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QsCores (Quasi-Specific Cores)



What is a QsCore

A hardware accelerator core connected to a CPU

Composed to accelerate several specific segments of code

Synthesized hardware determined before the chip is manufactured

Can be combined with other QsCores to accelerate more at the expense of area

o And energy but not in the same way (we’ll get to it)

e Can be called with arguments in lieu of running on the general purpose CPU



Motivation

e With advances in transistor technology counts are going up but usable area is
going down
e Why not take extra area and make accelerators for common tasks?
o  What if those accelerators focused on energy efficiency?

o  What if those accelerators combined multiple similar “hotspots” of the code to cover more of the
runtimes

e More energy efficiency means that more compute can occur on the chip



Mining for Similar Code Patterns
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Generate a program dependence graph for each hotspot in the code
Compare these graphs based on the similarity of their nodes and dependencies
Take the two hotspots and generate a new graph that performs both
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Determining the Set of QsCores

e Generate all pairs in the merge set
e Take the highest quality QsCore merge and replace the previous two in the set

with it
e Keep going until either an area constraint is met or there is nothing left to merge
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Physical QsCores

e Generated from the C code to verilog then synthesized
e Cores are then integrated with a CPU with shared D and I cache using scan chains

QsCore




Results Core Count

e Energy use increases slower than decreasing area
e Much fewer cores required to cover a larger number of features
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Quality of QsCores

e In testing the set of QsCores determined by their algorithm it created the best set

of QsCores in all cases
e (sCores are backwards compatible if old versions of the code are included in the

set of hotspots to be merged
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Final Results of Energy Efficiency

# D-Cache Dynamic H Core Dynamic QsCore Dynamic #i D-Cache Clock
Il Core Clock

Average QSCORE energy efficiency 23.23%
CompedtobmcimeCPO |
Average execution time 8951 cycles

Average invocation overhead '
Average system execution 4.41%

coverage per QSCORE

Average QSCORE area 0.041 mm
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Conservation Cores



What

® Accelerators with the goal of energy reduction

o  Less sensitive in this than performance oriented accelerators
e Patchable(?) to add flexibility and longevity
e Communicate with the system through shared caches and scan-chain interface
e Very similar idea to QsCores
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Figure 1. The high-level structure of a c-core-enabled system A c-core-enabled system (a) is made up of multiple individual tiles (b),
each of which contains multiple c-cores (c). Conservation cores communicate with the rest of the system through a coherent memory system
and a simple scan-chain-based interface. Different tiles may contain different c-cores. Not drawn to scale.




Why

e Breakdown of CMOS scaling means that only so much a of processor can be

practically ran at full speed

e Trade area for energy efficiency to get better use of the die area

e Same overall rationale as QsCores

90 nm TSMC | 45 nm TSMC | 32 nm ITRS

Frcqucnu (GHz)
mm? Per Op.

# Operators

Full Chip Watts
Utilization at 80 W

Table 2. Experiments quantifying the utilization wall Our ex-
periments used Synopsys CAD tools and TSMC standard cell li-
braries to evaluate the power and utilization of a 300 mm? chip
filled with 64-bit adders, separated by registers, which is used to
approximate active logic in a processor.




How

e Most frequently used code snippets are augmented for reconfigurability and
synthesized

e Compiler knows the c-cores in the processor and includes stubs to invoke them,
with patches when necessary
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C-Core Function

e State machine closely resembles code structure

o  Helps memory ordering
e Multi cycle loops for complex operations and memory
e Small scan chains for arguments, large ones for patches, other ones for internal

state

o Added instructions to move data to and from scan chains

e At runtime, check for relevant c-core and use it if available
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{
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Figure 3. Conservation core example An example showing the translation from C code (a), to the compiler’s internal representation (b),
and finally to hardware (c). The hardware schematic and state machine correspond very closely to the data and control flow graphs of the C
code.




Patching

e Configurable constants

o  Registers to change constants in the program
e Generalized operators
e Control flow changes

o  Raise exceptions for CPU to handle, modify conditionals, etc

. Area | Area
adder 270

comparator (GE)

bitwise AND, OR - T
bitwise XOR g Bitwise

32 regisier

Table 5. Area costs of patchability The AddSub unit can perform
addition or subtraction. Similarly, Compare6 replaces any single
comparator (e.g., =) with any of (=, #, >, >, <, <). Constant val-
ues in non-patchable hardware contribute little or even “negative”
area because they can enable many optimizations.
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e Benefits (and costs) of patchability
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Figure 7. Conservation core effectiveness over time Since c-
cores target stable applications, they can deliver efficiency gains

Table 3. Conservation core statistics The c-cores we generated z ¢
over a very long period of time.

vary greatly in size and complexity. In the “Key” column, the
letters correspond to application versions and the Roman numerals
denote specific functions from the application that a c-core targets.
“LOC" is lines of C source code, and “% Exe.” is the percentage of
execution that each function comprises in the applic
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