
18-740/640

Computer Architecture
Lecture 15: Memory Resource Management II

Prof. Onur Mutlu

Carnegie Mellon University

Fall 2015, 11/2/2015

Required Readings

2

 Required Reading Assignment:
• Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling:

Enhancing both Performance and Fairness of Shared DRAM
Systems,” ISCA 2008.

 Recommended References:

• Muralidhara et al., “Reducing Memory Interference in Multicore
Systems via Application-Aware Memory Channel Partitioning,”
MICRO 2011.

• Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO
2011.

• Wang et al., “A-DRM: Architecture-aware Distributed Resource
Management of Virtualized Clusters,” VEE 2015.

Guest Lecture Tomorrow (11/3, Tuesday)

 Mike O’Connor, NVIDIA

 Advances in GPU architecture and GPU memory systems

 HH 1107, 7:30pm Pittsburgh Time

3

CALCM Seminar Tomorrow (11/3)

 High-bandwidth, Energy-efficient DRAM Architectures for
GPU Systems

 Mike O’Connor, NVIDIA

 CIC Panther Hollow Room (4th Floor), 4:30pm

 https://www.ece.cmu.edu/~calcm/doku.php?id=seminars:s
eminar_11_03_15

4

https://www.ece.cmu.edu/~calcm/doku.php?id=seminars:seminar_11_03_15

Shared Resource Design for

Multi-Core Systems

5

Memory System is the Major Shared Resource

6

threads’ requests
interfere

Much More of a Shared Resource in Future

7

Inter-Thread/Application Interference

 Problem: Threads share the memory system, but memory
system does not distinguish between threads’ requests

 Existing memory systems

 Free-for-all, shared based on demand

 Control algorithms thread-unaware and thread-unfair

 Aggressive threads can deny service to others

 Do not try to reduce or control inter-thread interference

8

Unfair Slowdowns due to Interference

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.

matlab
(Core 1)

gcc
(Core 2)

9

10

Uncontrolled Interference: An Example

CORE 1 CORE 2

L2

CACHE

L2

CACHE

DRAM MEMORY CONTROLLER

DRAM

Bank 0

DRAM

Bank 1

DRAM

Bank 2

Shared DRAM

Memory System

Multi-Core

Chip

unfairness

INTERCONNECT

stream random

DRAM

Bank 3

// initialize large arrays A, B

for (j=0; j<N; j++) {
index = rand();
A[index] = B[index];
…

}

11

A Memory Performance Hog

STREAM

- Sequential memory access
- Very high row buffer locality (96% hit rate)
- Memory intensive

RANDOM

- Random memory access
- Very low row buffer locality (3% hit rate)
- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
index = j*linesize;
A[index] = B[index];
…

}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

12

What Does the Memory Hog Do?

Row Buffer

R
o
w

 d
e
c
o
d
e
r

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16

T0: Row 0T1: Row 111

T0: Row 0T0: Row 0T1: Row 5

T0: Row 0T0: Row 0T0: Row 0T0: Row 0T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B

128 (8KB/64B) requests of T0 serviced before T1

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

13

DRAM Controllers

 A row-conflict memory access takes significantly longer
than a row-hit access

 Current controllers take advantage of the row buffer

 Commonly used scheduling policy (FR-FCFS) [Rixner 2000]*

(1) Row-hit first: Service row-hit memory accesses first

(2) Oldest-first: Then service older accesses first

 This scheduling policy aims to maximize DRAM throughput

 But, it is unfair when multiple threads share the DRAM system

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.

*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997.

Effect of the Memory Performance Hog

0

0.5

1

1.5

2

2.5

3

STREAM RANDOM

14

1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

S
lo

w
d
o
w

n

0

0.5

1

1.5

2

2.5

3

STREAM gcc

0

0.5

1

1.5

2

2.5

3

STREAM Virtual PC

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Problems due to Uncontrolled Interference

15

 Unfair slowdown of different threads

 Low system performance

 Vulnerability to denial of service

 Priority inversion: unable to enforce priorities/SLAs

Cores make

very slow

progress

Memory performance hogLow priority

High priority
S

lo
w

d
o

w
n

Main memory is the only shared resource

Problems due to Uncontrolled Interference

16

 Unfair slowdown of different threads

 Low system performance

 Vulnerability to denial of service

 Priority inversion: unable to enforce priorities/SLAs

 Poor performance predictability (no performance isolation)

Uncontrollable, unpredictable system

Distributed DoS in Networked Multi-Core Systems

17

Attackers
(Cores 1-8)

Stock option pricing application
(Cores 9-64)

Cores connected via

packet-switched

routers on chip

~5000X latency increase

Grot, Hestness, Keckler, Mutlu,
“Preemptive virtual clock: A Flexible,
Efficient, and Cost-effective QOS
Scheme for Networks-on-Chip,“
MICRO 2009.

How Do We Solve The Problem?

 Inter-thread interference is uncontrolled in all memory
resources

 Memory controller

 Interconnect

 Caches

 We need to control it

 i.e., design an interference-aware (QoS-aware) memory system

18

QoS-Aware Memory Systems: Challenges

 How do we reduce inter-thread interference?

 Improve system performance and core utilization

 Reduce request serialization and core starvation

 How do we control inter-thread interference?

 Provide mechanisms to enable system software to enforce
QoS policies

 While providing high system performance

 How do we make the memory system configurable/flexible?

 Enable flexible mechanisms that can achieve many goals

 Provide fairness or throughput when needed

 Satisfy performance guarantees when needed

19

Designing QoS-Aware Memory Systems: Approaches

 Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

 QoS-aware memory controllers

 QoS-aware interconnects

 QoS-aware caches

 Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping

 Source throttling to control access to memory system

 QoS-aware data mapping to memory controllers

 QoS-aware thread scheduling to cores

20

Fundamental Interference Control Techniques

 Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

21

QoS-Aware Memory Scheduling

 How to schedule requests to provide

 High system performance

 High fairness to applications

 Configurability to system software

 Memory controller needs to be aware of threads

22

Memory
Controller

Core Core

Core Core

Memory

Resolves memory contention
by scheduling requests

QoS-Aware Memory Scheduling:

Evolution

QoS-Aware Memory Scheduling: Evolution

 Stall-time fair memory scheduling [Mutlu+ MICRO’07]

 Idea: Estimate and balance thread slowdowns

 Takeaway: Proportional thread progress improves performance,
especially when threads are “heavy” (memory intensive)

 Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09]

 Idea: Rank threads and service in rank order (to preserve bank
parallelism); batch requests to prevent starvation

 Takeaway: Preserving within-thread bank-parallelism improves
performance; request batching improves fairness

 ATLAS memory scheduler [Kim+ HPCA’10]

 Idea: Prioritize threads that have attained the least service from the
memory scheduler

 Takeaway: Prioritizing “light” threads improves performance

24

QoS-Aware Memory Scheduling: Evolution

 Thread cluster memory scheduling [Kim+ MICRO’10]

 Idea: Cluster threads into two groups (latency vs. bandwidth
sensitive); prioritize the latency-sensitive ones; employ a fairness
policy in the bandwidth sensitive group

 Takeaway: Heterogeneous scheduling policy that is different based
on thread behavior maximizes both performance and fairness

 Integrated Memory Channel Partitioning and Scheduling
[Muralidhara+ MICRO’11]

 Idea: Only prioritize very latency-sensitive threads in the scheduler;
mitigate all other applications’ interference via channel partitioning

 Takeaway: Intelligently combining application-aware channel
partitioning and memory scheduling provides better performance
than either

25

QoS-Aware Memory Scheduling: Evolution

 Parallel application memory scheduling [Ebrahimi+ MICRO’11]

 Idea: Identify and prioritize limiter threads of a multithreaded
application in the memory scheduler; provide fast and fair progress
to non-limiter threads

 Takeaway: Carefully prioritizing between limiter and non-limiter
threads of a parallel application improves performance

 Staged memory scheduling [Ausavarungnirun+ ISCA’12]

 Idea: Divide the functional tasks of an application-aware memory
scheduler into multiple distinct stages, where each stage is
significantly simpler than a monolithic scheduler

 Takeaway: Staging enables the design of a scalable and relatively
simpler application-aware memory scheduler that works on very
large request buffers

26

QoS-Aware Memory Scheduling: Evolution

 MISE [Subramanian+ HPCA’13]

 Idea: Estimate the performance of a thread by estimating its change
in memory request service rate when run alone vs. shared  use

this simple model to estimate slowdown to design a scheduling
policy that provides predictable performance or fairness

 Takeaway: Request service rate of a thread is a good proxy for its
performance; alone request service rate can be estimated by giving
high priority to the thread in memory scheduling for a while

 BLISS: Blacklisting Memory Scheduler [Subramanian+ ICCD’14]

 Idea: Deprioritize (i.e., blacklist) a thread that has consecutively
serviced a large number of requests

 Takeaway: Blacklisting greatly reduces interference enables the
scheduler to be simple without requiring full thread ranking

27

QoS-Aware Memory Scheduling: Evolution

 Prefetch-aware shared resource management [Ebrahimi+

ISCA’11] [Ebrahimi+ MICRO’09] [Ebrahimi+ HPCA’09] [Lee+ MICRO’08]

 Idea: Prioritize prefetches depending on how they affect system
performance; even accurate prefetches can degrade performance of
the system

 Takeaway: Carefully controlling and prioritizing prefetch requests
improves performance and fairness

 DRAM-Aware last-level cache policies and write scheduling
[Lee+ HPS Tech Report’10] [Lee+ HPS Tech Report’10]

 Idea: Design cache eviction and replacement policies such that they
proactively exploit the state of the memory controller and DRAM
(e.g., proactively evict data from the cache that hit in open rows)

 Takeaway: Coordination of last-level cache and DRAM policies
improves performance and fairness

28

Stall-Time Fair Memory Scheduling

Onur Mutlu and Thomas Moscibroda,
"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"

40th International Symposium on Microarchitecture (MICRO),
pages 146-158, Chicago, IL, December 2007. Slides (ppt)

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt

The Problem: Unfairness

 Vulnerable to denial of service (DoS)

 Unable to enforce priorities or SLAs

 Low system performance

Uncontrollable, unpredictable system

30

How Do We Solve the Problem?

 Stall-time fair memory scheduling [Mutlu+ MICRO’07]

 Goal: Threads sharing main memory should experience
similar slowdowns compared to when they are run alone 

fair scheduling
 Also improves overall system performance by ensuring cores make

“proportional” progress

 Idea: Memory controller estimates each thread’s slowdown
due to interference and schedules requests in a way to
balance the slowdowns

 Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors,” MICRO 2007.

31

32

Stall-Time Fairness in Shared DRAM Systems

 A DRAM system is fair if it equalizes the slowdown of equal-priority threads
relative to when each thread is run alone on the same system

 DRAM-related stall-time: The time a thread spends waiting for DRAM memory

 STshared: DRAM-related stall-time when the thread runs with other threads

 STalone: DRAM-related stall-time when the thread runs alone

 Memory-slowdown = STshared/STalone

 Relative increase in stall-time

 Stall-Time Fair Memory scheduler (STFM) aims to equalize
Memory-slowdown for interfering threads, without sacrificing performance

 Considers inherent DRAM performance of each thread

 Aims to allow proportional progress of threads

33

STFM Scheduling Algorithm [MICRO’07]

 For each thread, the DRAM controller

 Tracks STshared

 Estimates STalone

 Each cycle, the DRAM controller

 Computes Slowdown = STshared/STalone for threads with legal requests

 Computes unfairness = MAX Slowdown / MIN Slowdown

 If unfairness < 

 Use DRAM throughput oriented scheduling policy

 If unfairness ≥ 

 Use fairness-oriented scheduling policy

 (1) requests from thread with MAX Slowdown first

 (2) row-hit first , (3) oldest-first

34

How Does STFM Prevent Unfairness?

Row Buffer

Data

Row 0

T0: Row 0

Row 0

T1: Row 16

T0: Row 0

T1: Row 111

T0: Row 0T0: Row 0

T1: Row 5

T0: Row 0T0: Row 0

T0: Row 0

T0 Slowdown

T1 Slowdown 1.00

1.00

1.00Unfairness

1.03

1.03

1.06

1.06

 1.05

1.03

1.06

1.031.04

1.08

1.04

1.04

1.11

1.06

1.07

1.04

1.10

1.14

1.03

Row 16Row 111

STFM Pros and Cons

 Upsides:

 First algorithm for fair multi-core memory scheduling

 Provides a mechanism to estimate memory slowdown of a
thread

 Good at providing fairness

 Being fair can improve performance

 Downsides:

 Does not handle all types of interference

 (Somewhat) complex to implement

 Slowdown estimations can be incorrect

35

More on STFM

 Onur Mutlu and Thomas Moscibroda,
"Stall-Time Fair Memory Access Scheduling for Chip
Multiprocessors"
Proceedings of the 40th International Symposium on
Microarchitecture (MICRO), pages 146-158, Chicago, IL,
December 2007. [Summary] [Slides (ppt)]

36

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt

Parallelism-Aware Batch Scheduling

Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems”

35th International Symposium on Computer Architecture (ISCA),
pages 63-74, Beijing, China, June 2008. Slides (ppt)

PAR-BS ISCA 2008 Talk

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/parbs-isca08-talk.ppt

Another Problem due to Memory Interference

 Processors try to tolerate the latency of DRAM requests by
generating multiple outstanding requests

 Memory-Level Parallelism (MLP)

 Out-of-order execution, non-blocking caches, runahead execution

 Effective only if the DRAM controller actually services the
multiple requests in parallel in DRAM banks

 Multiple threads share the DRAM controller

 DRAM controllers are not aware of a thread’s MLP

 Can service each thread’s outstanding requests serially, not in parallel

38

Bank Parallelism of a Thread

39

Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Bank access latencies of the two requests overlapped

Thread stalls for ~ONE bank access latency

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

Single Thread:

Compute

Compute

2 DRAM Requests

Bank Parallelism Interference in DRAM

40

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0

Stall

Bank 1

Baseline Scheduler:

B: Compute

Bank 0

Stall
Bank 1

Stall

Stall

Bank access latencies of each thread serialized

Each thread stalls for ~TWO bank access latencies

2 DRAM Requests

Parallelism-Aware Scheduler

41

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests

Parallelism-aware Scheduler:

B: Compute
Bank 0

Stall Compute

Bank 1

Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute

Bank 1

Stall

Stall

Baseline Scheduler:

Compute

Bank 0

Stall Compute

Bank 1

Saved Cycles Average stall-time:

~1.5 bank access

latencies

Parallelism-Aware Batch Scheduling (PAR-BS)

 Principle 1: Parallelism-awareness

 Schedule requests from a thread (to
different banks) back to back

 Preserves each thread’s bank parallelism

 But, this can cause starvation…

 Principle 2: Request Batching

 Group a fixed number of oldest requests
from each thread into a “batch”

 Service the batch before all other requests

 Form a new batch when the current one is done

 Eliminates starvation, provides fairness

 Allows parallelism-awareness within a batch

42

Bank 0 Bank 1

T1

T1

T0

T0

T2

T2

T3

T3

T2 T2

T2

Batch

T0

T1 T1

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

PAR-BS Components

 Request batching

 Within-batch scheduling
 Parallelism aware

43

Request Batching

 Each memory request has a bit (marked) associated with it

 Batch formation:

 Mark up to Marking-Cap oldest requests per bank for each thread

 Marked requests constitute the batch

 Form a new batch when no marked requests are left

 Marked requests are prioritized over unmarked ones

 No reordering of requests across batches: no starvation, high fairness

 How to prioritize requests within a batch?

44

Within-Batch Scheduling

 Can use any existing DRAM scheduling policy

 FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

 But, we also want to preserve intra-thread bank parallelism

 Service each thread’s requests back to back

 Scheduler computes a ranking of threads when the batch is
formed

 Higher-ranked threads are prioritized over lower-ranked ones

 Improves the likelihood that requests from a thread are serviced in
parallel by different banks

 Different threads prioritized in the same order across ALL banks

45

HOW?

Thread Ranking

46

Bank 0

Bank 1

req

reqreq

req

memory service timeline

thread A

thread B

thread execution timeline

WAIT

WAIT

thread B

thread A

Bank 0

Bank 1

req

reqreq

req

memory service timeline

thread execution timeline

WAIT

WAIT

ra
n

k

thread B

thread A

thread A

thread B

SAVED CYCLES

Key Idea:

How to Rank Threads within a Batch

 Ranking scheme affects system throughput and fairness

 Maximize system throughput

 Minimize average stall-time of threads within the batch

 Minimize unfairness (Equalize the slowdown of threads)

 Service threads with inherently low stall-time early in the batch

 Insight: delaying memory non-intensive threads results in high
slowdown

 Shortest stall-time first (shortest job first) ranking

 Provides optimal system throughput [Smith, 1956]*

 Controller estimates each thread’s stall-time within the batch

 Ranks threads with shorter stall-time higher

47

* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.

 Maximum number of marked requests to any bank (max-bank-load)

 Rank thread with lower max-bank-load higher (~ low stall-time)

 Total number of marked requests (total-load)

 Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First Ranking

48

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-load total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

Ranking:

T0 > T1 > T2 > T3

7

5

3

Example Within-Batch Scheduling Order

49

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling

Order (Arrival order)

PAR-BS Scheduling

Order

T2

T3

T1 T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3

T1

T3T2 T2

T1 T2T1

T0

T2

T0

T3 T2

T3

T3

T3

T3

T0 T1 T2 T3

4 4 5 7

AVG: 5 bank access latencies AVG: 3.5 bank access latencies

Stall times

T0 T1 T2 T3

1 2 4 7Stall times

T
im

e

1

2

4

6

Ranking: T0 > T1 > T2 > T3

1

2

3

4

5

6

7

T
im

e

Putting It Together: PAR-BS Scheduling Policy

 PAR-BS Scheduling Policy

(1) Marked requests first

(2) Row-hit requests first

(3) Higher-rank thread first (shortest stall-time first)

(4) Oldest first

 Three properties:

 Exploits row-buffer locality and intra-thread bank parallelism

 Work-conserving

 Services unmarked requests to banks without marked requests

 Marking-Cap is important

 Too small cap: destroys row-buffer locality

 Too large cap: penalizes memory non-intensive threads

 Many more trade-offs analyzed

50

Batching

Parallelism-aware

within-batch

scheduling

Hardware Cost

 <1.5KB storage cost for

 8-core system with 128-entry memory request buffer

 No complex operations (e.g., divisions)

 Not on the critical path

 Scheduler makes a decision only every DRAM cycle

51

52

Unfairness on 4-, 8-, 16-core Systems

1

1.5

2

2.5

3

3.5

4

4.5

5

4-core 8-core 16-core

U
n

fa
ir

n
e
s
s
 (

lo
w

e
r

is
 b

e
tt

e
r)

FR-FCFS

FCFS

NFQ

STFM

PAR-BS

Unfairness = MAX Memory Slowdown / MIN Memory Slowdown [MICRO 2007]

1.11X 1.08X

1.11X

53

System Performance (Hmean-speedup)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

4-core 8-core 16-core

N
o

rm
a
li
z
e
d

 H
m

e
a
n

 S
p

e
e
d

u
p

FR-FCFS

FCFS

NFQ

STFM

PAR-BS

8.3% 6.1% 5.1%

PAR-BS Pros and Cons

 Upsides:

 First scheduler to address bank parallelism destruction across
multiple threads

 Simple mechanism (vs. STFM)

 Batching provides fairness

 Ranking enables parallelism awareness

 Downsides:

 Does not always prioritize the latency-sensitive applications

54

More on PAR-BS

 Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer
Architecture (ISCA), pages 63-74, Beijing, China, June 2008.
[Summary] [Slides (ppt)]

55

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt

ATLAS Memory Scheduler

Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,
"ATLAS: A Scalable and High-Performance

Scheduling Algorithm for Multiple Memory Controllers"
16th International Symposium on High-Performance Computer Architecture (HPCA),

Bangalore, India, January 2010. Slides (pptx)

ATLAS HPCA 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://www.cse.psu.edu/hpcl/hpca16.html
http://users.ece.cmu.edu/~omutlu/pub/kim_hpca10_talk.pptx
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/kim_hpca10_talk.pptx

ATLAS: Summary

 Goal: To maximize system performance

 Main idea: Prioritize the thread that has attained the least
service from the memory controllers (Adaptive per-Thread
Least Attained Service Scheduling)

 Rank threads based on attained service in the past time
interval(s)

 Enforce thread ranking in the memory scheduler during the
current interval

 Why it works: Prioritizes “light” (memory non-intensive)
threads that are more likely to keep their cores busy

57

4

6

8

10

12

14

16

1 2 4 8 16

Memory controllers

Sy
st

em
 t

h
ro

u
gh

p
u

t

FCFS FR_FCFS STFM PAR-BS ATLAS

System Throughput: 24-Core System

58

System throughput = ∑ Speedup

ATLAS consistently provides higher system throughput than
all previous scheduling algorithms

17.0%

9.8%

8.4%

5.9%

3.5%

S
y
st

e
m

 t
h
ro

u
g
h
p
u
t

of memory controllers

0

2

4

6

8

10

12

14

4 8 16 24 32

Cores

Sy
st

em
 t

h
ro

u
gh

p
u

t

PAR-BS ATLAS

System Throughput: 4-MC System

of cores increases  ATLAS performance benefit increases

59

1.1%
3.5%

4.0%

8.4%

10.8%

S
y
st

e
m

 t
h
ro

u
g
h
p
u
t

of cores

ATLAS Pros and Cons

 Upsides:

 Good at improving overall throughput (compute-intensive
threads are prioritized)

 Low complexity

 Coordination among controllers happens infrequently

 Downsides:

 Lowest/medium ranked threads get delayed significantly 

high unfairness

60

More on ATLAS Memory Scheduler

 Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,
"ATLAS: A Scalable and High-Performance Scheduling
Algorithm for Multiple Memory Controllers"
Proceedings of the 16th International Symposium on High-
Performance Computer Architecture (HPCA), Bangalore, India,
January 2010. Slides (pptx)

61

http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://www.cse.psu.edu/hpcl/hpca16.html
http://users.ece.cmu.edu/~omutlu/pub/kim_hpca10_talk.pptx

TCM:

Thread Cluster Memory Scheduling

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling:

Exploiting Differences in Memory Access Behavior"
43rd International Symposium on Microarchitecture (MICRO),
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

TCM Micro 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/kim_micro10_talk.pptx

No previous memory scheduling algorithm provides
both the best fairness and system throughput

1

3

5

7

9

11

13

15

17

7 7.5 8 8.5 9 9.5 10

M
ax

im
u

m
 S

lo
w

d
o

w
n

Weighted Speedup

FCFS

FRFCFS

STFM

PAR-BS

ATLAS

Previous Scheduling Algorithms are Biased

63

System throughput bias

Fairness bias

Better system throughput

B
et

te
r

fa
ir

n
e

ss
24 cores, 4 memory controllers, 96 workloads

Take turns accessing memory

Throughput vs. Fairness

64

Fairness biased approach

thread C

thread B

thread A

less memory
intensive

higher
priority

Prioritize less memory-intensive threads

Throughput biased approach

Good for throughput

starvation  unfairness

thread C thread Bthread A

Does not starve

not prioritized 
reduced throughput

Single policy for all threads is insufficient

Achieving the Best of Both Worlds

65

thread

thread

higher
priority

thread

thread

thread

thread

thread

thread

Prioritize memory-non-intensive threads

For Throughput

Unfairness caused by memory-intensive
being prioritized over each other

• Shuffle thread ranking

Memory-intensive threads have
different vulnerability to interference

• Shuffle asymmetrically

For Fairness

thread

thread

thread

thread

Thread Cluster Memory Scheduling [Kim+ MICRO’10]

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

66

thread

Threads in the system

thread

thread

thread

thread

thread

thread

Non-intensive
cluster

Intensive cluster

thread

thread

thread

Memory-non-intensive

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput

Fairness

Clustering Threads

Step1 Sort threads by MPKI (misses per kiloinstruction)

67

th
re

ad

th
re

ad

th
re

ad

th
re

ad

th
re

ad

th
re

ad

higher
MPKI

T
α < 10%

ClusterThreshold

Intensive
clusterαT

Non-intensive
cluster

T = Total memory bandwidth usage

Step2 Memory bandwidth usage αT divides clusters

TCM: Quantum-Based Operation

68

Time

Previous quantum
(~1M cycles)

During quantum:
• Monitor thread behavior

1. Memory intensity
2. Bank-level parallelism
3. Row-buffer locality

Beginning of quantum:
• Perform clustering
• Compute niceness of

intensive threads

Current quantum
(~1M cycles)

Shuffle interval
(~1K cycles)

TCM: Scheduling Algorithm

1. Highest-rank: Requests from higher ranked threads prioritized

• Non-Intensive cluster > Intensive cluster

• Non-Intensive cluster: lower intensity  higher rank

• Intensive cluster: rank shuffling

2.Row-hit: Row-buffer hit requests are prioritized

3.Oldest: Older requests are prioritized

69

TCM: Throughput and Fairness

FRFCFS

STFM

PAR-BS

ATLAS

TCM

4

6

8

10

12

14

16

7.5 8 8.5 9 9.5 10

M
ax

im
u

m
 S

lo
w

d
o

w
n

Weighted Speedup

70

Better system throughput

B
et

te
r

fa
ir

n
e

ss
24 cores, 4 memory controllers, 96 workloads

TCM, a heterogeneous scheduling policy,
provides best fairness and system throughput

TCM: Fairness-Throughput Tradeoff

71

2

4

6

8

10

12

12 13 14 15 16

M
ax

im
u

m
 S

lo
w

d
o

w
n

Weighted Speedup

When configuration parameter is varied…

Adjusting
ClusterThreshold

TCM allows robust fairness-throughput tradeoff

STFM
PAR-BS

ATLAS

TCM

Better system throughput

B
et

te
r

fa
ir

n
e

ss

FRFCFS

Operating System Support

• ClusterThreshold is a tunable knob

– OS can trade off between fairness and throughput

• Enforcing thread weights

– OS assigns weights to threads

– TCM enforces thread weights within each cluster

72

TCM Pros and Cons

 Upsides:

 Provides both high fairness and high performance

 Caters to the needs for different types of threads (latency vs.
bandwidth sensitive)

 (Relatively) simple

 Downsides:

 Scalability to large buffer sizes?

 Robustness of clustering and shuffling algorithms?

 Ranking is still too complex?

73

More on TCM

 Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-
Balter,
"Thread Cluster Memory Scheduling: Exploiting
Differences in Memory Access Behavior"
Proceedings of the 43rd International Symposium on
Microarchitecture (MICRO), pages 65-76, Atlanta, GA,
December 2010. Slides (pptx) (pdf)

74

http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf

Handling Memory Interference

In Multithreaded Applications

with Memory Scheduling

Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin,
Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Parallel Application Memory Scheduling"

Proceedings of the 44th International Symposium on Microarchitecture (MICRO),
Porto Alegre, Brazil, December 2011. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx

Multithreaded (Parallel) Applications

 Threads in a multi-threaded application can be inter-
dependent

 As opposed to threads from different applications

 Such threads can synchronize with each other

 Locks, barriers, pipeline stages, condition variables,
semaphores, …

 Some threads can be on the critical path of execution due
to synchronization; some threads are not

 Even within a thread, some “code segments” may be on
the critical path of execution; some are not

76

Critical Sections

 Enforce mutually exclusive access to shared data

 Only one thread can be executing it at a time

 Contended critical sections make threads wait  threads

causing serialization can be on the critical path

77

Each thread:

loop {

Compute

lock(A)

Update shared data

unlock(A)

}

N

C

Barriers

 Synchronization point

 Threads have to wait until all threads reach the barrier

 Last thread arriving to the barrier is on the critical path

78

Each thread:

loop1 {

Compute

}

barrier

loop2 {

Compute

}

Stages of Pipelined Programs

 Loop iterations are statically divided into code segments called stages

 Threads execute stages on different cores

 Thread executing the slowest stage is on the critical path

79

loop {

Compute1

Compute2

Compute3

}

A

B

C

A B C

Handling Interference in Parallel Applications

 Threads in a multithreaded application are inter-dependent

 Some threads can be on the critical path of execution due
to synchronization; some threads are not

 How do we schedule requests of inter-dependent threads
to maximize multithreaded application performance?

 Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

 Hardware/software cooperative limiter thread estimation:

 Thread executing the most contended critical section

 Thread executing the slowest pipeline stage

 Thread that is falling behind the most in reaching a barrier

80

Prioritizing Requests from Limiter Threads

81

Critical Section 1 BarrierNon-Critical Section

Waiting for Sync

or Lock

Thread D

Thread C

Thread B

Thread A

Time

Barrier

Time

Barrier

Thread D

Thread C

Thread B

Thread A

Critical Section 2 Critical Path

Saved

Cycles Limiter Thread: DBCA

Most Contended

Critical Section: 1

Limiter Thread Identification

More on PAMS

 Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo
Lee, Onur Mutlu, and Yale N. Patt,
"Parallel Application Memory Scheduling"
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December
2011. Slides (pptx)

82

http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx

Other Ways of

Handling Memory Interference

Fundamental Interference Control Techniques

 Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

84

Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda,

"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning”

44th International Symposium on Microarchitecture (MICRO),
Porto Alegre, Brazil, December 2011. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx

Observation: Modern Systems Have Multiple Channels

A new degree of freedom

Mapping data across multiple channels

86

Channel 0Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Data Mapping in Current Systems

87

Channel 0Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Causes interference between applications’ requests

Page

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Partitioning Channels Between Applications

88

Channel 0Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Page

Eliminates interference between applications’ requests

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Overview: Memory Channel Partitioning (MCP)

 Goal

 Eliminate harmful interference between applications

 Basic Idea

 Map the data of badly-interfering applications to different
channels

 Key Principles

 Separate low and high memory-intensity applications

 Separate low and high row-buffer locality applications

89Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Key Insight 1: Separate by Memory Intensity

High memory-intensity applications interfere with low
memory-intensity applications in shared memory channels

90

Map data of low and high memory-intensity applications
to different channels

12345
Channel 0

Bank 1

Channel 1

Bank 0

Conventional Page Mapping

Red
App

Blue
App

Time Units

Core

Core

Bank 1

Bank 0

Channel Partitioning

Red
App

Blue
App

Channel 0
Time Units

12345

Channel 1

Core

Core

Bank 1

Bank 0

Bank 1

Bank 0

Saved Cycles

Saved Cycles

Key Insight 2: Separate by Row-Buffer Locality

91

High row-buffer locality applications interfere with low

row-buffer locality applications in shared memory channels

Conventional Page Mapping

Channel 0

Bank 1

Channel 1

Bank 0R1

R0R2R3R0

R4

Request Buffer
State

Bank 1

Bank 0

Channel 1

Channel 0

R0R0

Service Order

123456

R2R3

R4

R1

Time
units

Bank 1

Bank 0

Bank 1

Bank 0

Channel 1

Channel 0

R0R0

Service Order

123456

R2R3

R4R1

Time
units

Bank 1

Bank 0

Bank 1

Bank 0

R0

Channel 0

R1

R2R3

R0

R4

Request Buffer
State

Channel Partitioning

Bank 1

Bank 0

Bank 1

Bank 0

Channel 1

Saved
CyclesMap data of low and high row-buffer locality applications

to different channels

Memory Channel Partitioning (MCP) Mechanism

1. Profile applications

2. Classify applications into groups

3. Partition channels between application groups

4. Assign a preferred channel to each application

5. Allocate application pages to preferred channel

92

Hardware

System

Software

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Interval Based Operation

93

time

Current Interval Next Interval

1. Profile applications

2. Classify applications into groups
3. Partition channels between groups
4. Assign preferred channel to applications

5. Enforce channel preferences

Observations

 Applications with very low memory-intensity rarely
access memory
 Dedicating channels to them results in precious
memory bandwidth waste

 They have the most potential to keep their cores busy
 We would really like to prioritize them

 They interfere minimally with other applications
 Prioritizing them does not hurt others

94

Integrated Memory Partitioning and Scheduling (IMPS)

 Always prioritize very low memory-intensity
applications in the memory scheduler

 Use memory channel partitioning to mitigate
interference between other applications

95Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Hardware Cost

 Memory Channel Partitioning (MCP)

 Only profiling counters in hardware

 No modifications to memory scheduling logic

 1.5 KB storage cost for a 24-core, 4-channel system

 Integrated Memory Partitioning and Scheduling (IMPS)

 A single bit per request

 Scheduler prioritizes based on this single bit

96Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Performance of Channel Partitioning

97

1%

5%

0.9

0.95

1

1.05

1.1

1.15

N
o

rm
al

iz
e

d

Sy
st

e
m

 P
e

rf
o

rm
an

ce FRFCFS

ATLAS

TCM

MCP

IMPS

7%

11%

Better system performance than the best previous scheduler
at lower hardware cost

Averaged over 240 workloads

Combining Multiple Interference Control Techniques

 Combined interference control techniques can mitigate
interference much more than a single technique alone can
do

 The key challenge is:

 Deciding what technique to apply when

 Partitioning work appropriately between software and
hardware

98

Fundamental Interference Control Techniques

 Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

99

Source Throttling: A Fairness Substrate

 Key idea: Manage inter-thread interference at the cores
(sources), not at the shared resources

 Dynamically estimate unfairness in the memory system

 Feed back this information into a controller

 Throttle cores’ memory access rates accordingly

 Whom to throttle and by how much depends on performance
target (throughput, fairness, per-thread QoS, etc)

 E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

 Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12.

100

101

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
1-Throttle down App-interfering

(limit injection rate and parallelism)

2-Throttle up App-slowest
}

FST

Unfairness Estimate

App-slowest

App-interfering

⎪ ⎨ ⎪ ⎧⎩

Slowdown
Estimation

Time
Interval 1 Interval 2 Interval 3

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

Fairness via Source Throttling (FST) [ASPLOS’10]

Core (Source) Throttling

 Idea: Estimate the slowdown due to (DRAM) interference
and throttle down threads that slow down others

 Ebrahimi et al., “Fairness via Source Throttling: A Configurable
and High-Performance Fairness Substrate for Multi-Core
Memory Systems,” ASPLOS 2010.

 Advantages

+ Core/request throttling is easy to implement: no need to change the
memory scheduling algorithm

+ Can be a general way of handling shared resource contention

+ Can reduce overall load/contention in the memory system

 Disadvantages

- Requires interference/slowdown estimations  difficult to estimate

- Thresholds can become difficult to optimize  throughput loss

102

More on Source Throttling (I)

 Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory
Systems"
Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010.
Slides (pdf)

103

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf

Fundamental Interference Control Techniques

 Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

Idea: Pick threads that do not badly interfere with each
other to be scheduled together on cores sharing the memory
system

104

Interference-Aware Thread Scheduling

 Advantages

+ Can eliminate/minimize interference by scheduling “symbiotic
applications” together (as opposed to just managing the
interference)

+ Less intrusive to hardware (less need to modify the hardware
resources)

 Disadvantages and Limitations

-- High overhead to migrate threads between cores and
machines

-- Does not work (well) if all threads are similar and they
interfere

105

Summary: Fundamental Interference Control Techniques

 Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

Best is to combine all. How would you do that?

106

Required Readings for Wednesday

107

 Required Reading Assignment:
• Dubois, Annavaram, Stenstrom, Chapter 6.

 Recommended References:

• Moscibroda and Mutlu, “A Case for Bufferless Routing in On-Chip
Networks,” ISCA 2009.

• Das et al., “Application-Aware Prioritization Mechanisms for On-Chip
Networks,” MICRO 2009.

18-740/640

Computer Architecture
Lecture 15: Memory Resource Management II

Prof. Onur Mutlu

Carnegie Mellon University

Fall 2015, 11/2/2015

Interference-Aware Thread Scheduling

 An example from scheduling in clusters (data centers)

 Clusters can be running virtual machines

109

Virtualized Cluster

110

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

How to dynamically
schedule VMs onto

hosts?

Distributed Resource Management
(DRM) policies

Conventional DRM Policies

111

Core0 Core1

Host

LLC

DRAM

App App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

VM

App

Memory Capacity

CPU

Based on operating-system-level metrics
e.g., CPU utilization, memory capacity
demand

Microarchitecture-level Interference

112

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

• VMs within a host compete
for:

– Shared cache capacity

– Shared memory bandwidth

Can operating-system-level metrics capture the
microarchitecture-level resource interference?

Microarchitecture Unawareness

113

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

VM
Operating-system-level metrics

CPU Utilization Memory Capacity

92% 369 MB

93% 348 MBApp

App

STREAM

gromacs

Microarchitecture-level metrics

LLC Hit Ratio Memory Bandwidth

2% 2267 MB/s

98% 1 MB/s

VM

App

Memory Capacity

CPU

Impact on Performance

114

0.0

0.2

0.4

0.6

IPC
(Harmonic

Mean)

Conventional DRM with Microarchitecture Awareness

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

App

STREAM

gromacs

VM

App

Memory Capacity

CPU SWAP

Impact on Performance

115

0.0

0.2

0.4

0.6

IPC
(Harmonic

Mean)

Conventional DRM with Microarchitecture Awareness

49%

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

App

STREAM

gromacs

VM

App

Memory Capacity

CPU

We need microarchitecture-
level interference awareness in

DRM!

A-DRM: Architecture-aware DRM

• Goal: Take into account microarchitecture-level
shared resource interference
– Shared cache capacity

– Shared memory bandwidth

• Key Idea:

– Monitor and detect microarchitecture-level shared
resource interference

– Balance microarchitecture-level resource usage across
cluster to minimize memory interference while
maximizing system performance

116

A-DRM: Architecture-aware DRM

117

OS+Hypervisor

VM

App

VM

App

A-DRM: Global Architecture –
aware Resource Manager

Profiling Engine

Architecture-aware
Interference Detector

Architecture-aware
Distributed Resource
Management (Policy)

Migration Engine

Hosts Controller

CPU/Memory
Capacity

Profiler

Architectural
Resource

•••

Architectural
Resources

More on Architecture-Aware DRM
 Hui Wang, Canturk Isci, Lavanya Subramanian, Jongmoo Choi,

Depei Qian, and Onur Mutlu,
"A-DRM: Architecture-aware Distributed Resource
Management of Virtualized Clusters"
Proceedings of the 11th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE), Istanbul,
Turkey, March 2015.
[Slides (pptx) (pdf)]

118

http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15.pdf
http://www.cercs.gatech.edu/vee15/
http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15-talk.pdf

The Blacklisting Memory Scheduler

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu,

"Staged Memory Scheduling: Achieving High Performance
and Scalability in Heterogeneous Systems”

39th International Symposium on Computer Architecture (ISCA),
Portland, OR, June 2012.

SMS ISCA 2012 Talk

http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://isca2012.ittc.ku.edu/
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/rachata_isca12_talk.pptx

Tackling Inter-Application Interference:
Application-aware Memory Scheduling

120

Monitor Rank

Highest
Ranked AID

Enforce
Ranks

Full ranking increases
critical path latency and area

significantly to improve
performance and fairness

4

3

2

1
2

4

3

1

Req 1 1
Req 2 4
Req 3 1
Req 4 1
Req 5 3

Req 7 1
Req 8 3

Request Buffer

Req 5 2

Request
App. ID

(AID)

=

=

=

=

=

=

=

=

Performance vs. Fairness vs. Simplicity

121

Performance

Fairness

Simplicity

FRFCFS

PARBS

ATLAS

TCM

Blacklisting

Ideal

App-unaware

App-aware
(Ranking)

Our Solution
(No Ranking)

Is it essential to give up simplicity to
optimize for performance and/or fairness?

Our solution achieves all three goals
Very Simple

Low performance
and fairness

Complex

Our Solution

Key Observation 1: Group Rather Than Rank

Observation 1: Sufficient to separate applications
into two groups, rather than do full ranking

122

Benefit 1: Low complexity compared to ranking

Group

Vulnerable
Interference

Causing

>

Monitor Rank

4

3

2

1
2

4

3

1

4

2

3

1

Benefit 2: Lower slowdowns than ranking

Key Observation 1: Group Rather Than Rank

Observation 1: Sufficient to separate applications
into two groups, rather than do full ranking

123

Group

Vulnerable
Interference

Causing

>

Monitor Rank

4

3

2

1
2

4

3

1

4

2

3

1

How to classify applications into groups?

Key Observation 2

Observation 2: Serving a large number of consecutive
requests from an application causes interference

Basic Idea:
• Group applications with a large number of consecutive

requests as interference-causing Blacklisting
• Deprioritize blacklisted applications
• Clear blacklist periodically (1000s of cycles)

Benefits:
• Lower complexity
• Finer grained grouping decisions  Lower unfairness

124

Performance vs. Fairness vs. Simplicity

125

Performance

Fairness

Simplicity

FRFCFS

FRFCFS-Cap

PARBS

ATLAS

TCM

Blacklisting

Ideal

Highest
performance

Close to
simplest

Close to
fairest

Blacklisting is the closest scheduler to ideal

rsync -avz --exclude Microsoft\ User\ Data/
/Users/omutlu/Documents /Volumes/G-
DRIVE\ mobile\ USB/backup

Performance and Fairness

126

1

3

5

7

9

11

13

15

1 3 5 7 9

U
n

fa
ir

n
e

ss

Performance

FRFCFS FRFCFS-Cap PARBS

ATLAS TCM Blacklisting

5%
21%

(Higher is better)

(L
o

w
er

 is
 b

et
te

r)

1. Blacklisting achieves the highest performance
2. Blacklisting balances performance and fairness

Complexity

127

0

20000

40000

60000

80000

100000

120000

0 2 4 6 8 10 12

Sc
h

e
d

u
le

r
A

re
a

(s
q

. u
m

)

Critical Path Latency (ns)

FRFCFS FRFCFS-Cap PARBS

ATLAS TCM Blacklisting

43%

70%

Blacklisting reduces complexity significantly

More on BLISS (I)

 Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha
Rastogi, and Onur Mutlu,
"The Blacklisting Memory Scheduler: Achieving High
Performance and Fairness at Low Cost"
Proceedings of the 32nd IEEE International Conference on
Computer Design (ICCD), Seoul, South Korea, October 2014.
[Slides (pptx) (pdf)]

128

http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pdf

More on BLISS: Longer Version

 Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri,
Harsha Rastogi, and Onur Mutlu,
"The Blacklisting Memory Scheduler: Balancing
Performance, Fairness and Complexity"
SAFARI Technical Report, TR-SAFARI-2015-004, Carnegie
Mellon University, March 2015.

129

http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_cmu-safari-tr15.pdf
http://www.ece.cmu.edu/~safari/tr.html

