
CARP: Compression Aware Replacement Policies 

Tyler Huberty, Rui Cai, Gennady Pekhimenko 

Overview Motivation 

Mechanisms 

Results Conclusions 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

P
e

rc
e

n
ta

ge
 o

f 
C

ac
h

e
 B

lo
ck

s 
in

 S
et

 

Benchmark 

64 

56-63 

48-55 

40-47 

32-39 

24-31 

16-23 

8-15 

0-7 

•Traditional cache replacement and insertion policies mainly 
focus on block reuse 
•Recent literature has proposed cache compression, a 
promising technique to increase on-chip cache capacity 
[Pekhimenko et. al., PACT’12] 
•In a compressed cache, block size is an additional dimension 
•Observation: The block most likely to be reused soon may no 
longer be the best block to keep in the cache 
•Key Idea: Use compressed block size in making cache 
replacement decisions 
•Solution: We propose three mechanisms: Min-LRU, Min-
Eviction, and Global Min-Eviction 

Problem: How can we maximize cache performance utilizing 
both block reuse and size? 
• No existing policy considers the many varied block sizes and potentials for 

reuse in making a replacement decision 

We propose compression aware replacement policies 

 

Distribution of Compressed Block Sizes (in bytes): 
potentially useful to replacement decision 

Shortcoming of Traditional LRU 
•LRU evicts more than necessary, 
underutilizing cache capacity 

 
 
 

0.88 

0.93 

0.98 

1.03 

1.08 

1.13 

1.18 

1.23 

1.28 

N
o

rm
al

iz
e

d
 IP

C
 

Benchmark 

LRU 

Min-LRU 

RRIP 

Min-Eviction 

•Min-LRU: 1% increase in IPC over LRU 
•Min-Eviction: 3% increase in IPC over LRU 
•IPC increase due to MPKI decrease 

4x x x x Set 0 

4x Insert 

LRU 

4x 

Set 0 

Set 0 4x 

{70%,2x} Set 0 

Insert 

{50%,x} {50%,x} 

35 Set 0 50 50 

2x 

35 Set 0 50 50 

Set 0 x x 2x 

•Policy 2: Min-Eviction 
Insight: Keeping multiple compressible blocks 
with less reuse may be more valuable than a 
single uncompressible block of higher reuse 
Key Idea: Assign a value based on reuse and 
compressibility to all blocks and on replacement, 
evict the set of blocks with the least value 

 
 
 

4x x x x Set 0 

4x Insert 

LRU 

4x 

Set 0 

Set 0 4x 

4x x x x 

x x x 

•Policy 1: Min-LRU 
Insight: LRU evicts more blocks than 
necessary 
Key Idea: Evict only the minimum number of 
LRU blocks 

 
 
 

2MB cache size, Base-Delta-Immediate compression scheme, 4Ghz x86 in-order, 1B instructions 

Min-Eviction: a novel replacement policy for the 
compressed cache 
• Outperforms current state-of-the-art replacement policies 
• First to consider both compressed block size and probability of reuse 
• Simple to implement 
 

Further Work: 
• Global Min-Eviction: a global replacement policy for the compressed 
decoupled variable way cache that applies similar insight as Min-
Eviction 
• Fairness in compressed cache replacement 
• Multi-core evaluation and analysis (see paper): 4% increase in 
normalized weighted speedup over LRU in heterogeneous workloads 

Before Eviction 

Marking 

Replacement 

Before Eviction 

Assign Values 

Sort 

Replacement 

Assigning Values to Block 
•Value function: f(block reuse, block size) 
•Monotonically  increasing with respect to 
block reuse 
•Monotonically decreasing with respect to 
block size 
•Plane (see figure) achieves these goals, but 
is complex to implement in hardware 
•Reuse/Size (see figure) approximates plane 
and is less complex 
•Probability of reuse predictor: RRIP [Jaleel 
et. al., ISCA’10] derivative 

 
 
 

Example 

3D Plane Reuse/Size 


