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Required Readings

» Required Reading Assignment:

« Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling:
Enhancing both Performance and Fairness of Shared DRAM
Systems,” ISCA 2008.

» Recommended References:

« Muralidhara et al., “Reducing Memory Interference in Multicore
Systems via Application-Aware Memory Channel Partitioning,”
MICRO 2011.

« Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO
2011.

« Wang et al., "A-DRM: Architecture-aware Distributed Resource
Management of Virtualized Clusters,” VEE 2015.



Guest Lecture Tomorrow (11/3, Tuesday)

= Mike O'Connor, NVIDIA
o Advances in GPU architecture and GPU memory systems
o HH 1107, 7:30pm Pittsburgh Time




CALCM Seminar Tomorrow (11/3)

= High-bandwidth, Energy-efficient DRAM Architectures for
GPU Systems

= Mike O’Connor, NVIDIA
o CIC Panther Hollow Room (4t Floor), 4:30pm

s https://www.ece.cmu.edu/~calcm/doku.php?id=seminars:s
eminar 11 03 15



https://www.ece.cmu.edu/~calcm/doku.php?id=seminars:seminar_11_03_15

Shared Resource Design for
Multi-Core Systems




Memory System is the Major Shared Resource
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Much More of a Shared Resource in Future
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Inter-Thread/ Application Interference

= Problem: Threads share the memory system, but memory
system does not distinguish between threads’ requests

= Existing memory systems
a Free-for-all, shared based on demand
o Control algorithms thread-unaware and thread-unfair
a Aggressive threads can deny service to others
o Do not try to reduce or control inter-thread interference




Unfair Slowdowns due to Interference
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Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core svstems.” USENIX Security 2007.



Uncontrolled Interference: An Example
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A Memory Performance Hog

// initialize large arrays A, B

] streaming
Al[index] = B[index];

STREAM

- Sequential memory access

// initialize large arrays A, B

for (j=0; j<N; j++) {
index = rand()] random

Alindex] = B[index];

RANDOM

- Random memory access

- Very high row buffer locality (96% hit rate) - Very low row buffer locality (3% hit rate)

- Memory intensive

- Similarly memory intensive

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.
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What Does the Memory Hog Dor
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Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.
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DRAM Controllers

A row-conflict memory access takes significantly longer
than a row-hit access

Current controllers take advantage of the row buffer

Commonly used scheduling policy (FR-FCFS) [Rixner 20007*
(1) Row-hit first: Service row-hit memory accesses first
(2) Oldest-first: Then service older accesses first

This scheduling policy aims to maximize DRAM throughput
But, it is unfair when multiple threads share the DRAM system

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.
*Zuravleff and Robinson, “Controller for a synchronous DRAM ...,” US Patent 5,630,096, May 1997.
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Ettect of the Memory Performance Hog

2X slowdown
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Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.
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Problems due to Uncontrolled Interference

Main memory is the only shared resource 7.74

High priority
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= Unfair slowdown of different threads

= Low system performance

= Vulnerability to denial of service

= Priority inversion: unable to enforce priorities/SLAs
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Problems due to Uncontrolled Interference
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= Unfair slowdown of different threads

= Low system performance

= Vulnerability to denial of service

= Priority inversion: unable to enforce priorities/SLAs

= Poor performance predictability (no performance isolation)

Uncontrollable, unpredictable system v




Distributed DoS in Networked Multi-Core Systems

Attackers Stock option pricing application
(Cores 1-8) (Cores 9-64)
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~5000X latency increase

Grot, Hestness, Keckler, Mutlu,
“Preemptive virtual clock: A Flexible,
Efficient, and Cost-effective QOS
Scheme for Networks-on-Chip,"
MICRO 2009.
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How Do We Solve The Problem?

Inter-thread interference is uncontrolled in all memory
resources

o Memory controller
o Interconnect
o Caches

We need to control it
o i.e., design an interference-aware (QoS-aware) memory system

18



QoS-Aware Memory Systems: Challenges

How do we reduce inter-thread interference?
o Improve system performance and core utilization
o Reduce request serialization and core starvation

How do we control inter-thread interference?

o Provide mechanisms to enable system software to enforce
QoS policies
o While providing high system performance

How do we make the memory system configurable/flexible?

o Enable flexible mechanisms that can achieve many goals
Provide fairness or throughput when needed
Satisfy performance guarantees when needed

19



Designing QoS-Aware Memory Systems: Approaches

Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism
QoS vere memor conrote]

o QoS-aware interconnects

o QoS-aware caches

Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping

o Source throttling to control access to memory system

o QoS-aware data mapping to memory controllers

o QoS-aware thread scheduling to cores
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Fundamental Interference Control Techniques

Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling ‘

2. Data mapping to banks/channels/ranks
3. Core/source throttling

4. Application/thread scheduling

21



QoS-Aware Memory Scheduling

Resolves memory contention
b y schea’u//ng requests

re

= How to schedule requests to provide
o High system performance
o High fairness to applications
o Configurability to system software

lllllllllllllllllllll

= Memory controller needs to be aware of threads

22



QoS-Aware Memory Scheduling:

Evolution




QoS-Aware Memory Scheduling: Evolution

Stall-time fair memory scheduling [Mutlu+ MICRO07]
o Idea: Estimate and balance thread slowdowns

o Takeaway: Proportional thread progress improves performance,
especially when threads are “heavy” (memory intensive)

Parallelism-aware batch scheduling [Mutlu+ ISCA'08, Top Picks'09]

o Idea: Rank threads and service in rank order (to preserve bank
parallelism); batch requests to prevent starvation

o Takeaway: Preserving within-thread bank-parallelism improves
performance; request batching improves fairness

ATLAS memory scheduler [Kim+ HPCA10]

o Idea: Prioritize threads that have attained the least service from the
memory scheduler

o Takeaway: Prioritizing “light” threads improves performance
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QoS-Aware Memory Scheduling: Evolution

= Thread cluster memory scheduling [Kim+ MICR0O'10]

o Idea: Cluster threads into two groups (latency vs. bandwidth
sensitive); prioritize the latency-sensitive ones; employ a fairness
policy in the bandwidth sensitive group

o Takeaway: Heterogeneous scheduling policy that is different based
on thread behavior maximizes both performance and fairness

= Integrated Memory Channel Partitioning and Scheduling
[Muralidhara+ MICRO"11]

= Idea: Only prioritize very latency-sensitive threads in the scheduler;
mitigate all other applications’ interference via channel partitioning

= Takeaway: Intelligently combining application-aware channel
partitioning and memory scheduling provides better performance
than either
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QoS-Aware Memory Scheduling: Evolution

Parallel application memory scheduling [Ebrahimi+ MICRO"11]

Q

Idea: Identify and prioritize limiter threads of a multithreaded
application in the memory scheduler; provide fast and fair progress
to non-limiter threads

Takeaway: Carefully prioritizing between limiter and non-limiter
threads of a parallel application improves performance

Staged memory scheduling [Ausavarungnirun+ ISCA"12]

Idea: Divide the functional tasks of an application-aware memory
scheduler into multiple distinct stages, where each stage is
significantly simpler than a monolithic scheduler

Takeaway: Staging enables the design of a scalable and relatively
simpler application-aware memory scheduler that works on very
large request buffers
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QoS-Aware Memory Scheduling: Evolution

s MISE [Subramanian+ HPCA'13]

= Idea: Estimate the performance of a thread by estimating its change
in memory request service rate when run alone vs. shared - use
this simple model to estimate slowdown to design a scheduling
policy that provides predictable performance or fairness

= Takeaway: Request service rate of a thread is a good proxy for its
performance; alone request service rate can be estimated by giving
high priority to the thread in memory scheduling for a while

= BLISS: Blacklisting Memory Scheduler [Subramanian+ ICCD'14]

o Idea: Deprioritize (i.e., blacklist) a thread that has consecutively
serviced a large number of requests

o Takeaway: Blacklisting greatly reduces interference enables the
scheduler to be simple without requiring full thread ranking
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QoS-Aware Memory Scheduling: Evolution

Prefetch-aware shared resource management [Ebrahimi+
ISCA’11] [Ebrahimi+ MICRO’09] [Ebrahimi+ HPCA'09] [Lee+ MICRO'08]

o Idea: Prioritize prefetches depending on how they affect system
performance; even accurate prefetches can degrade performance of
the system

o Takeaway: Carefully controlling and prioritizing prefetch requests
improves performance and fairness

DRAM-Aware last-level cache policies and write scheduling
[Lee+ HPS Tech Report'10] [Lee+ HPS Tech Report'10]

o Idea: Design cache eviction and replacement policies such that they
proactively exploit the state of the memory controller and DRAM
(e.g., proactively evict data from the cache that hit in open rows)

o Takeaway: Coordination of last-level cache and DRAM policies
improves performance and fairness
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Stall-Time Fair Memory Scheduling

Onur Mutlu and Thomas Moscibroda,
"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"
40th International Symposium on Microarchitecture (MICRO),
pages 146-158, Chicago, IL, December 2007. Slides (ppt)



http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt

The Problem: Unfairness
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Vulnerable to denial of service (DoS)
Unable to enforce priorities or SLAs
Low system performance

Uncontrollable, unpredictable system
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How Do We Solve the Problem?

Stall-time fair memory scheduling [Mutlu+ MICRO'07]

Goal: Threads sharing main memory should experience
similar slowdowns compared to when they are run alone -2

fair scheduling

Also improves overall system performance by ensuring cores make
“proportional” progress

Idea: Memory controller estimates each thread’s slowdown
due to interference and schedules requests in a way to
balance the slowdowns

Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors,” MICRO 2007.
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Stall-Time Fairness in Shared DRAM Systems

A DRAM system is fair if it equalizes the slowdown of equal-priority threads
relative to when each thread is run alone on the same system

DRAM-related stall-time: The time a thread spends waiting for DRAM memory
STchared: DRAM-related stall-time when the thread runs with other threads
ST,one: DRAM-related stall-time when the thread runs alone

Memory-slowdown = ST¢,5ed/STalone
o Relative increase in stall-time

Stall-Time Fair Memory scheduler (STFM) aims to equalize
Memory-slowdown for interfering threads, without sacrificing performance

o Considers inherent DRAM performance of each thread
o Aims to allow proportional progress of threads

32



STEM Scheduling Algorithm IMICRO’ 07]

For each thread, the DRAM controller
a Tracks STgnared
o Estimates ST,i5ne

Each cycle, the DRAM controller
a Computes Slowdown = STy .ed/STa10ne fOr threads with legal requests
o Computes unfairness = MAX Slowdown / MIN Slowdown

If unfairness < a
o Use DRAM throughput oriented scheduling policy
If unfairness = «

o Use fairness-oriented scheduling policy
(1) requests from thread with MAX Slowdown first
(2) row-hit first , (3) oldest-first

33



How Does STEFM Prevent Unfairness?
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STEM Pros and Cons

Upsides:
o First algorithm for fair multi-core memory scheduling

o Provides a mechanism to estimate memory slowdown of a
thread

o Good at providing fairness
o Being fair can improve performance

Downsides:

o Does not handle all types of interference
o (Somewhat) complex to implement

o Slowdown estimations can be incorrect

35



More on STFM

= Onur Mutlu and Thomas Moscibroda,
"Stall-Time Fair Memory Access Scheduling for Chip
Multiprocessors”
Proceedings of the 40th International Symposium on
Microarchitecture (MICRO), pages 146-158, Chicago, IL,
December 2007. [Summary] [Slides (ppt)]

Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors

Onur Mutlu Thomas Moscibroda

Microsoft Research
{onur,moscitho } @microsoft.com
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http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt

Parallelism-Aware Batch Scheduling

Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems”
35th International Symposium on Computer Architecture (ISCA),
pages 63-74, Beijing, China, June 2008. Slides (ppt)

PAR-BS ISCA 2008 Talk



http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/parbs-isca08-talk.ppt

Another Problem due to Memory Interference

Processors try to tolerate the latency of DRAM requests by
generating multiple outstanding requests

o Memory-Level Parallelism (MLP)

o Out-of-order execution, non-blocking caches, runahead execution

Effective only if the DRAM controller actually services the
multiple requests in parallel in DRAM banks

Multiple threads share the DRAM controller

DRAM controllers are not aware of a thread’ s MLP
o Can service each thread’ s outstanding requests serially, not in parallel
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Bank Parallelism of a Thread

2 DRAM Requests Bank 0 Bank1l

Single Thread:

Thread A :
Thread A: Bank 0, Row 1
Thread A: Bank 1, Row 1

Bank O f=d
Bank 1
Bank access latencies of the two requests overlapped
Thread stalls for ~ONE bank access latency
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Bank Parallelism Interference in DRAM

Baseline Scheduler: Bank 0 Bank1
2 DRAM Requests

A | Computc I STEINNSEINN Coroic|

2 DRAM Requests pankt | Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99|

Thread B: Bank 0, Row 99|
Thread A: Bank 1, Row 1

Bank access latencies of each thread serialized
Each thread stalls for ~TWO bank access latencies
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Parallelism-Aware Scheduler

Baseline Scheduler: Bank 0 Bank1
2 DRAM Requests

Thread A: Bank 0, Row 1
Thread B: Bank 1, Row 99|

Thread B: Bank 0, Row 99|
Thread A: Bank 1, Row 1

Parallelism-aware Scheduler:
2 DRAM Requests

_ Saved Cyaies,

Average stall-time:
~1.5 bank access
latencies
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Parallelism-Aware Batch Scheduling (PAR-BS)

Principle 1: Parallelism-awareness

Q

a

Q

Schedule requests from a thread (to
different banks) back to back
Preserves each thread’ s bank parallelism
But, this can cause starvation...

Principle 2: Request Batching

Q

O O O (O

Group a fixed number of oldest requests
from each thread into a “batch”

Service the batch before all other requests
Form a new batch when the current one is done
Eliminates starvation, provides fairness

Allows parallelism-awareness within a batch
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T2 T2
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Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.
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PAR-BS Components

Request batching

Within-batch scheduling

o Parallelism aware
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Request Batching

Each memory request has a bit (marked) associated with it

Batch formation:

o Mark up to Marking-Cap oldest requests per bank for each thread
o Marked requests constitute the batch

o Form a new batch when no marked requests are left

Marked requests are prioritized over unmarked ones
o No reordering of requests across batches: no starvation, high fairness

How to prioritize requests within a batch?

44



Within-Batch Scheduling

Can use any existing DRAM scheduling policy
o FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

But, we also want to preserve intra-thread bank parallelism
o Service each thread’ s requests back to back

HOW?
Scheduler [computes a ranking of threads when the batch is
formed

o Higher-ranked threads are prioritized over lower-ranked ones

o Improves the likelihood that requests from a thread are serviced in
parallel by different banks

Different threads prioritized in the same order across ALL banks
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Thread Ranking

Key Idea:
thread B
1 =
thread A i ii i
| req Ei req |

N/ N\ e

Aé thread A
S thread B

> >
memory service timeline memory service timeline
SAVED CYCLES
thread A WAIT thread A IRV 1IN €<—>
thread B WAIT thread B WAIT
> >

thread execution timeline

thread execution timeline
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How to Rank Threads within a Batch

Ranking scheme affects system throughput and fairness

Maximize system throughput
o Minimize average stall-time of threads within the batch

Minimize unfairness (Equalize the slowdown of threads)
o Service threads with inherently low stall-time early in the batch

o Insight: delaying memory non-intensive threads results in high
slowdown

Shortest stall-time first (shortest job first) ranking

o Provides optimal system throughput [Smith, 19567*

o Controller estimates each thread’ s stall-time within the batch
o Ranks threads with shorter stall-time higher

* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.
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Shortest Stall-Time First Ranking

Maximum number of marked requests to any bank (max-bank-load)
o Rank thread with lower max-bank-load higher (~ low stall-time)

Total number of marked requests (total-load)

o Breaks ties: rank thread with lower total-load higher

13
T3
T3 T3 T3
T3 13
T3 T3
Bank O| | Bank 1| |Bank 2| | Bank 3

max-bank-load | total-load

Ranking:
TO>T1>T2>T3
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Example Within-Batch Scheduling Order

Baseline Scheduling T3 74 PAR-BS Scheduling T3
Order (Arrival order) = 6 Order —
T T3 5 T3 T3 T3 T3
(D)
- 4|E B B
N E 3
: B2
. ERp
Bank O| | Bank 1| |Bank 2| | Bank 3 Bank O| | Bank 1| |Bank 2| | Bank 3
Ranking: TO>T1>T2>T3
TO ([ T1 (T2 TO ([ T1 (T2
Stall times Stall times

AVG: 5 bank access latencies AVG: 3.5 bank access latencies

Time
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Putting It Together: PAR-BS Scheduling Policy

PAR-BS Scheduling Policy

‘ (1) Marked requests first \ Batching

(2) Row-hit requests first
(3) Higher-rank thread first (shortest stall-time first)
(4) Oldest first

Three properties:

Parallelism-aware
within-batch
scheduling

o Exploits row-buffer locality and intra-thread bank parallelism

o Work-conserving

Services unmarked requests to banks without marked requests

o Marking-Cap is important
Too small cap: destroys row-buffer locality

Too large cap: penalizes memory non-intensive threads

Many more trade-offs analyzed
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Hardware Cost

<1.5KB storage cost for
o 8-core system with 128-entry memory request buffer

No complex operations (e.g., divisions)

Not on the critical path
o Scheduler makes a decision only every DRAM cycle
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Unfairness on 4-, 8-, 16-core Systems

Unfairness = MAX Memory Slowdown / MIN Memory Slowdown [MICRO 2007]
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System Performance (Hmean-speedup)
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PAR-BS Pros and Cons

Upsides:
o First scheduler to address bank parallelism destruction across
multiple threads

o Simple mechanism (vs. STFM)
o Batching provides fairness
o Ranking enables parallelism awareness

Downsides:
o Does not always prioritize the latency-sensitive applications
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More on PAR-BS

= Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer

Architecture (ISCA), pages 63-74, Beijing, China, June 2008.
[Summary] [Slides (ppt)]

Parallelism-Aware Batch Scheduling:
Enhancing both Performance and Fairness of Shared DRAM Systems

Onur Mutlu Thomas Moscibroda
Microsoft Research

{onur,moscitho } @microsoft.com
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http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt

ATLAS Memory Scheduler

Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,
"ATLAS: A Scalable and High-Performance
Scheduling Algorithm for Multiple Memory Controllers"
16th International Symposium on High-Performance Computer Architecture (HPCA),

Bangalore, India, January 2010. Slides (pptx)

ATLAS HPCA 2010 Talk



http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://www.cse.psu.edu/hpcl/hpca16.html
http://users.ece.cmu.edu/~omutlu/pub/kim_hpca10_talk.pptx
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/kim_hpca10_talk.pptx

ATLAS: Summary

Goal: To maximize system performance

Main idea: Prioritize the thread that has attained the least
service from the memory controllers (Adaptive per-Thread
Least Attained Service Scheduling)

o Rank threads based on attained service in the past time
interval(s)

o Enforce thread ranking in the memory scheduler during the
current interval

Why it works: Prioritizes “light” (memory non-intensive)
threads that are more likely to keep their cores busy
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System Throughput: 24-Core System

System throughput = > Speedup
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\ ATLAS consistently provides higher system throughput than

all previous scheduling algorithms




System Throughput: 4-MC System
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ATIAS Pros and Cons

Upsides:

o Good at improving overall throughput (compute-intensive
threads are prioritized)

o Low complexity

a Coordination among controllers happens infrequently

Downsides:

o Lowest/medium ranked threads get delayed significantly >
high unfairness
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More on ATLLAS Memory Scheduler

= Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,
"ATLAS: A Scalable and High-Performance Scheduling
Algorithm for Multiple Memory Controllers”
Proceedings of the 16th International Symposium on High-

Performance Computer Architecture (HPCA), Bangalore, India,
January 2010. Slides (pptx)

ATLAS: A Scalable and High-Performance Scheduling Algorithm
for Multiple Memory Controllers

Yoongu Kim Dongsu Han Onur Mutlu  Mor Harchol-Balter

Carnegie Mellon University
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http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://www.cse.psu.edu/hpcl/hpca16.html
http://users.ece.cmu.edu/~omutlu/pub/kim_hpca10_talk.pptx

TCM:
Thread Cluster Memory Scheduling

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling:
Exploiting Differences in Memory Access Behavior"
43rd International Symposium on Microarchitecture (MICRO),
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

TCM Micro 2010 Talk



http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf
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Previous Scheduling Algorithms are Biased

24 cores, 4 memory controllers, 96 workloads

17 A
2 HEN
4 95| System throughput bias
EEE
= ou
G (Vs 9
L -
o RS
-+ > 7 =
] £ : :
] X s Fairness bias
2 3 -
1 : : : v v >
7 7.5 8 8.5 9 9.5 10

Weighted Speedup

Better system throughput

No previous memory scheduling algorithm provides

both the best fairness and system throughput
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Throughput vs. Fairness

Prioritize less memory-intensive threads Take turns accessing memory

Good for throughput Does not starve

— T

—>—
less memory higher

intensive priority
{M not prioritized =

starvation = unfairness reduced throughput

Single policy for all threads is insufficient
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Achieving the Best of Both Worlds
higher

priority L : :
Prioritize memory-non-intensive threads

i
i
-

(vﬁ Unfairness caused by memory-intensive

— being prioritized over each other
+ S * Shuffle thread ranking

thread

Memory-intensive threads have
different vulnerability to interference
 Shuffle asymmetrically
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Thread Cluster Memory Scheduling [kim+ MICRO’10]

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

[higher N

priority
] . Non-intensive
Memory-non-intensive
thread ‘

cluste
[ ]
- Throughput

/higher \

[ ]
Prioritized L
priority
’ /
Threads in stem - -

Intensive cluster
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Clustering Threads

Stepl Sort threads by MPKI (misses per kiloinstruction)
—

higher
MPK]I
Non-intensive Intensive
cluster cluster
.;.
a< 10%

T = Total memory bandwidth usage ClusterThreshold

Step2 Memory bandwidth usage aT divides clusters
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TCM: Quantum-Based Operation

Previous quantum Current guantum

(~1M cycles) (~1M cycles)
\ \

| || |
_I—I*-l_H_hH_'_*l_lé Time

[ T
. Shuffle interval

During quantum: (~1K cycles)
* Monitor thread behavior

1. Memory intensity Beginning of quantum:

2. Bank-level parallelism * Perform clustering

. —>
3. Row-buffer locality « Compute niceness of

intensive threads
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TCM: Scheduling Algorithm

1. Highest-rank: Requests from higher ranked threads prioritized

|  Non-Intensive cluster > Intensive cluster |
| * Non-Intensive cluster: lower intensity = higher rank |

| * Intensive cluster: rank shuffling |

2.Row-hit: Row-buffer hit requests are prioritized

3.0ldest: Older requests are prioritized

SAFARI
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SAFAR

TCM: Throughput and Fairness

24 cores, 4 memory controllers, 96 workloads

o
P

[EEN
D
1

[EE
N
1

Better fairness

Maximum Slowdown
R
o

(@)}
L

D

] ] ] ] »I
7.5 8 8.5 9 9.5 10
Weighted Speedup

Better system throughput

TCM, a heterogeneous scheduling policy,
/ provides best fairness and system throughput
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TCM: Fairness-Throughput Tradeoff

When configuration parameter is varied...
12
A

[EEY
00 o
1 1

Better fairness

Maximum Slowdown

/

Adjusting

13 S ClusterThreshold &
Weighted Spee(tii

Better system throughput

TCM allows robust fairness-throughput tradeoff
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Operating System Support

* ClusterThreshold is a tunable knob

— OS can trade off between fairness and throughput

* Enforcing thread weights
— OS assigns weights to threads
— TCM enforces thread weights within each cluster

SAFARI
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TCM Pros and Cons

Upsides:
a Provides both high fairness and high performance

o Caters to the needs for different types of threads (latency vs.
bandwidth sensitive)

o (Relatively) simple

Downsides:

o Scalability to large buffer sizes?

o Robustness of clustering and shuffling algorithms?
o Ranking is still too complex?
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More on TCM

= Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-
Balter,
"Thread Cluster Memory Scheduling: Exploiting
Differences in Memory Access Behavior”
Proceedings of the 43rd International Symposium on
Microarchitecture (MICRO), pages 65-76, Atlanta, GA,
December 2010. Slides (pptx) (pdf)

Thread Cluster Memory Scheduling:
Exploiting Differences in Memory Access Behavior

Yoongu Kim Michael Papamichael Onur Mutlu Mor Harchol-Balter
yoonguk@ece.cmu.edu papamix@cs.cmu.edu onur@cmu.edu harchol@cs.cmu.edu

Carnegie Mellon University
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Handling Memory Interference
In Multithreaded Applications
with Memory Scheduling

Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin,
Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Parallel Application Memory Scheduling"
Proceedings of the 44th International Symposium on Microarchitecture (MICRO),
Porto Alegre, Brazil, December 2011. Slides (pptx)
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Multithreaded (Parallel) Applications

Threads in a multi-threaded application can be inter-
dependent

o As opposed to threads from different applications

Such threads can synchronize with each other

o Locks, barriers, pipeline stages, condition variables,
semaphores, ...

Some threads can be on the critical path of execution due
to synchronization; some threads are not

Even within a thread, some “code segments” may be on
the critical path of execution; some are not

76



Critical Sections

Enforce mutually exclusive access to shared data

Only one thread can be executing it at a time

Contended critical sections make threads wait = threads
causing serialization can be on the critical path

Each thread:
loop {

lock(A) ‘oo , \
Update shared datal T2 1N
unlock(A) C | | | T tme.
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Barriers

Synchronization point
Threads have to wait until all threads reach the barrier
Last thread arriving to the barrier is on the critical path

Each thread: ldle barrier
loop1 { T1 ¢

Compute -
} T2 ¢
barrier
loop2 { I I —=-

Compute ' time
}
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Stages of Pipelined Programs

Loop iterations are statically divided into code segments called stages
Threads execute stages on different cores
Thread executing the slowest stage is on the critical path

loop {
Computel| A

Compute2 | B

Compute3| C

}




Handling Interference in Parallel Applications

Threads in a multithreaded application are inter-dependent

Some threads can be on the critical path of execution due
to synchronization; some threads are not

How do we schedule requests of inter-dependent threads
to maximize multithreaded application performance?

Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO'11]

Hardware/software cooperative limiter thread estimation:
Thread executing the most contended critical section
Thread executing the slowest pipeline stage
Thread that is falling behind the most in reaching a barrier
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Prioritizing Requests from Limiter Threads

Non-Critical Section

Critical Section 1 mmmmm 5 o |

Waiting for Sync == = Critical Section 2 m=== Critical Path
or Lock
Barrier
Thread A = ] i S —
Thread B — —i—_ — —
Thread C — —— N — =
Thread D—m— e —————————= == (s = — —
ije
ELimiter Thread Identificatior_t qBarr{er
1
Thread A o ————F ! Most Contended
Thread B — _i:__ — 65353(1 Critical Section: s
]
Thread G — e Cyclies [LimiterThread:B]
Thread P == B ——— s — — ] i
j Time
—
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More on PAMS

= Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo
Lee, Onur Mutlu, and Yale N. Patt,
"Parallel Application Memory Scheduling”
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December
2011. Slides (pptx)

Parallel Application Memory Scheduling

Eiman Ebrahimi+ Rustam Miftakhutdinovi Chris Fallin§
Chang Joo Lee; José A. Joaot Onur Mutlu§ Yale N. Patt;

tDepartment of Electrical and Computer Engineering
The University of Texas at Austin
{ebrahimi, rustam, joao, patt}@ece.utexas.edu

§Carnegie Mellon University iIntel Corporation
{cfallin,onur } @cmu.edu chang.joo.lee@intel.com

82


http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx

Other Ways of
Handling Memory Interference




Fundamental Interference Control Techniques

Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

‘ 2. Data mapping to banks/channels/ranks ‘

3. Core/source throttling

4. Application/thread scheduling

34



Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning”
44th International Symposium on Microarchitecture (MICRO),

Porto Alegre, Brazil, December 2011. Slides (pptx)
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Observation: Modern Systems Have Multiple Channels

Core

Red <}:D Memory Channel 0 Memory

App Controller <:\/[\
Core ><
Blue QZD Memory C Channell1 ) Memory

App Controller

A new degree of freedom
Mapping data across multiple channels

: T 86
Muralidhara et al., “Memory Channel Partitioning,” MICRO11.



Data Mapping in Current Systems

Core
Red @ Memory
App Controller

2

Blue <}:D Memory
Controller

App

Page

Memo

Core

o vemory

Causes interference between applications’ requests

: T 87
Muralidhara et al., “Memory Channel Partitioning,” MICRO11.



Partitioning Channels Between Applications

Core
Red @ Memory
App Controller

Blue <}:D Memory
Controller m

App

Page

Memo

Core

Memor

Eliminates interference between applications’ requests

L 88
Muralidhara et al., “Memory Channel Partitioning,” MICRO11.



Overview: Memory Channel Partitioning (MCP)

= Goal
o Eliminate harmful interference between applications

= Basic Idea

o Map the data of badly-interfering applications to different
channels

= Key Principles
o Separate low and high memory-intensity applications
a Separate low and high row-buffer locality applications

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11. 89



Key Insight 1: Separate by Memory Intensity

Map data of low and high memory-intensity applications
to different channels

90



Key Insight 2: Separate by Row-Buftfer Locality

Map data of low and high row-buffer locality applications
to different channels
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Memory Channel Partitioning (MCP) Mechanism

/ Hardware
1. Profile applications

2. Classify applications into groups

3. Partition channels between application groups
4. Assign a preferred channel to each application
5. Allocate application pages to preferred channel

N

System
Software

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11. 92



Interval Based Operation

Current AInterval

Next lInterval

[

\

|

—_—

1. Profile applications

\4

time

5. Enforce channel preferences

2. Classify applications into groups
3. Partition channels between groups
4. Assign preferred channel to applications
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Observations

= Applications with very low memory-intensity rarely
access memory
- Dedicating channels to them results in precious
memory bandwidth waste

= They have the most potential to keep their cores busy
- We would really like to prioritize them

= They interfere minimally with other applications
—> Prioritizing them does not hurt others
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Integrated Memory Partitioning and Scheduling (IMPS)

= Always prioritize very low memory-intensity
applications in the memory scheduler

= Use memory channel partitioning to mitigate
interference between other applications

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11. 75



Hardware Cost

Memory Channel Partitioning (MCP)

o Only profiling counters in hardware

o No modifications to memory scheduling logic

o 1.5 KB storage cost for a 24-core, 4-channel system

Integrated Memory Partitioning and Scheduling (IMPS)
a A single bit per request
o Scheduler prioritizes based on this single bit

Muralidhara et al., “Memory Channel Partitioning,” MICRO11. 76



Performance ot Channel Partitioning

Averaged over 240 workloads

1.15
5980
§ 11 I A M FRFCFS
©
o & \
g £ 1.05 m ATLAS
©
e 9 BTCM
« O 1 -
O E
2 9 ® MCP
£.0.95 -
Y = IMPS
0.9 -

Better system performance than the best previous scheduler
at lower hardware cost
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Combining Multiple Interference Control Techniques

Combined interference control techniques can mitigate

interference much more than a single technique alone can
do

The key challenge is:
o Deciding what technique to apply when

o Partitioning work appropriately between software and
hardware
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Fundamental Interference Control Techniques

Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

‘ 3. Core/source throttling ‘

4. Application/thread scheduling

99



Source Throttling: A Fairness Substrate

Key idea: Manage inter-thread interference at the cores
(sources), not at the shared resources

Dynamically estimate unfairness in the memory system
Feed back this information into a controller

Throttle cores” memory access rates accordingly

o Whom to throttle and by how much depends on performance
target (throughput, fairness, per-thread QoS, etc)

o E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS'10, TOCS'12.
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Fairness via Source Throttling (FST) [aspLos 10]

Interval 1 ‘ Interval 2' Interval 3

Tim)e
———

Slowdown

Estimation
L

_ Unfairness Estimate
. App-interfering Request Throttling
Evaluation >

1- Estimating system unfairness if (Unfairness Estimate >Target)
2- Find app. with the highest {
slowdown (App-slowest) 1-Throttle down App-interfering
3- Find app. causing most (limit injection rate and parallelism)
interference for App-slowest 2-Throttle up App-slowest
(App-interfering) b




Core (Source) Throttling

Idea: Estimate the slowdown due to (DRAM) interference
and throttle down threads that slow down others
o Ebrahimi et al., “Fairness via Source Throttling: A Configurable

and High-Performance Fairness Substrate for Multi-Core
Memory Systems,” ASPLOS 2010.

Advantages

+ Core/request throttling is easy to implement: no need to change the
memory scheduling algorithm

+ Can be a general way of handling shared resource contention
+ Can reduce overall load/contention in the memory system

Disadvantages
- Requires interference/slowdown estimations - difficult to estimate
- Thresholds can become difficult to optimize > throughput loss
102



More on Source Throttling (I)

= Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory
Systems"”
Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010.
Slides (pdf)

Fairness via Source Throttling: A Configurable and High-Performance
Fairness Substrate for Multi-Core Memory Systems

Eiman Ebrahimif Chang Joo Leef Onur Mutlu§ Yale N. Pattj

fDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University
{ebrahimi, cjlee, patt} @ece.utexas.edu onur@cmu.edu
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Fundamental Interference Control Techniques

= Goal: to reduce/control interference

1. Prioritization or request scheduling
2. Data mapping to banks/channels/ranks

3. Core/source throttling

‘ 4. Application/thread scheduling

Idea: Pick threads that do not badly interfere with each
other to be scheduled together on cores sharing the memory
system
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Interference-Aware Thread Scheduling

Advantages

+ Can eliminate/minimize interference by scheduling “symbiotic
applications” together (as opposed to just managing the
interference)

+ Less intrusive to hardware (less need to modify the hardware
resources)

Disadvantages and Limitations

-- High overhead to migrate threads between cores and
machines

-- Does not work (well) if all threads are similar and they
interfere
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Summary: Fundamental Interference Control Techniques

Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks
3. Core/source throttling

4. Application/thread scheduling

Best is to combine all. How would you do that?
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Required Readings for Wednesday

» Required Reading Assignment:
« Dubois, Annavaram, Stenstrom, Chapter 6.

» Recommended References:

« Moscibroda and Mutlu, “A Case for Bufferless Routing in On-Chip
Networks,” ISCA 2009.

« Das et al., "Application-Aware Prioritization Mechanisms for On-Chip
Networks,” MICRO 2009.
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Interference-Aware Thread Scheduling

An example from scheduling in clusters (data centers)
Clusters can be running virtual machines

109



Virtualized Cluster

~ Distributed Resource Management
(DRM) policies
f AY4 W\ : /f N x
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Conventional DRM Policies

B '

operating-system-level

-atlon memor- Cityep

d emand
Memory Capacity Host Host
ﬁ % Y4 } % Y4 x

CPUT.

SAFARI
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Microarchitecture-level Interference

* VMs within a host compete
for:

— Shared cache capacity

— Shared memory bandwidth

Can operating-system-level metrics capture the

microarchitecture-level resource interference?
SAFARI 112



Microarchitecture Unawareness

Operating-system-level metrics

Microarchitecture-level metrics

Memory Capacity % N/ }
—

CPU

Core0 Corel

- STREAM
gromacs

LLC

SAFARI

k DRAM /

VM
CPU Utilization | Memory Capacity LLC Hit Ratio Memory Bandwidth
- 92% 369 MB 2% 2267 MB/s
App 93% 348 MB 98% 1 MB/s
Host
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Impact on Performance

0.6
IPC 0.4

(Harmonic
0.0

H Conventional DRM

Host

Memory Capacity
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Impact on Performance
0.6 /II

We need microarchitecture-
level interference awareness in
DRM!

pp

49%

Memory Ca

Core0 1

K / 115
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A-DRM: Architecture-aware DRM

e Goal: Take into account microarchitecture-level
shared resource interference

— Shared cache capacity
— Shared memory bandwidth

* Key Idea:

— Monitor and detect microarchitecture-level shared
resource interference

— Balance microarchitecture-level resource usage across
cluster to minimize memory interference while

maximizing system performance
SAFARI 116



A-DRM: Architecture-aware DRM

Hosts Controller

| A-DRM: Global Architecture -
OS+Hypervisor aware Resource Manager

()

> Profiling Engine
vee m Architecture-aware
Interference Detector

——

;*_) Architecture-aware

Distributed Resource
Management (Polic
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Migration Engine

____________________________________
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More on Architecture-Aware DRM

= Hui Wang, Canturk Isci, Lavanya Subramanian, Jongmoo Choi,
Depei Qian, and Onur Mutlu,
"A-DRM: Architecture-aware Distributed Resource
Management of Virtualized Clusters”
Proceedings of the 11th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE), Istanbul,
Turkey, March 2015.

[Slides (pptx) (pdf)]

A-DRM: Architecture-aware Distributed Resource Management
of Virtualized Clusters

Hui Wang'*, Canturk Isci*, Lavanya Subramanian*, Jongmoo Choi®*, Depei Qian’, Onur Mutlu*

"Beihang University, ¥IBM Thomas J. Watson Research Center, *Carnegie Mellon University, “Dankook University
{hui.wang, depeiq}@buaa.edu.cn, canturk@us.ibm.com, {lsubrama, onur}@cmu.edu, choijm@dankook.ac.kr
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The Blacklisting Memory Scheduler

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu,

"Staged Memory Scheduling: Achieving High Performance
and Scalability in Heterogeneous Systems”
39th International Symposium on Computer Architecture (ISCA),
Portland, OR, June 2012.

SMS ISCA 2012 Talk
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Tackling Inter-Application Interference:
Application-aware Memory Scheduling

Monitor Rank Enforce

A Ranks

Request Buffer Highest
App. ID Ranked AID

(AID)

Request

Full ranking increases
critical path latency and area
significantly to improve
performance and fairness
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Performance vs. Fairness vs. Simplicity

Fairness

Is it essential to give up simplicity to
optimize for performance and/or fairness?

z Our solution achieves all three goals
% Very Simple
Simplicity 121

\
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Key Observation 1: Group Rather Than Rank

Observation 1: Sufficient to separate applications
into two groups, rather than do full ranking

Monitor Rank Group
Interference
Vulnerable Causing
//’ \\\\
/
2
- ll \‘

| I

Benefit 2: Lower slowdowns than ranking
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Key Observation 1: Group Rather Than Rank

Observation 1: Sufficient to separate applications
into two groups, rather than do full ranking

Monitor Rank Group
Interference
VuIne_ra}Ie E:ziufing
//’
1

How to classify applications into groups?
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Key Observation 2

Observation 2: Serving a large number of consecutive
requests from an application causes interference

Basic Idea:

* Group applications with a large number of consecutive
requests as interference-causing = Blacklisting

* Deprioritize blacklisted applications
* Clear blacklist periodically (1000s of cycles)

Benefits:
* Lower complexity
* Finer grained grouping decisions = Lower unfairness



Performance vs. Fairness vs. Simplicity

Fairness Clo.se to — FRFCFS
fairest FRFCFSCap
— PARBS

= Blacklisting
—> Performance
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Performance and Fairness

¢ FRFCFS ¢ FRFCFS-Cap A PARBS

% ATLAS o TCM @® Blacklisting
15 4
X
?13 -
§§11
So 9 - ® %y—‘l
M o
E5 7 . 21%
53 g o
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3 - !}
1 1 1 1
1 3 5 7 9

1. Blacklisting achieves the highest performance
2. Blacklisting balances performance and fairness
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Complexity

¢ FRFCFS ¢ FRFCFS-Cap A PARBS
X ATLAS W TCM ® Blacklisting
‘S 120000 7
-
g 100000 - A
® 80000 -
T T43%
kT
=
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Blacklisting reduces complexity significantly
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More on BLISS (T)

= Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha
Rastogi, and Onur Mutlu,
"The Blacklisting Memory Scheduler: Achieving High
Performance and Fairness at Low Cost"
Proceedings of the 32nd IEEE International Conference on
Computer Design (ICCD), Seoul, South Korea, October 2014.

[Slides (pptx) (pdf)]

The Blacklisting Memory Scheduler:
Achieving High Performance and Fairness at Low Cost

Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, Onur Mutlu
Carnegie Mellon University
{Isubrama,donghyul,visesh,harshar,onur} @cmu.edu
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More on BLISS: Longer Version

= Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri,
Harsha Rastogi, and Onur Mutlu,
"The Blacklisting Memory Scheduler: Balancing
Performance, Fairness and Complexity"
SAFARI Technical Report, TR-SAFARI-2015-004, Carnegie
Mellon University, March 2015.

The Blacklisting Memory Scheduler: Balancing
Performance, Fairness and Complexity

Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, Onur Mutlu
Carnegie Mellon University
{Isubrama,donghyu1,visesh,harshar,onur}@cmu.edu
SAFARI Technical Report No. 2015-004
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