Detecting and Avoiding Concurrency
Bugs

Pil Jae Jang
Cyril Agbi

A ENCINEERNG

Paper similarities

» Testing Parallel programming is hard to debug
due to interleaving bugs

* A viable solution is to better equip
programmers to detect and fix these bugs

 Praise Transactional Memory

llllllllllllllllll

) ENGINEERNE

Carnegie Mellon

Learning from Mistakes

— A Comprehensive Study on Real World Concurrency Bug Characteristics

(K). Electrical & Computer
ENGINEERING

Carnegie Mellon

Motivation

Writing correct concurrent programs is difficult ! why?

a. Concurrency bug detection - imperfect
i. Most of research: single variable, changing lock

b. Concurrent program testing and model checking
I. Exponential interleaving

c. Concurrent programming language design
i. TM provides programmers an easier way to specify which code regions
should be atomic. But, Not perfect!

(&) Electrical & Computer
ENGINEERING

Notes

Deals with Four applications
- Not cover all applications

Data Race

- All of Data Races are not bug.
- EX) benign race such as “while-flag”

A ENCINEERNG

Bug pattern study

A ENCINEERNG

Application Total Atomicity | Order | Other
MySQL 14 12 1 1
Apache 13 7 6 0
Mozilla 41 29 1.5 0
OpenOftfice 6 3 2 1
Overall 74 51 24 2

Carnegie Mellon

Atomicity

Thread 1 Thread 2
S1: if thd-> proc_info)—™ ——
{ . YRIN proc_info=NULL;
S2: fouts(thd> proc_info, ---);

}

..

MySQL ha_innodb.cc — _— Buggy Interleaving

(&) Electrical & Computer
ENGINEERING

Carnegie Mellon

Other - rare

Thread 1 Thread 2 --- Thread n ~ Monitor thread
void buf_flush_try page() { void error_monitor_thread() {
w_lock(&lock): w_lock(&lock): ok Wwlt tmefs] &
! fatal timeout)
) assert(0, “We crash the server;
It seems to be hung.”);
MySQL bufOflu.c } MySQL srv0srv.c

- Originally for deadlock detection
- ldeally need to set fatal_timeout=infinite to detect deadlock

(K). Electrical & Computer
ENGINEERING

Carnegie Mellon

Order

Thread 1 Thread 2 —
Correct Order

void init (---) . . Buggy Order
{ vQid mMain (---) ek
/ { Thread 2
& should not
mThread=PR_CreateThread (mMain, ---); MState= it
- mThread—-> State;
T i s s s e == mThread
before Thread
) } 1 initializes it

Mozilla nsthread.cpp

- Between Write and Read

Electrical & Compu
A ENGINEERING

O

Order

Carnegie Mellon

Thread 1 Thread 2
int ReadWriteProc (---) void DoneWaiting (---)

{
/*callback function of
S1: PBReadAsync (&p); PBReadAsync*/

S2: io_pending = TRUE; v/—\

~— s

}

} Mozilla macio.c Mozilla macthr.c

S3: while (io_pending) {...};

~ S4. io_pending = FALSE;

— >
Correct Order

Buggy Order

S4 is assumed
to be after S2.
If S4 executes
before S2,
thread 1 will
hang.

Between Write and Write
can hang forever

Electrical & Computer

ENGINEERING

Carnegie Mellon

Order

Thread 1 Thread 2 :» Correct Order
void js_DestroyContext (++*) { void js_DestroyContext (:-+) { — Buggy Order
/* last one entering this function */ /* non-last one entering this | js_UnpinPinnedAtom
4 \ function? should happen after
js_UnpinPinnedAtom(&atoms); js MarkAtom(&atoms,---);| js_MarkAtom.
} ‘\ } o ¥ Otherwise, program
Mozilla jscntxt.c, jsgc.c e = crashes.

- Between two groups

({) Electrical & Computer
ENGINEERING

Bug manifestation study

How many threads are involved?

Most(101 out of 105) concurrency bugs involves only two
threads.

 Increase the workload, then check pairs of threads.
 Few concurrency bugs would be missed.

A ENCINEERNG

Bug manifestation study

How many variables are involved?
66% -> One variable
34% -> More than one variable

) ENGNEERINE

One variable

Thread 1 Thread 2
S1: if (thd-> proc_info)—™ — —__
{ _253: thd> proc_info=NULL:

}

S2: fputs(thd-> proc_info, -)——

..

MySQL ha_innodb.cc ——__—» Buggy Interleaving

({) Electrical & Computer
ENGINEERING

Carnegie Mellon

One variable

Thread 1 Thread 2 —Pp
Correct Order
void init (--- B O—d
) vaid mMain (--) gl SR
Thread 2

mState= should not

mThread=PR CreateThread (mMain, ---);
- (S Thretd-> State;| dereference
- i mThread
before Thread
) } 1 initializes it
Mozilla nsthread.cpp

Electrical & Compu
A ENGINEERING

Carnegie Mellon

One variable

Thread 1 Thread 2 Correc.t CieEE
int ReadWriteProc (--) void DoneWaiting (--+) M o =
{ { Buggy Order
/*callback function of _
S1: PBReadAsync (&p); PBReadAsync*/ S4 is assumed

to be after S2.

v R] If S4 executes
- ~ o S4:io_pending = FALSE; |pefore S2,
S3: while (io_pending) {...}; e thread 1 will

} hang.

} Mozilla macio.c Mozilla macthr.c

S2. io_pending = TRUE;

Electrical & Computer

) ENGINEERNE

Carnegie Mellon

More than one variable

- — =
Thread 1 Thread 2 ,
- : : B Interl
void nsPlaintextEditor::Cut() il e
void nsTextFrame::PaintAsciiText(--+) — /*change the mContent */ mContent, mOffset
{ - } and mLength are
. / o nsPlaintextEditor.cpp ingonsistent in the
putc(> void nsTextFrame::Reflow (-:-) g:f'g've\’l of Cut and
mContent[mOffset+mLength-1]); { .
; /* calculate and then set cczrrect Baiint atihis
} N v mOffset and mLength */ moment might lead
J nsMsgSend.cpp to crash.
nsTextFrame.cpp mContent, mOffset, mLength are shared

mContent — /[1]]] mOffset and mLength together mark a

m Offset mLength valid region™ inside mContent string.

N

A\ 4

({) Electrical & Computer
ENGINEERING

More than one variable

e The required condition for the bug manifestation is that thread 1 uses the
three correlated variables in the middle of thread 2’s modification to these
three variables.

e \We need new concurrency bug detection tools to address multiple variable
concurrency bugs.

e Most existing bug detection tools only focus on single-variable concurrency
bugs

(&) Electrical & Computer
ENGINEERING

Carnegie Mellon

How many accesses are involved?

Non-deadlock concurrency bugs
Application (| Total || 1 acc.” | 2 acc. | 3 acc. | 4 acc. | >4 acc.

MySQL 14 0 2 7 4 |
Apache 13 0 6 5) 0
Mozilla 41 0 12 18 S 6
OpenOffice 6 0 2 3 | 0
Overall 74 0 22 33 12 7

Deadlock concurrency bugs

Application (| Total || 1 acc.® | 2 acc. | 3 acc. | 4 acc. | >4 acc.
MySQL 9 4 1 4 0 0
Apache 4 0 0 4 0 0
Mozilla 16 | 2 12 0 1
OpenOffice 2 2 0 0 0 0
Overall 31 7 3 20 0 1

(K). Electrical & Computer
ENGINEERING

Carnegie Mellon

How many accesses are involved?

« Significant implication for concurrent program testing.
— The challenge in concurrent program testing is that the number of all
possible interleavings is exponential to the number of dynamic
memory accesses, which is too big to thoroughly explore.

« Exploring all possible orders within every small groups of memory
accesses, e.g. groups of 4 memory accesses.
— The complexity of this design is only polynomial to the number of
dynamic memory accesses, which is a huge reduction from the
exponential-sized all-interleaving testing scheme.

(&) Electrical & Computer
ENGINEERING

Carnegie Mellon

Bug manifestation study
Take away

= EF ™\

o Col| ati]|&[23|op3)| o ‘”:“m\
I\
thread 0 thieadl) thvead 2. ... +tlhead G|

loo Co Poiig
Vs$

IODC/L‘{_I"r..\/'}—I\# e 4

(&) Electrical & Computer
ENGINEERING

Bug fix study

Application || Total [| COND [Switch | Design | Lock | Other
MySQL 14 2 0 5 4 3
Apache 13 4 2 3 4 0
Mozilla 41 13 8 9 9 2
OpenOffice || 6 0 0 2 3 I
Overall 74 19 10 19 20 6

- Adding Lock cannot enforce order intention.

QNG

cal & Comp
NEERING

Carnegie Mellon

Bug fix study

(1) Condition check (denoted as COND):
Ex) use while-flag to fix order-related bugs consistency

Thread 1 Thread 2 — Correct Order
i i s &4 —
void js_DestroyContext (++-) { void js_DestroyContext (++) { gy Orer
/* last one entering this function */ /* non-last one entering this | js_UnpinPinnedAtom
S 4\ function? should happen after
js_UnpinPinnedAtom(&atoms); js MarkAtom(&atoms,---);| js_MarkAtom.
} ‘\ } el v Otherwise, program
Mozilla jscntxt.c, jsgc.c = = crashes.

Electrical & Computer

) ENGINEERNE

Carnegie Mellon

Bug fix study

(1) Condition check (denoted as COND):

Ex) if(strlen(mContent)>= mOffset+mLength)

Thread 1

void nsTextFrame::PaintAsciiText(---)

Thread 2
void nsPlaintextEditor::Cut()
{

/* change the mContent */

{ P : ,
: / nsPlaintextEditor.cpp
p'utc(> void nsTextFrame::Reflow (---)
mContentimOffset+mLength-1]); {
: \ /* calculate and then set correct
} N v mOffset and mLength */

nsTextFrame.cpp

} nsMsgSend.cpp

_———>
Buggy Interleaving

mContent, mOffset
and mLength are
inconsistent in the
middle of Cut and
Reflow.

Paint at this
moment might lead
to crash.

mContent, mOffset, mLength are shared

mContent —»

mOffset and mLength together mark a

m Offset

“valid region” inside mContent string.
mlLength 9 9

Electrical & Computer

) ENGINEERNE

Carnegie Mellon

Bug fix study

(2) Code switch (denoted as Switch)

Thread 1 Thread 2 C_CE; Order
int ReadWriteProc (---) void DoneWaiting (---) W = =
{ { Buggy Order
/*callback function of _
_~S1: PBReadAsync (&p); RBReadasycy ,[8(;4;: 2;2‘:2?

=R ™ . If S4 executes
~ o S4:io_pending = FALSE; |pefore S2,
S3: while (io_pending) {...}; e thread 1 will

} hang.

} Mozilla macio.c Mozilla macthr.c

_— .52 io_pending = TRUE; -

(3) Algorithm/Data-structure design change

ex) remove some variable from class that does not need to be shared.

({) Electrical & Computer
ENGINEERING

Carnegie Mellon

Transactional memory (TM)

O

Discussion: bug avoidance

it Can | TM might help(concerns:) | Little
Application (| Total Help | Long %Qollbagk Nature | Help
MySQL 23 | 0 14 0 2
Apache 17 7 0 3 | 6
Mozilla 37 25 3 9 5 10
OpenOffice 8 2 0 + 0 2
Overall 105 41 8 30 6 20

Table 10. Can TM help avoid concurrency bugs?

Electrical & Computer

ENGINEERING

retry
. . . ' H:block->n; :
Discussion: bug avoidance) — i
execii-];.(n!=block->n)
Transactional memory (TM) : SiaTar T
}
e Atomicity violation bugs and deadlock bugs with relatively _birdsea.c

small and simple critical code regions can benefit the most from Figure8. A MySQL bug fi

TM, which can help programmers clearly specify this type of atomicity
e intention.

e Figure 8 shows an example, where programmers use a consistency check
with re-execution to fix the bug. Here, a transaction(with abort, rollback and
replay) is exactly what programmers want.

Electrical & Computer

) ENGINEERNE

Carnegie Mellon

Discussion: bug avoidance

Concern with Transactional Memory

» |/O operations:
As operations like I/O are hard to roll back, it is hard to use TM to protect the
atomicity of code regions which include such operations.

» Too large memory footprint:
Mozilla bugs include the whole garbage collection process. These regions could
have too large memory footprint to be effectively handled by hardware-TM

(&) Electrical & Computer
ENGINEERING

Carnegie Mellon

Discussion: bug avoidance

Problem with Transactional Memory

« The basic TM designs cannot help enforce the intention that
“A has to be executed before B”. Therefore, they cannot help avoid many
related order-violation bugs

(K). Electrical & Computer
ENGINEERING

Carnegie Mellon

Conclusions and future work

« Design new bug detection tools to address multiple-variable bugs and order
violation bugs.

« can pairwisely test concurrent program threads and focus on partial orders of
small groups of memory accesses to make the best use of testing effort.

« can have better language features to support “order” semantics to further
ease concurrent programming.

(K). Electrical & Computer
ENGINEERING

Carnegie Mellon

A Case for an Interleaving Constrained Shared-Memory Multi-Processor

Electrical & Computer

) ENGINEERNE

Carnegie Mellon

Motivation

Writing parallel programs is hard because....

 INTERLEAVING
— Verifying simple contracts is NP-complete
— Hard to guarantee correctness
— Hard to debug

Proposed Solution...

* Predecessor Set (PSet)
— Constrain program to follow tested interleavings (that are good)
— Better runtime consistency and easier to debug

K). Electrical & Computer
€Y ENGINEERING

Motivation - PSet

Tools that are capable of detecting:

- Data Races

— Happens-before based vs lockset based detectors

— Benign data races
* Atomicity Violations

— Most tools rely on programmer to specify atomic regions
» Ordering violations

Current tools not good at detecting all three, but...
PSet is capable of detecting ALL THREE

(&) Electrical & Computer
ENGINEERING

Carnegie Mellon

Carnegie Mellon

How PSet Works

« For each RW section in a thread, a PSet contains the set of all dependencies from
other threads that can occur before it

« On each RW section, checks to see if the last RW to memory location is in current
section’s PSet. If not... T 10 1

1. STALL: The thread will stall until /va
one of the section’s - 4

predecessors completes. @D‘ @ igi;‘
: 0

) = {

, PSet (W3) = {W2)

2. CHECKPOINT & ROLLBACK: . _ P et(ii) : (W1)
The program returns to a " ~~~~~ @ Seuites = 4
- PSet (R3) = {}

checkpoint and re-executes. PSet (R4) = (W1]

(K). Electrical & Computer
ENGINEERING

Carnegie Mellon

Implementation

Instruction P | Size | Pinst1 Plnst2 Pinst3 | ...
l Predecessor Address (4 bytes)
PSet Type (2 bits) Lib ID Rel Addr
00 - Not Tested . : :
01 - Null Pset PSet Size (1 byte) — s

10 - PSet Size = 1
11 - PSet Size > 1

ical &
A ENGINEERING

Carnegie Mellon

Notes on PSet

PSets have a worse case space complexity of O(N?)
« But about 95% of instructions have no PSet

Implementing reset requires a lot of additional architecture

« Add pset instructions to ISA
» Space to track last reader/writer as well as PSet constraints

The constraints need to be acquired through learning before runtime

(&) Electrical & Computer
ENGINEERING

Carnegie Mellon

Notes on PSet

Violation handling isn’t full-proof:

« Stalling can enter a deadlock scenario

— Solution: Time-out scheme (thread resumes after timeout)
 There is no good tested interleave path at checkpoint

— Solution: After some number of tries, go back to further checkpoint

Design specified in paper “does not account for the interleavings between two or
more memory operations accessing different memory locations.”

(&) Electrical & Computer
ENGINEERING

Carnegie Mellon

Results

True Constraint Violations False Constraint Violations
Bug # Program Type Stall Rollback 2 X X ST 3 Rollback Window Size
Static Dynamic Static Dynamic
1 Pbzip2 Real Yes Yes 1 1 3 3 0
2 Aget Real No Yes 1 1 2 2 11
3 Pfscan Injected No Yes 1 1 0 0 51
4 Apache Real No ‘es 2 20 1 1 358
5 MySQL Real Yes Yes 1 T 3 6 0
6 MySQL Extract No Yes 1 1 0 0 4760
7 Mozilla Extract No Yes 1 1 3 3 1664
8 Mozilla Extract No Yes 2 2 1 1 1224
9 Mozilla Extract No Yes 1 1 0 0 1210
10 Mozilla Extract Yes Yes 1 1 0 0 0
11 Mozilla Extract Yes Yes 1 1 0 0 0
12 Mozilla Extract Yes Yes 1 1 0 0 0
13 Mozilla Extract No Yes 1 1 0 0 821
14 Mozilla Extract Yes Yes 1 1 0 0 0
15 Mozilla Extract No Yes 2 2 1 1 1674

Table 2: Avoiding bugs using PSet constraints. True constraint violations are related to the bug.

Electrical & Compu
A ENGINEERING

Carnegie Mellon

Results

- Cannot “iotal F’Set Inst.
Programs Stall| Rollback S Constraint é
Resolve £ . Count
Violations
pbzip2 1 5 0 6 1.35+9
aget 0 0 0 0 1.1E47
pfscan 1 2 0 3 7.4E4+7
apache 1 4 0 5 2.8E+48
mysql 0 2 2 4 9.7E+8
1Tt 0 0 0 0 2.3E+8
tfmm 1 0 0 1 1.6E+9
lu 0 1 0 1 1.6E+8
radix 0 0 0 0 6.4E+7
blackscholes] 0 0 0 0 8.1K+8
canneal 1 0 0 1 7.0E4+9

Table 3: PSet constraint violations in bug-free exe-
cutions.

Electrical & Compu
A ENGINEERING

O

Electrical & C

ENGINEI

New PSet Pairs Learnt New PSet Pairs Learnt

New PSet Pairs Learnt

Results

Carnegie Mellon

200 300 250
o ©— pbzip2 (PSet) - o aget (PSet) o pfscan (PSet)
160 »— pbzip2 (AVIO) 250 »— aget (AVIO) € 2004 % »—— pfscan (AVIO)
200 =~
120 ¥ 1s0
150 &
s0 Z 100 4
100 L
=
40 x s0 x @ 2 so =
o a8 o a & g S & S99 9. g Sog..o
o 10 20 30 40 o 20 a0 60 80 100 20 40 60 20 100 120
Number of Test Runs Number of Test Runs Number of Test Runs
10000 10000 180
- o apache (PSet) a & mysql (PSet) Q- fft (PSet)
= apache (AVIO) £ e mysql (AVIO) £ 2 ¢ fft (AVIO)
1000 = 1000 B s 120
3 o
100 = 100 a £ 8o
= . =
o o e =
. % % . o o= g
10 o0 o = 10 o = a0
a = 2 o e 2 x
o
= a a = e = o
1 1 o - = -
100 200 £ o 20 a0 6o 20 100 120 o 10 20 a0 a0 s0 &0 70 80
Number of Test Runs Number of Test Runs Number of Test Runs
250 200
Fo00e © fmm (PSet) o (PSet) o o radix (PSet)
= > frm (AVIO) € 200 o > b (AVIO) € 1eo0 - radix (AVIO)
1000 S 2
x Tz 1s0 2 120
100 . = £ 4
° Z 100 3 s
. © o a - £
10 - F 2 x
3
= - " % so = 2 a0
x o a ..o
" o 2 2 3 S - S
20 40 60 80 100 120 140 160 o 10 20 20 a0 s0 = 70 20 40 &0 80 100
Number of Test Runs Number of Test Runs Number of Test Runs
40 800
i & blackscholes (PSet) & canneal (PSet)
= =l =
€ blackscholes (AVIO) 1 3 o x--- canneal (AVIO)
g 30 5 800
= g
= 25 =
& 20 & 400
3 1s 4 3
< g
=
£ 10 \, = =200
S =
. > =
° ° - S —)
[s 10 20 25 30 as o 10 20 30 40 s0 60 70 =0

Number of Test Runs

Figure 8:

Number of test runs required for

Number of Test Runs

learning PSets and AVIO invariants.

Carnegie Mellon

Conclusion

This is only a first step!

» Capable of detecting more concurrency bugs than most other tools
— Accomplishes the goal of allowing programmers to more reliably catch
and fix concurrency bugs
« With sufficient testing, PSets can prevent concurrency bugs

(K). Electrical & Computer
ENGINEERING

