
Detecting and Avoiding Concurrency
Bugs

Pil Jae Jang
Cyril Agbi

Paper similarities
• Testing Parallel programming is hard to debug

due to interleaving bugs

• A viable solution is to better equip
programmers to detect and fix these bugs

• Praise Transactional Memory

Learning from Mistakes

— A Comprehensive Study on Real World Concurrency Bug Characteristics

Motivation
Writing correct concurrent programs is difficult ! why?
a. Concurrency bug detection - imperfect

i. Most of research: single variable, changing lock
b. Concurrent program testing and model checking

i. Exponential interleaving
c. Concurrent programming language design

i. TM provides programmers an easier way to specify which code regions
should be atomic. But, Not perfect!

Notes
Deals with Four applications
- Not cover all applications

Data Race
- All of Data Races are not bug.
- Ex) benign race such as “while-flag”

Bug pattern study

Atomicity

Other - rare

- Originally for deadlock detection
- Ideally need to set fatal_timeout=infinite to detect deadlock

Order

- Between Write and Read

Order

- Between Write and Write
- can hang forever

Order

- Between two groups

How many threads are involved?
Most(101 out of 105) concurrency bugs involves only two
threads.
• Increase the workload, then check pairs of threads.
• Few concurrency bugs would be missed.

Bug manifestation study

Bug manifestation study
How many variables are involved?
66% -> One variable
34% -> More than one variable

One variable

One variable

One variable

More than one variable

More than one variable

● The required condition for the bug manifestation is that thread 1 uses the
three correlated variables in the middle of thread 2’s modification to these
three variables.

● We need new concurrency bug detection tools to address multiple variable
concurrency bugs.

● Most existing bug detection tools only focus on single-variable concurrency
bugs

.

How many accesses are involved?

How many accesses are involved?

• Significant implication for concurrent program testing.
– The challenge in concurrent program testing is that the number of all

possible interleavings is exponential to the number of dynamic
memory accesses, which is too big to thoroughly explore.

• Exploring all possible orders within every small groups of memory
accesses, e.g. groups of 4 memory accesses.
– The complexity of this design is only polynomial to the number of

dynamic memory accesses, which is a huge reduction from the
exponential-sized all-interleaving testing scheme.

Bug manifestation study
Take away

Bug fix study

- Adding Lock cannot enforce order intention.

Bug fix study
(1) Condition check (denoted as COND):
Ex) use while-flag to fix order-related bugs consistency

Bug fix study
(1) Condition check (denoted as COND):
Ex) if(strlen(mContent)>= mOffset+mLength)

Bug fix study
(2) Code switch (denoted as Switch)

(3) Algorithm/Data-structure design change
ex) remove some variable from class that does not need to be shared.

Discussion: bug avoidance

Transactional memory (TM)

Discussion: bug avoidance

Transactional memory (TM)

● Atomicity violation bugs and deadlock bugs with relatively
small and simple critical code regions can benefit the most from
TM, which can help programmers clearly specify this type of atomicity

● intention.

● Figure 8 shows an example, where programmers use a consistency check
with re-execution to fix the bug. Here, a transaction(with abort, rollback and
replay) is exactly what programmers want.

Discussion: bug avoidance

Concern with Transactional Memory
• I/O operations:

As operations like I/O are hard to roll back, it is hard to use TM to protect the
atomicity of code regions which include such operations.

• Too large memory footprint:
Mozilla bugs include the whole garbage collection process. These regions could
have too large memory footprint to be effectively handled by hardware-TM

Discussion: bug avoidance

Problem with Transactional Memory
• The basic TM designs cannot help enforce the intention that

“A has to be executed before B”. Therefore, they cannot help avoid many
related order-violation bugs

Conclusions and future work

• Design new bug detection tools to address multiple-variable bugs and order
violation bugs.

• can pairwisely test concurrent program threads and focus on partial orders of
small groups of memory accesses to make the best use of testing effort.

• can have better language features to support “order” semantics to further
ease concurrent programming.

A Case for an Interleaving Constrained Shared-Memory Multi-Processor

Motivation
Writing parallel programs is hard because….

• INTERLEAVING
– Verifying simple contracts is NP-complete
– Hard to guarantee correctness
– Hard to debug

Proposed Solution…
• Predecessor Set (PSet)

– Constrain program to follow tested interleavings (that are good)
– Better runtime consistency and easier to debug

Motivation - PSet
Tools that are capable of detecting:

• Data Races
– Happens-before based vs lockset based detectors
– Benign data races

• Atomicity Violations
– Most tools rely on programmer to specify atomic regions

• Ordering violations

Current tools not good at detecting all three, but...
PSet is capable of detecting ALL THREE

How PSet Works
• For each RW section in a thread, a PSet contains the set of all dependencies from

other threads that can occur before it
• On each RW section, checks to see if the last RW to memory location is in current

section’s PSet. If not…

1. STALL: The thread will stall until
one of the section’s
predecessors completes.

2. CHECKPOINT & ROLLBACK:
The program returns to a
checkpoint and re-executes.

Implementation

Notes on PSet
PSets have a worse case space complexity of O(N2)

• But about 95% of instructions have no PSet

Implementing reset requires a lot of additional architecture
• Add pset instructions to ISA
• Space to track last reader/writer as well as PSet constraints

The constraints need to be acquired through learning before runtime

Notes on PSet
Violation handling isn’t full-proof:

• Stalling can enter a deadlock scenario
– Solution: Time-out scheme (thread resumes after timeout)

• There is no good tested interleave path at checkpoint
– Solution: After some number of tries, go back to further checkpoint

Design specified in paper “does not account for the interleavings between two or
more memory operations accessing different memory locations.”

Results

Results

Results

Conclusion
This is only a first step!

• Capable of detecting more concurrency bugs than most other tools
– Accomplishes the goal of allowing programmers to more reliably catch

and fix concurrency bugs
• With sufficient testing, PSets can prevent concurrency bugs

