
Accelerators For Everything
Bolaji Bankole, Jens Ertman



QsCores (Quasi-Specific Cores)



What is a QsCore
● A hardware accelerator core connected to a CPU

● Composed to accelerate several specific segments of code

● Synthesized hardware determined before the chip is manufactured

● Can be combined with other QsCores to accelerate more at the expense of area

○ And energy but not in the same way (we’ll get to it) 

● Can be called with arguments in lieu of running on the general purpose CPU



Motivation
● With advances in transistor technology counts are going up but usable area is 

going down

● Why not take extra area and make accelerators for common tasks?

○ What if those accelerators focused on energy efficiency?

○ What if those accelerators combined multiple similar “hotspots” of the code to cover more of the 

runtime?

● More energy efficiency means that more compute can occur on the chip



Mining for Similar Code Patterns
● Generate a program dependence graph for each hotspot in the code

● Compare these graphs based on the similarity of their nodes and dependencies

● Take the two hotspots and generate a new graph that performs both



Determining the Set of QsCores
● Generate all pairs in the merge set

● Take the highest quality QsCore merge and replace the previous two in the set 

with it

● Keep going until either an area constraint is met or there is nothing left to merge



Physical QsCores
● Generated from the C code to verilog then synthesized

● Cores are then integrated with a CPU with shared D and I cache using scan chains



Results Core Count
● Energy use increases slower than decreasing area

● Much fewer cores required to cover a larger number of features



Quality of QsCores
● In testing the set of QsCores determined by their algorithm it created the best set 

of QsCores in all cases

● QsCores are backwards compatible if old versions of the code are included in the 

set of hotspots to be merged



Final Results of Energy Efficiency



Conservation Cores



What
● Accelerators with the goal of energy reduction

○ Less sensitive in this than performance oriented accelerators

● Patchable(‽) to add flexibility and longevity

● Communicate with the system through shared caches and scan-chain interface

● Very similar idea to QsCores



Why
● Breakdown of CMOS scaling means that only so much a of processor can be 

practically ran at full speed

● Trade area for energy efficiency to get better use of the die area

● Same overall rationale as QsCores



How
● Most frequently used code snippets are augmented for reconfigurability and 

synthesized

● Compiler knows the c-cores in the processor and includes stubs to invoke them, 

with patches when necessary



C-Core Function
● State machine closely resembles code structure

○ Helps memory ordering

● Multi cycle loops for complex operations and memory

● Small scan chains for arguments, large ones for patches, other ones for internal 

state

○ Added instructions to move data to and from scan chains

● At runtime, check for relevant c-core and use it if available



Patching
● Configurable constants

○ Registers to change constants in the program

● Generalized operators

● Control flow changes

○ Raise exceptions for CPU to handle, modify conditionals, etc



Results
● Benefits (and costs) of patchability



Results


