
Overview Speculative Lock Elision Inferential Queuing and Speculative Push

Optimizing Synchronization
18742-Computer Architecture and Systems

Ashish Dwivedi, Deepali Garg

Electrical and Computer Engineering
Carnegie Mellon University

February 6, 2020

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 1 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

Schedule

1 Overview

2 Speculative Lock Elision
Motivation and Contribution
Atomicity
Algorithm
Implementation
Results

3 Inferential Queuing and Speculative Push
Motivation and Contribution
Inferentially Queued Locks

IQL Organization
LST State Transitions

Speculative Push
Data Pairing
Prediction Confidence
Forwarding Data Path
Ordering Speculative Push
Matching Pushed Data with Coherence Permissions

Results

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 2 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

Overview

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 3 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

Overview

Similarities

1 Both the papers recognize
locking and critical sections
inside locks as a major
bottleneck in speeding up the
parallel processor’s speed.

2 Both the papers do not
propose any ISA update

3 Both the papers quote
(though not quantitatively) that
HW update is minimal

Differences

1 Speculative Lock Elision
paper recognizes that most of
the time locking is not
required for correct execution
of the program hence elision
could speed up the system

2 IQL + SP paper recognizes
that lock requests can be
queued and hence
speculative forwarding of lock
and critical data has the
potential to speed up the
system

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 4 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

Speculative Lock Elision

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 5 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

Motivation and Contribution

Serialization of threads due to critical sections is fundamental bottleneck to
achieving high performance in multi-threaded programs.

Locks do not always have to be acquired for a correct execution

Paper proposes Speculative Lock Elision (SLE)

Dynamically remove unnecessary lock-induced serialization

Correct or repeat on misspeculation

No ISA updates required

Figure: Elision of lock

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 6 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

Atomicity

For Guaranteeing atomicity, the following conditions must hold within critical section:

1 Data read within a speculatively executing critical section is not modified by
another thread before the speculative critical section completes.

2 Data written within a speculatively executing critical section is not accessed (read
or written) by another thread before the speculative critical section completes.

Assembly instructions have special constructs to implement this atomicity using Load-
Linked (ldl_l) and Store Conditional (stl_c) instructions.

Figure: Assembly code of LL/SC primitives

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 7 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

Algorithm

The complete algorithm for SLE is this:

1 If candidate load (ldl_l) to an address is followed by store (stl_c of the lock acquire)
to same address, predict another store (lock release) will shortly follow, restoring
the memory location value to the one prior to this store (stl_c of the lock acquire).

2 Predict memory operations in critical sections will occur atomically, and elide lock
acquire.

3 Execute critical section speculatively and buffer results.

4 If hardware cannot provide atomicity, trigger misspeculation, recover and explicitly
acquire lock if failed for "restart threshold" times

5 If second store (lock release) of step 1 seen, atomicity was not violated (else a
misspeculation would have been triggered earlier). Elide lock-release store,
commit state, and exit speculative critical section.

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 8 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

Implementation

Buffering Speculative State

1 Register State

Reorder Buffer (ROB):

1 Keep the speculative instructions here

2 Limited by the size of ROB

Register Checkpoint:

1 Sample before the speculative execution starts

2 Imposes no constraint on the size of critical section

2 Memory State

Speculative load is allowed in almost all processors

Speculative stores can be buffered in write buffer

1 Size limitation

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 9 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

Implementation

Detecting Misspeculation

1 Atomicity Violation

Reorder Buffer (ROB) used for SLE:

1 No additional mechanism required

2 The Load Store Queues are already snooped for external write

Register Checkpoint used for SLE:

1 Add an access bit to mark element in cache as "accessed during critical execution"

2 Works independent of cache levels

2 Resource Constraint

Uncached access/events like system call

Finite Cache/write-buffer/ROB size

1 Try to obtain the lock. If successful, commit the instructions

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 10 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

Results

Figure: Microbenchmark result for CMP

Microbenchmark consists of N
threads, each incrementing a
unique counter (216)/N times, and
all the N counters are protected by
the same lock

Figure: % of dynamic locks elided

A large fraction of Dynamic locks
are elided. Restart threshold = 0,
leads 10-30% fewer locks elided.
Barnes has high contention for
locked data.

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 11 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

Results

Figure: Normalized execution time (<1 means speedup)

Three major causes of speedup:

1 Concurrent
execution

2 Reduced memory
latency

3 Reduced memory
traffic

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 12 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

Inferential Queuing and Speculative Push

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 13 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

Motivation and Contribution

High communication miss rates in online transaction processing workloads,
characterized by fine-grain updates of control data and frequent synchronization
protecting such data

These protected data migrates among processors with the passing of the lock and
contribute to a large portion of the access latencies

Processor stalls induced due to communication misses within critical sections will
only increase over workloads

Processors will be unable to generate misses early enough so as to hide memory
access latencies to actively shared data.

Two advancements can be done to speed-up the synchronization :

Lock requests can be queued and hence can be speculative forwarded to the immediate
target

Using the queuing mechanism, if critical shared data can be forwarded along with the
lock

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 14 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

IQL organization

Figure: IQL Hardware organization

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 15 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

IQL implementation

Read Exclusive Low-Priority (rd_X_lp)

A read for exclusive request, annotated with low priority (for locks)

Request can be deferred for a brief but bounded interval of time

Lock Predictor Table (LPT)

Used for predicting the event of acquiring and releasing a lock by the processor

The mechanism for these inferences is not discussed. What rate of mispredictions?
Cost of mispredriction?

Lock State Table (LST)

Indexed by PC address of synchronizing instructions, identifying critical section

Tracks the state of locked line in the cache

Consulted on any incoming rd_X_lp request, if lock is HELD, request is buffered

MSHR
Buffers rd_X_lp requests, to be services upon inferred release of lock

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 16 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

LST State Transitions : IQL implementation

Figure: LST state transitions

Incomplete state transition diagram, eg., there are no transitions out of INVALID

State transition from PRESENT to HELD is required, to show necessity of
PRESENT state

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 17 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

Speculative Push

LPT in IQL allows inference of the presence and extent of critical sections in programs.
IQL also provides early knowledge of the next owner of lock. SP forwards the actively
shared data to the next requesting processor, along with the lock.

Data Pairing : Establish and record the association between critical section data
and a lock

Prediction Confidence : Enable/Disable the optimization by assigning a
confidence level to pairings

Speculative Push : Forwards any predicted data to the requesting processor
along with the lock-line

Data transfer advantage : Initial access is overlapped with the lock transfer

Coherency Transfer advantage : It does not have to be upgraded for writing

Pushed data is also written back to the memory

Pushed cache line never evicts a valid cache line

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 18 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

SP Implementation : Data Pairing

Figure: LST entry extended for Speculative Push

Record addresses of accesses performed while the processor holds the lock

These addresses becomes candidates for forwarding and are stored in LST along
with the lock address

Candidates for future pushes :

Write misses during a critical section

Lines that have been speculatively pushes into the cache (from previous lock acquire)

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 19 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

SP Implementation : Prediction Confidence

A saturating counter is added to each LST entry data address to assign
confidence in the data for forwarding

Each cache address associated with the lock has an access-bit, which is used to
track if these addresses were accessed during the lock

The counter is set as per the number of addresses associated with it in the LST,
accessed during the lock

Maximum value : Enable optimization; Minimum value : Disable optimization

Repeated evictions : Addresses accessed inside a critical section vary from one
execution to the next preventing effective data forwarding

Can we send back feedback from next owner of lock to the processor who
pushes? For selective prediction.

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 20 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

SP Implementation : Forwarding Data Path

Figure: Data forwarding: Directory-based system

Figure: Data forwarding: Broadcast-based system
Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 21 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

SP implementation : Ordering Speculative Push

Broadcast-based System

Figure: Data Ordering: Broadcast-based system

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 22 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

SP implementation : Ordering Speculative Push

Directory-based System
Responding to the annotated write-back, the directory node communicates with the tar-
get node, granting coherence permission (exclusive) or sending a NACK to the target
node if necessary.

Figure: Protocol for IQLs: Directory-based system

Why is write-back really an exception? Since the lock will only be acquired by the next
requestor, can it not fetch correct value from memory?

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 23 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

Matching Pushed Data with Coherence Permissions

If a push is rejected, the corresponding coherence permission must also be
rejected

The push/coherence permission information is stored in a small table at the cache
controller

Both messages in the pair will occur exactly once, so every push received is
tracked until its corresponding coherence permission is received, and vice versa

An entry is removed when the pair is matched up

Requestor includes in a rd_X_lp an indication of the number of lines it can track

This bookkeeping can become a bottleneck for performance, hardware for it is not
discussed

Why not send coherency permissions along with the data instead?

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 24 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

Results

Figure: IQL+SP performance for a Directory-based system

Figure: SP prediction effectiveness

cholesky - Little correlation exists between a lock address and data addresses
accessed while the lock is held

raytrace - Highly contended locks, large speedup in some cases (Not in SMP)

Water-nsq - Communicates comparatively far more infrequently

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 25 / 26



Overview Speculative Lock Elision Inferential Queuing and Speculative Push

Results

Figure: Stall Contributions | Directory-based system

Figure: Comparison - SP versus Flush performance | Directory-based system

Flush : Flushing data back to the memory at the end of a critical section.
Avoids penalty of accessing remote dirty data, instead finds the desired data at memory
directly.

Ashish Dwivedi, Deepali Garg CMU Optimizing Synchronization February 6, 2020 26 / 26


	Overview
	Speculative Lock Elision
	Motivation and Contribution
	Atomicity
	Algorithm
	Implementation
	Results

	Inferential Queuing and Speculative Push
	Motivation and Contribution
	Inferentially Queued Locks
	Speculative Push
	Results


