

Loop invariant code motion is allowed, as long as loop body guarantees atomicity

Nithin, Deepali Garg CMU Memory Consistency Exceptions February 18, 2020 18 / 20



Overview Conflict Exceptions DRFx

Hardware design

Region Buffer

Circular queue buffer, storing region start/end timestamps, and read/write operations,
with bits indicating the number of bytes per access (Allows granularity)

Lazy Conflict detection

When all of regions’s instructions have completed, processor broadcasts region’s
read/write to all other processors (High-traffic)
Non-SC state for sometime before violation is detected

Execution causes exception apart from MM exception - additional MM exception check has to be
done at this point

Execution enters a non-terminating loop - Conflict detection if a region has executed for more
than C cycles

Handling Hard fences

Processor stalls until all memory executions and coherence as part of region completes,
then initiate conflict detection (Performance overhead)

Handling Soft fences

Can safely reorder memory operations across regions delimited by soft fences
Can run out of region buffer case (since bounded), in that case core has to be stalled till
next commit

Nithin, Deepali Garg CMU Memory Consistency Exceptions February 18, 2020 19 / 20



Overview Conflict Exceptions DRFx

Results

Nithin, Deepali Garg CMU Memory Consistency Exceptions February 18, 2020 20 / 20


	Overview
	Conflict Exceptions
	Motivation and Contribution
	Conflict Exception
	Architectural Support for Conflict Exception
	Architectural Support for Conflict Exception
	Why Invariants hold?
	Results

	DRFx
	Motivation
	Contribution
	Design
	Results


