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Required Readings

2

 Required Reading Assignment:
• Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling: 

Enhancing both Performance and Fairness of Shared DRAM 
Systems,” ISCA 2008. 

 Recommended References:

• Muralidhara et al., “Reducing Memory Interference in Multicore 
Systems via Application-Aware Memory Channel Partitioning,”
MICRO 2011.

• Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 
2011.

• Wang et al., “A-DRM: Architecture-aware Distributed Resource 
Management of Virtualized Clusters,” VEE 2015.



Guest Lecture Tomorrow (11/3, Tuesday) 

 Mike O’Connor, NVIDIA

 Advances in GPU architecture and GPU memory systems

 HH 1107, 7:30pm Pittsburgh Time
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CALCM Seminar Tomorrow (11/3)

 High-bandwidth, Energy-efficient DRAM Architectures for 
GPU Systems

 Mike O’Connor, NVIDIA

 CIC Panther Hollow Room (4th Floor), 4:30pm

 https://www.ece.cmu.edu/~calcm/doku.php?id=seminars:s
eminar_11_03_15

4

https://www.ece.cmu.edu/~calcm/doku.php?id=seminars:seminar_11_03_15


Shared Resource Design for 

Multi-Core Systems
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Memory System is the Major Shared Resource
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threads’ requests 
interfere



Much More of a Shared Resource in Future
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Inter-Thread/Application Interference

 Problem: Threads share the memory system, but memory 
system does not distinguish between threads’ requests

 Existing memory systems 

 Free-for-all, shared based on demand

 Control algorithms thread-unaware and thread-unfair

 Aggressive threads can deny service to others

 Do not try to reduce or control inter-thread interference
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Unfair Slowdowns due to Interference

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service 
in multi-core systems,” USENIX Security 2007.

matlab
(Core 1)

gcc
(Core 2)
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Uncontrolled Interference: An Example
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// initialize large arrays A, B

for (j=0; j<N; j++) {
index = rand();
A[index] = B[index];
…

}
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A Memory Performance Hog

STREAM

- Sequential memory access 
- Very high row buffer locality (96% hit rate)
- Memory intensive

RANDOM

- Random memory access
- Very low row buffer locality (3% hit rate)
- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
index = j*linesize;
A[index] = B[index];
…

}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.
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What Does the Memory Hog Do?

Row Buffer
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T0: Row 0T0: Row 0T0: Row 0T0: Row 0T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B

128 (8KB/64B) requests of T0 serviced before T1

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.
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DRAM Controllers

 A row-conflict memory access takes significantly longer 
than a row-hit access

 Current controllers take advantage of the row buffer

 Commonly used scheduling policy (FR-FCFS) [Rixner 2000]*

(1) Row-hit first: Service row-hit memory accesses first

(2) Oldest-first: Then service older accesses first

 This scheduling policy aims to maximize DRAM throughput

 But, it is unfair when multiple threads share the DRAM system  

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.

*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997.



Effect of the Memory Performance Hog
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1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux) 

S
lo

w
d
o
w

n

0

0.5

1

1.5

2

2.5

3

STREAM gcc

0

0.5

1

1.5

2

2.5

3

STREAM Virtual PC

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.



Problems due to Uncontrolled Interference

15

 Unfair slowdown of different threads 

 Low system performance 

 Vulnerability to denial of service 

 Priority inversion: unable to enforce priorities/SLAs 

Cores make 

very slow 

progress

Memory performance hogLow priority

High priority
S
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w
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w
n

Main memory is the only shared resource



Problems due to Uncontrolled Interference
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 Unfair slowdown of different threads 

 Low system performance 

 Vulnerability to denial of service 

 Priority inversion: unable to enforce priorities/SLAs 

 Poor performance predictability (no performance isolation)

Uncontrollable, unpredictable system



Distributed DoS in Networked Multi-Core Systems
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Attackers
(Cores 1-8)

Stock option pricing application
(Cores 9-64)

Cores connected via 

packet-switched

routers on chip

~5000X latency increase

Grot, Hestness, Keckler, Mutlu, 
“Preemptive virtual clock: A Flexible, 
Efficient, and Cost-effective QOS 
Scheme for Networks-on-Chip,“
MICRO 2009.



How Do We Solve The Problem?

 Inter-thread interference is uncontrolled in all memory 
resources

 Memory controller

 Interconnect

 Caches

 We need to control it

 i.e., design an interference-aware (QoS-aware) memory system
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QoS-Aware Memory Systems: Challenges

 How do we reduce inter-thread interference?

 Improve system performance and core utilization

 Reduce request serialization and core starvation

 How do we control inter-thread interference?

 Provide mechanisms to enable system software to enforce 
QoS policies 

 While providing high system performance

 How do we make the memory system configurable/flexible? 

 Enable flexible mechanisms that can achieve many goals

 Provide fairness or throughput when needed

 Satisfy performance guarantees when needed
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Designing QoS-Aware Memory Systems: Approaches

 Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism

 QoS-aware memory controllers 

 QoS-aware interconnects

 QoS-aware caches

 Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping

 Source throttling to control access to memory system 

 QoS-aware data mapping to memory controllers 

 QoS-aware thread scheduling to cores
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Fundamental Interference Control Techniques

 Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling
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QoS-Aware Memory Scheduling

 How to schedule requests to provide

 High system performance

 High fairness to applications

 Configurability to system software 

 Memory controller needs to be aware of threads
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Memory 
Controller

Core Core

Core Core

Memory

Resolves memory contention 
by scheduling requests



QoS-Aware Memory Scheduling:

Evolution



QoS-Aware Memory Scheduling: Evolution

 Stall-time fair memory scheduling [Mutlu+ MICRO’07]

 Idea: Estimate and balance thread slowdowns

 Takeaway: Proportional thread progress improves performance, 
especially when threads are “heavy” (memory intensive)

 Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09]

 Idea: Rank threads and service in rank order (to preserve bank 
parallelism); batch requests to prevent starvation

 Takeaway: Preserving within-thread bank-parallelism improves 
performance; request batching improves fairness

 ATLAS memory scheduler [Kim+ HPCA’10]

 Idea: Prioritize threads that have attained the least service from the 
memory scheduler 

 Takeaway: Prioritizing “light” threads improves performance
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QoS-Aware Memory Scheduling: Evolution

 Thread cluster memory scheduling [Kim+ MICRO’10]

 Idea: Cluster threads into two groups (latency vs. bandwidth 
sensitive); prioritize the latency-sensitive ones; employ a fairness 
policy in the bandwidth sensitive group

 Takeaway: Heterogeneous scheduling policy that is different based 
on thread behavior maximizes both performance and fairness

 Integrated Memory Channel Partitioning and Scheduling 
[Muralidhara+ MICRO’11]

 Idea: Only prioritize very latency-sensitive threads in the scheduler; 
mitigate all other applications’ interference via channel partitioning

 Takeaway: Intelligently combining application-aware channel 
partitioning and memory scheduling provides better performance 
than either
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QoS-Aware Memory Scheduling: Evolution

 Parallel application memory scheduling [Ebrahimi+ MICRO’11]

 Idea: Identify and prioritize limiter threads of a multithreaded 
application in the memory scheduler; provide fast and fair progress 
to non-limiter threads

 Takeaway: Carefully prioritizing between limiter and non-limiter 
threads of a parallel application improves performance

 Staged memory scheduling [Ausavarungnirun+ ISCA’12]

 Idea: Divide the functional tasks of an application-aware memory 
scheduler into multiple distinct stages, where each stage is 
significantly simpler than a monolithic scheduler

 Takeaway: Staging enables the design of a scalable and relatively 
simpler application-aware memory scheduler that works on very 
large request buffers
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QoS-Aware Memory Scheduling: Evolution

 MISE [Subramanian+ HPCA’13]

 Idea: Estimate the performance of a thread by estimating its change 
in memory request service rate when run alone vs. shared  use 

this simple model to estimate slowdown to design a scheduling 
policy that provides predictable performance or fairness

 Takeaway: Request service rate of a thread is a good proxy for its 
performance; alone request service rate can be estimated by giving 
high priority to the thread in memory scheduling for a while

 BLISS: Blacklisting Memory Scheduler [Subramanian+ ICCD’14]

 Idea: Deprioritize (i.e., blacklist) a thread that has consecutively 
serviced a large number of requests

 Takeaway: Blacklisting greatly reduces interference enables the 
scheduler to be simple without requiring full thread ranking
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QoS-Aware Memory Scheduling: Evolution

 Prefetch-aware shared resource management [Ebrahimi+ 

ISCA’11] [Ebrahimi+ MICRO’09] [Ebrahimi+ HPCA’09] [Lee+ MICRO’08]

 Idea: Prioritize prefetches depending on how they affect system 
performance; even accurate prefetches can degrade performance of 
the system 

 Takeaway: Carefully controlling and prioritizing prefetch requests 
improves performance and fairness

 DRAM-Aware last-level cache policies and write scheduling 
[Lee+ HPS Tech Report’10] [Lee+ HPS Tech Report’10]

 Idea: Design cache eviction and replacement policies such that they 
proactively exploit the state of the memory controller and DRAM 
(e.g., proactively evict data from the cache that hit in open rows)

 Takeaway: Coordination of last-level cache and DRAM policies 
improves performance and fairness
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Stall-Time Fair Memory Scheduling

Onur Mutlu and Thomas Moscibroda, 
"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"

40th International Symposium on Microarchitecture (MICRO), 
pages 146-158, Chicago, IL, December 2007. Slides (ppt)

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt


The Problem: Unfairness

 Vulnerable to denial of service (DoS)

 Unable to enforce priorities or SLAs 

 Low system performance

Uncontrollable, unpredictable system
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How Do We Solve the Problem?

 Stall-time fair memory scheduling [Mutlu+ MICRO’07]

 Goal: Threads sharing main memory should experience 
similar slowdowns compared to when they are run alone 

fair scheduling
 Also improves overall system performance by ensuring cores make 

“proportional” progress

 Idea: Memory controller estimates each thread’s slowdown 
due to interference and schedules requests in a way to 
balance the slowdowns

 Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling for 
Chip Multiprocessors,” MICRO 2007. 
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Stall-Time Fairness in Shared DRAM Systems

 A DRAM system is fair if it equalizes the slowdown of equal-priority threads  
relative to when each thread is run alone on the same system

 DRAM-related stall-time: The time a thread spends waiting for DRAM memory

 STshared: DRAM-related stall-time when the thread runs with other threads

 STalone:  DRAM-related stall-time when the thread runs alone

 Memory-slowdown = STshared/STalone   

 Relative increase in stall-time

 Stall-Time Fair Memory scheduler (STFM) aims to equalize
Memory-slowdown for interfering threads, without sacrificing performance

 Considers inherent DRAM performance of each thread

 Aims to allow proportional progress of threads
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STFM Scheduling Algorithm [MICRO’07]

 For each thread, the DRAM controller

 Tracks STshared

 Estimates STalone

 Each cycle, the DRAM controller

 Computes Slowdown = STshared/STalone for threads with legal requests

 Computes unfairness = MAX Slowdown / MIN Slowdown

 If unfairness < 

 Use DRAM throughput oriented scheduling policy

 If unfairness ≥ 

 Use fairness-oriented scheduling policy 

 (1) requests from thread with MAX Slowdown first

 (2) row-hit first , (3) oldest-first
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How Does STFM Prevent Unfairness?
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STFM Pros and Cons

 Upsides: 

 First algorithm for fair multi-core memory scheduling

 Provides a mechanism to estimate memory slowdown of a 
thread

 Good at providing fairness

 Being fair can improve performance 

 Downsides:

 Does not handle all types of interference

 (Somewhat) complex to implement

 Slowdown estimations can be incorrect
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More on STFM

 Onur Mutlu and Thomas Moscibroda, 
"Stall-Time Fair Memory Access Scheduling for Chip 
Multiprocessors"
Proceedings of the 40th International Symposium on 
Microarchitecture (MICRO), pages 146-158, Chicago, IL, 
December 2007. [Summary] [Slides (ppt)] 
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http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt


Parallelism-Aware Batch Scheduling

Onur Mutlu and Thomas Moscibroda, 
"Parallelism-Aware Batch Scheduling: Enhancing both 
Performance and Fairness of Shared DRAM Systems”

35th International Symposium on Computer Architecture (ISCA), 
pages 63-74, Beijing, China, June 2008. Slides (ppt)

PAR-BS ISCA 2008 Talk

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/parbs-isca08-talk.ppt


Another Problem due to Memory Interference

 Processors try to tolerate the latency of DRAM requests by 
generating multiple outstanding requests

 Memory-Level Parallelism (MLP) 

 Out-of-order execution, non-blocking caches, runahead execution

 Effective only if the DRAM controller actually services the 
multiple requests in parallel in DRAM banks

 Multiple threads share the DRAM controller

 DRAM controllers are not aware of a thread’s MLP

 Can service each thread’s outstanding requests serially, not in parallel
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Bank Parallelism of a Thread
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Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Bank access latencies of the two requests overlapped

Thread stalls for ~ONE bank access latency

Thread A :

Bank 0 Bank 1
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2 DRAM Requests

Bank 0

Stall Compute

Bank 1

Single Thread:



Compute

Compute

2 DRAM Requests

Bank Parallelism Interference in DRAM
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Bank 0 Bank 1

Thread A: Bank 0, Row 1
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Baseline Scheduler:
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Stall

Bank access latencies of each thread serialized

Each thread stalls for ~TWO bank access latencies



2 DRAM Requests

Parallelism-Aware Scheduler
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~1.5 bank access 

latencies



Parallelism-Aware Batch Scheduling (PAR-BS)

 Principle 1: Parallelism-awareness

 Schedule requests from a thread (to 
different banks) back to back

 Preserves each thread’s bank parallelism

 But, this can cause starvation…

 Principle 2: Request Batching

 Group a fixed number of oldest requests 
from each thread into a “batch”

 Service the batch before all other requests

 Form a new batch when the current one is done

 Eliminates starvation, provides fairness

 Allows parallelism-awareness within a batch
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Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.



PAR-BS Components

 Request batching

 Within-batch scheduling
 Parallelism aware
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Request Batching

 Each memory request has a bit (marked) associated with it

 Batch formation:

 Mark up to Marking-Cap oldest requests per bank for each thread

 Marked requests constitute the batch

 Form a new batch when no marked requests are left

 Marked requests are prioritized over unmarked ones

 No reordering of requests across batches: no starvation, high fairness

 How to prioritize requests within a batch?
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Within-Batch Scheduling

 Can use any existing DRAM scheduling policy

 FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

 But, we also want to preserve intra-thread bank parallelism

 Service each thread’s requests back to back

 Scheduler computes a ranking of threads when the batch is 
formed

 Higher-ranked threads are prioritized over lower-ranked ones

 Improves the likelihood that requests from a thread are serviced in 
parallel by different banks

 Different threads prioritized in the same order across ALL banks
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Thread Ranking
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How to Rank Threads within a Batch

 Ranking scheme affects system throughput and fairness

 Maximize system throughput

 Minimize average stall-time of threads within the batch

 Minimize unfairness (Equalize the slowdown of threads)

 Service threads with inherently low stall-time early in the batch

 Insight: delaying memory non-intensive threads results in high 
slowdown

 Shortest stall-time first (shortest job first) ranking

 Provides optimal system throughput [Smith, 1956]*

 Controller estimates each thread’s stall-time within the batch

 Ranks threads with shorter stall-time higher
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* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.



 Maximum number of marked requests to any bank (max-bank-load)

 Rank thread with lower max-bank-load higher (~ low stall-time)

 Total number of marked requests (total-load)

 Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First Ranking

48

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-load total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

Ranking:

T0 > T1 > T2 > T3



7

5

3

Example Within-Batch Scheduling Order
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Putting It Together: PAR-BS Scheduling Policy

 PAR-BS Scheduling Policy

(1) Marked requests first

(2) Row-hit requests first

(3) Higher-rank thread first (shortest stall-time first)

(4) Oldest first

 Three properties:

 Exploits row-buffer locality and intra-thread bank parallelism

 Work-conserving

 Services unmarked requests to banks without marked requests 

 Marking-Cap is important

 Too small cap: destroys row-buffer locality

 Too large cap: penalizes memory non-intensive threads   

 Many more trade-offs analyzed
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Parallelism-aware
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Hardware Cost

 <1.5KB storage cost for

 8-core system with 128-entry memory request buffer

 No complex operations (e.g., divisions)

 Not on the critical path

 Scheduler makes a decision only every DRAM cycle
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Unfairness on 4-, 8-, 16-core Systems
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System Performance (Hmean-speedup)
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PAR-BS Pros and Cons

 Upsides: 

 First scheduler to address bank parallelism destruction across 
multiple threads

 Simple mechanism (vs. STFM)

 Batching provides fairness

 Ranking enables parallelism awareness

 Downsides:

 Does not always prioritize the latency-sensitive applications
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More on PAR-BS

 Onur Mutlu and Thomas Moscibroda, 
"Parallelism-Aware Batch Scheduling: Enhancing both 
Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer 
Architecture (ISCA), pages 63-74, Beijing, China, June 2008. 
[Summary] [Slides (ppt)]
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http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt


ATLAS Memory Scheduler

Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,
"ATLAS: A Scalable and High-Performance 

Scheduling Algorithm for Multiple Memory Controllers"
16th International Symposium on High-Performance Computer Architecture (HPCA), 

Bangalore, India, January 2010. Slides (pptx)

ATLAS HPCA 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://www.cse.psu.edu/hpcl/hpca16.html
http://users.ece.cmu.edu/~omutlu/pub/kim_hpca10_talk.pptx
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/kim_hpca10_talk.pptx


ATLAS: Summary

 Goal: To maximize system performance

 Main idea: Prioritize the thread that has attained the least 
service from the memory controllers (Adaptive per-Thread 
Least Attained Service Scheduling)

 Rank threads based on attained service in the past time 
interval(s)

 Enforce thread ranking in the memory scheduler during the 
current interval

 Why it works: Prioritizes “light” (memory non-intensive) 
threads that are more likely to keep their cores busy
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System throughput = ∑ Speedup

ATLAS consistently provides higher system throughput than 
all previous scheduling algorithms
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ATLAS Pros and Cons

 Upsides:

 Good at improving overall throughput (compute-intensive 
threads are prioritized) 

 Low complexity

 Coordination among controllers happens infrequently

 Downsides:

 Lowest/medium ranked threads get delayed significantly 

high unfairness
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More on ATLAS Memory Scheduler

 Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,
"ATLAS: A Scalable and High-Performance Scheduling 
Algorithm for Multiple Memory Controllers"
Proceedings of the 16th International Symposium on High-
Performance Computer Architecture (HPCA), Bangalore, India, 
January 2010. Slides (pptx)
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TCM:

Thread Cluster Memory Scheduling

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling: 

Exploiting Differences in Memory Access Behavior"
43rd International Symposium on Microarchitecture (MICRO), 
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

TCM Micro 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/kim_micro10_talk.pptx


No previous memory scheduling algorithm provides 
both the best fairness and system throughput
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Take turns accessing memory

Throughput vs. Fairness
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Fairness biased approach
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Achieving the Best of Both Worlds
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Thread Cluster Memory Scheduling [Kim+ MICRO’10]

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster
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Clustering Threads

Step1 Sort threads by MPKI (misses per kiloinstruction)
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TCM: Quantum-Based Operation
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Time

Previous quantum 
(~1M cycles)

During quantum:
• Monitor thread behavior

1. Memory intensity
2. Bank-level parallelism
3. Row-buffer locality

Beginning of quantum:
• Perform clustering
• Compute niceness of 

intensive threads

Current quantum
(~1M cycles)

Shuffle interval
(~1K cycles)



TCM: Scheduling Algorithm

1. Highest-rank: Requests from higher ranked threads prioritized

• Non-Intensive cluster > Intensive cluster

• Non-Intensive cluster: lower intensity  higher rank

• Intensive cluster: rank shuffling

2.Row-hit: Row-buffer hit requests are prioritized

3.Oldest: Older requests are prioritized
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TCM: Throughput and Fairness
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TCM, a heterogeneous scheduling policy,
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TCM: Fairness-Throughput Tradeoff
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Operating System Support

• ClusterThreshold is a tunable knob

– OS can trade off between fairness and throughput

• Enforcing thread weights

– OS assigns weights to threads

– TCM enforces thread weights within each cluster
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TCM Pros and Cons

 Upsides:

 Provides both high fairness and high performance

 Caters to the needs for different types of threads (latency vs. 
bandwidth sensitive)

 (Relatively) simple

 Downsides:

 Scalability to large buffer sizes?

 Robustness of clustering and shuffling algorithms?

 Ranking is still too complex?
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More on TCM

 Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-
Balter,
"Thread Cluster Memory Scheduling: Exploiting 
Differences in Memory Access Behavior"
Proceedings of the 43rd International Symposium on 
Microarchitecture (MICRO), pages 65-76, Atlanta, GA, 
December 2010. Slides (pptx) (pdf)

74

http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf


Handling Memory Interference

In Multithreaded Applications

with Memory Scheduling 

Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, 
Chang Joo Lee, Onur Mutlu, and Yale N. Patt, 
"Parallel Application Memory Scheduling"

Proceedings of the 44th International Symposium on Microarchitecture (MICRO), 
Porto Alegre, Brazil, December 2011. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx


Multithreaded (Parallel) Applications

 Threads in a multi-threaded application can be inter-
dependent

 As opposed to threads from different applications

 Such threads can synchronize with each other

 Locks, barriers, pipeline stages, condition variables, 
semaphores, …

 Some threads can be on the critical path of execution due 
to synchronization; some threads are not

 Even within a thread, some “code segments” may be on 
the critical path of execution; some are not
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Critical Sections

 Enforce mutually exclusive access to shared data

 Only one thread can be executing it at a time

 Contended critical sections make threads wait  threads 

causing serialization can be on the critical path
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Each thread:

loop {

Compute

lock(A)

Update shared data

unlock(A)

}

N

C



Barriers

 Synchronization point

 Threads have to wait until all threads reach the barrier

 Last thread arriving to the barrier is on the critical path
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Each thread:

loop1 {

Compute

}

barrier

loop2 {

Compute

}



Stages of Pipelined Programs

 Loop iterations are statically divided into code segments called stages

 Threads execute stages on different cores

 Thread executing the slowest stage is on the critical path
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loop {
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Handling Interference in Parallel Applications

 Threads in a multithreaded application are inter-dependent

 Some threads can be on the critical path of execution due 
to synchronization; some threads are not

 How do we schedule requests of inter-dependent threads 
to maximize multithreaded application performance?

 Idea: Estimate limiter threads likely to be on the critical path and 
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

 Hardware/software cooperative limiter thread estimation:

 Thread executing the most contended critical section

 Thread executing the slowest pipeline stage

 Thread that is falling behind the most in reaching a barrier
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Prioritizing Requests from Limiter Threads
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More on PAMS

 Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo
Lee, Onur Mutlu, and Yale N. Patt, 
"Parallel Application Memory Scheduling"
Proceedings of the 44th International Symposium on 
Microarchitecture (MICRO), Porto Alegre, Brazil, December 
2011. Slides (pptx)
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Other Ways of 

Handling Memory Interference



Fundamental Interference Control Techniques

 Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling
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Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda, 

"Reducing Memory Interference in Multicore Systems via 
Application-Aware Memory Channel Partitioning”

44th International Symposium on Microarchitecture (MICRO), 
Porto Alegre, Brazil, December 2011. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx


Observation: Modern Systems Have Multiple Channels

A new degree of freedom

Mapping data across multiple channels
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Data Mapping in Current Systems
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Partitioning Channels Between Applications
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Overview: Memory Channel Partitioning (MCP) 

 Goal

 Eliminate harmful interference between applications

 Basic Idea

 Map the data of badly-interfering applications to different 
channels

 Key Principles

 Separate low and high memory-intensity applications

 Separate low and high row-buffer locality applications

89Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.



Key Insight 1: Separate by Memory Intensity

High memory-intensity applications interfere with low 
memory-intensity applications in shared memory channels
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Map data of low and high memory-intensity applications 
to different channels
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Key Insight 2: Separate by Row-Buffer Locality
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High row-buffer locality applications interfere with low 

row-buffer locality applications in shared memory channels
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Memory Channel Partitioning (MCP) Mechanism

1. Profile applications

2. Classify applications into groups

3. Partition channels between application groups

4. Assign a preferred channel to each application

5. Allocate application pages to preferred channel
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System 
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Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.



Interval Based Operation
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time

Current Interval Next Interval

1. Profile applications

2. Classify applications into groups
3. Partition channels between groups
4. Assign preferred channel to applications

5. Enforce channel preferences



Observations

 Applications with very low memory-intensity rarely 
access memory
 Dedicating channels to them results in precious 
memory bandwidth waste

 They have the most potential to keep their cores busy
 We would really like to prioritize them

 They interfere minimally with other applications
 Prioritizing them does not hurt others
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Integrated Memory Partitioning and Scheduling (IMPS)

 Always prioritize very low memory-intensity 
applications in the memory scheduler

 Use memory channel partitioning to mitigate 
interference between other applications

95Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.



Hardware Cost

 Memory Channel Partitioning (MCP)

 Only profiling counters in hardware

 No modifications to memory scheduling logic

 1.5 KB storage cost for a 24-core, 4-channel system

 Integrated Memory Partitioning and Scheduling (IMPS)

 A single bit per request

 Scheduler prioritizes based on this single bit

96Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.



Performance of Channel Partitioning
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Combining Multiple Interference Control Techniques

 Combined interference control techniques can mitigate 
interference much more than a single technique alone can 
do

 The key challenge is:

 Deciding what technique to apply when

 Partitioning work appropriately between software and 
hardware
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Fundamental Interference Control Techniques

 Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling
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Source Throttling: A Fairness Substrate

 Key idea: Manage inter-thread interference at the cores 
(sources), not at the shared resources

 Dynamically estimate unfairness in the memory system 

 Feed back this information into a controller

 Throttle cores’ memory access rates accordingly

 Whom to throttle and by how much depends on performance 
target (throughput, fairness, per-thread QoS, etc)

 E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

 Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12.
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Runtime 
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Dynamic
Request Throttling

1- Estimating system unfairness 
2- Find app. with the highest 
slowdown (App-slowest)
3- Find app. causing most 
interference for App-slowest 
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Fairness via Source Throttling (FST) [ASPLOS’10]



Core (Source) Throttling

 Idea: Estimate the slowdown due to (DRAM) interference 
and throttle down threads that slow down others

 Ebrahimi et al., “Fairness via Source Throttling: A Configurable 
and High-Performance Fairness Substrate for Multi-Core 
Memory Systems,” ASPLOS 2010.

 Advantages

+ Core/request throttling is easy to implement: no need to change the 
memory scheduling algorithm

+ Can be a general way of handling shared resource contention

+ Can reduce overall load/contention in the memory system

 Disadvantages

- Requires interference/slowdown estimations  difficult to estimate

- Thresholds can become difficult to optimize  throughput loss
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More on Source Throttling (I)

 Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory 
Systems"
Proceedings of the 15th International Conference on 
Architectural Support for Programming Languages and Operating 
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010. 
Slides (pdf)
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Fundamental Interference Control Techniques

 Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling

Idea: Pick threads that do not badly interfere with each 
other to be scheduled together on cores sharing the memory 
system

104



Interference-Aware Thread Scheduling

 Advantages

+ Can eliminate/minimize interference by scheduling “symbiotic 
applications” together (as opposed to just managing the 
interference)

+ Less intrusive to hardware (less need to modify the hardware 
resources)

 Disadvantages and Limitations

-- High overhead to migrate threads between cores and 
machines

-- Does not work (well) if all threads are similar and they 
interfere 
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Summary: Fundamental Interference Control Techniques

 Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling

Best is to combine all. How would you do that?
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Required Readings for Wednesday

107

 Required Reading Assignment:
• Dubois, Annavaram, Stenstrom, Chapter 6. 

 Recommended References:

• Moscibroda and Mutlu, “A Case for Bufferless Routing in On-Chip 
Networks,” ISCA 2009.

• Das et al., “Application-Aware Prioritization Mechanisms for On-Chip 
Networks,” MICRO 2009.
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Interference-Aware Thread Scheduling

 An example from scheduling in clusters (data centers)

 Clusters can be running virtual machines

109



Virtualized Cluster
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Conventional DRM Policies
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Microarchitecture-level Interference

112

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

• VMs within a host compete 
for:

– Shared cache capacity

– Shared memory bandwidth

Can operating-system-level metrics capture the 
microarchitecture-level resource interference?



Microarchitecture Unawareness
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Impact on Performance
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Impact on Performance
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A-DRM: Architecture-aware DRM

• Goal: Take into account microarchitecture-level 
shared resource interference
– Shared cache capacity

– Shared memory bandwidth

• Key Idea: 

– Monitor and detect microarchitecture-level shared 
resource interference

– Balance microarchitecture-level resource usage across 
cluster to minimize memory interference while 
maximizing system performance
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A-DRM: Architecture-aware DRM
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More on Architecture-Aware DRM
 Hui Wang, Canturk Isci, Lavanya Subramanian, Jongmoo Choi, 

Depei Qian, and Onur Mutlu,
"A-DRM: Architecture-aware Distributed Resource 
Management of Virtualized Clusters"
Proceedings of the 11th ACM SIGPLAN/SIGOPS International 
Conference on Virtual Execution Environments (VEE), Istanbul, 
Turkey, March 2015. 
[Slides (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15.pdf
http://www.cercs.gatech.edu/vee15/
http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15-talk.pdf


The Blacklisting Memory Scheduler

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu,

"Staged Memory Scheduling: Achieving High Performance 
and Scalability in Heterogeneous Systems”

39th International Symposium on Computer Architecture (ISCA), 
Portland, OR, June 2012. 

SMS ISCA 2012 Talk

http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://isca2012.ittc.ku.edu/
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/rachata_isca12_talk.pptx


Tackling Inter-Application Interference:
Application-aware Memory Scheduling
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Performance vs. Fairness vs. Simplicity 
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Key Observation 1: Group Rather Than Rank

Observation 1: Sufficient to separate applications 
into two groups, rather than do full ranking
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Benefit 1: Low complexity compared to ranking
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Key Observation 1: Group Rather Than Rank

Observation 1: Sufficient to separate applications 
into two groups, rather than do full ranking
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Key Observation 2

Observation 2: Serving a large number of consecutive 
requests from an application causes interference

Basic Idea:
• Group applications with a large number of consecutive 

requests as interference-causing Blacklisting
• Deprioritize blacklisted applications
• Clear blacklist periodically (1000s of cycles)

Benefits:
• Lower complexity
• Finer grained grouping decisions  Lower unfairness
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Performance vs. Fairness vs. Simplicity
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Performance and Fairness
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Complexity

127

0

20000

40000

60000

80000

100000

120000

0 2 4 6 8 10 12

Sc
h

e
d

u
le

r 
A

re
a 

(s
q

. u
m

)

Critical Path Latency (ns)

FRFCFS FRFCFS-Cap PARBS

ATLAS TCM Blacklisting

43%

70%

Blacklisting reduces complexity significantly



More on BLISS (I)

 Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha
Rastogi, and Onur Mutlu,
"The Blacklisting Memory Scheduler: Achieving High 
Performance and Fairness at Low Cost"
Proceedings of the 32nd IEEE International Conference on 
Computer Design (ICCD), Seoul, South Korea, October 2014. 
[Slides (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pdf


More on BLISS: Longer Version

 Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, 
Harsha Rastogi, and Onur Mutlu,
"The Blacklisting Memory Scheduler: Balancing 
Performance, Fairness and Complexity"
SAFARI Technical Report, TR-SAFARI-2015-004, Carnegie 
Mellon University, March 2015. 
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http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_cmu-safari-tr15.pdf
http://www.ece.cmu.edu/~safari/tr.html

