Approximate Computing

Nikolai Lenney jlenney
Charles Li cli4
18-742 S20

Load Value Approximation

Background

e Value Locality
o Reuse of common values
o Runtime constants and redundant real-world input data

e Load Value Prediction
o Onload, predict the value that is loaded

m Skip fetch on next level cache/main memory and provide prediction
e Save on energy and latency

m Only works if exact match

m Rollback speculative instructions on mismatch
® Energy inefficient due to large buffers for rollback
® Speed of rollback impacts performance

m Floating point can be very difficult to predict correctly
e High number of mantissa bits can lead to slightly incorrect values
e 1.000v 1.001 is a mispredict but is effectively the same value

Background

e Exact value comparisons lead to unnecessary rollbacks
o Instead trade-off value integrity/accuracy for performance and energy
o Load value approximator used to estimate memory values
e Many applications can tolerate inexactness
Image processing
Augmented Reality
Data mining
Robotics
Speech recognition
e Confidence window
o How close is close enough? +10%2 +5%%¢
o Larger window gives better coverage
o Performance-error tradeoff

O O O O O

E— T —

Load Value Approximation

Load X misses in L1 Cache
Load Value Approximator
generates X_Approx

Processor pretends X_Approx
was returned on a “hit”

Main memory/next level cache
fetches block with X_Actual
(sometimes)

X_Actual frains Load Value
Approximator

) Gen. X_Approx (4) Train

Load Value
Approximator

Processor
|enpy X 399 | q¢

Private Data

£
=
3
v
3
&
=
c
o
o

Alowa ule|a

[3a

(1)Load Miss X

: Load value approximation overview.

Load Value Approximator

_approximator table

o Global History Buffer (GHB)

global history buffer

o |F|F% qCLjJeule storing most recently p(srecton (gTaaaa] .

oaded values P
o Approximator Table Entry ---

o Accessed using hash on GHB values
and Instruction Address Figure 3: Approximator design.

o Tag

o Saturating confidence counter

o Degree counter

o Local History Buffer (LHB)

.,,ﬁ‘

Approximator Table
e Saturating Confidence Counter ————eeduamtle
o Signed Counter L (b NGty il
o Use approximation if counter is " s - e
positive {[aa] "

o Increment/decrement based on
accuracy of approximation
e Degree Counter
o Number of times to reuse prediction
before updating our table
o Affects ratio of fetches to cache
misses
e Local History Buffer (LHB)
o Load values based on the globadl
history buffer pattern & PC

Figure 3: Approximator design.

Application

e Use ISA extensions to support load value approximation
Programmers annotate code

e Do not use approximation for

o Control Flow
m Can cause incorrect behavior
m X == 42 approximation is bad

o Divide-by-Zero
m Datain denominator could be approximated as 0

o Memory Addresses
m Canread from/write to incorrect memory addresses
m “Catastrophic results”

Application

e Do use approximation for the Common Case
o Expensive loops/functions
o Corner cases likely not going to add much value
o Programmer must profile their own code
m Find accesses where cache misses occur
m Find places where approximate data is usable

e Likely only in small regions of code since approximate in one context does not
imply approximate in all contexts

,ﬁ‘

Evaluation Tactics

PY Me‘l‘rlcs Benchmark L1 MPKI | Instruction count variation |
o Misses-per-kilo-instructions (MPKI) & L
o Blocks fetched (L1 only) -anne: 1250 i
o Qutput Error e
e Design space exploratfion swaptions || 492E-05 0.00%
GHB size R nat B
Confidence threshold Table I: Precise L1 MPKI and variation in dynamic instruc-

tion count when employing load value approximation.

Value Delay
Approximation Degree

O O O O

e GHB Size

Design Space Exploration

o Smaller GHB tends tfo have larger output error
o Smaller GHB tends to have fewer MPKI

o Simple, low-overhead approximators work well

BLVP-GHB-0 ELVP-GHB-1 @LVP-GHB-2 0OLVP-GHB-4
WLVA-GHB-0 @LVA-GHB-1 @LVA-GHB-2 @©LVA-GHB-4

normalized MPKI

Figure 4: LVA vs. an idealized LVP for different GHB sizes.

BGHB-0 mGHB-1 mMGHB-2 OGHB-4

™
<
&

Figure 5: Output error of LVA for different GHB sizes. Note
the near zero error for swaptions and x264.

Design Space Exploration

e Confidence Window
o Larger window typically means more error
o Larger window typically means fewer MPKI

e Integers are better for approximation than floats

MO0% (ideal LVP) M5% M@10% [120% Oinfinite B5% @10% D20% Oinfinite

(a) MPKL (b) Output Error.

Design Space Exploration

e Value Delay
o LVA s highly robust with regards to value delay
o No impact on performance since confidence is not changed
o No impact on error due to lack of inter-dependence between data

@delay-4 M@delay-8 Odelay-16 [Odelay-32
Bdelay-4 Mdelay-8 Odelay-16 Odelay-32

(a) MPKL (b) Output Error.

normalized MPKI

Design Space Exploration

e Approximation Degree
o More prefetches lowers MPKI but increases overall fetches
o Higher approximation degree increases output error due to less training

Mprefetch-2 @prefetch-4 @prefetch-8 O prefetch-16
Wapprox-0 Mapprox-2 [@approx-4 Dapprox-8 Oapprox-16
Mprefetch-2 @prefetch-4 @prefetch-8 Oprefetch-16 Wapprox-2 ® approx-4 @ approx-8 D approx-16 PP PP PP pp PP

W approx-2 Bapprox-4 Bapprox-8 BDapprox-16

normalized fetches

< Gl
P, o
& R
Q'
& o
Q

Figure 9: LVA output error with different approximation

(a) MPKI. (b) Number of Fetches. degrees.

Results

Gives realistic value delay (~1 as opposed to presumed 4)
Improve performance by an average of 8.5%

Reduce L1 miss latency by 41% on average

Reduce EDP by up to ~64% depending on approximation degree
Energy savings ~7-12% depending on approximation degree

Bapprox-0 M@approx-2 Dapprox-4 [Oapprox-8 [Oapprox-16 Wapprox-0 M@approx-2 @approx-4 DOapprox-8 Oapprox-16

(a) Speedup.

(b) Energy Savings.

Discussion

e Overhead introduced by approximator table is ~18KB (64bit) or
~10KB(32bit)

e No approximation of application data leads to small GHB being optimal

e Approximator can use fewer mantissa bits for floating point values to
improve hashing

e Memory consistency can be problematic, should not use LVA for
applications with a need for memory consistency

Pros and Cons

e Pros
o Provides for good trade-off in accuracy and energy, especially since

accuracy is not needed all the time
o Very simple design to add to a basic pipeline, with minimal ISA extensions

(seems to only need to identify approximable loads)
o Clearly identifies when this is usable and when it is not

e Cons

o Has a very small test set and leaves many optimizations for future work
o Can still have significant inaccuracy (see Ferret benchmark)

Neural Acceleration for General-Purpose
Approximate Programs

Background

Many applications are highly error tolerant, and can be approximated
o Image processing, Augmented Reality, Data mining, Robotics, Speech
recognition
Neural Networks are highly effective at finding patterns in input data
and correlating these to output values
o Recall that running a Neural Network involves a series of matrix/vector
operations and nonlinear function:s.
If we can approximate memory lookups, arithmetic, simple control flow,
why not try to approximate entire sections of code?
Many functions are used frequently and take a long time/a lot of
energy to run, but are also very predictable with a neural network

Code Region Criteria

Hot Code
o Want to focus on regions of code that are frequently executed and that
take up a large portion of a program’s total runtime
o Regions that are too small may suffer from overheads
Approximability
o Programs needs to be able to tolerate imprecision
o Translating a region to a NN is the compiler’s job, not the programmers
Well-Defined Inputs & Outputs
o Region must have a fixed number of inputs and outputs
Pure
o Must not access values from outside of the region, except for the inputs and
outputs

Parrot Overview

e Programmer identifies and marks functions to be approximated
Annotated code is run by a profiler to generate NN parameters

o Profiler gives new source code that replaces function calls with NN
instantiations

Programmer Processor NPU Config

: X i Instrumented
Imperative Annotated : Training | : ‘ Eame? : Code CPU Binary
Source —»| Source . —> —p Trainer —» eural ;
: Inputs | . Generator
Code Code : Network | :

(Topology &
Synaptic

Input Weights)
: Data :

Programming . Code Observation Training Code Generation . Execution

Compilation

N

ligelaligle

Programmer gives profiler a set of valid application inputs for training
Application collects function inputs/outputs as training/testing data
Uses a simple search through 30 possible NN topologies guided by
mean squared error

o 1 or 2hidden layers

o Each layer can have 2, 4, 8, 16, or 32 hidden units

o Choose topology with highest test accuracy and lower NPU latency, but

prioritizing accuracy

Generate a binary that instantiates the NPU with the determined
topology and weight

Could also use online training, but this would incur high overheads at
runtime.

Neural Processing Unit is tightly

coupled with out of order pipeline.

ISA includes 4 instructions for
interfacing with NPU
o engq.c %r: writes a value to config
FIFO
o dec.c %r:reads a value from
config FIFO
o enq.d %r: writes a value to input
FIFO
o deq.d %r: reads a value from
output FIFO
NPU supports speculative data
reads and writes
Can be made to work with
interrupts and context switches

Non-speculative He

‘ %peculative Head

NPU Overview

e NPUisrun by a stafic schedule Confg FFQ ___ Schoduing e
given by the configuration LT ““““
e The scheduler takes the following K==
steps for each layer: = || s
Assign each neuron to a PE T

O O O O

Assign order of multiply add ops. Processing |LIL| Processing
Assign order to outputs of layer "
Produce a bus schedule

according to the assigned order Ji¥amzs
of ops.

Processing |lll | Processing
Engine _H_ Engine

(a) 8-PE NPU (b) Single processing engine

inversek2j kinematics for

JPEG encoding

D ti T Evaluati
escriptio e
ption yp Input Set

2048 Random
Floating Point
Numbers

10000 (x,y) Random
Coordinates

10000 Random Pairs
of 3D Triangle
Coordinates
220x200-Pixel Color
Image

220x200-Pixel Color
Image

220x200-Pixel Color
Image

of Function # of

Training
Input Set

32768 Random
Floating Point
Numbers

10000 (x,y) Random
Coordinates

100000 Random
Pairs of 3D Triangle
Coordinates

Three 512x512-Pixel
Color Images

50000 Pairs of
Random (r, g, b)
Values

One 512x512-Pixel
Color Image

Neural Network

1->4->4->2 0.00002

2->8->2 0.00563

18->32->8->2 0.00530 "

64 -> 16 -> 64 0.00890

6->8->4->1 0.00169

9->8->1 0.00234

Average
Relative 7.22%
Error

Average
Relative 7.50%
Error

Miss
ate

Image
Diff
Image
Diff

Image
Diff

Most applications have close to
or well over 50% of their inputs
hitting 5% error or less

Every application has over 80%
of their inputs hitting 10% error or
less

NN error will likely be in tolerable
error range for many
applications

Error CDF

pog fft

000 inversek2j
++ jmeint
AAA jpeg
XXx kmeans
VYVy sobel

Percentage of Output Elements

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Error

Figure 6: Cumulative distribution function (CDF) plot of the applica-
tions’ output error. A point (x, y) indicates that y fraction of
the output elements see error less than or equal to x.

NPU Speedup vs Software Slowdown

Running a neural network in software to approximate something else in
software is not really an option, and would likely only work well for a
very long running region of code that could be approximated by a
relatively small NN.

11.1 1538

Il Core + NPU
Core + Ideal NPU

3.4

Application Speedup
Application Slowdown

fft inversek2j jmeint ipeg kmeans sobel geomean

inversek2j jmeint ipeg kmeans sobel geomean

(a) Total application speedup with 8-PE NPU

Figure 9: Slowdown with software neural network execution.

-
o
<]

°
3
o

Normalized # of Dynamic Instructions
o (=]
N (%))
o o

0

Number of Instructions vs Energy vs Speedup

e Energy savings tightly correlated to speedup and inversely correlated to
number of instructions

e meint has the highest proportion of NPU instructions, and the largest
discrepancy in realistic/idealized NPU performance

e Executing fewer instructions does not imply speedup

211 252 111 158
Il Core + NPU : Il Core + NPU
Core + Ideal NPU Core + Ideal NPU

3.9

Application Speedup

Application Energy Reduction
o - N w S (6] ()] ~

k2j jmeint jpeg kmeans sobel geomean

Figure 7: Number of dynamic instructions after Parrot transformation i k2j jmeint jpeg kmeans so bel geomean i k2j jmeint jpeg kmeans sobel geomean
normalized to the original program.

(b) Total application energy saving with 8-PE NPU (a) Total application speedup with 8-PE NPU

— L —
NPU Latency

e NPU still improves performance B B e B G
even if it takes longer to access 11169

o Could be useful if architecting an
NPU very tightly with a core is
impractical

e Could make NPU access via

memory mapped FIFOs feasible ']IIL]GIIWOS O M

fft inversek2j jmeint ipeg kmeans sobel geomean

8 Cycles 16 Cycles

w

=Y

w

N

o
3
©
2
(7]
c
2
®
o
a
[
<

-

Figure 10: Sensitivity of the application’s speedup to NPU communi-
cation latency. Each bar shows the speedup if communi-
cating with the NPU takes n cycles.

Neural Nets have a lot of inherent
parallelism, so naturally more PEs
means more speedup

Increasing PEs can give speedup,
but the amount of speedup per
leap decreases, and per added
PE is much smaller

Adding a PE is not free - Must pay
for it in energy, area, complexity

e O —
Number of NPU PEs

50%
40%
30%
20%

10%

=
]
O
o
5
B
]
o
Q
7
c
@
o
=
©
S
L
7]
£
o
]
(&)

0%
1->2 PEs 2->4 PEs 4->8 PEs 8->16 PEs 16->32 PEs

Figure 11: Performance gain per doubling the number of PEs.

— T

Discussion

e Not super cheap (~85KB) but most of this comes from 8 8KB sigmoid
LUTs, which can presumably be shared, bringing the total down ideally
to about ~28KB. We saw that this can also be tolerate relatively high
latencies, so the area costs may be tolerable.

Doesn’t interfere with memory model

o Existing strategies can be used to make the NPU work in a realistfic
environment with context switches and interrupts, though these may
harm performance

e Theoretically one could use the NPU as a small NN accelerator if one is
already running a neural network.

Pros and Cons

Pros

e Can dramatically reduce number of executed instructions, as well as
runtime and energy.

e Expected erroris often low, and many application areas can deal with
impressicion

Cons

e Can only get benefit if application area tolerates error, if functions can
be approximated well, and if function is actually used enough/long
enough to justify NPU envocation

e Programmer must annotate code and provide training examples

