
18-740/640

Computer Architecture

Lecture 16: Interconnection Networks

Prof. Onur Mutlu

Carnegie Mellon University

Fall 2015, 11/4/2015

Required Readings

2

 Required Reading Assignment:
• Dubois, Annavaram, Stenstrom, Chapter 6.

 Recommended References:

• Moscibroda and Mutlu, “A Case for Bufferless Routing in On-Chip
Networks,” ISCA 2009.

• Das et al., “Application-Aware Prioritization Mechanisms for On-Chip
Networks,” MICRO 2009.

Interconnection Network

Basics

3

Where Is Interconnect Used?

 To connect components

 Many examples

 Processors and processors

 Processors and memories (banks)

 Processors and caches (banks)

 Caches and caches

 I/O devices

4

Interconnection network

Why Is It Important?

 Affects the scalability of the system

 How large of a system can you build?

 How easily can you add more processors?

 Affects performance and energy efficiency

 How fast can processors, caches, and memory communicate?

 How long are the latencies to memory?

 How much energy is spent on communication?

5

Interconnection Network Basics

 Topology

 Specifies the way switches are wired

 Affects routing, reliability, throughput, latency, building ease

 Routing (algorithm)

 How does a message get from source to destination

 Static or adaptive

 Buffering and Flow Control

 What do we store within the network?

 Entire packets, parts of packets, etc?

 How do we throttle during oversubscription?

 Tightly coupled with routing strategy

 6

Terminology

 Network interface

 Module that connects endpoints (e.g. processors) to network

 Decouples computation/communication

 Link

 Bundle of wires that carry a signal

 Switch/router

 Connects fixed number of input channels to fixed number of
output channels

 Channel

 A single logical connection between routers/switches

7

More Terminology

 Node

 A router/switch within a network

 Message

 Unit of transfer for network’s clients (processors, memory)

 Packet

 Unit of transfer for network

 Flit

 Flow control digit

 Unit of flow control within network

8

Some More Terminology
 Direct or Indirect Networks

 Endpoints sit “inside” (direct) or “outside” (indirect) the network

 E.g. mesh is direct; every node is both endpoint and switch

9

1

0

3

2

5

4

7

6

9

8

11

10

13

12

15

14

1

0

3

2

5

4

7

6

9

8

11

10

13

12

15

14

Router (switch), Radix of 2 (2 inputs, 2 outputs)

Abbreviation: Radix-ary

These routers are 2-ary

Indirect Direct

Interconnection Network

Topology

10

Properties of a Topology/Network

 Regular or Irregular

 Regular if topology is regular graph (e.g. ring, mesh).

 Routing Distance

 number of links/hops along a route

 Diameter

 maximum routing distance within the network

 Average Distance

 Average number of hops across all valid routes

11

Properties of a Topology/Network

 Bisection Bandwidth

 Often used to describe network performance

 Cut network in half and sum bandwidth of links severed

 (Min # channels spanning two halves) * (BW of each channel)

 Meaningful only for recursive topologies

 Can be misleading, because does not account for switch and
routing efficiency (and certainly not execution time)

 Blocking vs. Non-Blocking

 If connecting any permutation of sources & destinations is
possible, network is non-blocking; otherwise network is blocking.

 Rearrangeable non-blocking: Same as non-blocking but might
require rearranging connections when switching from one
permutation to another.

 12

Topology

 Bus (simplest)

 Point-to-point connections (ideal and most costly)

 Crossbar (less costly)

 Ring

 Tree

 Omega

 Hypercube

 Mesh

 Torus

 Butterfly

 …

13

Metrics to Evaluate Interconnect Topology

 Cost

 Latency (in hops, in nanoseconds)

 Contention

 Many others exist you should think about

 Energy

 Bandwidth

 Overall system performance

14

Bus

All nodes connected to a single link

+ Simple + Cost effective for a small number of nodes

+ Easy to implement coherence (snooping and serialization)

- Not scalable to large number of nodes (limited bandwidth,
electrical loading  reduced frequency)

- High contention  fast saturation

15

M e m o ryM e m o ryM e m o ryM e m o ry

P ro c

cache

P ro c

cache

P ro c

cache

P ro c

cache

0 1 2 3 4 5 6 7

Point-to-Point

Every node connected to every other

 with direct/isolated links

+ Lowest contention

+ Potentially lowest latency

+ Ideal, if cost is no issue

-- Highest cost

 O(N) connections/ports

 per node

 O(N2) links

-- Not scalable

-- How to lay out on chip?

 16

0

1

2

3

4

5

6

7

Crossbar

 Every node connected to every other with a shared link for
each destination

 Enables concurrent transfers to non-conflicting destinations

 Could be cost-effective for small number of nodes

+ Low latency and high throughput

- Expensive

- Not scalable  O(N2) cost

- Difficult to arbitrate as N increases

Used in core-to-cache-bank

networks in

- IBM POWER5

- Sun Niagara I/II

17

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Another Crossbar Design

18

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Sun UltraSPARC T2 Core-to-Cache Crossbar

 High bandwidth
interface between 8
cores and 8 L2
banks & NCU

 4-stage pipeline:
req, arbitration,
selection,
transmission

 2-deep queue for
each src/dest pair
to hold data
transfer request

19

Bufferless and Buffered Crossbars

20

Output
Arbiter

Output
Arbiter

Output
Arbiter

Output
Arbiter

Flow
Control

Flow
Control

Flow
Control

Flow
Control

N
I

N
I

N
I

N
I

Buffered

Crossbar

0

1

2

3

N
I

N
I

N
I

N
I

Bufferless

Crossbar

0

1

2

3

+ Simpler
arbitration/
scheduling

+ Efficient
support for
variable-size
packets

- Requires
N2 buffers

Can We Get Lower Cost than A Crossbar?

 Yet still have low contention compared to a bus?

 Idea: Multistage networks

21

Multistage Logarithmic Networks

 Idea: Indirect networks with multiple layers of switches
between terminals/nodes

 Cost: O(NlogN), Latency: O(logN)

 Many variations (Omega, Butterfly, Benes, Banyan, …)

 Omega Network:

22

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Om e g a N e t w o r k

conflict

Blocking
or

Non-blocking?

Multistage Networks (Circuit Switched)

 A multistage network has more restrictions on feasible
concurrent Tx-Rx pairs vs a crossbar

 But more scalable than crossbar in cost, e.g., O(N
logN) for Butterfly

 23

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2-by-2 crossbar

Multistage Networks (Packet Switched)

 Packets “hop” from router to router, pending availability of
the next-required switch and buffer

24

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2-by-2 router

Aside: Circuit vs. Packet Switching
 Circuit switching sets up full path before transmission

 Establish route then send data

 Noone else can use those links while “circuit” is set

+ faster arbitration

+ no buffering

-- setting up and bringing down “path” takes time

 Packet switching routes per packet in each router

 Route each packet individually (possibly via different paths)

 If link is free, any packet can use it

-- potentially slower --- must dynamically switch

-- need buffering

+ no setup, bring down time

+ more flexible, does not underutilize links

25

Switching vs. Topology

 Circuit/packet switching choice independent of topology

 It is a higher-level protocol on how a message gets sent to
a destination

 However, some topologies are more amenable to circuit vs.
packet switching

26

Another Example: Delta Network

 Single path from source to
destination

 Each stage has different
routers

 Proposed to replace costly
crossbars as processor-memory
interconnect

 Janak H. Patel,“Processor-
Memory Interconnections for
Multiprocessors,” ISCA 1979.

27

8x8 Delta network

Another Example: Omega Network

 Single path from source to
destination

 All stages are the same

 Used in NYU
Ultracomputer

 Gottlieb et al. “The NYU
Ultracomputer - Designing
an MIMD Shared Memory
Parallel Computer,” IEEE
Trans. On Comp., 1983.

28

Combining Operations in the Network

 Idea: Combine multiple operations on a shared memory
location

 Example: Omega network switches combine fetch-and-add
operations in NYU Ultracomputer

 Fetch-and-add(M, I): return M, replace M with M+I

 Common when parallel processors modify a shared variable,
e.g. obtain a chunk of the array

 Combining reduces synchronization latency

29

Butterfly

 Equivalent to Omega Network

 Indirect

 Used in BBN Butterfly

 Conflicts can cause “tree saturation”

 Randomization of route selection helps

30

1

0

3

2

5

4

7

6

9

8

11

10

13

12

15

14

1

0

3

2

5

4

7

6

9

8

11

10

13

12

15

14

Direct

Review: Topologies

31

Topology Crossbar Mesh

Indirect Direct/Indirect

Blocking/

Non-blocking

2

1

0

3

2 1 0 3

1

0

3

2

5

4

7

6

1

0

3

2

5

4

7

6

Non-blocking Blocking Blocking

Multistage Logarith.

Indirect

Cost

Latency

O(N2) O(NlogN) O(N)

O(sqrt(N)) O(1) O(logN)

Ring

Each node connected to exactly two other nodes. Nodes form
a continuous pathway such that packets can reach any
node.

+ Cheap: O(N) cost

- High latency: O(N)

- Not easy to scale

 - Bisection bandwidth remains constant

Used in Intel Haswell,

Intel Larrabee, IBM Cell,

many commercial systems today

32

M

P

R IN G

S

M

P

S

M

P

S

Unidirectional Ring

 Single directional pathway

 Simple topology and implementation

 Reasonable performance if N and performance needs
(bandwidth & latency) still moderately low

 O(N) cost

 N/2 average hops; latency depends on utilization

33

R

0

R

1

R

N-2

R

N-1

2

2x2 router

Bidirectional Rings

Multi-directional pathways, or multiple rings

+ Reduces latency

+ Improves scalability

- Slightly more complex injection policy (need to select which
ring to inject a packet into)

34

Hierarchical Rings

+ More scalable

+ Lower latency

- More complex

35

More on Hierarchical Rings

 Ausavarungnirun et al., “Design and Evaluation of Hierarchical
Rings with Deflection Routing,” SBAC-PAD 2014.

 http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-
deflection_sbacpad14.pdf

 Discusses the design and implementation of a mostly-
bufferless hierarchical ring

36

http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-deflection_sbacpad14.pdf
http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-deflection_sbacpad14.pdf
http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-deflection_sbacpad14.pdf
http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-deflection_sbacpad14.pdf
http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-deflection_sbacpad14.pdf
http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-deflection_sbacpad14.pdf
http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-deflection_sbacpad14.pdf
http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-deflection_sbacpad14.pdf

 Each node connected to 4 neighbors (N, E, S, W)

 O(N) cost

 Average latency: O(sqrt(N))

 Easy to layout on-chip: regular and equal-length links

 Path diversity: many ways to get from one node to another

 Used in Tilera 100-core

 And many on-chip network

 prototypes

Mesh

37

Torus

 Mesh is not symmetric on edges: performance very
sensitive to placement of task on edge vs. middle

 Torus avoids this problem

+ Higher path diversity (and bisection bandwidth) than mesh

- Higher cost

- Harder to lay out on-chip

 - Unequal link lengths

38

Torus, continued

 Weave nodes to make inter-node latencies ~constant

39

S

M P

S

M P

S

M P

S

M P

S

M P

S

M P

S

M P

S

M P

Planar, hierarchical topology

Latency: O(logN)

Good for local traffic

+ Cheap: O(N) cost

+ Easy to Layout

- Root can become a bottleneck

 Fat trees avoid this problem (CM-5)

Trees

40

Fat Tree

CM-5 Fat Tree

 Fat tree based on 4x2 switches

 Randomized routing on the way up

 Combining, multicast, reduction operators supported in
hardware

 Thinking Machines Corp., “The Connection Machine CM-5
Technical Summary,” Jan. 1992.

41

Hypercube

 “N-dimensional cube” or “N-cube”

 Latency: O(logN)

 Radix: O(logN)

 #links: O(NlogN)

+ Low latency

- Hard to lay out in 2D/3D

42

00
00

01
01

01
00

00
01

00
11

00
10

01
10

01
11

10
00

11
01

11
00

10
01

10
11

10
10

11
10

11
11

Caltech Cosmic Cube

 64-node message passing
machine

 Seitz, “The Cosmic Cube,”
CACM 1985.

43

Routing

44

Routing Mechanism

 Arithmetic

 Simple arithmetic to determine route in regular topologies

 Dimension order routing in meshes/tori

 Source Based
 Source specifies output port for each switch in route

+ Simple switches

 no control state: strip output port off header

- Large header

 Table Lookup Based
 Index into table for output port

+ Small header

- More complex switches

45

Routing Algorithm

 Three Types

 Deterministic: always chooses the same path for a
communicating source-destination pair

 Oblivious: chooses different paths, without considering
network state

 Adaptive: can choose different paths, adapting to the state of
the network

 How to adapt

 Local/global feedback

 Minimal or non-minimal paths

46

Deterministic Routing

 All packets between the same (source, dest) pair take the
same path

 Dimension-order routing

 First traverse dimension X, then traverse dimension Y

 E.g., XY routing (used in Cray T3D, and many on-chip
networks)

+ Simple

+ Deadlock freedom (no cycles in resource allocation)

- Could lead to high contention

- Does not exploit path diversity

 47

Deadlock

 No forward progress

 Caused by circular dependencies on resources

 Each packet waits for a buffer occupied by another packet
downstream

48

Handling Deadlock

 Avoid cycles in routing

 Dimension order routing

 Cannot build a circular dependency

 Restrict the “turns” each packet can take

 Avoid deadlock by adding more buffering (escape paths)

 Detect and break deadlock

 Preemption of buffers

49

Turn Model to Avoid Deadlock

 Idea

 Analyze directions in which packets can turn in the network

 Determine the cycles that such turns can form

 Prohibit just enough turns to break possible cycles

 Glass and Ni, “The Turn Model for Adaptive Routing,” ISCA
1992.

50

Oblivious Routing: Valiant’s Algorithm

 Goal: Balance network load

 Idea: Randomly choose an intermediate destination, route
to it first, then route from there to destination

 Between source-intermediate and intermediate-dest, can use
dimension order routing

+ Randomizes/balances network load

- Non minimal (packet latency can increase)

 Optimizations:

 Do this on high load

 Restrict the intermediate node to be close (in the same quadrant)

 51

Adaptive Routing

 Minimal adaptive

 Router uses network state (e.g., downstream buffer
occupancy) to pick which “productive” output port to send a
packet to

 Productive output port: port that gets the packet closer to its
destination

+ Aware of local congestion

- Minimality restricts achievable link utilization (load balance)

 Non-minimal (fully) adaptive

 “Misroute” packets to non-productive output ports based on
network state

+ Can achieve better network utilization and load balance

- Need to guarantee livelock freedom

52

More on Adaptive Routing

 Can avoid faulty links/routers

 Idea: Route around faults

+ Deterministic routing cannot handle faulty components

- Need to change the routing table to disable faulty routes

 - Assuming the faulty link/router is detected

One recent example:

 Fattah et al., "A Low-Overhead, Fully-Distributed,
Guaranteed-Delivery Routing Algorithm for Faulty
Network-on-Chips", NOCS 2015.

53

https://users.ece.cmu.edu/~omutlu/pub/maze-routing_nocs15.pdf
https://users.ece.cmu.edu/~omutlu/pub/maze-routing_nocs15.pdf
https://users.ece.cmu.edu/~omutlu/pub/maze-routing_nocs15.pdf
https://users.ece.cmu.edu/~omutlu/pub/maze-routing_nocs15.pdf
https://users.ece.cmu.edu/~omutlu/pub/maze-routing_nocs15.pdf
https://users.ece.cmu.edu/~omutlu/pub/maze-routing_nocs15.pdf
https://users.ece.cmu.edu/~omutlu/pub/maze-routing_nocs15.pdf
https://users.ece.cmu.edu/~omutlu/pub/maze-routing_nocs15.pdf
https://users.ece.cmu.edu/~omutlu/pub/maze-routing_nocs15.pdf
https://users.ece.cmu.edu/~omutlu/pub/maze-routing_nocs15.pdf
https://users.ece.cmu.edu/~omutlu/pub/maze-routing_nocs15.pdf
https://users.ece.cmu.edu/~omutlu/pub/maze-routing_nocs15.pdf
https://users.ece.cmu.edu/~omutlu/pub/maze-routing_nocs15.pdf

Buffering and Flow Control

54

Recall: Circuit vs. Packet Switching

 Circuit switching sets up full path before transmission

 Establish route then send data

 Noone else can use those links while “circuit” is set

+ faster arbitration

-- setting up and bringing down “path” takes time

 Packet switching routes per packet in each router

 Route each packet individually (possibly via different paths)

 If link is free, any packet can use it

-- potentially slower --- must dynamically switch

+ no setup, bring down time

+ more flexible, does not underutilize links

55

Packet Switched Networks: Packet Format

 Header

 routing and control information

 Payload

 carries data (non HW specific information)

 can be further divided (framing, protocol stacks…)

 Error Code

 generally at tail of packet so it can be generated on the way
out

56

Header Payload Error Code

Handling Contention

 Two packets trying to use the same link at the same time

 What do you do?

 Buffer one

 Drop one

 Misroute one (deflection)

 Tradeoffs?

57

Flow Control Methods

 Circuit switching

 Bufferless (Packet/flit based)

 Store and forward (Packet based)

 Virtual Cut Through (Packet based)

 Wormhole (Flit based)

58

Circuit Switching Revisited

 Resource allocation granularity is high

 Idea: Pre-allocate resources across multiple switches for a
given “flow”

 Need to send a probe to set up the path for pre-allocation

+ No need for buffering

+ No contention (flow’s performance is isolated)

+ Can handle arbitrary message sizes

- Lower link utilization: two flows cannot use the same link

- Handshake overhead to set up a “circuit”

59

Destination

Bufferless Deflection Routing

 Key idea: Packets are never buffered in the network. When
two packets contend for the same link, one is deflected.1

60
1Baran, “On Distributed Communication Networks.” RAND Tech. Report., 1962 / IEEE Trans.Comm., 1964.

New traffic can be injected
whenever there is a free
output link.

Bufferless Deflection Routing

 Input buffers are eliminated: packets are buffered in
pipeline latches and on network links

61

North

South

East

West

Local

North

South

East

West

Local

Deflection Routing Logic

Input Buffers

Store and Forward Flow Control

 Packet based flow control

 Store and Forward

 Packet copied entirely into network router before moving to
the next node

 Flow control unit is the entire packet

 Leads to high per-packet latency

 Requires buffering for entire packet in each node

62

Can we do better?

S

D

Cut through Flow Control

 Another form of packet based flow control

 Start forwarding as soon as header is received and
resources (buffer, channel, etc) allocated

 Dramatic reduction in latency

 Still allocate buffers and channel bandwidth for full packets

 What if packets are large?

63

S

D

Cut through Flow Control

 What to do if output port is blocked?

 Lets the tail continue when the head is blocked, absorbing
the whole message into a single switch.

 Requires a buffer large enough to hold the largest packet.

 Degenerates to store-and-forward with high contention

 Can we do better?

64

Wormhole Flow Control

 Packets broken into (potentially)
smaller flits (buffer/bw allocation unit)

 Flits are sent across the fabric in a
wormhole fashion

 Body follows head, tail follows body

 Pipelined

 If head blocked, rest of packet stops

 Routing (src/dest) information only in
head

 How does body/tail know where to go?

 Latency almost independent of distance
for long messages

65

H

B

B

T

Wormhole Flow Control

 Advantages over “store and forward” flow control

+ Lower latency

+ More efficient buffer utilization

 Limitations

- Suffers from head of line blocking

 - If head flit cannot move due to contention, another worm
cannot proceed even though links may be idle

66

1 2

1 2 1

2

Switching Fabric Input Queues Outputs

1

2

1

2
HOL Blocking

Idle!

Head of Line Blocking

 A worm can be before another in the router input buffer

 Due to FIFO nature, the second worm cannot be scheduled
even though it may need to access another output port

67

Head of Line Blocking

68

Blocked by other
packets

Channel idle but
red packet blocked

behind blue

Buffer full: blue
cannot proceed

Red holds this channel:
channel remains idle
until read proceeds

Virtual Channel Flow Control

 Idea: Multiplex multiple channels over one physical channel

 Divide up the input buffer into multiple buffers sharing a
single physical channel

 Dally, “Virtual Channel Flow Control,” ISCA 1990.

69

Virtual Channel Flow Control

 Idea: Multiplex multiple channels over one physical channel

 Divide up the input buffer into multiple buffers sharing a
single physical channel

 Dally, “Virtual Channel Flow Control,” ISCA 1990.

70

Virtual Channel Flow Control

71

Blocked by other
packets

Buffer full: blue
cannot proceed

A Modern Virtual Channel Based Router

72

Other Uses of Virtual Channels

 Deadlock avoidance

 Enforcing switching to a different set of virtual channels on
some “turns” can break the cyclic dependency of resources

 Enforce order on VCs

 Escape VCs: Have at least one VC that uses deadlock-free
routing. Ensure each flit has fair access to that VC.

 Protocol level deadlock: Ensure address and data packets use
different VCs  prevent cycles due to intermixing of different

packet classes

 Prioritization of traffic classes

 Some virtual channels can have higher priority than others

73

Review: Flow Control

74

Store and Forward

S

D

Cut Through / Wormhole
S

D

Blocked by other
packets

Channel idle but
red packet blocked

behind blue

Buffer full: blue
cannot proceed

Red holds this channel:
channel remains idle
until read proceeds

Shrink Buffers

Reduce latency

Any other

issues?

 Head-of-Line

Blocking

Use Virtual

Channels

Review: Flow Control

75

Store and Forward

S

D

Cut Through / Wormhole
S

D

Shrink Buffers

Reduce latency

Any other

issues?

 Head-of-Line

Blocking

Use Virtual

Channels

Blocked by other
packets

Buffer full: blue
cannot proceed

Communicating Buffer Availability

 Credit-based flow control

 Upstream knows how many buffers are downstream

 Downstream passes back credits to upstream

 Significant upstream signaling (esp. for small flits)

 On/Off (XON/XOFF) flow control

 Downstream has on/off signal to upstream

 Ack/Nack flow control

 Upstream optimistically sends downstream

 Buffer cannot be deallocated until ACK/NACK received

 Inefficiently utilizes buffer space

76

Credit-based Flow Control

 Round-trip credit delay:

 Time between when buffer empties and when next flit can be
processed from that buffer entry

 Significant throughput degradation if there are few buffers

 Important to size buffers to tolerate credit turn-around

77

Node 1 Node 2

Flit departs

router

t1

Process
t2

t3

Process
t4

t5

Credit round

trip delay

On/Off (XON/XOFF) Flow Control

 Downstream has on/off signal to upstream

78

Proces

s

Node 1 Node 2
t1

t2

Foffthreshold
reached

Proces

s

t3
t4

t5

t6

t7

t8

Foffset to
prevent flits

arriving before
t4 from

overflowing

Fonthreshold
reached

Fonset so that
Node 2 does
not run out of
flits between

t5 and t8

Interconnection Network

Performance

79

Interconnection Network Performance

80

Latency

Injection rate into network

Min latency
given by
topology

Min latency
given by
routing

algorithm

Zero load latency
(topology+routing+f

low control)

Throughput
given by
topology

Throughput
given by
routing

Throughput
given by flow

control

Ideal Latency

 Ideal latency

 Solely due to wire delay between source and destination

 D = Manhattan distance

 L = packet size

 b = channel bandwidth

 v = propagation velocity

81



T
ideal


D

v

L

b

Actual Latency

 Dedicated wiring impractical

 Long wires segmented with insertion of routers

 D = Manhattan distance

 L = packet size

 b = channel bandwidth

 v = propagation velocity

 H = hops

 Trouter = router latency

 Tc = latency due to contention

82

crouteractual
TTH

b

L

v

D
T 

Latency and Throughput Curve

83

0

10

20

30

40

50

60

0.1 0.3 0.5 0.7 0.9

L
a

te
n

c
y
 (

c
y
c
le

s
)

Injected load (fraction of capacity)

Ideal On-chip Network

Network Performance Metrics

 Packet latency

 Round trip latency

 Saturation throughput

 Application-level performance: system performance

 Affected by interference among threads/applications

84

Buffering and Routing in

On-Chip Networks

85

On-Chip Networks

86

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R Router

Processing Element
(Cores, L2 Banks, Memory Controllers, etc)

PE

• Connect cores, caches, memory
controllers, etc

– Buses and crossbars are not scalable

• Packet switched

• 2D mesh: Most commonly used
topology

• Primarily serve cache misses and
memory requests

© Onur Mutlu, 2009, 2010

On-chip Networks

87

From East

From West

From North

From South

From PE

VC 0

VC Identifier

VC 1

VC 2

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Crossbar (5 x 5)

To East

To PE

To West

To North

To South

Input Port with Buffers

Control Logic

Crossbar

R Router

PE Processing Element
(Cores, L2 Banks, Memory Controllers etc)

Routing Unit
(RC)

VC Allocator
(VA)

Switch
Allocator (SA)

© Onur Mutlu, 2009, 2010

On-Chip vs. Off-Chip Interconnects

 On-chip advantages

 Low latency between cores

 No pin constraints

 Rich wiring resources

 Very high bandwidth

 Simpler coordination

 On-chip constraints/disadvantages

 2D substrate limits implementable topologies

 Energy/power consumption a key concern

 Complex algorithms undesirable

 Logic area constrains use of wiring resources

 88

© Onur Mutlu, 2009, 2010

On-Chip vs. Off-Chip Interconnects (II)

 Cost

 Off-chip: Channels, pins, connectors, cables

 On-chip: Cost is storage and switches (wires are plentiful)

 Leads to networks with many wide channels, few buffers

 Channel characteristics

 On chip short distance  low latency

 On chip RC lines  need repeaters every 1-2mm

 Can put logic in repeaters

 Workloads

 Multi-core cache traffic vs. supercomputer interconnect traffic

89

• Buffers are necessary for high network throughput

  buffers increase total available bandwidth in network

Buffers in NoC Routers

Injection Rate

A
vg

. p
ac

ke
t

la
te

n
cy

large

buffers

medium

buffers

small

buffers

• Buffers are necessary for high network throughput

  buffers increase total available bandwidth in network

• Buffers consume significant energy/power

• Dynamic energy when read/write

• Static energy even when not occupied

• Buffers add complexity and latency

• Logic for buffer management

• Virtual channel allocation

• Credit-based flow control

• Buffers require significant chip area

• E.g., in TRIPS prototype chip, input buffers occupy 75% of

total on-chip network area [Gratz et al, ICCD’06]

Buffers in NoC Routers

• How much throughput do we lose?

 How is latency affected?

• Up to what injection rates can we use bufferless routing?

  Are there realistic scenarios in which NoC is

 operated at injection rates below the threshold?

• Can we achieve energy reduction?

 If so, how much…?

• Can we reduce area, complexity, etc…?

Going Bufferless…?

Injection Rate

la
te

n
cy

buffers
no

buffers

Answers in
our paper!

Bufferless Routing in NoCs

 Moscibroda and Mutlu, “A Case for Bufferless Routing in On-
Chip Networks,” ISCA 2009.

 https://users.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf

93

https://users.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf

Packet Scheduling

 Which packet to choose for a given output port?

 Router needs to prioritize between competing flits

 Which input port?

 Which virtual channel?

 Which application’s packet?

 Common strategies

 Round robin across virtual channels

 Oldest packet first (or an approximation)

 Prioritize some virtual channels over others

 Better policies in a multi-core environment

 Use application characteristics

94

Application-Aware Packet Scheduling

Das et al., “Application-Aware Prioritization Mechanisms for On-Chip Networks,”
MICRO 2009.

The Problem: Packet Scheduling

Network-on-Chip

L2$ L2$
L2$

L2$

Bank

mem

cont

Memory

Controller

P

Accelerator
L2$

Bank

L2$

Bank

P P P P P P P

Network-on-Chip

Network-on-Chip is a critical resource

shared by multiple applications

App1 App2 App N App N-1

From East

From West

From North

From South

From PE

VC 0

VC Identifier

VC 1

VC 2

The Problem: Packet Scheduling

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Crossbar (5 x 5)

To East

To PE

To West

To North

To South

Input Port with Buffers

Control Logic

Crossbar

R Routers

PE Processing Element
(Cores, L2 Banks, Memory Controllers etc)

Routing Unit
(RC)

VC Allocator
(VA)

Switch
Allocator (SA

)

VC 0
Routing Unit

(RC)

VC Allocator
(VA)

Switch
Allocator (SA)

VC 1

VC 2

From East

From West

From North

From South

From PE

The Problem: Packet Scheduling

Conceptual

View

From East

From West

From North

From South

From PE

VC 0

VC 1

VC 2

App1 App2 App3 App4
App5 App6 App7 App8

The Problem: Packet Scheduling

VC 0
Routing Unit

(RC)

VC Allocator
(VA)

Switch

VC 1

VC 2

From East

From West

From North

From South

From PE

Allocator (SA)

Sc
h

e
d

u
le

r

Conceptual

View

VC 0
Routing Unit

(RC)

VC Allocator
(VA)

Switch
Allocator (SA)

VC 1

VC 2

From East

From West

From North

From South

From PE

From East

From West

From North

From South

From PE

VC 0

VC 1

VC 2

App1 App2 App3 App4
App5 App6 App7 App8

Which packet to choose?

The Problem: Packet Scheduling

The Problem: Packet Scheduling

 Existing scheduling policies

 Round Robin

 Age

 Problem 1: Local to a router

 Lead to contradictory decision making between routers: packets

from one application may be prioritized at one router, to be

delayed at next.

 Problem 2: Application oblivious

 Treat all applications packets equally

 But applications are heterogeneous

 Solution : Application-aware global scheduling policies.

STC Scheduling Example

In
je

ct
io

n
C

yc
le

s

1

2

3

4

5

6

7

8

2 2

3

Batch 0

Packet Injection Order at Processor

Core1 Core2 Core3

Batching interval length = 3 cycles

Ranking order =

Batch 1

Batch 2

STC Scheduling Example

4 8

5

1 7

2

1

6 2

1

3

Router

Sc
h

e
d

u
le

r

In
je

ct
io

n
C

yc
le

s

1

2

3

4

5

6

7

8

2 2

3

Batch 2

Batch 1

Batch 0

Applications

STC Scheduling Example

4 8

5

1 7

3

2

6 2

2

3

Router

Sc
h

e
d

u
le

r

Round Robin

3 2 8 7 6

STALL CYCLES Avg

RR 8 6 11 8.3

Age

STC

Time

STC Scheduling Example

4 8

5

1 7

3

2

6 2

2

3

Router

Sc
h

e
d

u
le

r

Round Robin

5 4 3 1 2 2 3 2 8 7 6

Age

3 3 5 4 6 7 8

STALL CYCLES Avg

RR 8 6 11 8.3

Age 4 6 11 7.0

STC

Time

Time

STC Scheduling Example

4 8

5

1 7

3

2

6 2

2

3

Router

Sc
h

e
d

u
le

r

Round Robin

5 4 3 1 2 2 3 2 8 7 6

Age

2 3 3 5 4 6 7 8 1 2 2

STC

3 5 4 6 7 8

STALL CYCLES Avg

RR 8 6 11 8.3

Age 4 6 11 7.0

STC 1 3 11 5.0

Ranking order

Time

Time

Time

Bufferless Routing in NoCs

 Das et al., “Application-Aware Prioritization Mechanisms for
On-Chip Networks,” MICRO 2009.

 https://users.ece.cmu.edu/~omutlu/pub/app-aware-
noc_micro09.pdf

107

https://users.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf
https://users.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf
https://users.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf
https://users.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf
https://users.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf

18-740/640

Computer Architecture

Lecture 16: Interconnection Networks

Prof. Onur Mutlu

Carnegie Mellon University

Fall 2015, 11/4/2015

