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DeNovo: Data Race-Free Model
▪ Modern consistency provides the programmer too much freedom

▪ “Wild shared memory behaviors”
▪ Requires sophisticated, complicated, high-overhead coherence 

protocols
▪ Coherence can be simplified by moving complexity to the compiler
▪ Compiler can be simplified by restricting the programmer



Deterministic Software
▪ Deterministic Parallel Java
▪ Static checker guarantees code is deterministic
▪ foreach, dobegin ≡ fork/join, each defines a “phase”
▪ “DPJ guarantees that the result of a parallel execution is the same 

as the sequential equivalent”
▪ Every memory object assigned to named “region”
▪ Every method annotated with read/write “effects”

▪ This is potentially very conservative
▪ Compiler enforces no interference



DeNovo Protocol
▪ Three states: Invalid, Valid (read access), Registered (write access)
▪ L2 lines hold data or, if line is Registered in some L1, that L1’s ID

▪ Zero directory (registry) overhead
▪ Compiler inserts self-invalidation instructions at the end of a phase

▪ Nice HW optimization: Don’t need to invalidate anything we touched in 
this phase; we already have the current value (by assumption).

▪ Should only invalidate the region accessed in phase



Refinements/Optimizations
▪ Changing the granularity

▪ Can mark each word as valid/invalid, use merge operations
▪ Byte-level granularity possible, but uncommon, so inefficient

▪ Eliminating indirection
▪ Predict which L1 holds the data, request from that instead of L2
▪ Mispredicts are NACK’d, which is already part of the protocol

▪ Flexible communication granularity
▪ Communication region table can tell HW how data is structured
▪ Allows prefetching w/o modifying protocol



Storage Cost
▪ L1: 12-25% (authors phrase as “1.5-3% of L2”)

▪ Per-word: 4-8 bits 
▪ 2 state bits
▪ 1 touched bit
▪ 1 or 5 (or more?) region bits

▪ L2: 3.5%
▪ 1 bit per word, 2 bits (valid & dirty) per line

▪ Vs. in-cache full map directory: 5 bits/line in L1, N bits/line in L2
▪ Vs. duplicate tag directories: Associative lookup is not scalable
▪ Vs. tagless directories: 3-5% L1 plus state, more invalidations



Performance

MW = MESI word-sized DD = DL w/ (perfect) direct cache-to-cache transfer
DW = DeNovo word-sized DF = DL w/ flexible communication granularity
ML = MESI line-sized DDF = DL w/ both optimizations
DL = DeNovo line-sized DDFW = DW w/ both optimizations



Verifiability
▪ Formal verification on a very small network in DeNovo vs. MESI
▪ Found bugs in both

▪ DeNovo bugs were simple mistranslations
▪ MESI bugs were subtle races

▪ Order of magnitude difference in verification time
▪ DeNovo: 85k states, 9 seconds
▪ MESI: 1,250k states, 173 seconds



A Transaction Memory Model (TCC)
▪ Sequential consistency is slow, weak consistency is difficult to 

program around
▪ Enter transactions as the memory operation primitive

Fundamental principle:
▪ All memory operations now local-only
▪ Operations become visible to other cores only on successful 

commit
▪ All but one commit fails on conflict, losers retry



Glaring Problems With TCC
▪ Who wins in a given commit conflict? It is difficult to make this 

decision without starving retries, especially as some commits 
encompass long instruction sequences

▪ Throughput is exchanged for generality as transactions retry, losing 
potentially large chunks of work

▪ Long sequences also increase transaction latency, negatively 
affecting system responsiveness 

▪ Commit arbitration requires vast memory bus bandwidth, as 
conflicting transactions need to coordinate among all cores, i.e. 
broadcast



Subtler Problems With TCC
▪ Every commit failure will cause a checkpoint rollback -- while this 

can piggyback off of exception rollback mechanisms, they are 
typically not designed with performance in mind

▪ Transactions require cache data for each memory operation, this 
space is potentially unbounded in transaction length

▪ Unclear how to handle numa/exotic interconnects. (It may be 
prohibitively expensive to wait on some remote cores for commit 
confirmation/abort.)

▪ Forced to add remote coordination for data-partitioned workloads



Upsides of TCC
▪ Programmers don’t need to be concerned about parallelism. Not 

even a little bit!
▪ Well okay, all of the usual parallel performance pedagogy still applies, 

but allowing for longer transactions does allow for the elimination of 
many/most synchronization primitives.

▪ Cache coherency becomes outmoded, as remote caches no longer 
need to be coherent -- saves area and implementation complexity

▪ Can reuse existing superscalar mechanisms like instruction 
windowing to speculate across transaction boundaries



Proposed TCC Implementation
▪ Buffer writes to flush to memory all at once on transaction complete 

(a  commit packet)
▪ Similarly to coherence protocols, snoop the interconnect and check 

for locally speculated addresses for conflicts with commit packets
▪ Rollback to known-good checkpoint on conflict

▪ Compiler aware of maximum transaction length, but hardware 
could automatically partition long instruction sequences into 
sub-transactions

▪ Particular loads/stores could be ‘promised’ to be local-only
▪ Add transaction buffers to do useful work while arbitration is 

ongoing (expensive)



▪ Interconnect could be saturated by commit packets at higher core 
counts

▪ Performance severely degraded (from perf. increase to loss) with 
increase in commit arbitration latency

▪ Most workloads don’t overflow the maximum transaction length 
often

▪ Reasonably large transaction buffers are not prohibitively 
expensive
▪ ~20KB of added buffers for read write histories

Simulation Results



TCC Addendum

This graph: Probably looks more like this:

Broadcasts in 2020+:


