
Machine Learning 
Accelerators 

Eric Chen
Peicheng Tang



In-Datacenter Performance Analysis of a Tensor 
Processing Unit

● Motivation
● Background
● TPU Overview
● Benchmarks and Platforms
● Results (Performance)
● Results (Energy)
● Takeaways



Motivation

● Rapidly increasing computation demand on Google’s 
datacenters

● Neural networks are expensive to run on CPUs
● Solution: Develop and deploy an ASIC to accelerate NN 

inference



Background

● Artificial neurons
○ Nonlinear functions of the weighted sum of inputs
○ Classify data points into one of two kinds

● Performs the following calculations
○ Multiply the input data (x) with weights (w) to 

represent the signal strength
○ Add the results to aggregate the neuron’s state into a 

single value
○ Apply an activation function (f) to modulate the 

artificial neuron’s activity.

Content referenced from: 
https://cloud.google.com/blog/products/gcp/understanding-neural-networks-with-tensorflow-playground
https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

https://cloud.google.com/blog/products/gcp/understanding-neural-networks-with-tensorflow-playground
https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu


Neural Networks
● Collect neurons into layers

○ Output of one layer is input into the next

● Two Phases
○ Training

■ Use training datasets to learn the weights and bias
○ Inference

■ Running the network to perform classification

● Three common types:
○ Multi-Layer Perceptron (MLP)
○ Convolutional Neural Network (CNN)
○ Recurrent Neural Network (RNN)

■ LSTM is the most common RNN



Neural Networks cont.

A very high level overview of inference tasks:

● Fetch inputs and weights
● Perform large-scale matrix multiplication
● Apply activation function on outputs
● Write data back to storage



TPU Overview
● Neural Network inference accelerator
● Coprocessor on PCIe bus
● CISC-based instruction set
● Instructions sent by server, no fetching
● Primary components:

○ Matrix Multiply Unit
○ Accumulators
○ Weight Memory and FIFO
○ Activation Unit
○ Unified Buffer

● Instructions are 4-stage pipelined
○ Keep matrix unit busy
○ Hide other instructions by overlapping 

execution with the matrix multiply



TPU Operation
● Fetch inputs and weights

○ Input data from CPU host memory -> buffer
○ Weights from weight memory -> FIFO

● Perform large-scale matrix 
multiplication

○ Pass inputs and weights through systolic 
array, output stored in accumulator

● Apply activation function on outputs
○ Store results in unified buffer

● Write data back to storage
○ Write back from buffer to host memory



Benchmarks and Platforms
Workload

Platforms



Results (Performance)
● Gap between data points and 

ceiling shows potential benefits 
of performance tuning

● Using weighted mean of 
workloads, TPU is 15.3x faster 
than GPU



Results (energy)

● 17-34x better total 
perf/watt over GPU

● 25-29x better 
incremental perf/watt 
over GPU
○ Incremental excludes 

host CPU power 
consumption



Energy Proportionality
● Servers are not always busy - 

ideally power should be 
proportional to workload

● Graph normalized per die, 
server has 2 CPUs and either 
8 GPUs or 4 TPUs



Takeaways
● Memory bandwidth has the 

greatest impact on perf.
○ 4/6 applications were memory 

bound

● CNNs are common on edge 
devices, but MLPs and LSTMs 
make up the bulk of datacenter 
workload

● Inferences per second is a 
poor metric

● History is important for 
designing domain-specific 
architectures

Performance Scaled w/ parameters
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Motivation
● Neural Network has the trend to have 

larger size
○ Increasing number of parameters

○ 1 billion parameters(64bits/each) = 8GB

● Existing accelerators have size limitations
○ Only small neural network can be executed

○ Intermediate data (learned parameters, 

synapses) stored in main memory 

● Improve DianNao?

Main problem: 

Memory bandwidth/storage



Contribution
DaDianNao----A multi-chip system that maps memory footprint to on-chip storage

1. Synapses are stored close to the neuron

2. Asymmetric architecture where each node footprint is massively biased towards 

storage rather than computations

3. Transfer neuron results instead of synapses (Low external bandwidth needed)

4. Break down local storage into tiles (High internal bandwidth)



Implementation Detail----Node
1. Synapses Close to Neurons

a. Both inference and training 
b. Low energy/latency data transfers
c. Use eDRAM to store data 
d. Split eDRAM into four banks 

2. High Internal Bandwidth
a. Tiled based design 
b. Tiles connected via fat tree



Implementation Detail----Node
3. Configurability (Layers, 

Inference vs. Training)
○ Pipeline configuration

○ Block: Aggregation of 

16-bit operators
i. 16 bits work most of time, 

but fail in training



Implementation Detail----Overall Characteristics



Implementation Detail
Programming, Code Generation 

1. Programming, Control and Code 
Generation



Implementation Detail
Multi-Node Mapping 

1. Multi-Node Mapping
a. Convolutional and 

pooling layers

b. Local response
normalization layers 

c. Classifier layers



Evaluation - Performance

With 64 nodes:
Inference: outperforms a single GPU by up to 450.65x 
Training: 300.04x 



Evaluation - Power 

With 64 nodes:
Inference: reduce energy by up to 150.31x
Training:  66.94x


