
LightSpeed: A Many-core Scheduling Algorithm

Karl Naden
kbn@cs.cmu.edu

Wolfgang Richter
wolf@cs.cmu.edu

Ekaterina Taralova
etaralova@cs.cmu.edu

September 27, 2010

1 Introduction

The world is heading towards many-core architectures due to
many well-known and important present-day research issues:
power consumption, clock speed limits, critical path lengths,
etc. While existing many-core machines have traditionally
been handled in the same way as SMPs, this magnitude of
parallelism introduces several fundamental challenges at the
architectural level which translates to novel challenges in the
design of the software stack for these platforms.

Many-core architectures cause new problems: shared
caches, shared memory controllers, shared communication
paths—communication between computation now—and other
shared resource contentions.

Current many-core scheduling research literature and op-
erating system development have not provided a satisfactory
solution to the scheduling problem. Partly because the hard-
ware is not yet widespread—no need to implement or solve a
non-existant problem—and partly because many of the issues
are hard to solve—especially in the general case.

2 Problem Statement

Many-core scheduling presents a non-trivial challenge to mod-
ern schedulers within operating systems which none have
solved satisfactorily. Given a set of threads the goal of a
scheduler is to minimize the makespan—the time it takes to
complete all threads. Figure 1 shows current experimental re-
sults from cutting edge research literature using several sim-
ple scheduling algorithms. Embarrasingly parallel workloads
imply linear speedups—linear reduction in makespan—when
increasing the number of computational units. However, the
research literature shows that achieving linear speedup with
real-world architectures is hard, and achieving optimal linear
speedup is NP-Complete [1].

For example the only algorithm discussed in [2] that gives a
linear speedup is the nosteal algorithm—cores have separate
queues and are not allowed to steal work from other cores.
nosteal is the simplest algorithm in the scenario of a single
queue per core, yet it has a clear Achille’s heel—the slowest
core defines the potential speedup. The other two algorithms,
3steal—allow stealing from the 3 closest cores’ queues—and
steal—allow stealing from any core’s queue—show a sub-
linear dropoff in speedup.

We intend to rigorously survey the research literature on
many-core scheduling, explore alternative scheduling algo-
rithms and heuristics, and improve upon previous work fo-
cusing on embarrasingly parallel workloads on homogeneous

Figure 6 shows the speedup seen for the RMS workloads
on our many core platform. Once again, these experiments
demonstrate that McRT can scale almost linearly up to 64
HW threads. We plot the number of cores on the x-axis
with each core containing 4 HW threads. We compute the
speedup with respect to the execution time on a single core
(4 threads). Again, the serial version of the workloads had
essentially the same execution time as the single-threaded
parallel version.

0

2

4

6

8

10

12

14

1 core 2 core 4 core 8 core 16 core

Number of cores (4 threads per core)

S
pe

ed
up

 o
ve

r
a

si
ng

le
 c

or
e

(4
th

re
ad

s)

1queue/core stealing 1queue/core no stealing

1 queue (queued locks) 1 queue (unqueued locks)

Figure 7: Effect of different scheduling and locking policies

3.2.3 Configurability
This section demonstrates the need for configurability in a
large scale CMP runtime. For the sake of discussion, this
section primarily concentrates on experiences with XviD.
Figure 7 shows the performance of XviD with different
McRT policies. The figure compares the performance with
a single scheduling queue using a TTS (test & test & set)
lock, a single scheduling queue using a ticket lock, using 1
scheduling queue/core (ticket lock) without any work
stealing, and using 1 scheduling queue/core (ticket lock)
with work stealing. There is no perceptible difference
between the policies till 16 HW threads (4 cores). At 32
HW threads, the distributed scheduling queue (1
queue/core) without work stealing performs the worst. The
distributed queue reduces contention; however the absence
of work stealing hurts load balance. By definition, a single
scheduling queue provides perfect load balance. At 32 HW
threads, the load imbalance hurts more than the contention.
On the other hand, at 64 HW threads, contention becomes
more pronounced, and mitigates the effect of load
imbalance: thus the distributed scheduling queue performs
as well as the single queue. The effect of contention is
highlighted further by the fact that the queued locking
(ticket lock) starts to help compared to a TTS lock. Not
surprisingly, the distributed queue with work stealing
provides the best result – the load imbalance is removed
due to the stealing, and the contention is reduced since the
queues are distributed.

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Number of cores (4 threads per core)

S
pe

ed
up

o
ve

r
a

si
ng

le
 c

or
e

 (4
th

re
ad

s)

perfect

nosteal

3steal

steal

Figure 8: Effect of scheduling on XviD speedup

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Thread Number

R
el

at
iv

e
P

ro
ce

ss
or

U
til

iz
at

io
n

XviD

Equake

Figure 9: Per thread load balancing in Xvid and Equake

Based on this result, it would appear as though work-
stealing is the optimal policy for XviD. Figure 8 shows the
XviD speedup as we increase the number of HW threads to
128. At 128 HW threads, the performance of work stealing
is worse than that of a no stealing configuration; upon
inspection it turned out that work stealing introduces an
overhead that grows more than linearly with the number of
HW threads. At 128 threads, the overhead of stealing hurts
more than the load imbalance. To address this, we added a
restricted form of stealing where a processor is allowed to
steal work only from the queues of its neighbors (denoted
as “3steal” in the graph). The restricted stealing performs
better than the unrestricted stealing at all data points, but
even that does not perform as well as with no stealing in a
128 HW thread configuration. This shows that a runtime
system must be configurable to enable different policies to
optimize application performance.
Given an image frame, the amount of computation required
for encoding different parts of it can vary significantly. For
example, the parts of the frame comprising the background
take significantly less computation since they remain static
between frames. On the other hand, the parts of the frame
containing objects in motion require more computation.
Other application domains do not exhibit such imbalance.
Figure 9 compares the load balance between XviD and

80

Figure 1: XviD speedup varying number of cores. From: [2]

many-core systems. Figure 1 shows a clear gap where other
unstudied algorithms could exist—where LightSpeed should
exist. In fact, the authors of [2] have already attempted to
improve upon their existing schedulers in [3].

3 Previous Work

Algorithms for scheduling threads in a many-core setting
have been proposed ranging from the simplistic, though in
some cases effective, algorithms defined in Saha et al’s [2]
Many Core Run Time (McRT), to the arbitrarily complex
search algorithms surveyed in [1] or the Heterogeneity-Aware
Signature-Supported (HASS) algorithm [4]. We are aware of
one PhD dissertation on the topic of scheduling on chip mul-
tithreaded processors [5], and this seminar paper [6] provides
a very gentle introduction to the problem and the research
literature.

Algorithm design also hinges on whether or not the assumed
underlying architecture is homogeneous or heterogeneous—
further complicating optimal schedule assignment. Several
recent attempts have been made to create scheduling algo-
rithms in the heterogeneous case such as HASS [4], or the
Asymmetric Multiprocessor Scheduler (AMPS) [7]. Other
proposed algorithms target generality or fairness such as the
fair Distributed Weighted Round-Robin (DWRR) [8], and
thread criticality for performance, power and resource man-
agement [9]. There have even been attempts at adapting
MapReduce [10]—a potential workload for LightSpeed—to
the many-core setting [11, 12]. These algorithms provide in-
sight into the techniques and heuristics upon which Light-
Speed must extend.

Other domains of computer science research, such as net-
working, benefit from many-core scheduling research as is evi-

1

mailto:kbn@cs.cmu.edu
mailto:wolf@cs.cmu.edu
mailto:etaralova@cs.cmu.edu

denced by the attempt of Mallik et al. [13] to create a schedul-
ing algorithm using statistical analysis in network processors.
Their use of statistical techniques encourages a line of research
that could lead to using machine learning within scheduling
algorithms for many-core architectures. Our work may ex-
plore this potential synergy between machine learning and
thread schedulers in the many-core setting.

4 Algorithm Exploration, Experi-
mental Methods and Plan

We will implement thread scheduling algorithms explored
in prior works on a simulator for many-core systems in a
MapReduce-like application for highly parallelizable jobs. We
will evaluate weaknesses and strengths of these algorithms
and propose modifications to increase performance when the
number of cores in the system increases.

We will explore scheduling algorithms like the ones used
in the McRT system [2], which is a software prototype of
an integrated language runtime that was designed to explore
configurations of the software stack for enabling performance
and scalability on large scale many-core platforms.

We will use a simulator for the Intel Single-chip Cloud Com-
puter, (SCC), or similar. The SCC is a research microproces-
sor containing the most Intel Architecture cores ever inte-
grated on a silicon CPU chip: 48 cores. It incorporates tech-
nologies intended to scale multi-core processors to 100 cores
and beyond, such as an on-chip network, advanced power
management technologies and support for message-passing.

The potential workloads and benchmarks, in addition to the
standard ones used in prior work [10] and [14], will include
using existing implementations of MapReduce for various ap-
plications that lend themselves to high parallelization.

By the Milestone 1 deadline, October 13th, we will:

• Explore simulation tools. Ideally, we will try to obtain
a simulator for the Intel SCC 48-core research architec-
ture [15], or similar (for example the simulator of [16] for
multicore simulation). We will have a simulator chosen
and running.

• Research existing implementations of libraries for
MapReduce-like [10] functionality. For instance,
Phoenix [11, 12], developed at Stanford, is a poten-
tially suitable implementation of MapReduce for shared-
memory systems.

• Review literature on scheduling jobs in many-core sys-
tems - Saha et al. [2], Jin et al. [1], Mallik et al. [13],
Rajagopalan et al. [3], and other research that we come
across.

By the Milestone 2 deadline, November 1st, we will:

• Reproduce baseline cases or prior results

• Evaluate performance of existing scheduling algorithms

• Determine weaknesses in existing algorithms, propose
and implement improvements

• Provide results for some of the improved algorithms and
continue evaluation of results

References
[1] S. Jin, G. Schiavone, and D. Turgut, “A performance study

of multiprocessor task scheduling algorithms,” The Journal of
Supercomputing, vol. 43, pp. 77–97, 2008, 10.1007/s11227-007-0139-z.
[Online]. Available: http://dx.doi.org/10.1007/s11227-007-0139-z

[2] B. Saha, A.-R. Adl-Tabatabai, A. Ghuloum, M. Rajagopalan, R. L.
Hudson, L. Petersen, V. Menon, B. Murphy, T. Shpeisman, E. Sprangle,
A. Rohillah, D. Carmean, and J. Fang, “Enabling scalability and
performance in a large scale cmp environment,” SIGOPS Oper.
Syst. Rev., vol. 41, no. 3, pp. 73–86, 2007. [Online]. Available:
http://doi.acm.org/10.1145/1272998.1273006

[3] M. Rajagopalan, B. T. Lewis, and T. A. Anderson, “Thread schedul-
ing for multi-core platforms,” in HOTOS’07: Proceedings of the 11th
USENIX workshop on Hot topics in operating systems. Berkeley, CA,
USA: USENIX Association, 2007, pp. 1–6.

[4] D. Shelepov, S. Alcaide, J. Carlos, S. Jeffery, A. Fedorova,
N. Perez, Z. F. Huang, S. Blagodurov, and V. Kumar, “Hass:
a scheduler for heterogeneous multicore systems,” SIGOPS Oper.
Syst. Rev., vol. 43, no. 2, pp. 66–75, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1531793.1531804

[5] A. Fedorova, “Operating system scheduling for chip multithreaded pro-
cessors,” Ph.D. dissertation, Cambridge, MA, USA, 2006, adviser-
Margo I. Seltzer.

[6] T. Fahringer, “Optimisation: Operating system
scheduling on multi-core architectures,” Website,
August 2008, http://www.scribd.com/doc/4838281/
Operating-System-Scheduling-on-multicore-architectures.

[7] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn, “Efficient
operating system scheduling for performance-asymmetric multi-core
architectures,” in SC ’07: Proceedings of the 2007 ACM/IEEE
conference on Supercomputing. New York, NY, USA: ACM, 2007, pp.
1–11. [Online]. Available: http://doi.acm.org/10.1145/1362622.1362694

[8] T. Li, D. Baumberger, and S. Hahn, “Efficient and scalable
multiprocessor fair scheduling using distributed weighted round-robin,”
SIGPLAN Not., vol. 44, no. 4, pp. 65–74, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1594835.1504188

[9] A. Bhattacharjee and M. Martonosi, “Thread criticality predictors
for dynamic performance, power, and resource management in
chip multiprocessors,” in ISCA ’09: Proceedings of the 36th
annual international symposium on Computer architecture. New
York, NY, USA: ACM, 2009, pp. 290–301. [Online]. Available:
http://doi.acm.org/10.1145/1555754.1555792

[10] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

[11] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis, “Evaluating mapreduce for multi-core and multiprocessor
systems,” in HPCA ’07: Proceedings of the 2007 IEEE 13th Inter-
national Symposium on High Performance Computer Architecture.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 13–24.
[Online]. Available: http://dx.doi.org/10.1109/HPCA.2007.346181

[12] R. Yoo, A. Romano, and C. Kozyrakis, “Phoenix rebirth: Scalable
mapreduce on a large-scale shared-memory system,” October 2009, pp.
198 –207.

[13] A. Mallik, Y. Zhang, and G. Memik, “Automated task distribution
in multicore network processors using statistical analysis,” in
ANCS ’07: Proceedings of the 3rd ACM/IEEE Symposium on
Architecture for networking and communications systems. New
York, NY, USA: ACM, 2007, pp. 67–76. [Online]. Available:
http://doi.acm.org/10.1145/1323548.1323563

[14] L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satyanarayanan,
G. R. Ganger, E. Riedel, and A. Ailamaki, “Diamond: A storage archi-
tecture for early discard in interactive search,” in FAST ’04: Proceed-
ings of the 3rd USENIX Conference on File and Storage Technologies.
Berkeley, CA, USA: USENIX Association, 2004, pp. 73–86.

[15] Intel Corporation, “The scc platform overview,” Website, Septem-
ber 2010, http://communities.intel.com/servlet/JiveServlet/
downloadBody/5512-102-1-8627/SCC Platform Overview 90110.pdf.

[16] H. Zeng, M. Yourst, K. Ghose, and D. Ponomarev, “Mptlsim: a
cycle-accurate, full-system simulator for x86-64 multicore architectures
with coherent caches,” SIGARCH Comput. Archit. News, vol. 37,
no. 2, pp. 2–9, 2009. [Online]. Available: http://doi.acm.org/10.1145/
1577129.1577132

2

http://dx.doi.org/10.1007/s11227-007-0139-z
http://doi.acm.org/10.1145/1272998.1273006
http://doi.acm.org/10.1145/1531793.1531804
http://www.scribd.com/doc/4838281/Operating-System-Scheduli ng-on-multicore-architectures
http://www.scribd.com/doc/4838281/Operating-System-Scheduli ng-on-multicore-architectures
http://doi.acm.org/10.1145/1362622.1362694
http://doi.acm.org/10.1145/1594835.1504188
http://doi.acm.org/10.1145/1555754.1555792
http://doi.acm.org/10.1145/1327452.1327492
http://dx.doi.org/10.1109/HPCA.2007.346181
http://doi.acm.org/10.1145/1323548.1323563
http://communities.intel.com/servlet/JiveServlet/downl oadBody/5512-102-1-8627/SCC_Platform_Overview_90110.pdf
http://communities.intel.com/servlet/JiveServlet/downl oadBody/5512-102-1-8627/SCC_Platform_Overview_90110.pdf
http://doi.acm.org/10.1145/1577129.1577132
http://doi.acm.org/10.1145/1577129.1577132

	Introduction
	Problem Statement
	Previous Work
	Algorithm Exploration, Experimental Methods and Plan

