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GPUs Demand High DRAM Bandwidth
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GPUs Demand High DRAM Bandwidth

2008: NVIDIA Tesla 

GT200

512-bits @ 2.2 Gbps
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GPUs Demand High DRAM Bandwidth

2010: NVIDIA Fermi

GF100

384-bits @ 3.7 Gbps
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GPUs Demand High DRAM Bandwidth

2013: NVIDIA Kepler

GK110

384-bits @ 6 Gbps
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GPUs Demand High DRAM Bandwidth

2013: NVIDIA Maxwell

GM200

384-bits @ 7 Gbps
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GPUs Demand High DRAM Bandwidth

2013: AMD Fury X

“Fiji”

4096-bits @ 1 Gbps
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GPUs Demand High DRAM Bandwidth

Future GPU with 

4-stack HBM2 

4096-bits @ 2 Gbps
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GPUs Demand High DRAM Bandwidth

4 TB/sec Exascale

Node Target
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GPUs Demand High DRAM Bandwidth

Typical PC CPU

2 Channel DDR3-1600

51.2 GB/sec

CPUs, Not so Much
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GPUs Demand High DRAM Bandwidth

Newer High-End CPU

2 Channel DDR4-3200

102.4 GB/sec

CPUs, Not so Much
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Why Do GPUs Demand so Much Bandwidth?

Lots of compute

24 Streaming Multiprocessors
each w/ 128 execution units

Lots of threads

64 warps of 32 threads
per SM

 49,152 threads executing 
simultaneously on 3072 execution units

NVIDIA Maxwell GM200
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Why do GPUs Demand so Much Bandwidth?
Different Memory Hierarchies

6 MB Register File
(Holds state for many threads) 

~2 MB L1 and Scratchpad 

6 MB Register File

2.3 MB 

L1/Scratchpad

3 MB L2

8 MB L3

512K L2

128K L1

25.25K Register File
(PRF)

Intel Core i7-4790

NVIDIA Maxwell GM200
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Why do GPUs Demand so Much Bandwidth?
Radically Different Memory Hierarchies per Thread

6 MB Register File
(Holds state for many threads) 

~2 MB L1 and Scratchpad 

1 MB L3

64K L2

16K L1

3.28K Register File
(PRF)

Intel Core i7-4790
8 Threads

NVIDIA Maxwell GM200
49,152 Threads

128B Register File

48B L1/Scratchpad

64B L2
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Why do GPUs Demand so Much Bandwidth?
Radically Different Memory Hierarchies per Thread

6 MB Register File
(Holds state for many threads) 

~2 MB L1 and Scratchpad 

1 MB L3

64K L2

16K L1

3.28K Register File
(PRF)

Intel Core i7-4790
8 Threads

NVIDIA Maxwell GM200
49,152 Threads

128B Register File

48B L1/Scratchpad

64B L2
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Whole Different Ballgame
vs. typical CPU

25x More Bandwidth

Less sensitive to latency

LESS regular access patterns

More sensitive to tRRD/tFAW
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I thought GPUs had regular/streaming accesses?

GPU warp = 32 Threads executed in SIMD manner 

http://www.shopbuy.org/static/category/original/rope/

14174435-seamless-heamp-rope-texture-pattern.jpg

http://www.shopbuy.org/static/category/original/rope/

14174435-seamless-heamp-rope-texture-pattern.jpg

Nice, Coalesced load of 32 x 4B = 128B

LD r1, [r2+tid.x]
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I thought GPUs had regular/streaming accesses?
But a lot is happening in parallel…
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I thought GPUs had regular/streaming accesses?
But a lot is happening in parallel…

24 SM’s… 

64 warps each…

Highly interleaved execution!

HA HA HA!  I will bring Chaos to 

your puny DRAM system!
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CPU
Fewer threads, lower chance of bank conflicts

Typical CPU : 8 Threads

http://www.shopbuy.org/static/category/original/rope/

14174435-seamless-heamp-rope-texture-pattern.jpg

http://www.shopbuy.org/static/category/original/rope/

14174435-seamless-heamp-rope-texture-pattern.jpg

2 ranks/channel
8 banks per rank

 4 banks per thread
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GPU
Many different threads competing

NVIDIA Titan X: 1536 Warps

6 channels
16 banks per channel

 0.06 banks per warp
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What does this mean for Energy?
Low Accesses per Activate

 Average ~160 Bytes accessed per activate
(5 x 32B)
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What does this mean for Energy?
Low Accesses per Activate

 High Accesses per Activate workloads are
typically simpler functions like large data copies 

Compositing Images
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What does this mean for Energy?
Low Accesses per Activate

 Many of the 1 Access/Activate workloads are
are doing graph traversals of large graphs

Graph Analytics
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What does this mean for Energy?
Want to reduce row overfetch

DRAM device typically has 1-2KB row

- we only need 160B on average

Wastes ~84-92% of the energy on activate/precharge of a DRAM bank

Multiple devices in parallel (like a DIMM) make this even worse 



26

What does this mean for Performance?
Activate rate is a key

High-bandwidth I/O is nice, but…

Key aspect of performance is rate of activates 
- low tRRD and tFAW
- high number of channels

Typical 2-channel, 2-rank DDR4 w/ tRRD
eff

=5.25ns:  762 M ACT/sec

HBM2 4-stack, 64-channel (w/ pseudochannels) w/ tRRD
eff

=4ns: 

16 G ACT/sec
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Small DRAM Atoms

DRAM “atom” is smallest indivisible access

Basically a function of bus-width and burst-length

GPUs extensively use compression of graphics surfaces

Efficiency of compression a function of minimum access size

Efficient partial coverage
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What to GPUs need from DRAM?

High Bandwidth (w/ low access / activate)

Energy-efficient (largely because of high bandwidth)

Small minimum burst sizes (e.g. 16-32B)

Not necessarily concerned with:

Low-latency

Extremely large capacities

Lowest possible cost
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One Approach: High-Speed Signaling

Start with a commodity DRAM core

Since GPUs don’t need huge capacities, drop multi-rank support

Without multi-drop busses and sockets, push I/O data rates

Beef-up the DRAM core to keep up (reduce tRRD/tFAW if possible)

Basic approach behind GDDR DRAMs
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GDDR5

GDDR5 signals at up to 8 Gbps

GDDR5X soon going to 10-12 Gbps

Lots of board challenges

I/O energy efficiency not so great
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Challenges with High-speed Signaling

Limits on data rates with inexpensive board & package

High-data rates place demands on the DRAM core

- Cycle the DRAM core arrays faster

And/Or

- Sub-partition pieces of the DRAM array

And/Or

- Fetch more data from the array each time
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Another Approach: In-package Integration

3D Stacking technologies enable many more I/Os

What if instead of faster, we go wider…
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What is High-Bandwidth Memory (HBM)?

Memory standard designed for needs of future GPU and HPC systems:

Exploit very large number of signals available with die-stacking technologies for 
very high memory bandwidth

Reduce I/O energy costs

Enable higher fraction of peak bandwidth to be exploited by sophisticated 
memory controllers

Enable ECC/Resilience Features

JEDEC standard JESD235, adopted Oct 2013.

Initial work started in 2010
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What is High-Bandwidth Memory (HBM)?

Enables systems with extremely high bandwidth requirements like future high-
performance GPUs
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HBM Overview

Each HBM stack provides 8 independent memory channels

These are completely independent memory interfaces

Independent clocks & timing

Independent commands

Independent memory arrays

In short, nothing one channel does affects another channel

4 DRAM dies with 2 
channels per die Optional Base “Logic” Die

Channel 0 Channel 1
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HBM Overview - Bandwidth

Each channel provides a 128-bit data interface 

Data rate of 1 Gbps per signal (500 MHz DDR)

HBM2 bumps this to 2 Gbps per signal (1 GHz DDR)

16-32 GB/sec of bandwidth per channel

8 Channels per stack

128-256 GB/sec of bandwidth per stack

For comparison:

Highest-end GDDR5-based today (NVIDIA GeForce GTX 980Ti)

384b wide GDDR5 (12 x32 devices) @ 7 Gbps = 336 GB/s

AMD Fury X with 4 stacks of HBM

Four stacks of HBM @ 1 Gbps = 512 GB/s

Future possible GPU with 4 stacks of HBM2

Four stacks of HBM2 @ 2 Gbps = 1 TB/s
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HBM Overview - Bandwidth

Each channel provides a 128-bit data interface 

Data rate of 1 Gbps per signal (500 MHz DDR)

HBM2 bumps this to 2 Gbps per signal (1 GHz DDR)

16-32 GB/sec of bandwidth per channel

8 Channels per stack

128-256 GB/sec of bandwidth per stack

For comparison:

Highest-end GDDR5-based today (NVIDIA GeForce GTX 980Ti)

384b wide GDDR5 (12 x32 devices) @ 7 Gbps = 336 GB/s

AMD Fury X with 4 stacks of HBM

Four stacks of HBM @ 1 Gbps = 512 GB/s

Future possible GPU with 4 stacks of HBM2

Four stacks of HBM2 @ 2 Gbps = 1 TB/s

At lower overall DRAM 

system power –

~6 pJ/bit vs.             

~18 pJ/bit for GDDR5
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HBM Overview - Capacity

Per-channel capacities supported from 1-32 Gbit

Stack capacity of 1 to 32GBytes

Nearer-term, at lower-end of range 

HBM: 4 high stack of 2Gb dies = 1GBytes/stack

HBM2: 4 high stack of 8Gb dies = 4GBytes/stack

8 or 16 banks per channel

16 banks when > 4Gbit per channel (> 4GBytes/stack)

Not including optional additional ECC bits 

A stack providing ECC storage may have 12.5% more bits
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HBM Channel Overview

Each channel is similar to a standard DDR interface

Data interface is bi-directional

Still requires delay to “turn the bus around” between RD and WR

Burst-length of 2 (32B per access)

Requires traditional command sequences 

Activates required to open rows before read/write

Precharges required before another activate

Traditional dram timings still exist (tRC, tRRD, tRP, tFAW, etc.) – but 

are entirely per-channel
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HBM Channel Summary

Function # of µBumps Notes

Data 128 DDR, bi-directional

Column Command/Addr. 8 DDR

Row Command/Addr. 6 DDR

Data Bus Inversion 16 1 for every 8 Data bits, bi-directional

Data Mask/Check Bits 16 1 for every 8 Data bits, bi-directional

Strobes 16 Differential RD & WR strobes for every 32 Data 

bits

Clock 2 Differential Clock

Clock Enable 1 Enable low-power mode

Total 193
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New: Split Command Interfaces

2 semi-independent command interfaces per channel

“Column Commands” – Read / Write

“Row Commands” – ACT / PRE / etc.

Key reasons to provide separate row command i/f:

100% column command bandwidth to saturate the data bus w/ BL=2

Simplifies memory controller

Better performance (issue ACT earlier or not delay RD/WR)

Still need to enforce usual ACTRD/WRPRE timings
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New: Single-Bank Refresh

Current DRAMs require refresh operations 

Refresh commands require all banks to be closed

~ 1 refresh command every few µsec 

Can consume 5-10% of potential bandwidth

Increasing overheads with larger devices

Sophisticated DRAM controllers work hard to overlap ACT/PRE in one bank with traffic to other banks

Can manage the refresh similarly

Added “Refresh Single Bank” command

Like an ACT, but w/ internal per-bank row counter

Can be issued to any banks in any order

Memory controller responsible for ensuring all banks get enough refreshes each refresh 

period
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New: RAS Support

HBM standard supports ECC

Optional: Not all stacks required to support it

ECC and non-ECC stacks use same interface 

Key insight: 
Per-byte data mask signals and ECC not simultaneously useful

Data Mask Signals can carry ECC data
- makes them bi-directional on HBM stacks that support ECC

Parity check of all cmd/addr busses also supported
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Other HBM Features

HBM supports Temperature Compensated Self Refresh

Temperature dependent refresh rates with several temperature ranges (e.g. 
cool/standby, normal, extended, emergency)

Temperature sensor can be read by memory controller to adjust its refresh rates 
as well

DBIac Data Bus Inversion coding 

Reduce number of simultaneously switching signals

No more than 4 of 9 (DQ[0..7], DBI) signals switch

DBI computation maintained across consecutive commands
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HBM2 – The next step

Evolution of HBM

Doubles bandwidth of I/O channel

Requires doubling burst-length and DRAM atom

Break up channel into two pseudo-independent half-wide channels

Pseudochannels add bank-level parallelism

Prevent DRAM atom size from increasing

Reduce DRAM row overfetch by cutting effective row in half
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High Bandwidth DRAM Energy Trends
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Conclusion

GPUs place significant requirements on the DRAM

Ideal GPU DRAM provides 

energy efficient

high-bandwidth 

to small quantities of data

Stacked memories like HBM2 are good,
but need new innovations to get to Exascale-class nodes




