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DeNovo: Data Race-Free Model

= Modern consistency provides the programmer too much freedom
= “Wild shared memory behaviors”

= Requires sophisticated, complicated, high-overhead coherence
protocols

= Coherence can be simplified by moving complexity to the compiler

= Compiler can be simplified by restricting the programmer
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Deterministic Software

Deterministic Parallel Java

= Static checker guarantees code is deterministic

= foreach, dobegin = fork/join, each defines a “phase”

= “DPJ guarantees that the result of a parallel execution is the same
as the sequential equivalent”

= Every memory object assigned to named “region”

= Every method annotated with read/write “effects”
= This is potentially very conservative

= Compiler enforces no interference
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DeNovo Protocol

= Three states: Invalid, Valid (read access), Registered (write access)
= L2 lines hold data or, if line is Registered in some L1, that L1’s ID
= Zero directory (registry) overhead

= Compiler inserts self-invalidation instructions at the end of a phase
= Nice HW optimization: Don’t need to invalidate anything we touched in
this phase; we already have the current value (by assumption).

= Should only invalidate the region accessed in phase
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Refinements/Optimizations

= Changing the granularity
= Can mark each word as valid/invalid, use merge operations
= Byte-level granularity possible, but uncommon, so inefficient

= Eliminating indirection
= Predict which L1 holds the data, request from that instead of L2
= Mispredicts are NACK’d, which is already part of the protocol

= Flexible communication granularity
= Communication region table can tell HW how data is structured
= Allows prefetching w/o modifying protocol
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Storage Cost

= L1:12-25% (authors phrase as “1.5-3% of L2")
= Per-word: 4-8 bits
2 state bits
1 touched bit
1 or 5 (or more?) region bits

= L2:3.5%

1 bit per word, 2 bits (valid & dirty) per line
= Vs. in-cache full map directory: 5 bits/line in L1, N bits/line in L2
= Vs. duplicate tag directories: Associative lookup is not scalable
= Vs. tagless directories: 3-5% L1 plus state, more invalidations
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Fig. 2: Comparison of MESI vs. DeNovo protocols. All bars are normalized to the corresponding ML protocol.

MW = MESI word-sized DD = DL w/ (perfect) direct cache-to-cache transfer
DW = DeNovo word-sized DF = DL w/ flexible communication granularity

ML = MESI line-sized DDF = DL w/ both optimizations

DL = DeNovo line-sized DDFW = DW w/ both optimizations
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Verifiability

= Formal verification on a very small network in DeNovo vs. MESI
= Found bugs in both

= DeNovo bugs were simple mistranslations

= MESI bugs were subtle races
= Order of magnitude difference in verification time

= DeNovo: 85k states, 9 seconds

= MESI: 1,250k states, 173 seconds
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A Transaction Memory Model (TCC)

= Sequential consistency is slow, weak consistency is difficult to
program around

= Enter transactions as the memory operation primitive

Fundamental principle:

= All memory operations now local-only

= QOperations become visible to other cores only on successful
commit

= All but one commit fails on conflict, losers retry
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Glaring Problems With TCC

Who wins in a given commit conflict? It is difficult to make this
decision without starving retries, especially as some commits
encompass long instruction sequences

Throughput is exchanged for generality as transactions retry, losing
potentially large chunks of work

Long sequences also increase transaction latency, negatively
affecting system responsiveness

Commit arbitration requires vast memory bus bandwidth, as
conflicting transactions need to coordinate among all cores, i.e.
broadcast
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Subtler Problems With TCC

= Every commit failure will cause a checkpoint rollback -- while this
can piggyback off of exception rollback mechanisms, they are
typically not designed with performance in mind

= Transactions require cache data for each memory operation, this
space is potentially unbounded in transaction length

= Unclear how to handle numa/exotic interconnects. (It may be
prohibitively expensive to wait on some remote cores for commit
confirmation/abort.)

= Forced to add remote coordination for data-partitioned workloads
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Upsides of TCC

= Programmers don’t need to be concerned about parallelism. Not

even a little bit!
=  Well okay, all of the usual parallel performance pedagogy still applies,
but allowing for longer transactions does allow for the elimination of
many/most synchronization primitives.
= Cache coherency becomes outmoded, as remote caches no longer
need to be coherent -- saves area and implementation complexity
= (Can reuse existing superscalar mechanisms like instruction
windowing to speculate across transaction boundaries
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Proposed TCC Implementation

Buffer writes to flush to memory all at once on transaction complete
(a commit packet)
Similarly to coherence protocols, snoop the interconnect and check
for locally speculated addresses for conflicts with commit packets

= Rollback to known-good checkpoint on conflict
Compiler aware of maximum transaction length, but hardware
could automatically partition long instruction sequences into
sub-transactions
Particular loads/stores could be ‘promised’ to be local-only
Add transaction buffers to do useful work while arbitration is
ongoing (expensive)
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Simulation Results

= |[nterconnect could be saturated by commit packets at higher core
counts

= Performance severely degraded (from perf. increase to loss) with
increase in commit arbitration latency

= Most workloads don’t overflow the maximum transaction length
often

= Reasonably large transaction buffers are not prohibitively

expensive
= ~20KB of added buffers for read write histories
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TCC Addendum

Broadcasts in 2020+:

This graph:
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Probably looks more like this:
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