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Required Readings
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 Required Reading Assignment:
• Suleman et al., “Accelerating Critical Section Execution with 

Asymmetric Multi-Core Architectures,” ASPLOS 2009. 

 Recommended References:

• Joao et al., “Bottleneck Identification and Scheduling in 
Multithreaded Applications,” ASPLOS 2012. 

• Gorchowski et al., “Best of Both Latency and Throughput,” ICCD 
2004.



Heterogeneity (Asymmetry)
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Heterogeneity (Asymmetry)  Specialization

 Heterogeneity and asymmetry have the same meaning

 Contrast with homogeneity and symmetry

 Heterogeneity is a very general system design concept (and 
life concept, as well)

 Idea: Instead of having multiple instances of the same 
“resource” to be the same (i.e., homogeneous or symmetric), 
design some instances to be different (i.e., heterogeneous or 
asymmetric)

 Different instances can be optimized to be more efficient in 
executing different types of workloads or satisfying different 
requirements/goals

 Heterogeneity enables specialization/customization
4



Why Asymmetry in Design? (I)

 Different workloads executing in a system can have different 
behavior

 Different applications can have different behavior 

 Different execution phases of an application can have different behavior 

 The same application executing at different times can have different 
behavior (due to input set changes and dynamic events)

 E.g., locality, predictability of branches, instruction-level parallelism, data 
dependencies, serial fraction, bottlenecks in parallel portion, interference 
characteristics, …

 Systems are designed to satisfy different metrics at the same 
time

 There is almost never a single goal in design, depending on design point

 E.g., Performance, energy efficiency, fairness, predictability, reliability, 
availability, cost, memory capacity, latency, bandwidth, …

5



Why Asymmetry in Design? (II)

 Problem: Symmetric design is one-size-fits-all

 It tries to fit a single-size design to all workloads and 
metrics

 It is very difficult to come up with a single design 

 that satisfies all workloads even for a single metric

 that satisfies all design metrics at the same time

 This holds true for different system components, or 
resources

 Cores, caches, memory, controllers, interconnect, disks, 
servers, …

 Algorithms, policies, …
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Asymmetry Enables Customization

 Symmetric: One size fits all

 Energy and performance suboptimal for different “workload” behaviors

 Asymmetric: Enables customization and adaptation

 Processing requirements vary across workloads (applications and phases)

 Execute code on best-fit resources (minimal energy, adequate perf.)
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We Have Already Seen Examples (Before)

 CRAY-1 design: scalar + vector pipelines

 Modern processors: scalar instructions + SIMD extensions

 Decoupled Access Execute: access + execute processors

 Thread Cluster Memory Scheduling: different memory 
scheduling policies for different thread clusters 

 RAIDR: Heterogeneous refresh rates in DRAM

 Heterogeneous-Latency DRAM (Tiered Latency DRAM)

 Hybrid memory systems

 DRAM + Phase Change Memory

 Fast, Costly DRAM + Slow, Cheap DRAM

 Reliable, Costly DRAM + Unreliable, Cheap DRAM
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An Example Asymmetric Design: CRAY-1

 CRAY-1

 Russell, “The CRAY-1 
computer system,”
CACM 1978.

 Scalar and vector modes

 8 64-element vector 
registers

 64 bits per element

 16 memory banks

 8 64-bit scalar registers

 8 24-bit address registers
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Remember: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 
2012 Best Paper Award.

CPU
DRA
MCtrl

Fast, durable
Small, 

leaky, volatile, 
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM 
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies



Take turns accessing memory

Remember: Throughput vs. Fairness
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Fairness biased approach

thread C

thread B

thread A

less memory 
intensive

higher
priority

Prioritize less memory-intensive threads

Throughput biased approach

Good for throughput

starvation  unfairness

thread C thread Bthread A

Does not starve

not prioritized 
reduced throughput

Single policy for all threads is insufficient

Kim et al., “Thread Cluster Memory Scheduling,” MICRO 2010.



Remember: Achieving the Best of Both Worlds
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thread

thread

higher
priority

thread

thread

thread 

thread

thread

thread

Prioritize memory-non-intensive threads

For Throughput

Unfairness caused by memory-intensive 
being prioritized over each other 

• Shuffle thread ranking

Memory-intensive threads have 
different vulnerability to interference

• Shuffle asymmetrically

For Fairness

thread

thread

thread

thread

Kim et al., “Thread Cluster Memory Scheduling,” MICRO 2010.



Thread Cluster Memory Scheduling [Kim+ MICRO’10]

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

13

thread

Threads in the system

thread

thread

thread

thread

thread

thread

Non-intensive 
cluster

Intensive cluster

thread

thread

thread

Memory-non-intensive 

Memory-intensive 

Prioritized

higher
priority

higher
priority

Throughput

Fairness
Kim et al., “Thread Cluster Memory Scheduling,” MICRO 2010.



Remember: Heterogeneous Retention Times in DRAM

14Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,’ ISCA 2012.
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Trade-Off: Area (Die Size) vs. Latency

Faster

Smaller

Short BitlineLong Bitline

Trade-Off: Area vs. Latency

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
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Short Bitline

Low Latency 

Approximating the Best of Both Worlds

Long Bitline

Small Area 

Long Bitline

Low Latency 

Short BitlineOur Proposal

Small Area 

Short Bitline Fast

Need 
Isolation

Add Isolation 
Transistors

High Latency

Large Area

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
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Approximating the Best of Both Worlds

Low Latency 

Our Proposal

Small Area 
Long Bitline
Small Area 

Long Bitline

High Latency

Short Bitline

Low Latency 

Short Bitline

Large Area

Tiered-Latency DRAM

Low Latency

Small area 
using long 

bitline

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.



Heterogeneous Interconnect in Tilera

 2D Mesh

 Five networks

 Four packet switched
 Dimension order routing, 

wormhole flow control

 TDN: Cache request 
packets

 MDN: Response packets

 IDN: I/O packets

 UDN: Core to core 
messaging

 One circuit switched
 STN: Low-latency, high-

bandwidth static network

 Streaming data
18Wentzlaff et al., “On-Chip Interconnection Architecture of the Tile Processor,” IEEE Micro 2007.



Aside: Examples from Life

 Heterogeneity is abundant in life 

 both in nature and human-made components

 Humans are heterogeneous

 Cells are heterogeneous  specialized for different tasks

 Organs are heterogeneous

 Cars are heterogeneous

 Buildings are heterogeneous

 Rooms are heterogeneous

 …
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General-Purpose vs. Special-Purpose

 Asymmetry is a way of enabling specialization

 It bridges the gap between purely general purpose and 
purely special purpose

 Purely general purpose: Single design for every workload or 
metric

 Purely special purpose: Single design per workload or metric

 Asymmetric: Multiple sub-designs optimized for sets of 
workloads/metrics and glued together

 The goal of a good asymmetric design is to get the best of 
both general purpose and special purpose
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Asymmetry Advantages and Disadvantages

 Advantages over Symmetric Design

+ Can enable optimization of multiple metrics

+ Can enable better adaptation to workload behavior

+ Can provide special-purpose benefits with general-purpose 
usability/flexibility

 Disadvantages over Symmetric Design

- Higher overhead and more complexity in design, verification

- Higher overhead in management: scheduling onto asymmetric 
components

- Overhead in switching between multiple components can lead 
to degradation
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Yet Another Example

 Modern processors integrate general purpose cores and 
GPUs

 CPU-GPU systems

 Heterogeneity in execution models
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 Memory system

 Applications are increasingly data intensive 

 Data storage and movement limits performance & efficiency

 Efficiency (performance and energy)  scalability

 Enables scalable systems  new applications

 Enables better user experience  new usage models

 Predictability and robustness

 Resource sharing and unreliable hardware causes QoS issues

 Predictable performance and QoS are first class constraints 

Three Key Problems in Future Systems
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Commercial Asymmetric Design Examples

 Integrated CPU-GPU systems (e.g., Intel SandyBridge)

 CPU + Hardware Accelerators (e.g., your cell phone)

 ARM big.LITTLE processor

 IBM Cell processor
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Increasing Asymmetry in Modern Systems

 Heterogeneous agents: CPUs, GPUs, and HWAs 

 Heterogeneous memories: Fast vs. Slow DRAM

 Heterogeneous interconnects: Control, Data, Synchronization
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CPU CPU CPU CPU

Shared Cache

GPU

HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories



Multi-Core Design: 

An Asymmetric Perspective
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Many Cores on Chip

 Simpler and lower power than a single large core

 Large scale parallelism on chip

27

IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores



With Many Cores on Chip

 What we want:

 N times the performance with N times the cores when we 
parallelize an application on N cores

 What we get:

 Amdahl’s Law (serial bottleneck)

 Bottlenecks in the parallel portion

28



Caveats of Parallelism

 Amdahl’s Law

 f: Parallelizable fraction of a program

 N: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale 
computing capabilities,” AFIPS 1967. 

 Maximum speedup limited by serial portion: Serial bottleneck

 Parallel portion is usually not perfectly parallel

 Synchronization overhead (e.g., updates to shared data)

 Load imbalance overhead (imperfect parallelization)

 Resource sharing overhead (contention among N processors)
29

Speedup =
1

+1 - f
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The Problem: Serialized Code Sections

 Many parallel programs cannot be parallelized completely

 Causes of serialized code sections

 Sequential portions (Amdahl’s “serial part”)

 Critical sections

 Barriers

 Limiter stages in pipelined programs

 Serialized code sections

 Reduce performance

 Limit scalability

 Waste energy

30



Example from MySQL
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Demands in Different Code Sections

 What we want:

 In a serialized code section  one powerful “large” core 

 In a parallel code section  many wimpy “small” cores

 These two conflict with each other:

 If you have a single powerful core, you cannot have many 
cores

 A small core is much more energy and area efficient than a 
large core

32



“Large” vs. “Small” Cores
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• Out-of-order
• Wide fetch e.g. 4-wide
• Deeper pipeline
• Aggressive branch 

predictor (e.g. hybrid)
• Multiple functional units
• Trace cache
• Memory dependence 

speculation

• In-order

• Narrow Fetch e.g. 2-wide

• Shallow pipeline

• Simple branch predictor 

(e.g. Gshare)

• Few functional units

Large

Core
Small

Core

Large Cores are power inefficient:
e.g., 2x performance for 4x area (power)



Large vs. Small Cores

 Grochowski et al., “Best of both Latency and Throughput,”
ICCD 2004.
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Meet Large: IBM POWER4

 Tendler et al., “POWER4 system microarchitecture,” IBM J 
R&D, 2002.

 A symmetric multi-core chip…

 Two powerful cores

35



IBM POWER4

 2 cores, out-of-order execution

 100-entry instruction window in each core

 8-wide instruction fetch, issue, execute

 Large, local+global hybrid branch predictor

 1.5MB, 8-way L2 cache

 Aggressive stream based prefetching

36



IBM POWER5

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE 
Micro 2004.
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Meet Small: Sun Niagara (UltraSPARC T1)
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 Kongetira et al., “Niagara: A 32-Way Multithreaded SPARC 
Processor,” IEEE Micro 2005.



Niagara Core

 4-way fine-grain multithreaded, 6-stage, dual-issue in-order

 Round robin thread selection (unless cache miss)

 Shared FP unit among cores

39



Remember the Demands

 What we want:

 In a serialized code section  one powerful “large” core 

 In a parallel code section  many wimpy “small” cores

 These two conflict with each other:

 If you have a single powerful core, you cannot have many 
cores

 A small core is much more energy and area efficient than a 
large core

 Can we get the best of both worlds?

40



Performance vs. Parallelism
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Assumptions:

1. Small cores takes an area budget of 1 and has 

performance  of 1

2. Large core takes an area budget of 4 and has 

performance of 2



Tile-Large Approach

 Tile a few large cores

 IBM Power 5, AMD Barcelona, Intel Core2Quad, Intel Nehalem

+ High performance on single thread, serial code sections (2 units)

- Low throughput on parallel program portions (8 units)
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Tile-Small Approach

 Tile many small cores

 Sun Niagara, Intel Larrabee, Tilera TILE (tile ultra-small)

+ High throughput on the parallel part (16 units)

- Low performance on the serial part, single thread (1 unit)
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Can we get the best of both worlds?

 Tile Large

+ High performance on single thread, serial code sections (2 
units)

- Low throughput on parallel program portions (8 units)

 Tile Small

+ High throughput on the parallel part (16 units)

- Low performance on the serial part, single thread (1 unit), 
reduced single-thread performance compared to existing single 
thread processors

 Idea: Have both large and small on the same chip 

Performance asymmetry

44



Asymmetric Multi-Core
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Asymmetric Chip Multiprocessor (ACMP)

 Provide one large core and many small cores

+ Accelerate serial part using the large core (2 units)

+ Execute parallel part on small cores and large core for high 
throughput (12+2 units)
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Accelerating Serial Bottlenecks
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Performance vs. Parallelism
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Assumptions:

1. Small cores takes an area budget of 1 and has 

performance  of 1

2. Large core takes an area budget of 4 and has 

performance of 2



ACMP Performance vs. Parallelism
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Amdahl’s Law Modified

 Simplified Amdahl’s Law for an Asymmetric Multiprocessor

 Assumptions: 

 Serial portion executed on the large core

 Parallel portion executed on both small cores and large cores

 f: Parallelizable fraction of a program

 L: Number of large processors

 S: Number of small processors

 X: Speedup of a large processor over a small one

50

Speedup =
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Caveats of Parallelism, Revisited

 Amdahl’s Law

 f: Parallelizable fraction of a program

 N: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale 
computing capabilities,” AFIPS 1967. 

 Maximum speedup limited by serial portion: Serial bottleneck

 Parallel portion is usually not perfectly parallel

 Synchronization overhead (e.g., updates to shared data)

 Load imbalance overhead (imperfect parallelization)

 Resource sharing overhead (contention among N processors)
51
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Accelerating Parallel Bottlenecks

 Serialized or imbalanced execution in the parallel portion 
can also benefit from a large core

 Examples:

 Critical sections that are contended

 Parallel stages that take longer than others to execute

 Idea: Dynamically identify these code portions that cause 
serialization and execute them on a large core

52



Accelerated Critical Sections

M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt,
"Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures"

Proceedings of the 14th International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), 2009
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http://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
http://www.cs.virginia.edu/asplos09/


Contention for Critical Sections
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Contention for Critical Sections
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Impact of Critical Sections on Scalability

 Contention for critical sections leads to serial execution 
(serialization) of threads in the parallel program portion

 Contention for critical sections increases with the number of 
threads and limits scalability
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A Case for Asymmetry

 Execution time of sequential kernels, critical sections, and 
limiter stages must be short

 It is difficult for the programmer to shorten these
serialized sections

 Insufficient domain-specific knowledge

 Variation in hardware platforms 

 Limited resources

 Goal: A mechanism to shorten serial bottlenecks without 
requiring programmer effort

 Idea: Accelerate serialized code sections by shipping them 
to powerful cores in an asymmetric multi-core (ACMP)
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An Example: Accelerated Critical Sections

 Idea: HW/SW ships critical sections to a large, powerful core in an 
asymmetric multi-core architecture

 Benefit: 

 Reduces serialization due to contended locks

 Reduces the performance impact of hard-to-parallelize sections

 Programmer does not need to (heavily) optimize parallel code  fewer 

bugs, improved productivity

 Suleman et al., “Accelerating Critical Section Execution with Asymmetric 
Multi-Core Architectures,” ASPLOS 2009, IEEE Micro Top Picks 2010.

 Suleman et al., “Data Marshaling for Multi-Core Architectures,” ISCA 
2010, IEEE Micro Top Picks 2011.
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Accelerated Critical Sections

EnterCS()

PriorityQ.insert(…)

LeaveCS()

Onchip-

Interconnect

Critical Section

Request Buffer 

(CSRB)

1. P2 encounters a critical section (CSCALL)

2. P2 sends CSCALL Request to CSRB

3. P1 executes Critical Section

4. P1 sends CSDONE signal

Core executing 

critical section

P4P3P2
P1



Accelerated Critical Sections (ACS)

 Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” ASPLOS 2009.
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A = compute()

LOCK X

result = CS(A)

UNLOCK X

print result

Small CoreSmall Core Large Core

A = compute()

CSDONE Response

CSCALL Request

Send X, TPC, 

STACK_PTR, CORE_ID

PUSH A

CSCALL X, Target PC
…

…

…
Acquire X

POP A

result  = CS(A)

PUSH result

Release X

CSRET X

TPC: 

POP result

print result

…

…

…

…

…

…

…

Waiting in 

Critical Section 

Request Buffer 

(CSRB)



False Serialization

 ACS can serialize independent critical sections

 Selective Acceleration of Critical Sections (SEL)

 Saturating counters to track false serialization
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ACS Performance Tradeoffs

 Pluses

+ Faster critical section execution

+ Shared locks stay in one place: better lock locality

+ Shared data stays in large core’s (large) caches: better shared 
data locality, less ping-ponging

 Minuses

- Large core dedicated for critical sections: reduced parallel 
throughput

- CSCALL and CSDONE control transfer overhead

- Thread-private data needs to be transferred to large core: worse 
private data locality
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ACS Performance Tradeoffs

 Fewer parallel threads vs. accelerated critical sections
 Accelerating critical sections offsets loss in throughput

 As the number of cores (threads) on chip increase:
 Fractional loss in parallel performance decreases

 Increased contention for critical sections 
makes acceleration more beneficial

 Overhead of CSCALL/CSDONE vs. better lock locality
 ACS avoids “ping-ponging” of locks among caches by keeping them at 

the large core

 More cache misses for private data vs. fewer misses 
for shared data
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Cache Misses for Private Data

64

Private Data: 

NewSubProblems

Shared Data:  

The priority heap

PriorityHeap.insert(NewSubProblems)

Puzzle Benchmark



ACS Performance Tradeoffs

 Fewer parallel threads vs. accelerated critical sections
 Accelerating critical sections offsets loss in throughput

 As the number of cores (threads) on chip increase:
 Fractional loss in parallel performance decreases

 Increased contention for critical sections 
makes acceleration more beneficial

 Overhead of CSCALL/CSDONE vs. better lock locality
 ACS avoids “ping-ponging” of locks among caches by keeping them at 

the large core

 More cache misses for private data vs. fewer misses 
for shared data
 Cache misses reduce if shared data > private data

65

This problem can be solved

See Suleman et al., “Data Marshaling for Multi-Core Architectures,” ISCA 2010.



ACS Comparison Points

 Conventional 
locking
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Accelerated Critical Sections: Methodology

 Workloads: 12 critical section intensive applications

 Data mining kernels, sorting, database, web, networking

 Multi-core x86 simulator

 1 large and 28 small cores 

 Aggressive stream prefetcher employed at each core

 Details:

 Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage

 Small core: 2GHz, in-order, 2-wide, 5-stage

 Private 32 KB L1, private 256KB L2, 8MB shared L3

 On-chip interconnect: Bi-directional ring, 5-cycle hop latency
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ACS Performance
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Equal-Area Comparisons
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ACS Summary

 Critical sections reduce performance and limit scalability

 Accelerate critical sections by executing them on a powerful 
core

 ACS reduces average execution time by:

 34% compared to an equal-area SCMP

 23% compared to an equal-area ACMP

 ACS improves scalability of 7 of the 12 workloads

 Generalizing the idea: Accelerate all bottlenecks (“critical 
paths”) by executing them on a powerful core
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Bottleneck Identification and 

Scheduling

Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Bottleneck Identification and Scheduling in Multithreaded Applications"

Proceedings of the 17th International Conference on Architectural Support for 
Programming Languages and Operating Systems (ASPLOS), London, UK, March 2012.
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http://users.ece.cmu.edu/~omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
http://research.microsoft.com/en-us/um/cambridge/events/asplos_2012/


Bottlenecks in Multithreaded Applications

Definition: any code segment for which threads contend (i.e. wait)

Examples:

 Amdahl’s serial portions
 Only one thread exists  on the critical path

 Critical sections
 Ensure mutual exclusion  likely to be on the critical path if contended

 Barriers
 Ensure all threads reach a point before continuing  the latest thread arriving 

is on the critical path

 Pipeline stages

 Different stages of a loop iteration may execute on different threads, 
slowest stage makes other stages wait  on the critical path
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Observation: Limiting Bottlenecks Change Over Time

A=full linked list; B=empty linked list

repeat

Lock A

Traverse list A

Remove X from A

Unlock A

Compute on X

Lock B

Traverse list B

Insert X into B

Unlock B

until A is empty
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Lock A is limiter
Lock B is limiter

32 threads



Limiting Bottlenecks Do Change on Real Applications
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MySQL running Sysbench queries, 16 threads
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Bottleneck Identification and Scheduling (BIS)

 Key insight:

 Thread waiting reduces parallelism and 
is likely to reduce performance

 Code causing the most thread waiting                             
 likely critical path

 Key idea:

 Dynamically identify bottlenecks that cause 
the most thread waiting

 Accelerate them (using powerful cores in an ACMP)



1. Annotate
bottleneck code

2. Implement waiting
for bottlenecks

1. Measure thread 

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing 

BIS instructions

Compiler/Library/Programmer Hardware
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Bottleneck Identification and Scheduling (BIS)



while cannot acquire lock

Wait loop for watch_addr

acquire lock

…

release lock

Critical Sections: Code Modifications

…

BottleneckCall bid, targetPC

…

targetPC: while cannot acquire lock

Wait loop for watch_addr

acquire lock

…

release lock

BottleneckReturn bid
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BottleneckWait bid, watch_addr

…

…
Used to keep track of 

waiting cycles

Used to enable 
acceleration
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Barriers: Code Modifications

…

BottleneckCall bid, targetPC

enter barrier

while not all threads in barrier

BottleneckWait bid, watch_addr

exit barrier

…

targetPC: code running for the barrier

…

BottleneckReturn bid
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Pipeline Stages: Code Modifications

BottleneckCall bid, targetPC

…

targetPC: while not done

while empty queue

BottleneckWait prev_bid

dequeue work

do the work …

while full queue

BottleneckWait next_bid

enqueue next work

BottleneckReturn bid



1. Annotate
bottleneck code

2. Implement waiting
for bottlenecks

1. Measure thread 

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing 

BIS instructions

Compiler/Library/Programmer Hardware
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Bottleneck Identification and Scheduling (BIS)



BIS: Hardware Overview

 Performance-limiting bottleneck identification and 
acceleration are independent tasks

 Acceleration can be accomplished in multiple ways

 Increasing core frequency/voltage

 Prioritization in shared resources [Ebrahimi+, MICRO’11]

 Migration to faster cores in an Asymmetric CMP
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1. Annotate
bottleneck code

2. Implement waiting
for bottlenecks

1. Measure thread 

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing 

BIS instructions

Compiler/Library/Programmer Hardware
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Bottleneck Identification and Scheduling (BIS)



Determining Thread Waiting Cycles for Each Bottleneck
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Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

BottleneckWait x4500

bid=x4500, waiters=1, twc = 0bid=x4500, waiters=1, twc = 1bid=x4500, waiters=1, twc = 2

BottleneckWait x4500

bid=x4500, waiters=2, twc = 5bid=x4500, waiters=2, twc = 7bid=x4500, waiters=2, twc = 9bid=x4500, waiters=1, twc = 9bid=x4500, waiters=1, twc = 10bid=x4500, waiters=1, twc = 11bid=x4500, waiters=0, twc = 11bid=x4500, waiters=1, twc = 3bid=x4500, waiters=1, twc = 4bid=x4500, waiters=1, twc = 5



1. Annotate
bottleneck code

2. Implement waiting
for bottlenecks

1. Measure thread 

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing 

BIS instructions

Compiler/Library/Programmer Hardware
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Bottleneck Identification and Scheduling (BIS)



Bottleneck Acceleration
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Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

Scheduling Buffer (SB)

bid=x4700, pc, sp, core1

Acceleration

Index Table (AIT)

BottleneckCall x4600

Execute locally

BottleneckCall x4700

bid=x4700 , large core 0

Execute remotely

AIT

bid=x4600, twc=100

bid=x4700, twc=10000

BottleneckReturn x4700

bid=x4700 , large core 0

bid=x4700, pc, sp, core1

 twc < Threshold

 twc > Threshold

Execute locallyExecute remotely



BIS Mechanisms

 Basic mechanisms for BIS:

 Determining Thread Waiting Cycles  

 Accelerating Bottlenecks  

 Mechanisms to improve performance and generality of BIS:

 Dealing with false serialization

 Preemptive acceleration

 Support for multiple large cores
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Hardware Cost

 Main structures:

 Bottleneck Table (BT): global 32-entry associative cache, 
minimum-Thread-Waiting-Cycle replacement

 Scheduling Buffers (SB): one table per large core, 
as many entries as small cores

 Acceleration Index Tables (AIT): one 32-entry table
per small core

 Off the critical path

 Total storage cost for 56-small-cores, 2-large-cores < 19 KB
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BIS Performance Trade-offs

 Faster bottleneck execution vs. fewer parallel threads
 Acceleration offsets loss of parallel throughput with large core counts

 Better shared data locality vs. worse private data locality
 Shared data stays on large core (good)

 Private data migrates to large core (bad, but latency hidden with Data 
Marshaling [Suleman+, ISCA’10])

 Benefit of acceleration vs. migration latency
 Migration latency usually hidden by waiting (good)

 Unless bottleneck not contended (bad, but likely not on critical path)
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Evaluation Methodology

 Workloads: 8 critical section intensive, 2 barrier intensive 
and 2 pipeline-parallel applications

 Data mining kernels, scientific, database, web, networking, specjbb

 Cycle-level multi-core x86 simulator

 8 to 64 small-core-equivalent area, 0 to 3 large cores, SMT

 1 large core is area-equivalent to 4 small cores

 Details:

 Large core: 4GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage

 Small core: 4GHz, in-order, 2-wide, 5-stage

 Private 32KB L1, private 256KB L2, shared 8MB L3

 On-chip interconnect: Bi-directional ring, 2-cycle hop latency
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BIS Comparison Points (Area-Equivalent)

 SCMP (Symmetric CMP)

 All small cores

 ACMP (Asymmetric CMP)

 Accelerates only Amdahl’s serial portions

 Our baseline

 ACS (Accelerated Critical Sections)

 Accelerates only critical sections and Amdahl’s serial portions

 Applicable to multithreaded workloads 
(iplookup, mysql, specjbb, sqlite, tsp, webcache, mg, ft)

 FDP (Feedback-Directed Pipelining)

 Accelerates only slowest pipeline stages

 Applicable to pipeline-parallel workloads (rank, pagemine)

90



BIS Performance Improvement

91

Optimal number of threads, 28 small cores, 1 large core

 BIS outperforms ACS/FDP by 15% and ACMP by 32%

 BIS improves scalability on 4 of the benchmarks

barriers, which ACS 

cannot accelerate
limiting bottlenecks change over time

ACS FDP



Why Does BIS Work?

92

 Coverage: fraction of program critical path that is actually identified as bottlenecks

 39% (ACS/FDP) to 59% (BIS)

 Accuracy: identified bottlenecks on the critical path over total identified bottlenecks

 72% (ACS/FDP) to 73.5% (BIS)

Fraction of execution time spent on predicted-important bottlenecks

Actually critical



BIS Scaling Results

93

Performance increases with:

1) More small cores

 Contention due to bottlenecks 
increases

 Loss of parallel throughput due 
to large core reduces

2) More large cores

 Can accelerate 
independent bottlenecks

 Without reducing parallel 
throughput (enough cores)

2.4%
6.2%

15% 19%



BIS Summary

 Serializing bottlenecks of different types limit performance of 
multithreaded applications: Importance changes over time

 BIS is a hardware/software cooperative solution: 

 Dynamically identifies bottlenecks that cause the most thread waiting 
and accelerates them on large cores of an ACMP

 Applicable to critical sections, barriers, pipeline stages

 BIS improves application performance and scalability:
 Performance benefits increase with more cores

 Provides comprehensive fine-grained bottleneck acceleration 
with no programmer effort
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If Time Permits …
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A Case for 

Asymmetry Everywhere

Onur Mutlu, 
"Asymmetry Everywhere (with Automatic Resource Management)"

CRA Workshop on Advancing Computer Architecture Research: Popular 
Parallel Programming, San Diego, CA, February 2010. 

Position paper
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http://users.ece.cmu.edu/~omutlu/pub/onur-Asymmetry-Everywhere-talk.pdf
http://iacoma.cs.uiuc.edu/acar1/
http://users.ece.cmu.edu/~omutlu/pub/onur-Asymmetry-Everywhere-position-paper.pdf


Asymmetry Enables Customization

 Symmetric: One size fits all

 Energy and performance suboptimal for different phase behaviors

 Asymmetric: Enables tradeoffs and customization

 Processing requirements vary across applications and phases

 Execute code on best-fit resources (minimal energy, adequate perf.)
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Thought Experiment: Asymmetry Everywhere

 Design each hardware resource with asymmetric, (re-
)configurable, partitionable components

 Different power/performance/reliability characteristics

 To fit different computation/access/communication patterns
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Thought Experiment: Asymmetry Everywhere

 Design the runtime system (HW & SW) to automatically choose
the best-fit components for each phase

 Satisfy performance/SLA with minimal energy

 Dynamically stitch together the “best-fit” chip for each phase 
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Phase 1

Phase 2

Phase 3



Thought Experiment: Asymmetry Everywhere

 Morph software components to match asymmetric HW 
components 

 Multiple versions for different resource characteristics
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Version 1

Version 2

Version 3



Many Research and Design Questions

 How to design asymmetric components?

 Fixed, partitionable, reconfigurable components?

 What types of asymmetry? Access patterns, technologies?

 What monitoring to perform cooperatively in HW/SW?

 Automatically discover phase/task requirements

 How to design feedback/control loop between components and 
runtime system software?

 How to design the runtime to automatically manage resources?

 Track task behavior, pick “best-fit” components for the entire workload
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Exploiting Asymmetry: Simple Examples

102

 Execute critical/serial sections on high-power, high-performance 
cores/resources [Suleman+ ASPLOS’09, ISCA’10, Top Picks’10’11, Joao+ 

ASPLOS’12,ISCA’13]

 Programmer can write less optimized, but more likely correct programs 

Serial Parallel



Exploiting Asymmetry: Simple Examples

103

 Execute each code block on the most efficient execution backend 
for that block [Fallin+ ICCD’14]

 Enables a much more efficient and still high performance core design

OoO

Backend 

VLIW Backend



Exploiting Asymmetry: Simple Examples
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 Execute streaming “memory phases” on streaming-optimized 
cores and memory hierarchies

 More efficient and higher performance than general purpose hierarchy

Streaming R
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Exploiting Asymmetry: Simple Examples
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 Execute bandwidth-sensitive threads on a bandwidth-optimized 
network, latency-sensitive ones on a latency-optimized network 
[Das+ DAC’13]

 Higher performance and energy-efficiency than a single network

Latency optimized NoC
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Exploiting Asymmetry: Simple Examples
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 Partition memory controller and on-chip network bandwidth 
asymmetrically among threads [Kim+ HPCA 2010, MICRO 2010, Top Picks 

2011] [Nychis+ HotNets 2010] [Das+ MICRO 2009, ISCA 2010, Top Picks 2011]

 Higher performance and energy-efficiency than symmetric/free-for-all

Latency sensitive
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Exploiting Asymmetry: Simple Examples
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 Have multiple different memory scheduling policies apply them to 

different sets of threads based on thread behavior [Kim+ MICRO 

2010, Top Picks 2011] [Ausavarungnirun+ ISCA 2012]

 Higher performance and fairness than a homogeneous policy

Memory intensiveCompute intensive



Exploiting Asymmetry: Simple Examples
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 Build main memory with different technologies with different 
characteristics (e.g., latency, bandwidth, cost, energy, reliability) 
[Meza+ IEEE CAL’12, Yoon+ ICCD’12, Luo+ DSN’14]

 Higher performance and energy-efficiency than homogeneous memory

CPU
DRA
MCtrl

Fast, durable
Small, 

leaky, volatile, 
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM 
CtrlDRAM Phase Change Memory (or Tech. X)

DRAM Phase Change Memory



Exploiting Asymmetry: Simple Examples
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 Build main memory with different technologies with different 
characteristics (e.g., latency, bandwidth, cost, energy, reliability) 
[Meza+ IEEE CAL’12, Yoon+ ICCD’12, Luo+ DSN’14]

 Lower-cost than homogeneous-reliability memory at same availability

Reliable DRAM Less Reliable DRAM



Exploiting Asymmetry: Simple Examples
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 Design each memory chip to be heterogeneous to achieve low 
latency and low energy at reasonably low cost [Lee+ HPCA’13, 

Liu+ ISCA’12]

 Higher performance and energy-efficiency than single-level memory

Heterogeneous-Latency DRAM

Heterogeneous-Refresh-Rate DRAM
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