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 Required Reading Assignment: 
• Dubois, Annavaram, Stenstrom, Chapter 6.  

 

 Recommended References: 
 

• Moscibroda and Mutlu, “A Case for Bufferless Routing in On-Chip 
Networks,” ISCA 2009. 

 

• Das et al., “Application-Aware Prioritization Mechanisms for On-Chip 
Networks,” MICRO 2009. 
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Where Is Interconnect Used? 

 To connect components 

 

 Many examples 

 Processors and processors 

 Processors and memories (banks) 

 Processors and caches (banks) 

 Caches and caches 

 I/O devices 
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Why Is It Important? 

 Affects the scalability of the system 

 How large of a system can you build? 

 How easily can you add more processors? 

 

 Affects performance and energy efficiency 

 How fast can processors, caches, and memory communicate? 

 How long are the latencies to memory? 

 How much energy is spent on communication? 

 

 

 

5 



Interconnection Network Basics 

 Topology 

 Specifies the way switches are wired 

 Affects routing, reliability, throughput, latency, building ease 

 

 Routing (algorithm) 

 How does a message get from source to destination 

 Static or adaptive  

 

 Buffering and Flow Control 

 What do we store within the network? 

 Entire packets, parts of packets, etc? 

 How do we throttle during oversubscription? 

 Tightly coupled with routing strategy 
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Terminology  

 Network interface 

 Module that connects endpoints (e.g. processors) to network  

 Decouples computation/communication 

 

 Link 

 Bundle of wires that carry a signal 

 

 Switch/router 

 Connects fixed number of input channels to fixed number of 
output channels 

 

 Channel 

 A single logical connection between routers/switches 
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More Terminology 

 Node 

 A router/switch within a network 

 

 Message 

 Unit of transfer for network’s clients (processors, memory) 

 

 Packet 

 Unit of transfer for network  

 

 Flit 

 Flow control digit 

 Unit of flow control within network 
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Some More Terminology 
 Direct or Indirect Networks 

 Endpoints sit “inside” (direct) or “outside” (indirect) the network 

 E.g. mesh is direct; every node is both endpoint and switch 
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Interconnection Network 

Topology 
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Properties of a Topology/Network 

 Regular or Irregular 

 Regular if topology is regular graph (e.g. ring, mesh). 

 

 Routing Distance  

 number of links/hops along a route  

 

 Diameter  

 maximum routing distance within the network 

 

 Average Distance 

 Average number of hops across all valid routes 
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Properties of a Topology/Network 

 Bisection Bandwidth 

 Often used to describe network performance 

 Cut network in half and sum bandwidth of links severed 

 (Min # channels spanning two halves) * (BW of each channel) 

 Meaningful only for recursive topologies 

 Can be misleading, because does not account for switch and 
routing efficiency (and certainly not execution time) 

 

 Blocking vs. Non-Blocking 

 If connecting any permutation of sources & destinations is 
possible, network is non-blocking; otherwise network is blocking. 

 Rearrangeable non-blocking: Same as non-blocking but might 
require rearranging connections when switching from one 
permutation to another. 
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Topology 

 Bus (simplest) 

 Point-to-point connections (ideal and most costly) 

 Crossbar (less costly) 

 Ring 

 Tree 

 Omega 

 Hypercube 

 Mesh 

 Torus 

 Butterfly 

 … 
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Metrics to Evaluate Interconnect Topology 

 Cost 

 Latency (in hops, in nanoseconds) 

 Contention 

 

 Many others exist you should think about 

 Energy 

 Bandwidth 

 Overall system performance 
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Bus 

All nodes connected to a single link 

+ Simple + Cost effective for a small number of nodes 

+ Easy to implement coherence (snooping and serialization) 

- Not scalable to large number of nodes (limited bandwidth, 
electrical loading  reduced frequency) 

- High contention  fast saturation 
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Point-to-Point  

Every node connected to every other 

    with direct/isolated links 
 

+ Lowest contention 

+ Potentially lowest latency 

+ Ideal, if cost is no issue 
 

-- Highest cost 

   O(N) connections/ports  

   per node 

   O(N2) links 

-- Not scalable 

-- How to lay out on chip? 
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Crossbar 

 Every node connected to every other with a shared link for 
each destination 

 Enables concurrent transfers to non-conflicting destinations  

 Could be cost-effective for small number of nodes 

 

+ Low latency and high throughput 

- Expensive 

- Not scalable  O(N2) cost 

- Difficult to arbitrate as N increases 

 

Used in core-to-cache-bank 

networks in 

- IBM POWER5 

- Sun Niagara I/II 
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Another Crossbar Design 
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Sun UltraSPARC T2 Core-to-Cache Crossbar 

 High bandwidth 
interface between 8 
cores and 8 L2 
banks & NCU 

 

 4-stage pipeline: 
req, arbitration, 
selection, 
transmission 

 

 2-deep queue for 
each src/dest pair 
to hold data 
transfer request 
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Bufferless and Buffered Crossbars 
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Can We Get Lower Cost than A Crossbar? 

 Yet still have low contention compared to a bus? 

 

 Idea: Multistage networks 

21 



Multistage Logarithmic Networks 

 Idea: Indirect networks with multiple layers of switches 
between terminals/nodes 

 Cost: O(NlogN), Latency: O(logN) 

 Many variations (Omega, Butterfly, Benes, Banyan, …) 

 Omega Network: 
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Multistage Networks (Circuit Switched) 

 

 

 

 

 

 

 

 
 

 A multistage network has more restrictions on feasible 
concurrent Tx-Rx pairs vs a crossbar 

 But more scalable than crossbar in cost, e.g., O(N 
logN) for Butterfly 
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Multistage Networks (Packet Switched) 

 

 

 

 

 

 

 

 

 

 

 Packets “hop” from router to router, pending availability of 
the next-required switch and buffer 
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Aside: Circuit vs. Packet Switching 
 Circuit switching sets up full path before transmission 

 Establish route then send data 

 Noone else can use those links while “circuit” is set 

+ faster arbitration 

+ no buffering 

-- setting up and bringing down “path” takes time 

 

 Packet switching routes per packet in each router 

 Route each packet individually (possibly via different paths) 

 If link is free, any packet can use it 

-- potentially slower --- must dynamically switch 

-- need buffering 

+ no setup, bring down time 

+ more flexible, does not underutilize links 
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Switching vs. Topology 

 Circuit/packet switching choice independent of topology 

 It is a higher-level protocol on how a message gets sent to 
a destination 

 

 However, some topologies are more amenable to circuit vs. 
packet switching 
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Another Example: Delta Network 

 Single path from source to 
destination 
 

 Each stage has different 
routers 

 

 Proposed to replace costly 
crossbars as processor-memory 
interconnect 
 

 Janak H. Patel,“Processor-
Memory Interconnections for 
Multiprocessors,” ISCA 1979. 
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Another Example: Omega Network 

 Single path from source to 
destination 

 

 All stages are the same 

 

 Used in NYU 
Ultracomputer 

 

 Gottlieb et al. “The NYU 
Ultracomputer - Designing 
an MIMD Shared Memory 
Parallel Computer,” IEEE 
Trans. On Comp., 1983. 
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Combining Operations in the Network 

 Idea: Combine multiple operations on a shared memory 
location 

 Example: Omega network switches combine fetch-and-add 
operations in NYU Ultracomputer 

 Fetch-and-add(M, I): return M, replace M with M+I 

 Common when parallel processors modify a shared variable, 
e.g. obtain a chunk of the array  

 Combining reduces synchronization latency 
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Butterfly 

 Equivalent to Omega Network 

 Indirect 

 Used in BBN Butterfly  

 Conflicts can cause “tree saturation” 

 Randomization of route selection helps 
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Direct 

Review: Topologies 
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Ring 

Each node connected to exactly two other nodes. Nodes form 
a continuous pathway such that packets can reach any 
node. 

 

+ Cheap: O(N) cost 

- High latency: O(N) 

- Not easy to scale 

   - Bisection bandwidth remains constant 

 

Used in Intel Haswell,  

Intel Larrabee, IBM Cell,  

many commercial systems today 
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Unidirectional Ring 

 

 

 

 

 

 

 Single directional pathway 

 Simple topology and implementation 

 Reasonable performance if N and performance needs 
(bandwidth & latency) still moderately low 

 O(N) cost 

 N/2 average hops; latency depends on utilization 
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Bidirectional Rings 

Multi-directional pathways, or multiple rings 

 

+ Reduces latency 

+ Improves scalability 

 

- Slightly more complex injection policy (need to select which 
ring to inject a packet into) 
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Hierarchical Rings 

 

 

 

 

 

 

 

+ More scalable 

+ Lower latency 

 

- More complex 
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More on Hierarchical Rings 

 Ausavarungnirun et al., “Design and Evaluation of Hierarchical 
Rings with Deflection Routing,” SBAC-PAD 2014. 

 http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-
deflection_sbacpad14.pdf  

 

 Discusses the design and implementation of a mostly-
bufferless hierarchical ring 
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 Each node connected to 4 neighbors (N, E, S, W) 

 O(N) cost 

 Average latency: O(sqrt(N)) 

 Easy to layout on-chip: regular and equal-length links 

 Path diversity: many ways to get from one node to another 

 

 Used in Tilera 100-core 

 And many on-chip network 

   prototypes 

Mesh 
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Torus 

 Mesh is not symmetric on edges: performance very 
sensitive to placement of task on edge vs. middle 

 Torus avoids this problem 

+ Higher path diversity (and bisection bandwidth) than mesh 

- Higher cost 

- Harder to lay out on-chip 

  - Unequal link lengths 
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Torus, continued 

 Weave nodes to make inter-node latencies ~constant 
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Planar, hierarchical topology 

Latency: O(logN) 

Good for local traffic 

+ Cheap: O(N) cost 

+ Easy to Layout 

- Root can become a bottleneck 

  Fat trees avoid this problem (CM-5) 

 

Trees 
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CM-5 Fat Tree 

 Fat tree based on 4x2 switches 

 Randomized routing on the way up 

 Combining, multicast, reduction operators supported in 
hardware 

 Thinking Machines Corp., “The Connection Machine CM-5 
Technical Summary,” Jan. 1992. 
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Hypercube 

 “N-dimensional cube” or “N-cube” 

 

 

 

 Latency: O(logN) 

 Radix: O(logN) 

 #links: O(NlogN) 

+ Low latency 

- Hard to lay out in 2D/3D 
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Caltech Cosmic Cube 

 64-node message passing 
machine 

 

 Seitz, “The Cosmic Cube,” 
CACM 1985. 
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Routing 
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Routing Mechanism 

 Arithmetic 

 Simple arithmetic to determine route in regular topologies 

 Dimension order routing in meshes/tori 

 

 Source Based 
 Source specifies output port for each switch in route 

+ Simple switches  

 no control state: strip output port off header 

- Large header 

 

 Table Lookup Based 
 Index into table for output port 

+ Small header 

- More complex switches 
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Routing Algorithm 

 Three Types 

 Deterministic: always chooses the same path for a 
communicating source-destination pair 

 Oblivious: chooses different paths, without considering 
network state 

 Adaptive: can choose different paths, adapting to the state of 
the network 

 

 How to adapt 

 Local/global feedback 

 Minimal or non-minimal paths 

 

46 



Deterministic Routing 

 All packets between the same (source, dest) pair take the 
same path 

 

 Dimension-order routing 

 First traverse dimension X, then traverse dimension Y 

 E.g., XY routing (used in Cray T3D, and many on-chip 
networks) 

 

 

+ Simple 

+ Deadlock freedom (no cycles in resource allocation) 

- Could lead to high contention 

- Does not exploit path diversity 
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Deadlock 

 No forward progress 

 Caused by circular dependencies on resources 

 Each packet waits for a buffer occupied by another packet 
downstream 

48 



Handling Deadlock 

 Avoid cycles in routing 

 Dimension order routing 

 Cannot build a circular dependency 

 Restrict the “turns” each packet can take 

 

 

 Avoid deadlock by adding more buffering (escape paths) 

 

 

 Detect and break deadlock 

 Preemption of buffers 
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Turn Model to Avoid Deadlock 

 Idea 

 Analyze directions in which packets can turn in the network 

 Determine the cycles that such turns can form 

 Prohibit just enough turns to break possible cycles 

 Glass and Ni, “The Turn Model for Adaptive Routing,” ISCA 
1992. 
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Oblivious Routing: Valiant’s Algorithm 

 Goal: Balance network load  

 Idea: Randomly choose an intermediate destination, route 
to it first, then route from there to destination 

 Between source-intermediate and intermediate-dest, can use 
dimension order routing 

 

+ Randomizes/balances network load 

- Non minimal (packet latency can increase) 

 

 Optimizations: 

 Do this on high load 

 Restrict the intermediate node to be close (in the same quadrant) 
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Adaptive Routing 

 Minimal adaptive 

 Router uses network state (e.g., downstream buffer 
occupancy) to pick which “productive” output port to send a 
packet to 

 Productive output port: port that gets the packet closer to its 
destination 

+ Aware of local congestion 

- Minimality restricts achievable link utilization (load balance) 

 

 Non-minimal (fully) adaptive 

 “Misroute” packets to non-productive output ports based on 
network state 

+ Can achieve better network utilization and load balance 

- Need to guarantee livelock freedom 
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More on Adaptive Routing 

 Can avoid faulty links/routers 

 

 Idea: Route around faults 

 

+ Deterministic routing cannot handle faulty components 

- Need to change the routing table to disable faulty routes 

  - Assuming the faulty link/router is detected 

 

One recent example: 

   Fattah et al., "A Low-Overhead, Fully-Distributed, 
Guaranteed-Delivery Routing Algorithm for Faulty 
Network-on-Chips", NOCS 2015. 
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Buffering and Flow Control 
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Recall: Circuit vs. Packet Switching 

 Circuit switching sets up full path before transmission 

 Establish route then send data 

 Noone else can use those links while “circuit” is set 

+ faster arbitration 

-- setting up and bringing down “path” takes time 

 

 Packet switching routes per packet in each router 

 Route each packet individually (possibly via different paths) 

 If link is free, any packet can use it 

-- potentially slower --- must dynamically switch 

+ no setup, bring down time 

+ more flexible, does not underutilize links 
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Packet Switched Networks: Packet Format 

 Header 

 routing and control information 

 Payload 

 carries data (non HW specific information) 

 can be further divided (framing, protocol stacks…) 

 Error Code 

 generally at tail of packet so it can be generated on the way 
out 
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Handling Contention 

 

 

 

 

 

 

 Two packets trying to use the same link at the same time 

 What do you do? 

 Buffer one 

 Drop one 

 Misroute one (deflection) 

 Tradeoffs? 

57 



Flow Control Methods 

 Circuit switching 

 

 Bufferless (Packet/flit based) 

 

 Store and forward (Packet based) 

 

 Virtual Cut Through (Packet based) 

 

 Wormhole (Flit based) 
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Circuit Switching Revisited 

 Resource allocation granularity is high 

 

 Idea: Pre-allocate resources across multiple switches for a 
given “flow” 

 Need to send a probe to set up the path for pre-allocation 

 

+ No need for buffering 

+ No contention (flow’s performance is isolated) 

+ Can handle arbitrary message sizes 

- Lower link utilization: two flows cannot use the same link 

- Handshake overhead to set up a “circuit” 
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Destination 

Bufferless Deflection Routing 

 Key idea: Packets are never buffered in the network. When 
two packets contend for the same link, one is deflected.1 
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1Baran, “On Distributed Communication Networks.” RAND Tech. Report., 1962 / IEEE Trans.Comm., 1964. 

New traffic can be injected 
whenever there is a free 
output link. 



Bufferless Deflection Routing 

 Input buffers are eliminated: packets are buffered in 
pipeline latches and on network links 
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Store and Forward Flow Control 

 Packet based flow control 

 Store and Forward 

 Packet copied entirely into network router before moving to 
the next node 

 Flow control unit is the entire packet 

 Leads to high per-packet latency 

 Requires buffering for entire packet in each node 
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Cut through Flow Control 

 Another form of packet based flow control 

 Start forwarding as soon as header is received and 
resources (buffer, channel, etc) allocated 

 Dramatic reduction in latency 

 Still allocate buffers and channel bandwidth for full packets 

 

 

 

 

 

 

 What if packets are large? 
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Cut through Flow Control 

 What to do if output port is blocked? 

 Lets the tail continue when the head is blocked, absorbing 
the whole message into a single switch.  

 Requires a buffer large enough to hold the largest packet. 

 Degenerates to store-and-forward with high contention 

 

 Can we do better? 
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Wormhole Flow Control 

 Packets broken into (potentially) 
smaller flits (buffer/bw allocation unit) 

 Flits are sent across the fabric in a 
wormhole fashion 

 Body follows head, tail follows body 

 Pipelined 

 If head blocked, rest of packet stops 

 Routing (src/dest) information only in 
head 

 

 How does body/tail know where to go? 

 Latency almost independent of distance 
for long messages 
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Wormhole Flow Control 

 Advantages over “store and forward” flow control 

+ Lower latency 

+ More efficient buffer utilization 

 Limitations 

- Suffers from head of line blocking 

   - If head flit cannot move due to contention, another worm 
cannot proceed even though links may be idle  
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Head of Line Blocking 

 A worm can be before another in the router input buffer 

 Due to FIFO nature, the second worm cannot be scheduled 
even though it may need to access another output port  
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Head of Line Blocking 
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Virtual Channel Flow Control 

 Idea: Multiplex multiple channels over one physical channel 

 Divide up the input buffer into multiple buffers sharing a 
single physical channel 

 Dally, “Virtual Channel Flow Control,” ISCA 1990. 
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Virtual Channel Flow Control 

 Idea: Multiplex multiple channels over one physical channel 

 Divide up the input buffer into multiple buffers sharing a 
single physical channel 

 Dally, “Virtual Channel Flow Control,” ISCA 1990. 
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Virtual Channel Flow Control 
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A Modern Virtual Channel Based Router 
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Other Uses of Virtual Channels 

 Deadlock avoidance 

 Enforcing switching to a different set of virtual channels on 
some “turns” can break the cyclic dependency of resources 

 Enforce order on VCs 

 Escape VCs: Have at least one VC that uses deadlock-free 
routing. Ensure each flit has fair access to that VC.  

 Protocol level deadlock: Ensure address and data packets use 
different VCs  prevent cycles due to intermixing of different 

packet classes 

 

 Prioritization of traffic classes 

 Some virtual channels can have higher priority than others 
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Review: Flow Control 
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Review: Flow Control 
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Communicating Buffer Availability 

 Credit-based flow control 

 Upstream knows how many buffers are downstream 

 Downstream passes back credits to upstream 

 Significant upstream signaling (esp. for small flits) 

 

 On/Off (XON/XOFF) flow control 

 Downstream has on/off signal to upstream 

 

 Ack/Nack flow control 

 Upstream optimistically sends downstream 

 Buffer cannot be deallocated until ACK/NACK received 

 Inefficiently utilizes buffer space 
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Credit-based Flow Control 
 

 

 

 

 

 

 

 

 Round-trip credit delay:  

 Time between when buffer empties and when next flit can be 
processed from that buffer entry 

 Significant throughput degradation if there are few buffers 

 Important to size buffers to tolerate credit turn-around 
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On/Off (XON/XOFF) Flow Control 

 Downstream has on/off signal to upstream 
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Interconnection Network 

Performance 
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Interconnection Network Performance 
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Ideal Latency 

 Ideal latency 

 Solely due to wire delay between source and destination 

 

 

 

 

 D = Manhattan distance 

 L = packet size 

 b = channel bandwidth 

 v = propagation velocity 
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Actual Latency 

 Dedicated wiring impractical 

 Long wires segmented with insertion of routers 

 

 

 

 D = Manhattan distance 

 L = packet size 

 b = channel bandwidth 

 v = propagation velocity 

 H = hops 

 Trouter = router latency 

 Tc = latency due to contention 
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Latency and Throughput Curve 
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Network Performance Metrics 

 Packet latency 

 

 Round trip latency 

 

 Saturation throughput 

 

 Application-level performance: system performance 

 Affected by interference among threads/applications 
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Buffering and Routing in 

On-Chip Networks 
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On-Chip Networks 
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– Buses and crossbars are not scalable 

• Packet switched 

• 2D mesh: Most commonly used 
topology 

• Primarily serve cache misses and 
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On-chip Networks 
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On-Chip vs. Off-Chip Interconnects 

 On-chip advantages 

 Low latency between cores 

 No pin constraints 

 Rich wiring resources 

 Very high bandwidth 

 Simpler coordination 

 

 On-chip constraints/disadvantages 

 2D substrate limits implementable topologies 

 Energy/power consumption a key concern 

 Complex algorithms undesirable 

 Logic area constrains use of wiring resources 
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On-Chip vs. Off-Chip Interconnects (II) 

 Cost 

 Off-chip: Channels, pins, connectors, cables 

 On-chip: Cost is storage and switches (wires are plentiful) 

 Leads to networks with many wide channels, few buffers 

 

 Channel characteristics 

 On chip short distance  low latency 

 On chip RC lines  need repeaters every 1-2mm 

 Can put logic in repeaters 

 

 Workloads 

 Multi-core cache traffic vs. supercomputer interconnect traffic 
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• Buffers are necessary for high network throughput 

  buffers increase total available bandwidth in network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Buffers in NoC Routers 
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• Buffers are necessary for high network throughput 

  buffers increase total available bandwidth in network 

 

• Buffers consume significant energy/power 

• Dynamic energy when read/write 

• Static energy even when not occupied 

• Buffers add complexity and latency  

• Logic for buffer management 

• Virtual channel allocation 

• Credit-based flow control  

• Buffers require significant chip area 

• E.g., in TRIPS prototype chip, input buffers occupy 75% of  

total on-chip network area [Gratz et al, ICCD’06] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Buffers in NoC Routers 



 

• How much throughput do we lose?  

 How is latency affected?  

 

 

• Up to what injection rates can we use bufferless routing? 

  Are there realistic scenarios in which NoC is  

    operated at injection rates below the threshold?  

 

• Can we achieve energy reduction? 

 If so, how much…?   

 

• Can we reduce area, complexity, etc…?  
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Bufferless Routing in NoCs 

 Moscibroda and Mutlu, “A Case for Bufferless Routing in On-
Chip Networks,” ISCA 2009. 

 https://users.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf  
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Packet Scheduling 

 Which packet to choose for a given output port? 

 Router needs to prioritize between competing flits 

 Which input port? 

 Which virtual channel? 

 Which application’s packet? 

 

 Common strategies 

 Round robin across virtual channels 

 Oldest packet first (or an approximation) 

 Prioritize some virtual channels over others 

 

 Better policies in a multi-core environment 

 Use application characteristics 
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Application-Aware Packet Scheduling 

 

 

 

 

 

Das et al., “Application-Aware Prioritization Mechanisms for On-Chip Networks,” 
MICRO 2009. 
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The Problem: Packet Scheduling 

 Existing scheduling policies  

 Round Robin 

 Age 

 Problem 1: Local to a router 

 Lead to contradictory decision making between routers: packets 

from one application may be prioritized at one router, to be 

delayed at next.  

 Problem 2: Application oblivious 

 Treat all applications packets equally 

 But applications are heterogeneous 

 Solution : Application-aware global scheduling policies. 

 

 

 



STC Scheduling Example 
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STC Scheduling Example 
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STC Scheduling Example 
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Bufferless Routing in NoCs 

 Das et al., “Application-Aware Prioritization Mechanisms for 
On-Chip Networks,” MICRO 2009. 

 https://users.ece.cmu.edu/~omutlu/pub/app-aware-
noc_micro09.pdf  
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