CARP: Compression Aware Replacement Policies

() Electrical & Computer
ENGINEERING

Tyler Huberty, Rui Cai, Gennady Pekhimenko

Carnegie Mellon

*Traditional cache replacement and insertion policies mainly
focus on block reuse

*Recent literature has proposed cache compression, a
promising technique to increase on-chip cache capacity
[Pekhimenko et. al., PACT'12]

*In a compressed cache, block size is an additional dimension
*Observation: The block most likely to be reused soon may no
longer be the best block to keep in the cache

*Key Idea: Use compressed block size in making cache
replacement decisions

*Solution: We propose three mechanisms: Min-LRU, Min-
Eviction, and Global Min-Eviction

Problem: How can we maximize cache performance utilizing
both block reuse and size?

* No existing policy considers the many varied block sizes and potentials for
reuse in making a replacement decision

We propose compression aware replacement policies

64
W 56-63
W 48-55
W 40-47
W 32-39
W 24-31
W 16-23
M 38-15
&

Example

Insert 4 x

LRU

Set O

100% -

90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% -
10% -
0% -

Percentage of Cache Blocks in Set

Set 0 4x & @ ‘\ N
gt ¢ ¢ ,ba,&’b o %&%@s@ S &
O Q
Shortcoming of Traditional LRU Benchmark

*LRU evicts more than necessary,
underutilizing cache capacity

Distribution of Compressed Block Sizes (in bytes):
potentially useful to replacement decision

Mechanisms

Insert Ax Insert 2X Assigning Values to Block
*Value function: f(block reuse, block size)
LRU Set 0 {7()%’2)(} {5()%,)(} {5()%,)(} Before Eviction *Monotonically increasing with respect to
block reuse
Set O . *Monotonically decreasing with respect to
Before Eviction | seto 35 50 10 Assign Values block size

Marking Set 0

*Plane (see figure) achieves these goals, but
is complex to implement in hardware

4x

Set O Replacement

Set O

Sort
*Reuse/Size (see figure) approximates plane
and is less complex
2X Replacement *Probability of reuse predictor: RRIP [Jaleel

et. al., ISCA’10] derivative

*Policy 1: Min-LRU

Insight: LRU evicts more blocks than
necessary

Key ldea: Evict only the minimum number of
LRU blocks

*Policy 2: Min-Eviction

Insight: Keeping multiple compressible blocks
with less reuse may be more valuable than a
single uncompressible block of higher reuse

Key Idea: Assign a value based on reuse and
compressibility to all blocks and on replacement,
evict the set of blocks with the least value

3D Plane Reuse/Size

*Min-LRU: 1% increase in IPC over LRU
*Min-Eviction: 3% increase in IPC over LRU
°|PC increase due to MPKI decrease

1.28

W LRU

1.23 B Min-LRU

= RRIP

=
[T
(0¢]

B Min-Eviction

=
[N
w

=
o
@

Normalized IPC
[
o
o0

o
©
00

0.93 -

0.88 -

Benchmark
2MB cache size, Base-Delta-Immediate compression scheme, 4Ghz x86 in-order, 1B instructions

Conclusions

Min-Eviction: a novel replacement policy for the

compressed cache
e Qutperforms current state-of-the-art replacement policies

* First to consider both compressed block size and probability of reuse
* Simple to implement

Further Work:

* Global Min-Eviction: a global replacement policy for the compressed
decoupled variable way cache that applies similar insight as Min-
Eviction

* Fairness in compressed cache replacement

* Multi-core evaluation and analysis (see paper): 4% increase in
normalized weighted speedup over LRU in heterogeneous workloads




