Machine Learning Accelerators

Eric Chen Peicheng Tang

In-Datacenter Performance Analysis of a Tensor Processing Unit

- Motivation
- Background
- TPU Overview
- Benchmarks and Platforms
- Results (Performance)
- Results (Energy)
- Takeaways

Motivation

- Rapidly increasing computation demand on Google's datacenters
- Neural networks are expensive to run on CPUs
- Solution: Develop and deploy an ASIC to accelerate NN inference

Background

- Artificial neurons
 - Nonlinear functions of the weighted sum of inputs
 - Classify data points into one of two kinds
- Performs the following calculations
 - Multiply the input data (x) with weights (w) to represent the signal strength
 - Add the results to aggregate the neuron's state into a single value
 - Apply an **activation** function (f) to modulate the artificial neuron's activity.

Content referenced from:

https://cloud.google.com/blog/products/gcp/understanding-neural-networks-with-tensorflow-playground https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

Neural Networks

- Collect neurons into layers
 - Output of one layer is input into the next
- Two Phases
 - Training
 - Use training datasets to learn the weights and bias
 - Inference
 - Running the network to perform classification
- Three common types:
 - Multi-Layer Perceptron (MLP)
 - Convolutional Neural Network (CNN)
 - Recurrent Neural Network (RNN)
 - LSTM is the most common RNN

Neural Networks cont.

A very high level overview of inference tasks:

- Fetch inputs and weights
- Perform large-scale matrix multiplication
- Apply activation function on outputs
- Write data back to storage

TPU Overview

- Neural Network inference accelerator
- Coprocessor on PCIe bus
- CISC-based instruction set
- Instructions sent by server, no fetching
- Primary components:
 - Matrix Multiply Unit
 - Accumulators
 - Weight Memory and FIFO
 - Activation Unit
 - Unified Buffer
- Instructions are 4-stage pipelined
 - Keep matrix unit busy
 - Hide other instructions by overlapping execution with the matrix multiply

TPU Operation

- Fetch inputs and weights
 - Input data from CPU host memory -> buffer
 - Weights from weight memory -> FIFO
- Perform large-scale matrix multiplication
 - Pass inputs and weights through systolic array, output stored in accumulator
- Apply activation function on outputs
 - Store results in unified buffer
- Write data back to storage
 - Write back from buffer to host memory

Benchmarks and Platforms

Mama	LOC	Layers					Nonlinear	Weights	TPU Ops /	TPU Batch	% of Deployed TPUs	
Ivame	LUC	FC	Conv	Vector	Pool	Total	function	weights	Weight Byte	Size	in July 2016	
MLP0	100	5				5	ReLU	20M	200	200	6107	
MLP1	1000	4				4	ReLU	5M	168 10		01%	
LSTM0	1000	24		34		58	sigmoid, tanh	52M	64	64	2007	
LSTM1	1500	37		19		56	sigmoid, tanh	34M	96	96	29%	
CNN0	1000		16			16	ReLU	8M	2888	8	50%	
CNN1	1000	4	72		13	89	ReLU	100M	1750	32	J 370	

Workload

Platforms

Model		Die										Benchmarked Servers				
	mm ²	nm	MHz		Measured		TOPS/s		C D/a	On-Chip	Dias	DDAM Size		Measured		
				IDP	Idle	Busy	8b	FP	GD/S	Memory	y Dies	DRAM SIZE	IDP	Idle	Busy	
Haswell E5-2699 v3	662	22	2300	145W	41W	145W	2.6	1.3	51	51 MiB	2	256 GiB	504W	159W	455W	
NVIDIA K80 (2 dies/card)	561	28	560	150W	25W	98W		2.8	160	8 MiB	8	256 GiB (host) + 12 GiB x 8	1838W	357W	991W	
TPU	<331*	28	700	75W	28W	40W	92		34	28 MiB	4	256 GiB (host) + 8 GiB x 4	861W	290W	384W	

Results (Performance)

Log-Log Scale

FeraOps/sec (log scale)

- Gap between data points and ceiling shows potential benefits of performance tuning
- Using weighted mean of workloads, TPU is 15.3x faster than GPU

T	DN	IN	LST	M	CN	N	CM	WM	
Туре	0	1	0	1	0	1	GM		
GPU	2.5	0.3	0.4	1.2	1.6	2.7	1.1	1.9	
TPU	41.0	18.5	3.5	1.2	40.3	71.0	14.5	29.2	
Ratio	16.7	60.0	8.0	1.0	25.4	26.3	13.2	15.3	

Table 6. K80 GPU die and TPU die performance relative to CPU for the NN workloads. GM and WM are geometric and weighted mean (using the mix from Table 1). Relative performance for the GPU and TPU includes host server overhead.

Operational Intensity: MAC Ops/weight byte (log scale)

Results (energy)

- **17-34x** better **total** perf/watt over GPU
- 25-29x better incremental perf/watt over GPU
 - Incremental excludes host CPU power consumption

Performance/Watt Relative to CPU or GPU

Energy Proportionality

- Servers are not always busy ideally power should be proportional to workload
- Graph normalized per die, server has 2 CPUs and either 8 GPUs or 4 TPUs

Takeaways

- Memory bandwidth has the greatest impact on perf.
 - 4/6 applications were memory bound
- CNNs are common on edge devices, but MLPs and LSTMs make up the bulk of datacenter workload
- Inferences per second is a poor metric
- History is important for designing domain-specific architectures

Performance Scaled w/ parameters

Weighted Mean

Scale Relative to Original TPU

DaDianNao: A Machine-Learning Supercomputer

- Motivation
- Main Contribution
- Implementation details
- Evaluation

Motivation

- Neural Network has the trend to have larger size
 - Increasing number of parameters
 - 1 billion parameters(64bits/each) = 8GB
- Existing accelerators have *size* limitations
 - Only small neural network can be executed
 - Intermediate data (learned parameters, synapses) stored in main memory
- Improve DianNao?

Figure 3: Block diagram of the DianNao accelerator [5].

Main problem:

Memory bandwidth/storage

Contribution

DaDianNao----A multi-chip system that maps memory footprint to on-chip storage

- 1. Synapses are stored close to the neuron
- 2. Asymmetric architecture where each node footprint is massively biased towards storage rather than computations
- 3. Transfer neuron results instead of synapses (Low external bandwidth needed)
- 4. Break down local storage into tiles (High internal bandwidth)

Implementation Detail----Node

- 1. Synapses Close to Neurons
 - a. Both inference and training
 - b. Low energy/latency data transfers
 - c. Use eDRAM to store data
 - d. Split eDRAM into four banks

- 2. High Internal Bandwidth
 - a. Tiled based design
 - b. Tiles connected via fat tree

Figure 4: Simplified floorplan with a single central NFU showing wire congestion.

Figure 5: Tile-based organization of a node (left) and tile architecture (right). A node contains 16 tiles, two central eDRAM banks and fat tree interconnect; a tile has an NFU, four eDRAM banks and input/output interfaces to/from the central eDRAM banks.

Implementation Detail----Node

- 3. Configurability (Layers, Inference vs. Training)
- Pipeline configuration
- Block: Aggregation of
 16-bit operators
 - i. 16 bits work most of time,but fail in training

Figure 7: Different pipeline configurations for CONV, LRN, POOL and CLASS layers.

Implementation Detail----Overall Characteristics

Parameters	Settings	Parameters	Settings
Frequency	606MHz	tile eDRAM latency	\sim 3 cycles
# of tiles	16	central eDRAM size	4MB
# of 16-bit multipliers/tile	256+32	central eDRAM latency	~ 10 cycles
# of 16-bit adders/tile	256+32	Link bandwidth	6.4x4GB/s
tile eDRAM size/tile	2MB	Link latency	80ns

Table III: Architecture characteristics.

Implementation Detail Programming, Code Generation

1. Programming, Control and Code Generation

CP	Class	Class	Class	Class	
-	LOAD	LOAD	LOAD	LOAD	
	WRITE	WRITE	WRITE	STORE	
cen	0	64	128	192	
tral	256	256	256	256	
eDF	0	0	0	0	
AN	4	4	4	4	
-	64	64	64	64	
	4	4	4	4	
-	READ	READ	READ	READ	
S	NULL	NULL	NULL	NULL	
B	0	256	512	768	
	1	1	1	1	
20-0	READ	READ	READ	READ	
Z	NULL	NULL	NULL	NULL	
Bin	0	0	0	0	
	1	1	1	1	
	NULL	READ	READ	READ	
NE	WRITE	WRITE	WRITE	WRITE	
out	0	0	0	0	
	1	1	1	1	
	MUL	MUL	MUL	MUL	
-	ADD	ADD	ADD	ADD	
NFL	NULL	NULL	NULL	SIGMOID	
-	0	1	1	1	
	1	1	1	0	

Inst Name	CP		
RE AD OP			
WRITE OP			
READ ADDR	ent		
WRITE ADDR	ral		
READ STRIDE	DF		
WRITE STRIDE	A		
READ ITER	1		
WRITE ITER			
READ OP			
WRITE OP	S		
ADDR	B		
STRIDE			
READ OP			
WRITE OP	Z		
ADDR	lii		
STRIDE			
READ OP			
WRITE OP	B		
ADDR	out		
STRIDE			
NFU-1 OP			
NFU-2 OP			
NFU-3 OP	IFC		
NFU-2-IN			
NFU-2-OUT			

Table V: An example of classifier code ($N_i = 4096$, $N_o = 4096$, 4 nodes).

Table IV: Node instruction format.

Implementation Detail Multi-Node Mapping

- 1. Multi-Node Mapping
 - a. Convolutional and pooling layers
 - b. Local response normalization layers
 - c. Classifier layers

Figure 8: Mapping of (left) a convolutional (or pooling) layer with 4 feature maps; the red section indicates the input neurons used by node 0; (right) a classifier layer.

Evaluation - Performance

Figure 10: Speedup w.r.t. the GPU baseline (inference). Note that CONV1 and the full NN need a 4-node system, while CONV3* and CONV4* even need a 36-node system.

Figure 12: Speedup w.r.t. the GPU baseline (training).

With 64 nodes:

Inference: outperforms a single GPU by up to 450.65x Training: 300.04x

Evaluation - Power

Component/Block	Area (μm^2)	(%)	Power (W)	(%)
WHOLE CHIP	67,732,900		15.97	
Central Block	7,898,081	(11.66%)	1.80	(11.27%)
Tiles	30,161,968	(44.53%)	6.15	(38.53%)
HTs	17,620,440	(26.02%)	8.01	(50.14%)
Wires	6,078,608	(8.97%)	0.01	(0.06%)
Other	5,973,803	(8.82%)		
Combinational	3,979,345	(5.88%)	6.06	(37.97%)
Memory	32207390	(47.55%)	6.12	(38.30%)
Registers	3,348,677	(4.94%)	3.07	(19.25%)
Clock network	586323	(0.87%)	0.71	(4.48%)
Filler cell	27,611,165	(40.76%)		

Table VI: Node layout characteristics.

With 64 nodes: Inference: reduce energy by up to 150.31x Training: 66.94x

Figure 13: Energy reduction w.r.t. the GPU baseline (inference).

Figure 14: Energy reduction w.r.t. the GPU baseline (training).