Approximate Computing

Nikolai Lenney jlenney Charles Li cli4 18-742 S20

Load Value Approximation

Background

- Value Locality
 - Reuse of common values
 - Runtime constants and redundant real-world input data
- Load Value Prediction
 - On load, predict the value that is loaded
 - Skip fetch on next level cache/main memory and provide prediction
 - Save on energy and latency
 - Only works if exact match
 - Rollback speculative instructions on mismatch
 - Energy inefficient due to large buffers for rollback
 - Speed of rollback impacts performance
 - Floating point can be very difficult to predict correctly
 - High number of mantissa bits can lead to slightly incorrect values
 - 1.000 v 1.001 is a mispredict but is effectively the same value

Background

- Exact value comparisons lead to unnecessary rollbacks
 - Instead trade-off value integrity/accuracy for performance and energy
 - Load value approximator used to estimate memory values
- Many applications can tolerate inexactness
 - Image processing
 - Augmented Reality
 - Data mining
 - Robotics
 - Speech recognition
- Confidence window
 - How close is close enough? ±10%? ±5%?
 - Larger window gives better coverage
 - Performance-error tradeoff

Load Value Approximation

- 1. Load X misses in L1 Cache
- 2. Load Value Approximator generates X_Approx
- 3. Processor pretends X_Approx was returned on a "hit"
- Main memory/next level cache fetches block with X_Actual (sometimes)
- 5. X_Actual trains Load Value Approximator

Load Value Approximator

- Global History Buffer (GHB)
 - FIFO queue storing most recently loaded values
- Approximator Table Entry
 - Accessed using hash on GHB values and Instruction Address
 - Tag
 - Saturating confidence counter
 - Degree counter
 - Local History Buffer (LHB)

Approximator Table

Saturating Confidence Counter

- Signed Counter
- Use approximation if counter is positive
- Increment/decrement based on accuracy of approximation
- Degree Counter
 - Number of times to reuse prediction before updating our table
 - Affects ratio of fetches to cache misses
- Local History Buffer (LHB)
 - Load values based on the global history buffer pattern & PC

Application

- Use ISA extensions to support load value approximation
- Programmers annotate code
- Do not use approximation for
 - Control Flow
 - Can cause incorrect behavior
 - x == 42 approximation is bad
 - Divide-by-Zero
 - Data in denominator could be approximated as 0
 - Memory Addresses
 - Can read from/write to incorrect memory addresses
 - "Catastrophic results"

Application

- Do use approximation for the Common Case
 - Expensive loops/functions
 - Corner cases likely not going to add much value
 - Programmer must profile their own code
 - Find accesses where cache misses occur
 - Find places where approximate data is usable
 - Likely only in small regions of code since approximate in one context does not imply approximate in all contexts

Evaluation Tactics

• Metrics

- Misses-per-kilo-instructions (MPKI)
- Blocks fetched (L1 only)
- Output Error
- Design space exploration
 - GHB size
 - Confidence threshold
 - Value Delay
 - Approximation Degree

Benchmark	L1 MPKI	Instruction count variation					
blackscholes	0.93	0.99%					
bodytrack	4.93	0.05%					
canneal	12.50	1.25%					
ferret	3.28	0.60%					
fluidanimate	1.23	0.17%					
swaptions	4.92E-05	0.00%					
x264	0.59	2.37%					

Table I: Precise L1 MPKI and variation in dynamic instruction count when employing load value approximation.

GHB Size

- Smaller GHB tends to have larger output error
- Smaller GHB tends to have fewer MPKI
- Simple, low-overhead approximators work well

Figure 5: Output error of LVA for different GHB sizes. Note the near zero error for swaptions and x264.

Confidence Window

- Larger window typically means more error
- Larger window typically means fewer MPKI
- Integers are better for approximation than floats

• Value Delay

- LVA is highly robust with regards to value delay
- No impact on performance since confidence is not changed
- No impact on error due to lack of inter-dependence between data

Approximation Degree

- More prefetches lowers MPKI but increases overall fetches
- Higher approximation degree increases output error due to less training

Results

- Gives realistic value delay (~1 as opposed to presumed 4)
- Improve performance by an average of 8.5%
- Reduce L1 miss latency by 41% on average
- Reduce EDP by up to $\sim 64\%$ depending on approximation degree
- Energy savings ~7-12% depending on approximation degree

Discussion

- Overhead introduced by approximator table is ~18KB (64bit) or ~10KB(32bit)
- No approximation of application data leads to small GHB being optimal
- Approximator can use fewer mantissa bits for floating point values to improve hashing
- Memory consistency can be problematic, should not use LVA for applications with a need for memory consistency

Pros and Cons

• Pros

- Provides for good trade-off in accuracy and energy, especially since accuracy is not needed all the time
- Very simple design to add to a basic pipeline, with minimal ISA extensions (seems to only need to identify approximable loads)
- Clearly identifies when this is usable and when it is not

• Cons

- Has a very small test set and leaves many optimizations for future work
- Can still have significant inaccuracy (see Ferret benchmark)

Neural Acceleration for General-Purpose Approximate Programs

Background

- Many applications are highly error tolerant, and can be approximated
 - Image processing, Augmented Reality, Data mining, Robotics, Speech recognition
- Neural Networks are highly effective at finding patterns in input data and correlating these to output values
 - Recall that running a Neural Network involves a series of matrix/vector operations and nonlinear functions.
- If we can approximate memory lookups, arithmetic, simple control flow, why not try to approximate entire sections of code?
- Many functions are used frequently and take a long time/a lot of energy to run, but are also very predictable with a neural network

Code Region Criteria

• Hot Code

- Want to focus on regions of code that are frequently executed and that take up a large portion of a program's total runtime
- Regions that are too small may suffer from overheads

• Approximability

- Programs needs to be able to tolerate imprecision
- Translating a region to a NN is the compiler's job, not the programmers
- Well-Defined Inputs & Outputs
 - Region must have a fixed number of inputs and outputs
- Pure
 - Must not access values from outside of the region, except for the inputs and outputs

Parrot Overview

- Programmer identifies and marks functions to be approximated
- Annotated code is run by a profiler to generate NN parameters
- Profiler gives new source code that replaces function calls with NN instantiations

Training

- 1. Programmer gives profiler a set of valid application inputs for training
- 2. Application collects function inputs/outputs as training/testing data
- 3. Uses a simple search through 30 possible NN topologies guided by mean squared error
 - 1 or 2 hidden layers
 - Each layer can have 2, 4, 8, 16, or 32 hidden units
 - Choose topology with highest test accuracy and lower NPU latency, but prioritizing accuracy
- 4. Generate a binary that instantiates the NPU with the determined topology and weight
- Could also use online training, but this would incur high overheads at runtime.

- Neural Processing Unit is tightly coupled with out of order pipeline.
- ISA includes 4 instructions for interfacing with NPU
 - **enq.c %r**: writes a value to config FIFO
 - dec.c %r: reads a value from config FIFO
 - enq.d %r: writes a value to input FIFO
 - deq.d %r: reads a value from output FIFO
- NPU supports speculative data reads and writes
- Can be made to work with interrupts and context switches

NPU Overview

- NPU is run by a static schedule given by the configuration
- The scheduler takes the following steps for each layer:
 - Assign each neuron to a PE
 - Assign order of multiply add ops.
 - Assign order to outputs of layer
 - Produce a bus schedule according to the assigned order of ops.

(a) 8-PE NPU

(b) Single processing engine

Benchmarks

	Description	Type	Evaluation Input Set	# of Function Calls	# of Loops	# of ifs/ elses	# of x86-64 Instructions	Training Input Set	Neural Network Topology	NN MSE	Error Metric	Error
fft	Radix-2 Cooley-Tukey fast Fourier	Signal Processing	2048 Random Floating Point Numbers	2	0	0	34	32768 Random Floating Point Numbers	1 -> 4 -> 4 -> 2	0.00002	Average Relative Error	7.22%
inversek2j	Inverse kinematics for 2-joint arm	Robotics	10000 (x,y) Random Coordinates	4	0	0	100	10000 (x,y) Random Coordinates	2 -> 8 -> 2	0.00563	Average Relative Error	7.50%
jmeint	Triangle intersection detection	3D Gaming	10000 Random Pairs of 3D Triangle Coordinates	32	0	23	1,079	100000 Random Pairs of 3D Triangle Coordinates	18 -> 32 -> 8 -> 2	0.00530	Miss Rate	7.32%
jpeg	JPEG encoding	Compression	220x200-Pixel Color Image	3	4	0	1,257	Three 512x512-Pixel Color Images	64 -> 16 -> 64	0.00890	Image Diff	9.56%
kmeans	K-means clustering	Machine Learning	220x200-Pixel Color Image	1	0	0	26	50000 Pairs of Random (r, g, b) Values	6 -> 8 -> 4 -> 1	0.00169	Image Diff	6.18%
sobel	Sobel edge detector	Image Processing	220x200-Pixel Color Image	3	2	1	88	One 512x512-Pixel Color Image	9 -> 8 -> 1	0.00234	Image Diff	<mark>3.44%</mark>

Error CDF

- Most applications have close to or well over 50% of their inputs hitting 5% error or less
- Every application has over 80% of their inputs hitting 10% error or less
- NN error will likely be in tolerable error range for many applications

Figure 6: Cumulative distribution function (CDF) plot of the applications' output error. A point (x, y) indicates that y fraction of the output elements see error less than or equal to x.

NPU Speedup vs Software Slowdown

 Running a neural network in software to approximate something else in software is not really an option, and would likely only work well for a very long running region of code that could be approximated by a relatively small NN.

Number of Instructions vs Energy vs Speedup

- Energy savings tightly correlated to speedup and inversely correlated to number of instructions
- jmeint has the highest proportion of NPU instructions, and the largest discrepancy in realistic/idealized NPU performance
- Executing fewer instructions does not imply speedup

NPU Latency

- NPU still improves performance even if it takes longer to access
- Could be useful if architecting an NPU very tightly with a core is impractical
- Could make NPU access via
 memory mapped FIFOs feasible

Figure 10: Sensitivity of the application's speedup to NPU communication latency. Each bar shows the speedup if communicating with the NPU takes *n* cycles.

Number of NPU PEs

- Neural Nets have a lot of inherent parallelism, so naturally more PEs means more speedup
- Increasing PEs can give speedup, but the amount of speedup per leap decreases, and per added PE is much smaller
- Adding a PE is not free Must pay for it in energy, area, complexity

Discussion

- Not super cheap (~85KB) but most of this comes from 8 8KB sigmoid LUTs, which can presumably be shared, bringing the total down ideally to about ~28KB. We saw that this can also be tolerate relatively high latencies, so the area costs may be tolerable.
- Doesn't interfere with memory model
- Existing strategies can be used to make the NPU work in a realistic environment with context switches and interrupts, though these may harm performance
- Theoretically one could use the NPU as a small NN accelerator if one is already running a neural network.

Pros and Cons

Pros

- Can dramatically reduce number of executed instructions, as well as runtime and energy.
- Expected error is often low, and many application areas can deal with impressicion

Cons

- Can only get benefit if application area tolerates error, if functions can be approximated well, and if function is actually used enough/long enough to justify NPU envocation
- Programmer must annotate code and provide training examples