High-Bandwidth, Energy-efficient DRAM Architectures for GPU systems

CPUs, Not so Much

CPUs, Not so Much

Why Do GPUs Demand so Much Bandwidth?

Lots of compute

24 Streaming Multiprocessors each w/ 128 execution units

Lots of threads

64 warps of 32 threads per SM

→ 49,152 threads executing simultaneously on 3072 execution units

NVIDIA Maxwell GM200

Why do GPUs Demand so Much Bandwidth?

Different Memory Hierarchies

Why do GPUs Demand so Much Bandwidth?

Radically Different Memory Hierarchies per Thread

Why do GPUs Demand so Much Bandwidth?

Radically Different Memory Hierarchies per Thread

Whole Different Ballgame

vs. typical CPU

25x More Bandwidth

Less sensitive to latency

LESS regular access patterns

More sensitive to tRRD/tFAW

I thought GPUs had regular/streaming accesses?

GPU warp = 32 Threads executed in SIMD manner

I thought GPUs had regular/streaming accesses?

CPU

Fewer threads, lower chance of bank conflicts

→ 4 banks per thread

GPU

Many different threads competing

NVIDIA Titan X: 1536 Warps

→ 0.06 banks per warp

6 channels

What does this mean for Energy?

Low Accesses per Activate

What does this mean for Energy?

Low Accesses per Activate

→ High Accesses per Activate workloads are typically simpler functions like large data copies

→ Many of the 1 Access/Activate workloads are are doing graph traversals of large graphs

What does this mean for Energy?

Want to reduce row overfetch

DRAM device typically has 1-2KB row

- we only need 160B on average

Wastes ~84-92% of the energy on activate/precharge of a DRAM bank

Multiple devices in parallel (like a DIMM) make this even worse

What does this mean for Performance?

Activate rate is a key

High-bandwidth I/O is nice, but...

Key aspect of performance is rate of activates

- low tRRD and tFAW
- high number of channels

Typical 2-channel, 2-rank DDR4 w/ tRRD_{eff}=5.25ns: 762 M ACT/sec

HBM2 4-stack, 64-channel (w/ pseudochannels) w/ tRRD_{eff}=4ns:

16 G ACT/sec

Small DRAM Atoms

DRAM "atom" is smallest indivisible access

Basically a function of bus-width and burst-length

GPUs extensively use compression of graphics surfaces

Efficiency of compression a function of minimum access size

Efficient partial coverage

What to GPUs need from DRAM?

High Bandwidth (w/ low access / activate)

Energy-efficient (largely because of high bandwidth)

Small minimum burst sizes (e.g. 16-32B)

Not necessarily concerned with:

Low-latency

Extremely large capacities

Lowest possible cost

One Approach: High-Speed Signaling

Start with a commodity DRAM core
Since GPUs don't need huge capacities, drop multi-rank support
Without multi-drop busses and sockets, push I/O data rates
Beef-up the DRAM core to keep up (reduce tRRD/tFAW if possible)

Basic approach behind GDDR DRAMs

GDDR5

GDDR5 signals at up to 8 Gbps

GDDR5X soon going to 10-12 Gbps

Lots of board challenges

I/O energy efficiency not so great

Challenges with High-speed Signaling

Limits on data rates with inexpensive board & package

High-data rates place demands on the DRAM core

- Cycle the DRAM core arrays faster
 And/Or
- Sub-partition pieces of the DRAM array

 And/Or
- Fetch more data from the array each time

Another Approach: In-package Integration

3D Stacking technologies enable many more I/Os

What if instead of faster, we go wider...

What is High-Bandwidth Memory (HBM)?

Memory standard designed for needs of future GPU and HPC systems:

Exploit very large number of signals available with die-stacking technologies for very high memory bandwidth

Reduce I/O energy costs

Enable higher fraction of peak bandwidth to be exploited by sophisticated memory controllers

Enable ECC/Resilience Features

JEDEC standard JESD235, adopted Oct 2013.

Initial work started in 2010

What is High-Bandwidth Memory (HBM)?

Enables systems with extremely high bandwidth requirements like future highperformance GPUs

HBM Overview

Each HBM stack provides 8 independent memory channels

These are completely independent memory interfaces

Independent clocks & timing

Independent commands

Independent memory arrays

In short, nothing one channel does affects another channel

HBM Overview - Bandwidth

```
Each channel provides a 128-bit data interface
     Data rate of 1 Gbps per signal (500 MHz DDR)
     HBM2 bumps this to 2 Gbps per signal (1 GHz DDR)
     16-32 GB/sec of bandwidth per channel
8 Channels per stack
     128-256 GB/sec of bandwidth per stack
For comparison:
     Highest-end GDDR5-based today (NVIDIA GeForce GTX 980Ti)
         384b wide GDDR5 (12 x32 devices) @ 7 Gbps = 336 GB/s
     AMD Fury X with 4 stacks of HBM
         Four stacks of HBM @ 1 Gbps = 512 GB/s
     Future possible GPU with 4 stacks of HBM2
         Four stacks of HBM2 @ 2 Gbps = 1 TB/s
```

HBM Overview - Bandwidth

```
Each channel provides a 128-bit data interface
    Data rate of 1 Gbps per signal (500)
    HBM2 bumps to
                        Chos per sig
    16-32 GB/sec of
                        At lower overall DRAM
                            system power -
For comparison
                                ~6 pJ/bit vs.
                          ~18 pJ/bit for GDDR5
                                                          1D/3
    AMD
    Future possible
                        1ch 4 stacks of HBM2
         Four stacks of HBM2 @ 2 Gbps = 1 TB/s
```

HBM Overview - Capacity

Per-channel capacities supported from 1-32 Gbit Stack capacity of 1 to 32GBytes

Nearer-term, at lower-end of range HBM: 4 high stack of 2Gb dies = 1GBytes/stack HBM2: 4 high stack of 8Gb dies = 4GBytes/stack

8 or 16 banks per channel 16 banks when > 4Gbit per channel (> 4GBytes/stack)

Not including optional additional ECC bits

A stack providing ECC storage may have 12.5% more bits

HBM Channel Overview

Each channel is similar to a standard DDR interface

Data interface is bi-directional

Still requires delay to "turn the bus around" between RD and WR Burst-length of 2 (32B per access)

Requires traditional command sequences

Activates required to open rows before read/write

Precharges required before another activate

Traditional dram timings still exist (tRC, tRRD, tRP, tFAW, etc.) - but are entirely per-channel

HBM Channel Summary

Function	# of µBumps	Notes
Data	128	DDR, bi-directional
Column Command/Addr.	8	DDR
Row Command/Addr.	6	DDR
Data Bus Inversion	16	1 for every 8 Data bits, bi-directional
Data Mask/Check Bits	16	1 for every 8 Data bits, bi-directional
Strobes	16	Differential RD & WR strobes for every 32 Data bits
Clock	2	Differential Clock
Clock Enable	1	Enable low-power mode
Total	193	

New: Split Command Interfaces

2 semi-independent command interfaces per channel

"Column Commands" - Read / Write

"Row Commands" - ACT / PRE / etc.

Key reasons to provide separate row command i/f:

100% column command bandwidth to saturate the data bus w/ BL=2

Simplifies memory controller

Better performance (issue ACT earlier or not delay RD/WR)

Still need to enforce usual ACT→RD/WR→PRE timings

New: Single-Bank Refresh

Current DRAMs require refresh operations

Refresh commands require all banks to be closed

~ 1 refresh command every few µsec

Can consume 5-10% of potential bandwidth

Increasing overheads with larger devices

Sophisticated DRAM controllers work hard to overlap ACT/PRE in one bank with traffic to other banks

Can manage the refresh similarly

Added "Refresh Single Bank" command

Like an ACT, but w/ internal per-bank row counter

Can be issued to any banks in any order

Memory controller responsible for ensuring all banks get enough refreshes each refresh period

New: RAS Support

HBM standard supports ECC

Optional: Not all stacks required to support it

ECC and non-ECC stacks use same interface

Key insight:

Per-byte data mask signals and ECC not simultaneously useful

Data Mask Signals can carry ECC data

- makes them bi-directional on HBM stacks that support ECC

Other HBM Features

HBM supports Temperature Compensated Self Refresh

Temperature dependent refresh rates with several temperature ranges (e.g. cool/standby, normal, extended, emergency)

Temperature sensor can be read by memory controller to adjust its refresh rates as well

DBIac Data Bus Inversion coding

Reduce number of simultaneously switching signals

No more than 4 of 9 (DQ[0..7], DBI) signals switch

DBI computation maintained across consecutive commands

HBM2 - The next step

Evolution of HBM

Doubles bandwidth of I/O channel

Requires doubling burst-length and DRAM atom

Break up channel into two pseudo-independent half-wide channels

Pseudochannels add bank-level parallelism

Prevent DRAM atom size from increasing

Reduce DRAM row overfetch by cutting effective row in half

High Bandwidth DRAM Energy Trends

Conclusion

GPUs place significant requirements on the DRAM

Ideal GPU DRAM provides

energy efficient

high-bandwidth

to small quantities of data

Stacked memories like HBM2 are good, but need new innovations to get to Exascale-class nodes

