Machine Learning

Accelerators

Eric Chen
Peicheng Tang

In-Datacenter Performance Analysis of a Tensor
Processing Unit

Motivation

Background

TPU Overview
Benchmarks and Platforms
Results (Performance)
Results (Energy)
Takeaways

Motivation

e Rapidly increasing computation demand on Google’s
datacenters

e Neural networks are expensive to run on CPUs

e Solution: Develop and deploy an ASIC to accelerate NN
inference

Background

e Artificial neurons
o Nonlinear functions of the weighted sum of inputs
o Classify data points into one of two kinds

e Performs the following calculations
o Multiply the input data (x) with weights (w) to
represent the signal strength
o Add the results to aggregate the neuron’s state into a

single value
o Apply an activation function (f) to modulate the

artificial neuron’s activity.

Content referenced from:
https://cloud.google.com/blog/products/gcp/understanding-neural-networks-with-tensorflow-playaround

https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

https://cloud.google.com/blog/products/gcp/understanding-neural-networks-with-tensorflow-playground
https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

Neural Networks

e Collect neurons into layers
o Output of one layer is input into the next

e Two Phases
o Training
m Use training datasets to learn the weights and bias
o Inference
m Running the network to perform classification

e Three common types:
o Multi-Layer Perceptron (MLP)
o Convolutional Neural Network (CNN)
o Recurrent Neural Network (RNN)
m LSTMis the most common RNN

Neural Networks cont.

A very high level overview of inference tasks:

Fetch inputs and weights

Perform large-scale matrix multiplication
Apply activation function on outputs
Write data back to storage

TPU Overview

e Neural Network inference accelerator el el
R/ 30 GiBls
([iBls 30 GiB/s :
gi)sp(r:ogesszr.ontPCtl.e bust % :>
e -based instruction se - e
e Instructions sent by server, no fetching 2
® Unified 167 Matrix Multiply
e Primarv components: 14 GiBls <§§ wacins| § | | Mgscend < rkiaccheia
y p - <:>§—<:> E Asctllva;Io)n Setup
o Matrix Multiply Unit 3 orees EEEEH
o Accumulators ‘&
o Weight Memory and FIFO L}
o Activation Unit - % ik
o Unified Buffer Qoo)]
e Instructions are 4-stage pipelined o | TV

Keep matrix unit busy
Hide other instructions by overlapping
execution with the matrix multiply

(@)
(@)

TPU Operation

e Fetch inputs and weights
o Input data from CPU host memory -> buffer
o Weights from weight memory -> FIFO

e Perform large-scale matrix
multiplication

o Pass inputs and weights through systolic
array, output stored in accumulator

e Apply activation function on outputs
o Store results in unified buffer

e \Write data back to storage
o Write back from buffer to host memory

14 GiB/s

=

14 GiB/s

N

PCle Gen3 x16
Interface

_—

[] oft-chip o

L__] Data Buffer

D Computation

. Control

Host Interface

!10 GiB/s

[com]
%
J
_

| DoR3 oRaw chips | |

. 7 30 GiBls
90 DDR3-2133 g Weight FIFO
::> intorfaces | T—— |_ (Weight Fetcher)

@ 30 GiB/s

Unified
Buffer
(Local
Activation
Storage)

Systolic |[Gil
Data
Setup

167 GiB/s

| Matrix Muitiply

CoUnito
(64K per cycle)

Accumulators

Activation

Normalize / Pool

Benchmarks and Platforms

Workload
Layers Nonlinear . TPU Ops/ | TPU Batch |% of Deployed TPUs
GG || T FC | Conv | Vector | Pool | Total function Wegies Weight Byte Size in July 2016
MLPO | 100 5 5 ReLU 20M 200 200 -
MLP1 | 1000 | 4 4 ReLU 5M 168 168 ?
LSTMO | 1000 | 24 34 58 | sigmoid,tanh | 52M 64 64 —
LSTM1 | 1500 [37 19 56 | sigmoid,tanh | 34M 96 96 ?
CNNO | 1000 16 16 ReLU 8M 2888 8 -
CNNI [1000 | 4 i 13 | 89 ReLU 100M 1750 32
Platforms
Die Benchmarked Servers
Model 2 _ Measured | TOPS/s On-Chip o . Measured
mm* | nm |MHz| TDP Idle | Busy | 8b | FP GBl/s Moy Dies| DRAM Size DpP Idle | Busy
Hagwel 662 | 22 | 2300 145W| 41W| 145W| 2.6 | 13| 51 51 MiB| 2 256 GiB 504W| 159W | 455W
E5-2699 v3
NVIDIA K80 . 256 GiB (host)
2 dics/card) 561 |28 | 560[150W| 25W| 98W| -- [2.8] 160 8MIiBl 8 | © op o’ | 1838W|357W | 991W
TPU <331% | 28 | 700 75W| 28W| 40W| 92 | - | 34 28 MiB| 4 25f§(l}Ei'B(hX°Zt) 861W| 200W | 384W

Results (Performance)

e (Gap between data points and
ceiling shows potential benefits
of performance tuning

e Using weighted mean of
workloads, TPU is 15.3x faster

than GPU
DNN LSTM CNN
ee T 1T 7 o1 2191 F | |
GPU 25 03 04 12 16 27 11 19
TPU 410 185 35 12 403 710 145 292
Ratio 167 600 80 10 254 263 132 153

Table 6. K80 GPU die and TPU die performance relative to
CPU for the NN workloads. GM and WM are geometric and
weighted mean (using the mix from Table 1). Relative
performance for the GPU and TPU includes host server
overhead.

Log-Log Scale

== TPURoofline

100
== K80 Roofline
HSW Roofline

* LSTMO

10

TeraOps/sec (log scale)

100 1000

Operational Intensity: MAC Ops/weight byte (log scale)

Results (energy)

e 17-34x better total e
perf/watt over GPU

o 25-29x better
incremental perf/watt
over GPU

o Incremental excludes
host CPU power
consumption

150

100

50

Performance/Watt Relative to CPU or GPU

Total Perf./Watt Total Perf./Watt Incremental Perf. Incremental Perf.
GM WM /Watt GM /Watt WM

Energy Proportionality

- Haswell
- K80
- TPU

e Servers are not always busy -
ideally power should be 250
proportional to workload

e Graph normalized per die,
server has 2 CPUs and either
8 GPUs or 4 TPUs 100

200

150

Watts / Die

50

0% 25% 50% 75% 100%

Target Workload

Takeaways

Memory bandwidth has the

greatest impact on perf.
o 4/6 applications were memory
bound

CNNs are common on edge
devices, but MLPs and LSTMs
make up the bulk of datacenter
workload

Inferences per second is a
poor metric

History is important for
designing domain-specific
architectures

Performance Scaled w/ parameters
Weighted Mean

3.5 * memory

x clock+
3.0

® clock
2.5 ® matrix+
* matrix

2.0

1.5

Performance Refative to Original TPU

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Scale Relative to Original TPU

DaDianNao: A Machine-Learning Supercomputer

e Motivation
e Main Contribution
e Implementation details

e Evaluation

Motivation

e Neural Network has the trend to have

larger size
o Increasing number of parameters
o 1 billion parameters(64bits/each) = 8GB
e Existing accelerators have size limitations

o Only small neural network can be executed
o Intermediate data (learned parameters,

synapses) stored in main memory

e Improve DianNao?

cP

Instructions

NFU-1 NFU-2 @ NFU-3
B8
NBout

N —
LEE

NFU

Figure 3: Block diagram of the DianNao accelerator [5].

Main problem:

Memory bandwidth/storage

Contribution

DaDianNao----A multi-chip system that maps memory footprint to on-chip storage

1. Synapses are stored close to the neuron

2. Asymmetric architecture where each node footprint is massively biased towards
storage rather than computations
Transfer neuron results instead of synapses (Low external bandwidth needed)

4. Break down local storage into tiles (High internal bandwidth)

Implementation Detail----Node

1. Synapses Close to Neurons
a. Both inference and training
b. Low energy/latency data transfers
c. Use eDRAM to store data
d Sp|it eDRAM into four banks Figure 4: Simplified floorplan with a single central NFU showing

wire congestion.

Data
to SB

|____HT2.0 (North Link) __|
2. High Internal Bandwidth o by 1) =%
. . l neurons <B B neurons
a. Tiled based design P
|_____HT2.0 (South Link) |

b. Tiles connected via fat tree

Figure 5: Tile-based organization of a node (left) and tile archi-
tecture (right). A node contains 16 tiles, two central eDRAM banks
and fat tree interconnect; a tile has an NFU, four eDRAM banks
and input/output interfaces to/from the central eDRAM banks.

Implementation Detail----Node

3. Configurability (Layers,
Inference vs. Training)

Stagel Stage2 Stage3 Stagel Stage2? Stage3

¥

Stagel Stage2

W
~
Q
Q

n

W

I I
n © 1]
S S * z = S IS =
' . . . a = R g £ 3 3 8 = "
o Pipeline configuration H S TET-—H | sTETa—8 | B 18 &
eI e 5
o Block: Aggregation of _ : | N | B
Classifier (FP) / | Classifier (BP) / | Weights update for
. Convolution (FP) Convolution (BP) Classifier & Convolution
16-bit operators === ———————] e e i] i e i e e
Stagel Stage2 Stage3 | Stagel Stage2 Stage3 | Stagel Stage2 Stage3
=
i. 16 bits work most of time, § I |
2 > S Y B 2 3
. . - IR - | B_.S & | B.g2l>1l8_ 8
but fail in training s s 8 S <R BILIEE
< a | ~ = I X =
Q
g I I
Pooling(FP) l Pooling(BP) l LRN(FP&BP)

Figure 7: Different pipeline configurations for CONV, LRN, POOL
and CLASS layers.

Implementation Detail----Overall Characteristics

Parameters Settings | Parameters Settings
Frequency 606MHz | tile eDRAM latency ~3 cycles
of tiles 16 | central eDRAM size 4MB
of 16-bit multipliers/tile 256432 | central eDRAM latency ~10 cycles
of 16-bit adders/tile 256+32 | Link bandwidth 6.4x4GB/s
tile eDRAM size/tile 2MB | Link latency 80ns

Table III: Architecture characteristics.

Inst N: Q
Class [Class | Class | Class Q AgNAme. |%e
L] L]
Implementation Detall
STORE [WRITHWRITHWRITE WRITEOR: 1.,
. . , o READ ADDR |5
192 128 64 0 |8 g
Programming, Code Generation |-
0 0 o | o % READ STRIDE ZU"
N ENEN- xnnr |
1. Programming, Control and Code CHET AR
. 4 4 | a4 4
Generation
NULL [NULL|NULL|NULL WRITEOP |,
4 ADDR o
768 | 512|256 0 |®
| "] " STRIDE
READ |READ|READ|READ READ OP
NULL [NULL|NULL|NULL| 2 WRTROF | %
© =
0 0 0 0 |5 ADDR s
" " " " STRIDE
READ |READ|READ|NULL| | READ OP
WRITE [WRITE[WRITHWRITE ;/5 WRITE OP %
0 0| 0] o |8 ADDR |E
|) | 1 STRIDE
MUL | MUL | MuL [MUL NFU-1 OP
ADD | ADD | ADD | ADD NFU-2 OP
SIGMOID|NULL | NULL | NULL 'E NFU-3 OP 5
l : 1 0 NFU-2-IN
g : ‘ l NFU-2-0UT

Table V: An example of classifier code (N; = 4096, N, =
4096, 4 nodes). Table IV: Node instruction format.

Implementation Detall

Multi-Node Mapping
1. Multi-Node Mapping
a. Convolutional and

pooling layers

b. Local response
normalization layers

c. Classifier layers

Node O Node 1
P
Feature
Node 2 Node 3 Maps Node 2 Node 3

Figure 8: Mapping of (left) a convolutional (or pooling) layer with
4 feature maps, the red section indicates the input neurons used
by node 0; (right) a classifier layer.

Evaluation - Performance

M 1chip M 4chips B 16chips M 64chips
1000
: | I
2 100 1] I | I 1
[}
[}
[=)
© 10
: il |
o & PSS S S
9 9 S 8 N OO N &
FTE P FTF L ¥V &

Figure 10: Speedup w.r.t. the GPU baseline (inference). Note that
CONV1 and the full NN need a 4-node system, while CONV3* and

CONV4* even need a 36-node system.

With 64 nodes:

Speedup

1000

M 1chip M 4chips B 16chips M 64chips

100

10

1
SOOI P OO S &
FFEEFT S L vV VY

Figure 12: Speedup w.r.t. the GPU baseline (training).

Inference: outperforms a single GPU by up to 450.65x

Training: 300.04x

Eva I u ati O n - Powe r 1000 B 1chip M 4chips B 16chips M 64chips

ke
+2
é 100
(]
Component/Block Area (umz) (%) Power (W) (%) A .
WHOLE CHIP 67,732,900 15.97 E
Central Block 7.898.081 (11.66%) 1.80 (11.27%) e
Tiles 30,161,968 (44.53%) 6.15 (38.53%) = 1
HTs 17,620,440 (26.02%) 8.01 (50.14%) & PP FEE NS S S
Wires 6.078.608 (8.97%) 001 (0.06%) FFSE S S S TS
Other 5,973,803 (8.82%)
Combinational 3.979.345 (5.88%) 6.06 (37.97%) Figure 13: Energy reduction w.r.t. the GPU baseline (inference).
Memory 32207390 (47.55%) 6.12 (38.30%)
Registers 3,348,677 (4.94%) 3.07 (19.25%) M ichip M4chips M 16chips M 64chips
Clock network 586323 (0.87%) 071 (4.48%) g, 000
Filler cell 27,611,165 (40.76%) pe,
_‘__6,’ 100
Table VI: Node layout characteristics. =
> 10
o1
With 64 nodes: g
Inference: reduce energy by up to 150.31x FILLI PP LIRS &
TR FFE EF & PR S &
Training: 66.94x il

Figure 14: Energy reduction w.r.t. the GPU baseline (training).

