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Required Readings

2

 Required Reading Assignment:
• Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead, 

High-Performance, Runtime Mechanism to Partition Shared Caches,”
MICRO 2006. 

 Recommended References:

• Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to 
Address both Cache Pollution and Thrashing,” PACT 2012.

• Pekhimenko et al., “Base-Delta-Immediate Compression: Practical 
Data Compression for On-Chip Caches,” PACT 2012. 

• Lin et al., “Gaining Insights into Multi-Core Cache Partitioning: 
Bridging the Gap between Simulation and Real Systems,” HPCA 2008.



Shared Resource Design for 

Multi-Core Systems
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Memory System: A Shared Resource View
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Storage



Resource Sharing Concept

 Idea: Instead of dedicating a hardware resource to a 
hardware context, allow multiple contexts to use it

 Example resources: functional units, pipeline, caches, buses, 
memory

 Why?

+ Resource sharing improves utilization/efficiency  throughput

 When a resource is left idle by one thread, another thread can 
use it; no need to replicate shared data

+ Reduces communication latency

 For example, shared data kept in the same cache in SMT 
processors

+ Compatible with the shared memory model
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Resource Sharing Disadvantages

 Resource sharing results in contention for resources

 When the resource is not idle, another thread cannot use it

 If space is occupied by one thread, another thread needs to re-
occupy it 

- Sometimes reduces each or some thread’s performance

- Thread performance can be worse than when it is run alone  

- Eliminates performance isolation  inconsistent performance 

across runs

- Thread performance depends on co-executing threads

- Uncontrolled (free-for-all) sharing degrades QoS

- Causes unfairness, starvation

Need to efficiently and fairly utilize shared resources
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Example: Problem with Shared Caches
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L2 $

L1 $

……

Processor Core 1

L1 $

Processor Core 2←t1

Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor 
Architecture,” PACT 2004.



Example: Problem with Shared Caches
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L1 $

Processor Core 1

L1 $

Processor Core 2

L2 $

……

t2→

Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor 
Architecture,” PACT 2004.



Example: Problem with Shared Caches
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L1 $

L2 $

……

Processor Core 1 Processor Core 2←t1

L1 $

t2→

t2’s throughput is significantly reduced due to unfair cache sharing.

Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor 
Architecture,” PACT 2004.



Need for QoS and Shared Resource Mgmt.

 Why is unpredictable performance (or lack of QoS) bad?

 Makes programmer’s life difficult

 An optimized program can get low performance (and 
performance varies widely depending on co-runners)

 Causes discomfort to user

 An important program can starve

 Examples from shared software resources

 Makes system management difficult

 How do we enforce a Service Level Agreement when 
hardware resources are sharing is uncontrollable?
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Resource Sharing vs. Partitioning

 Sharing improves throughput

 Better utilization of space 

 Partitioning provides performance isolation (predictable 
performance)

 Dedicated space

 Can we get the benefits of both? 

 Idea: Design shared resources such that they are efficiently 
utilized, controllable and partitionable

 No wasted resource + QoS mechanisms for threads
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Shared Hardware Resources

 Memory subsystem (in both Multi-threaded and Multi-core)

 Non-private caches

 Interconnects

 Memory controllers, buses, banks

 I/O subsystem (in both Multi-threaded and Multi-core)

 I/O, DMA controllers

 Ethernet controllers

 Processor (in Multi-threaded)

 Pipeline resources

 L1 caches
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Multi-core Issues in Caching

 How does the cache hierarchy change in a multi-core system?

 Private cache: Cache belongs to one core (a shared block can be in 
multiple caches)

 Shared cache: Cache is shared by multiple cores
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Shared Caches Between Cores

 Advantages:
 High effective capacity

 Dynamic partitioning of available cache space

 No fragmentation due to static partitioning

 Easier to maintain coherence (a cache block is in a single location)

 Shared data and locks do not ping pong between caches

 Disadvantages
 Slower access

 Cores incur conflict misses due to other cores’ accesses

 Misses due to inter-core interference

 Some cores can destroy the hit rate of other cores

 Guaranteeing a minimum level of service (or fairness) to each core is harder 
(how much space, how much bandwidth?)
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Shared Caches: How to Share?

 Free-for-all sharing

 Placement/replacement policies are the same as a single core 
system (usually LRU or pseudo-LRU)

 Not thread/application aware

 An incoming block evicts a block regardless of which threads 
the blocks belong to

 Problems

 Inefficient utilization of cache: LRU is not the best policy

 A cache-unfriendly application can destroy the performance of 
a cache friendly application

 Not all applications benefit equally from the same amount of 
cache: free-for-all might prioritize those that do not benefit

 Reduced performance, reduced fairness
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Handling Shared Caches

 Controlled cache sharing

 Approach 1: Design shared caches but control the amount of 
cache allocated to different cores

 Approach 2: Design “private” caches but spill/receive data 
from one cache to another  

 More efficient cache utilization

 Minimize the wasted cache space 

 by keeping out useless blocks

 by keeping in cache blocks that have maximum benefit

 by minimizing redundant data
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Controlled Cache Sharing: Examples

 Utility based cache partitioning
 Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-

Performance, Runtime Mechanism to Partition Shared Caches,” MICRO 
2006.

 Suh et al., “A New Memory Monitoring Scheme for Memory-Aware 
Scheduling and Partitioning,” HPCA 2002.

 Fair cache partitioning
 Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor 

Architecture,” PACT 2004.

 Shared/private mixed cache mechanisms
 Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in 

CMPs,” HPCA 2009.

 Hardavellas et al., “Reactive NUCA: Near-Optimal Block Placement and 
Replication in Distributed Caches,” ISCA 2009.
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Efficient Cache Utilization: Examples

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 
2005.

 Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to 
Address both Cache Pollution and Thrashing,” PACT 2012.

 Pekhimenko et al., “Base-Delta-Immediate Compression: Practical 
Data Compression for On-Chip Caches,” PACT 2012. 
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Controlled Shared Caching
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Hardware-Based Cache 

Partitioning
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Utility Based Shared Cache Partitioning
 Goal: Maximize system throughput

 Observation: Not all threads/applications benefit equally from 
caching  simple LRU replacement not good for system 

throughput

 Idea: Allocate more cache space to applications that obtain the 
most benefit from more space

 The high-level idea can be applied to other shared resources as 
well.

 Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition 
Shared Caches,” MICRO 2006.

 Suh et al., “A New Memory Monitoring Scheme for Memory-
Aware Scheduling and Partitioning,” HPCA 2002.
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Marginal Utility of a Cache Way
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Utility Based Shared Cache Partitioning Motivation
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Utility Based Cache Partitioning (III)
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Three components:

 Utility Monitors (UMON) per core

 Partitioning Algorithm (PA)

 Replacement support to enforce partitions

I$

D$
Core1

I$

D$
Core2

Shared
L2 cache

Main Memory

UMON1 UMON2PA



Utility Monitors

 For each core, simulate LRU policy using ATD 

 Hit counters in ATD to count hits per recency position

 LRU is a stack algorithm: hit counts  utility 

E.g. hits(2 ways) = H0+H1
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Utility Monitors
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Dynamic Set Sampling

 Extra tags incur hardware and power overhead

 Dynamic Set Sampling reduces overhead [Qureshi, ISCA’06]   

 32 sets sufficient (analytical bounds)

 Storage < 2kB/UMON
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Partitioning Algorithm

 Evaluate all possible partitions and select the best

 With a ways to core1 and (16-a) ways to core2:  

Hitscore1 = (H0 + H1 + … + Ha-1)     ---- from UMON1                
Hitscore2 = (H0 + H1 + … + H16-a-1) ---- from UMON2            

 Select a that maximizes (Hitscore1 + Hitscore2) 

 Partitioning done once every 5 million cycles  
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Way Partitioning
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Way partitioning support: [Suh+ HPCA’02, Iyer ICS’04] 

1. Each line has core-id bits

2. On a miss, count ways_occupied in set by miss-causing app

ways_occupied < ways_given

Yes No

Victim is the LRU line 

from other app 

Victim is the LRU line 

from miss-causing app



Performance Metrics

 Three metrics for performance:

1. Weighted Speedup (default metric)
 perf =  IPC1/SingleIPC1 + IPC2/SingleIPC2
 correlates with reduction in execution time 

2. Throughput 
 perf = IPC1 + IPC2
 can be unfair to low-IPC application

3. Hmean-fairness
 perf =  hmean(IPC1/SingleIPC1, IPC2/SingleIPC2)  
 balances fairness and performance
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Weighted Speedup Results for UCP
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IPC Results for UCP
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UCP improves average throughput by 17% 



Any Problems with UCP So Far?

- Scalability to many cores

- Non-convex curves?

 Time complexity of partitioning low for two cores
(number of possible partitions ≈ number of ways)

 Possible partitions increase exponentially with cores   

 For a 32-way cache, possible partitions:

 4 cores  6545   

 8 cores  15.4 million 

 Problem NP hard  need scalable partitioning algorithm 
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Greedy Algorithm  [Stone+ ToC ’92]

 Greedy Algorithm (GA) allocates 1 block to the app that has 
the max utility for one block. Repeat till all blocks allocated

 Optimal partitioning when utility curves are convex

 Pathological behavior                                                     
for non-convex curves 

34Stone et al., “Optimal Partitioning of Cache Memory,” IEEE ToC 1992.



Problem with Greedy Algorithm

 Problem:  GA considers benefit only from the immediate 
block. Hence, it fails to exploit large gains from looking ahead
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Lookahead Algorithm

 Marginal Utility (MU) = Utility per cache resource 
 MUa

b =  Ua
b/(b-a)

 GA considers MU for 1 block.  

 LA (Lookahead Algorithm) considers MU for all possible 
allocations

 Select the app that has the max value for MU.  
Allocate it as many blocks required to get max MU

 Repeat until all blocks are assigned
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Lookahead Algorithm Example
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Time complexity ≈ ways2/2 (512 ops for 32-ways) 
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UCP Results
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Four cores sharing a 2MB 32-way L2

Mix2
(swm-glg-mesa-prl)

Mix3
(mcf-applu-art-vrtx)

Mix4
(mcf-art-eqk-wupw) 

Mix1
(gap-applu-apsi-gzp)

LA performs similar to EvalAll, with low time-complexity  

LRU

UCP(Greedy)
UCP(Lookahead)

UCP(EvalAll)



Utility Based Cache Partitioning

 Advantages over LRU

+ Improves system throughput 

+ Better utilizes the shared cache

 Disadvantages

- Fairness, QoS?

 Limitations

- Scalability: Partitioning limited to ways. What if you have 
numWays < numApps?

- Scalability: How is utility computed in a distributed cache?

- What if past behavior is not a good predictor of utility?
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Fair Shared Cache Partitioning

 Goal: Equalize the slowdowns of multiple threads sharing 
the cache

 Idea: Dynamically estimate slowdowns due to sharing and 
assign cache blocks to balance slowdowns

 Approximate slowdown with change in miss rate 

 Kim et al., “Fair Cache Sharing and Partitioning in a Chip 
Multiprocessor Architecture,” PACT 2004.
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Dynamic Fair Caching Algorithm
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P1:

P2:

P1:

P2:

Target Partition

MissRate alone

P1:

P2:

MissRate shared

Repartitioning

interval
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Dynamic Fair Caching Algorithm

1st Interval
P1:20%

P2: 5%

MissRate alone

Repartitioning

interval

P1:

P2:

MissRate shared

P1:20%

P2:15%

MissRate shared

P1:256KB

P2:256KB

Target Partition
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Dynamic Fair Caching Algorithm

Repartition!

Evaluate 
Slowdown
P1: 20% / 20%
P2: 15% / 5%

P1:20%

P2: 5%

MissRate alone

Repartitioning

interval

P1:20%

P2:15%

MissRate shared

P1:256KB

P2:256KB

Target Partition

P1:192KB

P2:320KB

Target Partition

Partition 
granularity: 
64KB
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Dynamic Fair Caching Algorithm

2nd Interval
P1:20%

P2: 5%

MissRate alone

Repartitioning

interval

P1:20%

P2:15%

MissRate shared

P1:20%

P2:15%

MissRate shared

P1:20%

P2:10%

MissRate shared

P1:192KB

P2:320KB

Target Partition
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Dynamic Fair Caching Algorithm

Repartition!

Evaluate 
Slowdown
P1: 20% / 20%
P2: 10% / 5%

P1:20%

P2: 5%

MissRate alone

Repartitioning

interval
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MissRate shared

P1:20%
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MissRate shared
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Target Partition
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P2:384KB

Target Partition



46

Dynamic Fair Caching Algorithm

3rd Interval
P1:20%

P2: 5%

MissRate alone

Repartitioning
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MissRate shared
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Dynamic Fair Caching Algorithm

Repartition! Do Rollback if:
P2: Δ<Trollback

Δ=MRold-MRnew

P1:20%

P2: 5%

MissRate alone

Repartitioning

interval

P1:20%

P2:10%

MissRate shared

P1:25%

P2: 9%

MissRate shared

P1:128KB

P2:384KB

Target Partition

P1:192KB

P2:320KB

Target Partition



Advantages/Disadvantages of the Approach

 Advantages

+ Reduced starvation

+ Better average throughput

+ Block granularity partitioning 

 Disadvantages and Limitations

- Alone miss rate estimation can be incorrect

- Scalable to many cores?

- Is this the best (or a good) fairness metric?

- Does this provide performance isolation in cache?
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Software-Based Shared Cache 

Partitioning
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Software-Based Shared Cache Management

 Assume no hardware support (demand based cache sharing, i.e. 
LRU replacement)

 How can the OS best utilize the cache?

 Cache sharing aware thread scheduling

 Schedule workloads that “play nicely” together in the cache

 E.g., working sets together fit in the cache

 Requires static/dynamic profiling of application behavior

 Fedorova et al., “Improving Performance Isolation on Chip 
Multiprocessors via an Operating System Scheduler,” PACT 2007.

 Cache sharing aware page coloring

 Dynamically monitor miss rate over an interval and change 
virtual to physical mapping to minimize miss rate

 Try out different partitions
50



OS Based Cache Partitioning

 Lin et al., “Gaining Insights into Multi-Core Cache Partitioning: Bridging 
the Gap between Simulation and Real Systems,” HPCA 2008.

 Cho and Jin, “Managing Distributed, Shared L2 Caches through OS-
Level Page Allocation,” MICRO 2006.

 Static cache partitioning

 Predetermines the amount of cache blocks allocated to each 
program at the beginning of its execution

 Divides shared cache to multiple regions and partitions cache 
regions through OS page address mapping

 Dynamic cache partitioning

 Adjusts cache quota among processes dynamically 

 Page re-coloring

 Dynamically changes processes’ cache usage through OS page 
address re-mapping
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Page Coloring

 Physical memory divided into colors

 Colors map to different cache sets

 Cache partitioning

 Ensure two threads are allocated 

pages of different colors
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Thread A

Thread B

Cache

Way-1 Way-n…………

Memory page



Page Coloring

virtual page numberVirtual address page offset

physical page numberPhysical address Page offset

Address translation

Cache tag Block offsetSet indexCache address

Physically indexed cache

page color bits

… …

OS control

=

•Physically indexed caches are divided into multiple regions (colors).
•All cache lines in a physical page are cached in one of those regions (colors).

OS can control the page color of a virtual page through address mapping 
(by selecting a physical page with a specific value in its page color bits).



Static Cache Partitioning using Page Coloring
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Dynamic Cache Partitioning via Page Re-Coloring

page color table 

……

N - 1
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 Page re-coloring:

 Allocate page in new color

 Copy memory contents

 Free old page
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 Pages of a process are organized into linked lists 

by their colors.

 Memory allocation guarantees that pages are 

evenly distributed into all the lists (colors) to 

avoid hot points.



Dynamic Partitioning in a Dual-Core System

Init: Partition the cache as (8:8)

Run current partition (P0:P1) for one epoch

finished

Try one epoch for each of the two neighboring
partitions: (P0 – 1: P1+1) and (P0 + 1: P1-1)

Choose next partitioning with best policy 
metrics measurement (e.g., cache miss rate)

No

Yes
Exit



Experimental Environment

 Dell PowerEdge1950

 Two-way SMP, Intel dual-core Xeon 5160

 Shared 4MB L2 cache, 16-way

 8GB Fully Buffered DIMM

 Red Hat Enterprise Linux 4.0

 2.6.20.3 kernel

 Performance counter tools from HP (Pfmon)

 Divide L2 cache into 16 colors



Performance – Static & Dynamic

 Aim to minimize combined miss rate

 For RG-type, and some RY-type:

 Static partitioning outperforms dynamic partitioning

 For RR- and RY-type, and some RY-type

 Dynamic partitioning outperforms static partitioning



Software vs. Hardware Cache Management

 Software advantages

+ No need to change hardware

+ Easier to upgrade/change algorithm (not burned into hardware)

 Disadvantages

- Large granularity of partitioning (page-based versus way/block)

- Limited page colors  reduced performance per application 

(limited physical memory space!), reduced flexibility

- Changing partition size has high overhead  page mapping 

changes

- Adaptivity is slow: hardware can adapt every cycle (possibly)

- Not enough information exposed to software (e.g., number of 
misses due to inter-thread conflict)
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Private/Shared Caching
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Private/Shared Caching

 Example: Adaptive spill/receive caching

 Goal: Achieve the benefits of private caches (low latency, 
performance isolation) while sharing cache capacity across 
cores

 Idea: Start with a private cache design (for performance 
isolation), but dynamically steal space from other cores that 
do not need all their private caches

 Some caches can spill their data to other cores’ caches 
dynamically

 Qureshi, “Adaptive Spill-Receive for Robust High-
Performance Caching in CMPs,” HPCA 2009.
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Revisiting Private Caches on CMP

Private caches avoid the need for shared interconnect

++ fast latency, tiled design, performance isolation

Core A
I$ D$

CACHE A

Core B
I$ D$

CACHE B

Core C
I$ D$

CACHE C

Core D
I$ D$

CACHE D

Memory

Problem: When one core needs more cache and other core 

has spare cache, private-cache CMPs cannot share capacity 
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Cache Line Spilling 

Spill evicted line from one cache to neighbor cache

- Co-operative caching (CC)  [ Chang+ ISCA’06]

Problem with CC: 

1. Performance depends on the parameter (spill probability)

2. All caches spill as well as receive  Limited improvement 

Cache A Cache B Cache C Cache D

Spill

Goal:  Robust High-Performance Capacity Sharing with Negligible Overhead

Chang and Sohi, “Cooperative Caching for Chip Multiprocessors,” ISCA 2006.
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Spill-Receive Architecture

Each Cache is either a Spiller or Receiver but not both

- Lines from spiller cache are spilled to one of the receivers

- Evicted lines from receiver cache are discarded  

What is the best N-bit binary string that maximizes the performance of Spill 

Receive Architecture  Dynamic Spill Receive (DSR)

Cache A Cache B Cache C Cache D

Spill

S/R =1 

(Spiller cache)
S/R =0 

(Receiver cache)

S/R =1

(Spiller cache)

S/R =0 

(Receiver cache)

Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in CMPs,” HPCA 2009.



Efficient Cache Utilization

65



Efficient Cache Utilization: Examples

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 
2005.

 Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to 
Address both Cache Pollution and Thrashing,” PACT 2012.

 Pekhimenko et al., “Base-Delta-Immediate Compression: Practical 
Data Compression for On-Chip Caches,” PACT 2012. 
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Cache Utilization is Important

Core
Last-Level 

Cache
Memory

Core Core

Core Core

Increasing contention

Effective cache utilization is important

Large latency
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Reuse Behavior of Cache Blocks

A B C A B C S T U V W X Y A B C

Different blocks have different reuse behavior

Access Sequence:

High-reuse block Low-reuse block

Z

Ideal Cache A B C . . . . .
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Cache Pollution

H G F E D C B AS H G F E D C BT S H G F E D CU T S H G F E D

MRU LRU

LRU Policy

Idea: Predict reuse behavior of missed blocks. Insert 
low-reuse blocks at LRU position.

H G F E D C B ASTU

MRU LRU

AB AC B A

AS AT S A

Cache

Problem: Low-reuse blocks evict high-reuse blocks
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Cache Thrashing

H G F E D C B AI H G F E D C BJ I H G F E D CK J I H G F E D

MRU LRU

LRU Policy A B C D E F G H I J KAB AC B A

Idea: Insert at MRU position with a very low 
probability (Bimodal insertion policy)

Cache

H G F E D C B AIJK

MRU LRU

AI AJ I A
A fraction of 
working set 
stays in cache

Cache

Problem: High-reuse blocks evict each other

70
Qureshi+, “Adaptive insertion policies for high performance caching,” ISCA 2007.



Handling Pollution and Thrashing

Need to address both pollution and thrashing 
concurrently

Cache Thrashing

Need to control the number of blocks inserted with 
high priority into the cache

Cache Pollution

Need to distinguish high-reuse blocks from low-
reuse blocks

71



Reuse Prediction

Miss Missed-block

High reuse

Low reuse

?

Keep track of the reuse behavior of every cache 
block in the system

Impractical
1. High storage overhead
2. Look-up latency
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Approaches to Reuse Prediction

Use program counter or memory region information.

BA TS

PC 1 PC 2

BA TS

PC 1 PC 2 PC 1

PC 2

C C

U U

1. Group Blocks
2. Learn group 

behavior
3. Predict reuse

1. Same group → same reuse behavior
2. No control over number of high-reuse blocks
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Per-block Reuse Prediction

Use recency of eviction to predict reuse

A

Time

Time of eviction

A

Accessed soon 
after eviction

S

Time

S

Accessed long time 
after eviction
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Evicted-Address Filter (EAF)

Cache

EAF
(Addresses of recently evicted blocks)

Evicted-block address

Miss Missed-block address

In EAF?
Yes No

MRU LRU

High Reuse Low Reuse 
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Naïve Implementation: Full Address Tags

EAF

1. Large storage overhead

2. Associative lookups – High energy 

Recently 
evicted address

Need not be 
100% accurate

?
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Low-Cost Implementation: Bloom Filter

EAF

Implement EAF using a Bloom Filter
Low storage overhead + energy

Need not be 
100% accurate

?
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Y

Bloom Filter

Compact representation of a set

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

1. Bit vector

2. Set of hash functions

H1 H2

H1 H2

X

1 11

InsertTest

ZW

Remove

X Y

May remove 
multiple addressesClear False positive

78

Inserted Elements: X Y



EAF using a Bloom Filter

EAF

Insert

Test

Evicted-block 
address

Remove
FIFO address 

Missed-block address

Bloom Filter

Remove
If present

when full

Clear

 



1

2
when full

Bloom-filter EAF: 4x reduction in storage overhead, 
1.47% compared to cache size 79



EAF-Cache: Final Design

Cache
Bloom Filter

Counter

1

2

3

Cache eviction

Cache miss

Counter reaches max

Insert address into filter
Increment counter

Test if address is present in filter
Yes, insert at MRU. No, insert with BIP

Clear filter and counter
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EAF: Advantages

Cache
Bloom Filter

Counter

1. Simple to implement

2. Easy to design and verify

3. Works with other techniques (replacement policy)

Cache eviction

Cache miss
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EAF Performance – Summary
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Cache Compression
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Motivation for Cache Compression
Significant redundancy in data:
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0x00000000

How can we exploit this redundancy?

– Cache compression helps

– Provides effect of a larger cache without 
making it physically larger

0x0000000B 0x00000003 0x00000004 …



Background on Cache Compression

• Key requirements:
– Fast (low decompression latency)

– Simple (avoid complex hardware changes)

– Effective (good compression ratio)
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CPU
L2 

Cache
Uncompressed

CompressedDecompressionUncompressed

L1 
Cache

Hit



Summary of Major Works
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Mechanisms

Decompression
Latency

Complexity Compression
Ratio
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Summary of Major Works
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Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero
  

Frequent Value
  

Frequent Pattern
 / 

BΔI
  



Key Data Patterns in Real Applications
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0x00000000 0x00000000 0x00000000 0x00000000 …

0x000000FF 0x000000FF 0x000000FF 0x000000FF …

0x00000000 0x0000000B 0x00000003 0x00000004 …

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 …

Zero Values: initialization,  sparse matrices, NULL pointers

Repeated Values: common initial values, adjacent pixels

Narrow Values: small values stored in a big data type

Other Patterns: pointers to the same memory region



How Common Are These Patterns?
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SPEC2006, databases, web workloads, 2MB L2 cache
“Other Patterns” include Narrow Values

43% of the cache lines belong to key patterns



Key Data Patterns in Real Applications

92

0x00000000 0x00000000 0x00000000 0x00000000 …

0x000000FF 0x000000FF 0x000000FF 0x000000FF …

0x00000000 0x0000000B 0x00000003 0x00000004 …

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 …

Zero Values: initialization,  sparse matrices, NULL pointers

Repeated Values: common initial values, adjacent pixels

Narrow Values: small values stored in a big data type

Other Patterns: pointers to the same memory region

Low Dynamic Range:

Differences between values are significantly 
smaller than the values themselves



32-byte Uncompressed Cache Line

Key Idea: Base+Delta (B+Δ) Encoding
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0xC04039C0 0xC04039C8 0xC04039D0 … 0xC04039F8

4 bytes

0xC04039C0

Base

0x00

1 byte

0x08

1 byte

0x10

1 byte

… 0x38 12-byte 
Compressed Cache Line

20 bytes saved
 Fast Decompression: 

vector addition

 Simple Hardware: 
arithmetic and comparison

 Effective: good compression ratio



Can We Do Better?

• Uncompressible cache line (with a single base): 

• Key idea: 
Use more bases, e.g., two instead of one

• Pro: 
– More cache lines can be compressed

• Cons:
– Unclear how to find these bases efficiently
– Higher overhead (due to additional bases)
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0x00000000 0x09A40178 0x0000000B 0x09A4A838 …



B+Δ with Multiple Arbitrary Bases
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 2 bases – the best option based on evaluations



How to Find Two Bases Efficiently?
1. First base - first element in the cache line

2. Second base - implicit base of 0

Advantages over 2 arbitrary bases:

– Better compression ratio

– Simpler compression logic
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 Base+Delta part

 Immediate part

Base-Delta-Immediate (BΔI) Compression



B+Δ (with two arbitrary bases) vs. BΔI
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Average compression ratio is close, but BΔI is simpler



BΔI Cache Compression Implementation

• Decompressor Design

– Low latency

• Compressor Design

– Low cost and complexity

• BΔI Cache Organization

– Modest complexity
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Δ0B0

BΔI Decompressor Design
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Δ1 Δ2 Δ3

Compressed Cache Line

V0 V1 V2 V3

+ +

Uncompressed Cache Line

+ +

B0 Δ0

B0 B0 B0 B0

Δ1 Δ2 Δ3

V0
V1 V2 V3

Vector addition



BΔI Compressor Design
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32-byte Uncompressed Cache Line

8-byte B0

1-byte Δ
CU

8-byte B0

2-byte Δ
CU

8-byte B0

4-byte Δ
CU

4-byte B0

1-byte Δ
CU

4-byte B0

2-byte Δ
CU

2-byte B0

1-byte Δ
CU

Zero
CU

Rep.
Values

CU

Compression Selection Logic (based on compr. size)

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

Compression Flag 
& Compressed 

Cache Line

CFlag &
CCL

Compressed Cache Line



BΔI Compression Unit: 8-byte B0 1-byte Δ
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32-byte Uncompressed Cache Line

V0 V1 V2 V3

8 bytes

- - - -

B0=

V0

V0 B0    B0    B0    B0    

V0 V1 V2 V3

Δ0 Δ1 Δ2 Δ3

Within 1-byte 
range?

Within 1-byte 
range?

Within 1-byte 
range?

Within 1-byte 
range?

Is every element within 1-byte range?

Δ0B0 Δ1 Δ2 Δ3B0 Δ0 Δ1 Δ2 Δ3

Yes No



BΔI Cache Organization
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Tag0 Tag1

… …

… …

Tag Storage:

Set0

Set1

Way0 Way1

Data0

…

…

Set0

Set1

Way0 Way1

…

Data1

…

32 bytesData Storage:
Conventional 2-way cache with 32-byte cache lines

BΔI: 4-way cache with 8-byte segmented data

Tag0 Tag1

… …

… …

Tag Storage:

Way0 Way1 Way2 Way3

… …

Tag2 Tag3

… …

Set0

Set1

Twice as many tags

C - Compr. encoding bitsC

Set0

Set1

… … … … … … … …

S0S0 S1 S2 S3 S4 S5 S6 S7

… … … … … … … …

8 bytes

Tags map to multiple adjacent segments2.3% overhead for 2 MB cache



Qualitative Comparison with Prior Work

• Zero-based designs
– ZCA [Dusser+, ICS’09]: zero-content augmented cache

– ZVC [Islam+, PACT’09]: zero-value cancelling

– Limited applicability (only zero values)

• FVC [Yang+, MICRO’00]: frequent value compression
– High decompression latency and complexity

• Pattern-based compression designs
– FPC [Alameldeen+, ISCA’04]: frequent pattern compression

• High decompression latency (5 cycles) and complexity

– C-pack [Chen+, T-VLSI Systems’10]: practical implementation of 
FPC-like algorithm

• High decompression latency (8 cycles)
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Cache Compression Ratios

BΔI achieves the highest compression ratio
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SPEC2006, databases, web workloads, 2MB L2



Single-Core: IPC and MPKI
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Multi-Core Workloads
• Application classification based on 

Compressibility: effective cache size increase

(Low Compr. (LC) < 1.40, High Compr. (HC) >= 1.40)

Sensitivity: performance gain with more cache 

(Low Sens. (LS) < 1.10, High Sens. (HS) >= 1.10; 512kB -> 2MB)

• Three classes of applications:

– LCLS, HCLS, HCHS,  no LCHS applications

• For 2-core - random mixes of each possible class pairs  
(20 each, 120 total workloads)
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Multi-Core: Weighted Speedup

BΔI performance improvement is the highest (9.5%)
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Readings for Lecture 15 (Next Monday)
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 Required Reading Assignment:
• Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling: 

Enhancing both Performance and Fairness of Shared DRAM 
Systems,” ISCA 2008. 

 Recommended References:

• Muralidhara et al., “Reducing Memory Interference in Multicore 
Systems via Application-Aware Memory Channel Partitioning,”
MICRO 2011.

• Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 
2011.

• Wang et al., “A-DRM: Architecture-aware Distributed Resource 
Management of Virtualized Clusters,” VEE 2015.



Guest Lecture on Wednesday (10/28) 

 Bryan Black, AMD

 3D die stacking technology
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