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Load Value Approximation



Background

● Value Locality
○ Reuse of common values
○ Runtime constants and redundant real-world input data

● Load Value Prediction
○ On load, predict the value that is loaded

■ Skip fetch on next level cache/main memory and provide prediction
● Save on energy and latency

■ Only works if exact match
■ Rollback speculative instructions on mismatch

● Energy inefficient due to large buffers for rollback
● Speed of rollback impacts performance

■ Floating point can be very difficult to predict correctly
● High number of mantissa bits can lead to slightly incorrect values
● 1.000 v 1.001 is a mispredict but is effectively the same value



Background

● Exact value comparisons lead to unnecessary rollbacks
○ Instead trade-off value integrity/accuracy for performance and energy
○ Load value approximator used to estimate memory values

● Many applications can tolerate inexactness
○ Image processing
○ Augmented Reality
○ Data mining
○ Robotics
○ Speech recognition

● Confidence window
○ How close is close enough? ±10%? ±5%?
○ Larger window gives better coverage
○ Performance-error tradeoff



Load Value Approximation

1. Load X misses in L1 Cache
2. Load Value Approximator 

generates X_Approx
3. Processor pretends X_Approx 

was returned on a “hit”
4. Main memory/next level cache 

fetches block with X_Actual 
(sometimes)

5. X_Actual trains Load Value 
Approximator



Load Value Approximator

● Global History Buffer (GHB)
○ FIFO queue storing most recently 

loaded values
● Approximator Table Entry

○ Accessed using hash on GHB values 
and Instruction Address

○ Tag
○ Saturating confidence counter
○ Degree counter
○ Local History Buffer (LHB)



Approximator Table

● Saturating Confidence Counter
○ Signed Counter
○ Use approximation if counter is 

positive
○ Increment/decrement based on 

accuracy of approximation
● Degree Counter

○ Number of times to reuse prediction 
before updating our table

○ Affects ratio of fetches to cache 
misses

● Local History Buffer (LHB)
○ Load values based on the global 

history buffer pattern & PC



Application

● Use ISA extensions to support load value approximation
● Programmers annotate code
● Do not use approximation for

○ Control Flow
■ Can cause incorrect behavior 
■ x ==  42 approximation is bad

○ Divide-by-Zero
■ Data in denominator could be approximated as 0

○ Memory Addresses
■ Can read from/write to incorrect memory addresses
■ “Catastrophic results”



Application

● Do use approximation for the Common Case
○ Expensive loops/functions
○ Corner cases likely not going to add much value
○ Programmer must profile their own code

■ Find accesses where cache misses occur
■ Find places where approximate data is usable

● Likely only in small regions of code since approximate in one context does not 
imply approximate in all contexts



Evaluation Tactics

● Metrics
○ Misses-per-kilo-instructions (MPKI)
○ Blocks fetched (L1 only)
○ Output Error

● Design space exploration
○ GHB size
○ Confidence threshold
○ Value Delay
○ Approximation Degree



Design Space Exploration

● GHB Size
○ Smaller GHB tends to have larger output error
○ Smaller GHB tends to have fewer MPKI

● Simple, low-overhead approximators work well



Design Space Exploration

● Confidence Window
○ Larger window typically means more error
○ Larger window typically means fewer MPKI

● Integers are better for approximation than floats



Design Space Exploration

● Value Delay
○ LVA is highly robust with regards to value delay
○ No impact on performance since confidence is not changed
○ No impact on error due to lack of inter-dependence between data



Design Space Exploration

● Approximation Degree
○ More prefetches lowers MPKI but increases overall fetches
○ Higher approximation degree increases output error due to less training



Results

● Gives realistic value delay (~1 as opposed to presumed 4)
● Improve performance by an average of 8.5%
● Reduce L1 miss latency by 41% on average
● Reduce EDP by up to ~64% depending on approximation degree
● Energy savings ~7-12% depending on approximation degree



Discussion

● Overhead introduced by approximator table is ~18KB (64bit) or 
~10KB(32bit)

● No approximation of application data leads to small GHB being optimal
● Approximator can use fewer mantissa bits for floating point values to 

improve hashing
● Memory consistency can be problematic, should not use LVA for 

applications with a need for memory consistency



Pros and Cons

● Pros
○ Provides for good trade-off in accuracy and energy, especially since 

accuracy is not needed all the time
○ Very simple design to add to a basic pipeline, with minimal ISA extensions 

(seems to only need to identify approximable loads)
○ Clearly identifies when this is usable and when it is not

● Cons
○ Has a very small test set and leaves many optimizations for future work
○ Can still have significant inaccuracy (see Ferret benchmark)



Neural Acceleration for General-Purpose 
Approximate Programs



Background

● Many applications are highly error tolerant, and can be approximated 
○ Image processing, Augmented Reality, Data mining, Robotics, Speech 

recognition
● Neural Networks are highly effective at finding patterns in input data 

and correlating these to output values
○ Recall that running a Neural Network involves a series of matrix/vector 

operations and nonlinear functions.
● If we can approximate memory lookups, arithmetic, simple control flow, 

why not try to approximate entire sections of code?
● Many functions are used frequently and take a long time/a lot of 

energy to run, but are also very predictable with a neural network



Code Region Criteria

● Hot Code
○ Want to focus on regions of code that are frequently executed and that 

take up a large portion of a program’s total runtime
○ Regions that are too small may suffer from overheads

● Approximability
○ Programs needs to be able to tolerate imprecision
○ Translating a region to a NN is the compiler’s job, not the programmers

● Well-Defined Inputs & Outputs
○ Region must have a fixed number of inputs and outputs

● Pure
○ Must not access values from outside of the region, except for the inputs and 

outputs



Parrot Overview

● Programmer identifies and marks functions to be approximated
● Annotated code is run by a profiler to generate NN parameters
● Profiler gives new source code that replaces function calls with NN 

instantiations



Training

1. Programmer gives profiler a set of valid application inputs for training
2. Application collects function inputs/outputs as training/testing data
3. Uses a simple search through 30 possible NN topologies guided by 

mean squared error
○ 1 or  2 hidden layers
○ Each layer can have 2, 4, 8, 16, or 32 hidden units
○ Choose topology with highest test accuracy and lower NPU latency, but 

prioritizing accuracy
4. Generate a binary that instantiates the NPU with the determined 

topology and weight

● Could also use online training, but this would incur high overheads at 
runtime. 



ISA
● Neural Processing Unit is tightly 

coupled with out of order pipeline.
● ISA includes 4 instructions for 

interfacing with NPU
○ enq.c %r: writes a value to config 

FIFO
○ dec.c %r: reads a value from 

config FIFO
○ enq.d %r: writes a value to input 

FIFO
○ deq.d %r: reads a value from 

output FIFO
● NPU supports speculative data 

reads and writes
● Can be made to work with 

interrupts and context switches



NPU Overview

● NPU is run by a static schedule 
given by the configuration

● The scheduler takes the following 
steps for each layer:
○ Assign each neuron to a PE
○ Assign order of multiply add ops.
○ Assign order to outputs of layer
○ Produce a bus schedule 

according to the assigned order 
of ops.



Benchmarks



Error CDF

● Most applications have close to 
or well over 50% of their inputs 
hitting 5% error or less

● Every application has over 80% 
of their inputs hitting 10% error or 
less

● NN error will likely be in tolerable 
error range for many 
applications



NPU Speedup vs Software Slowdown

● Running a neural network in software to approximate something else in 
software is not really an option, and would likely only work well for a 
very long running region of code that could be approximated by a 
relatively small NN.



Number of Instructions vs Energy vs Speedup

● Energy savings tightly correlated to speedup and inversely correlated to 
number of instructions

● jmeint has the highest proportion of NPU instructions, and the largest 
discrepancy in realistic/idealized NPU performance

● Executing fewer instructions does not imply speedup



NPU Latency

● NPU still improves performance 
even if it takes longer to access

● Could be useful if architecting an 
NPU very tightly with a core is 
impractical

● Could make NPU access via 
memory mapped FIFOs feasible



Number of NPU PEs

● Neural Nets have a lot of inherent 
parallelism, so naturally more PEs 
means more speedup

● Increasing PEs can give speedup, 
but the amount of speedup per 
leap decreases, and per added 
PE is much smaller

● Adding a PE is not free - Must pay 
for it in energy, area, complexity



Discussion

● Not super cheap (~85KB) but most of this comes from 8 8KB sigmoid 
LUTs, which can presumably be shared, bringing the total down ideally 
to about ~28KB. We saw that this can also be tolerate relatively high 
latencies, so the area costs may be tolerable.

● Doesn’t interfere with memory model
● Existing strategies can be used to make the NPU work in a realistic 

environment with context switches and interrupts, though these may 
harm performance

● Theoretically one could use the NPU as a small NN accelerator if one is 
already running a neural network. 



Pros and Cons

Pros
● Can dramatically reduce number of executed instructions, as well as 

runtime and energy.
● Expected error is often low, and many application areas can deal with 

impressicion
Cons
● Can only get benefit if application area tolerates error, if functions can 

be approximated well, and if function is actually used enough/long 
enough to justify NPU envocation

● Programmer must annotate code and provide training examples


