
Copyright

by

Mary Douglass Brown

2005

The Dissertation Committee for Mary Douglass Brown
certifies that this is the approved version of the following dissertation:

Reducing Critical Path Execution Time by Breaking Critical Loops

Committee:

Yale Patt, Supervisor

Craig Chase

Donald S. Fussell

Stephen W. Keckler

Balaram Sinharoy

Reducing Critical Path Execution Time by Breaking Critical Loops

by

Mary Douglass Brown, B.S.; B.A.; M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2005

Acknowledgments

My years of graduate school would never have happened without the life-long sup-

port of my family. I want to thank my parents, Jack and Jane Brown, for being such

excellent role models. Since I have been living in Austin, I have really enjoyed the comfort

of living close to my sister and her husband, Terry and Jeff Stripling. Who knew we would

both end up in Austin! I would also like to thank the Okies for providing such a wonderful

environment to grow up in. After all, it takes a village to raise a child.

I have been part of a wonderful research group during the past seven years. I would

like to thank my advisor, Yale Patt, for providing the right combination of guidance and

freedom required to produce successful, independent-thinking Ph.D. graduates. Among

the more senior members of the HPS research group, I would first like to thank Jared Stark,

who first got me working in the area of dynamic scheduling. He has been an outstanding

mentor and colleague over the years. I would also like to thank Sanjay Patel and Dan

Friendly, who first got me working in the area of clustering during my second year at

Michigan. Little did I know at the time I would come back to clustering as part of my

dissertation. Marius Evers, who was my TA when I took EECS 470 at Michigan, as well

as Robert Chappell and Paul Racunas, were always great sources of technical expertise.

Rob also wrote the bulk of the simulator used to produce the performance results shown in

this dissertation. I would also like to thank the other current members of the HPS research

group: Sangwook Kim, Francis Tseng, Hyesoon Kim, Onur Mutlu, Moinuddin Qureshi,

Dave Thompson, and Santhosh Srinath, for their friendship and contributions to the group’s

simulation infrastructure. Along with the newest members of the HPS research group, they

have kept our research group flourishing at UT. It has been a pleasure working with them.

iv

I would also like to thank Craig Chase, Don Fussell, Steve Keckler, and Balaram

Sinharoy for taking the time to serve on my dissertation committee. They were all very

pleasant to work with.

I have had several sources of financial support over the years. I would first like

to thank the University of Michigan for the Rackham Engineering Fellowship, which is

the reason I chose Michigan for graduate school. I would especially like to thank IBM

who supported me on a Doctoral Fellowship for three years. I would also like to thank the

University of Texas College of Engineering for providing a doctoral fellowship during my

last two years at UT.

Finally I would like to thank Motorola, IBM, and Intel for providing me with sum-

mer jobs. These jobs have been crucial for developing my knowledge of microprocessor

design.

v

Reducing Critical Path Execution Time by Breaking Critical Loops

Publication No.

Mary Douglass Brown, Ph.D.

The University of Texas at Austin, 2005

Supervisor: Yale Patt

Increasing bandwidth and decreasing latency are two orthogonal techniques for im-

proving program performance. However, many studies have shown that microarchitectural

designs that improve one of these may have a negative effect on the other. For example,

bypass latency, or the time it takes to forward a result from one functional unit to another,

may increase as the number of functional units increases because of longer wires and mul-

tiplexor delays. As another example, techniques used to exploit ILP such as out-of-order

execution with large instruction windows will increase dynamic instruction scheduling la-

tency. While exploiting ILP allows the number of instructions processed per cycle (IPC) to

be increased, the increased scheduling latency may lower clock frequency, increase power

consumption, or even negatively impact IPC if additional cycles are needed to schedule

instructions for execution. This dissertation addresses microarchitectural techniques that

allow ILP to be increased but have traditionally had a negative impact on the latency of the

execution core.

Critical loops are pieces of logic that must be evaluated serially by dependent in-

structions. A program’s critical path is the set of instructions that determine the execution

time of a program, and this set of instructions is determined in part by critical loop latency.

vi

The length of a program’s critical path can be shortened by breaking critical data depen-

dence loops, thereby improving performance. This dissertation introduces ways to break

three critical data dependence loops: the execute-bypass loop, the steering loop, and the

scheduling loop. The execute-bypass loop is reduced by means of clustering and steer-

ing. The steering loop is broken by introducing scalable steering algorithms that perform

as well as the best previously published algorithms that did not scale with issue width.

The scheduling loop is broken into multiple smaller loops, thus reducing the critical path

through the scheduling logic.

vii

Table of Contents

Acknowledgments iv

Abstract vi

List of Tables xii

List of Figures xiii

Chapter 1. Introduction 1
1.1 The Problem: The Limitation of Critical Paths 2

1.2 Critical Loops in the Execution Core . 5

1.2.1 Thesis Statement . 5

1.2.2 Breaking Critical Loops . 5

1.3 Contributions . 8

1.4 Dissertation Organization . 9

Chapter 2. Related Work 10
2.1 Clustering and Partitioning . 10

2.1.1 Multicluster Architecture . 11

2.1.2 Partitioned Structures with Dynamic Steering and Copy Instructions . 12

2.1.2.1 Consumer-Requested Forwarding 13

2.1.3 Partitioned Structures with Dynamic Steering but no Copy Instructions 14

2.1.4 Register Read and Write Specialization 15

2.1.5 Paradigms with Replicated Register Files 15

2.1.6 Multiscalar Processors . 16

2.2 Other Approaches to Breaking the Critical Execute-Bypass Loop 17

2.3 Steering . 17

2.3.1 Static Steering Algorithms . 18

viii

2.3.2 History-Based Steering Algorithms 18

2.3.3 Front-End Steering Algorithms . 21

2.4 Scheduling . 23

2.4.1 Partitioning Schemes . 24

2.4.2 Avoiding Wakeup by Prescheduling 25

2.4.3 Other Speculative Schedulers . 27

2.4.4 Indexed Schemes . 27

2.4.5 New Circuit Designs . 28

Chapter 3. Simulation Infrastructure 29
3.1 Baseline Microarchitecture Model . 29

3.1.1 The Pipeline Front-End . 30

3.1.2 Register Renaming and Dependence Analysis 30

3.1.3 Instruction Window . 33

3.1.4 Instruction Scheduling . 34

3.1.4.1 Busy-Bit Table . 36

3.1.5 Physical Register File . 37

3.1.6 Execution . 39

3.1.7 Memory System . 40

3.2 Evaluation Methodology . 41

3.3 Performance and Power Models . 41

3.3.1 Performance Simulator . 41

3.3.2 Power Simulator . 42

3.3.2.1 Overview of Wattch . 42

3.3.2.2 Modifications to Wattch 43

Chapter 4. Clustering 46
4.1 Effects of Clustering on IPC . 47

4.2 Effects of Clustering on Latency . 54

4.2.1 The Scheduling Window . 54

4.2.2 The Register File . 56

4.2.3 Latency Estimates . 57

4.3 Effects of Clustering on Power Consumption 60

ix

4.3.1 Summary . 66
4.4 Replication vs. Partitioning . 66

4.4.1 Partitioned Register File Model . 67

4.4.2 Replication with Selective Cluster Receipt 69

4.4.2.1 Justification and Grounds for SCR 69
4.4.2.2 Implementation of SCR 71

4.4.2.3 Copy Instructions . 74

4.4.3 Results for PART and SCR Models 79
4.4.3.1 Design Space Exploration of PART model 79

4.4.3.2 Comparing BASE, SCR, and PART Models 88

4.5 Conclusions . 93

Chapter 5. Steering 95
5.1 Shortcomings of Current Steering Algorithms 95

5.1.1 Scheduling Window Issue Ports . 96

5.1.1.1 Modulo Algorithm . 97
5.1.1.2 Dependence-Based Algorithm 99

5.1.1.3 DCOUNT Algorithm . 101

5.1.1.4 FDRT Algorithm . 104
5.1.1.5 Conclusions . 105

5.1.2 Full windows . 106

5.1.3 Critical Loops Within the Steering Logic 108

5.2 Steering Improvements . 110
5.2.1 Virtual Cluster Assignments . 110

5.2.2 Scalable Dependence-Based Algorithms 112

5.2.3 Out-of-Order Steering . 114

5.2.4 Secondary Heuristics . 118
5.2.4.1 Source Operand Availability 119

5.2.4.2 Cluster Fullness . 120

5.2.4.3 Combining the load and avail Heuristics 120

5.2.4.4 Last-Source Prediction . 122
5.2.5 Steer or Stall? . 124

5.3 Summary and Conclusions . 126

x

Chapter 6. Pipelined Instruction Scheduling 131
6.1 Speculative Wakeup . 132

6.1.1 False Selection . 134

6.1.2 Implementation . 135

6.1.2.1 Rename Logic . 135

6.1.2.2 Wakeup Logic . 136

6.1.3 Preventing Deadlock . 137

6.1.4 Last-Source Prediction . 138

6.1.5 Performance Results . 139

6.1.5.1 Performance with Last-Source Prediction 143

6.2 Select-Free Scheduling . 145

6.2.1 Collisions and Pileups . 147

6.2.2 Implementation . 148

6.2.3 Array Schedulers . 148

6.2.4 Select-Free Implementation . 150

6.2.5 Performance Results . 152

6.3 Conclusions . 153

Chapter 7. Conclusions and Future Work 155
7.1 Conclusions . 155

7.2 Future Work . 157

7.2.1 Improvements to Wattch . 157

7.2.2 Speculative Inter-Cluster Broadcast 158

7.2.3 Increasing Window Size with Speculative Scheduling 159

7.2.4 Additional Speculative Scheduling Implementations 159

7.2.5 Future Work on Steering Algorithms 159

Bibliography 161

Vita 172

xi

List of Tables

3.1 Instruction Latencies . 39

3.2 SPEC CPU2000 Integer Benchmarks . 41

4.1 Summary of seven models. 48

4.2 Scheduling Window and Register File Latency estimates, 16-wide execution. 58

4.3 Scheduling Window and Register File Latency estimates, contd. 59

4.4 Possible states of a BBT entry. 72

4.5 Example of inter-cluster forwarding with Selective Cluster Receipt. 75

4.6 Selective Cluster Receipt: inter-cluster forwarding with a copy instruction. . 77

4.7 Differences between copy instructions in the SCR and PART models. 79

4.8 Scheduling Window and Register File Latency estimates, PART model. . . 80

4.9 Summary of three models. 88

4.10 Fraction of results with given number of cluster broadcasts. 92

5.1 Relative Wakeup Latencies when varying the number of issue ports. 96

5.2 IPC Harmonic Means. 106

5.3 Summary of steering algorithms. Top: previously published algorithms.
Middle: algorithms introduced in this chapter. Bottom: additional heuristics. 127

xii

List of Figures

1.1 Common Critical Loops in a Processor Pipeline. 3

1.2 IPC degradation when increasing critical loops for 4-wide machine. 4
1.3 IPC degradation when increasing critical loops for 16-wide machine. 5

1.4 A Clustered Execution Core. 6

1.5 Logic in the Scheduling Loop . 7

3.1 Processor Pipeline . 29

3.2 Processor Datapath . 31
3.3 Dependency Analysis Logic for Three Instructions. 33

3.4 A Scheduling Window Entry . 34

3.5 Busy-Bit Table Initializing Scheduler Entry 37

4.1 IPC for baseline and 4-cluster configurations. 52

4.2 IPC for baseline and 8-cluster configurations. 52
4.3 Location of last arriving source operand for all instructions. 54

4.4 Relative power consumption for 1, 4, and 8-clustered models (shown left
to right). 61

4.5 IPC for 1, 4, and 8-clustered models. 61
4.6 BASE model power consumption while scaling the number of issue ports

per cluster: 4, 6, 8, 12, 16 ports. 64
4.7 BASE model IPC while scaling the number of issue ports. 64

4.8 BASE model relative power consumption when scaling the number of schedul-
ing window entries (128, 192, 256, 384, 512). 65

4.9 IPC when scaling the number of scheduling window entries. 65

4.10 Mealy diagram for a BBT entry. 73
4.11 PART model Power Consumption while scaling the number of issue ports

per cluster : 4, 6, 8, 12, 16 ports. 81

4.12 PART model IPC while scaling the number of issue ports. 81

4.13 PART model relative power consumption when scaling the number of schedul-
ing window entries (128, 192, 256, 384, 512). 83

xiii

4.14 PART model IPC when scaling the number of scheduling window entries. . 83

4.15 PART model relative power consumption when scaling the register file size.
SW/RF entries: 512/512, 512/768, 512/1024, 768/768, 768/1024 84

4.16 PART model IPC when scaling the register file size. 84

4.17 PART relative power when scaling the bypass connectivity: 1, 2, 3. 86

4.18 PART model IPC when scaling the bypass connectivity. 86

4.19 PART model relative power consumption when scaling the rename width. . 87

4.20 PART model IPC when scaling the rename width. 87

4.21 IPC of the BASE, SCR, and PART models. 90

4.22 Copies per instruction for the SCR and PART models. 90

4.23 Power consumption of the BASE, SCR, and PART models. 91

5.1 IPC using the MOD cluster assignment. 98

5.2 Source location distribution using the MOD cluster assignment. From left
to right: 4, 6, 8, 12, and 16 issue ports per cluster. 98

5.3 MOD: Fraction of instructions for which execution was delayed because of
functional unit contention. 99

5.4 IPC using a dependence-based steering algorithm. 100

5.5 IPC using the DCOUNT steering algorithm. 101

5.6 Fraction of instructions waiting for the last source operand from another
cluster. 103

5.7 Fraction of instructions delayed due to functional unit contention. 103

5.8 IPC using the FDRT history-based cluster assignment. 105

5.9 Percent of instructions with desired cluster free or unavailable. Six config-
urations from left to right: FDRT, 4-port; DCOUNT, 4-port; DEP, 4-port;
FDRT, 8-port; DCOUNT, 8-port; DEP, 8-port. 107

5.10 Serialized Steering Logic. 109

5.11 Speedups of FDRT with cluster remapping (FDRT+VC) over original FDRT
with 4 ports. 111

5.12 Chain depths of retired instructions. 112

5.13 Limiting dependence chain depths to 2, 3, and 4 (DEP+lim-N vs. DEP). . 113

5.14 IPC for DEP, DCOUNT, and a 2-pass out-of-order algorithm with 4 and 6
ports per cluster. 115

5.15 Dependency graph and trees for one fetch packet. 116

5.16 Speedups of tree-based steering (TREE) over dependence-based (DEP). . . 118

xiv

5.17 Speedups when considering availability of source operands (DEP+avail
vs. DEP). 119

5.18 Speedups when considering least-loaded cluster (DEP+load vs. DEP). . . 121

5.19 Speedups when considering both source availability and the least-loaded
cluster (DEP+load+avail vs. DEP). 121

5.20 Change in IPC when adding last-source prediction to the DEP algorithm
(DEP+lsp vs. DEP). 123

5.21 Fraction of instructions getting last source from another cluster (DEP, DEP+lsp).123

5.22 Change in IPC when stalling due to a full desired cluster, relative to using
DCOUNT secondary heuristics (DCOUNT+S vs. DCOUNT). 125

5.23 Fraction of instructions getting last source from another cluster (DCOUNT). 125

5.24 Average number of instructions in the window. Top bars: original DCOUNT.
Bottom bars: DCOUNT while stalling due to full cluster. 126

5.25 PART Model: Change in IPC when stalling due to a full desired cluster
(DEP+S vs. DEP). 128

6.1 One and Two-Cycle Scheduling Loops . 132

6.2 A Dependency Graph . 133

6.3 Pipeline Diagram with Conventional Scheduling 133

6.4 Pipeline Diagram with Speculative Wakeup 134

6.5 A Grandparent MUX for the 3rd Instruction in a Packet 136

6.6 Speculative Scheduling Logic . 137

6.7 Performance of Speculative Wakeup compared to Conventional Scheduling. 140

6.8 Fraction of Retired Instructions with delayed execution due to functional
unit contention. 140

6.9 False Selections (top) and Scheduling Stalls (bottom). 141

6.10 Fraction of Retired Instructions that were Falsely Selected. 142

6.11 Relative IPC when using two grandparents compared to four grandparents. . 144

6.12 Fraction of instructions limiting the number of grandparent scheduling tags. 144

6.13 Misprediction rate of the Last-Source Predictor. 145

6.14 False Selections (top) and Scheduling Stalls (bottom), 2 grandparents. . . . 145

6.15 Fraction of Retired Instructions that were Falsely Selected, 2 grandparents. 146

6.16 Select-Free Scheduling Loop . 146

6.17 Dependency Graph with Collision and Pileup Victims 147

6.18 Dependency Graph and Corresponding Wakeup Array Contents. 149

xv

6.19 Logic for One Wakeup Array Entry . 150

6.20 Schedulers with support for Select-Free Scheduling 151

6.21 Performance of Select-Free Scheduling compared to Conventional Schedul-
ing. 153

6.22 Retired Collision Victims. 153

6.23 Retired Pileup Victims. 154

xvi

Chapter 1

Introduction

Program execution time depends on both a processor’s maximum execution band-

width and execution latency. Because of the inherent Instruction-Level Parallelism (ILP)

found in applications, superscalar processors can execute more than one instruction at a

time thereby increasing execution bandwidth. By doing work in parallel, the total execu-

tion time of a program can be reduced. However, even after providing enough hardware

resources to execute several instructions in parallel, program execution time is still limited

by execution latency because of the inherent data and control flow dependences found in

applications.

Increasing bandwidth and decreasing latency are conceptually two orthogonal tech-

niques for improving program performance. However, microarchitectural techniques to

improve one of these usually have a negative effect on the other. For example, bypass

latency, or the time it takes to forward a result from one functional unit to another, may

increase as the number of functional units increases because of both longer wire delays and

longer multiplexer delays. Also, techniques used to exploit ILP such as out-of-order exe-

cution will increase dynamic instruction scheduling latency. While exploiting ILP allows

the number of instructions retired per cycle (IPC) to be increased, the increased scheduling

latency may either lower clock frequency or even negatively impact IPC if additional cycles

are needed to schedule instructions for execution. This dissertation addresses microarchi-

tectural techniques that are used to exploit ILP but have a negative impact on the latency of

the execution core.

1

1.1 The Problem: The Limitation of Critical Paths

The critical path of a program is the set of instructions that limit the execution time

of the program. The critical path is determined by the hardware design as well as the

program’s code and the program’s inputs.

If a machine had infinite execution resources, the critical path could be determined

simply by tracing the longest path through the data and control flow graph of a program.

However, with limited hardware resources, the critical path is also affected by the size

of the out-of-order window and contention for resources. For example, a load instruction

that misses in the data cache has a long latency. Because instructions are retired from the

instruction window in program-order, this long-latency instruction may block retirement of

younger instructions that have finished execution. The fetch unit will continue to fill the

instruction window until it is full. However, there may be instructions further down the

instruction stream that cannot be put into the window that are independent of the load and

would be able to execute if the window size were larger. Hence, even if the load has no

data dependants, it can still affect the critical path of the program. Contention for resources

such as functional units can also affect a program’s critical path. An instruction’s execution

time may be delayed because of the unavailability of functional units or cache ports, thus

putting it on the critical path.

By providing more hardware resources (i.e. bigger windows and more functional

units), the critical path through the program can be shortened. However, these additional

resources do not alter the data and control-flow graph of the program, which ultimately

limit the length of the program’s critical path. Ultimately, the length of the critical path is

determined by critical loop latency. Critical loops are pieces of logic that must be evaluated

serially by dependent instructions. Figure 1.1 shows a simple pipeline with four critical

loops: the branch resolution loop, the steering loop, the scheduling loop, and the execute-

bypass loop. The branch resolution loop consists of all of the pipeline stages from the stage

2

EXECUTEDECODE RENAME SCHED RF READ WRITE
BACK

FETCH

Steering Execute−Bypass

Branch Resolution Loop

Scheduling Loop
Loop Loop

Figure 1.1: Common Critical Loops in a Processor Pipeline.

where branch direction and branch targets are predicted to the execute stage where branches

are resolved. This loop is caused by control-flow dependences: all instructions after the

branch are dependent upon the branch’s resolution. With the use of branch prediction, the

latency of the branch resolution loop is only incurred upon a misprediction. The steering

loop is a small loop within the steering logic. The steering logic determines where to send

instructions within the execution core after they have been renamed. With some steering

algorithms, an instruction cannot be steered until all older instructions have been steered.

Hence the steering logic may contain a small critical loop evaluated serially in program

order by all instructions. A third loop is the dynamic instruction scheduling loop. Because

an instruction cannot be scheduled for execution until the instructions producing its source

operands have been scheduled, the scheduling logic forms a critical loop. Fourth, the

execute-bypass loop consists of the logic required to execute an instruction and bypass its

result to a dependent instruction. An instruction cannot execute until its source operands

are produced, so the execute-bypass loop consists of both the structures needed to compute

an instruction’s result (e.g. an ALU or a data cache) as well as the bypass network that

forwards results to dependent instructions.

As processor bandwidth is increased by providing more hardware resources, the

impact of critical loop latency on performance becomes even larger. Figure 1.2 shows the

IPC degradation on the SPEC2000 integer benchmarks when the scheduling, execution,

and branch loops are increased by one cycle for a processor with four functional units.

3

The steering loop is only a fraction of one cycle, so it does not makes sense to stretch the

loop over an additional cycle. Hence, results for stretching this loop over multiple cycles

are not shown. In the baseline, the scheduling loop is one cycle and the execute-bypass

loop is equal to the execution latency. The branch loop is considerably longer (23 cycles)

which is why increasing this by only one cycle had a smaller effect on IPC. Figure 1.3

shows the IPC degradation of stretching these three loops when the execution width is

increased to 16. All other machine parameters remain the same (and will be discussed in

Chapter 3). The fact that the IPC degradation is bigger when more execution resources

are provided demonstrates that critical loop latency will become even more important as

processor execution resources are increased in the future. Furthermore, the latency of these

critical loops increases as execution width is increased, thereby exacerbating the impact on

performance.

-15.0

-10.0

-5.0

0.0

C
ha

ng
e

in
 I

P
C

 (
%

)

scheduling loop
execute loop
branch loop

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 1.2: IPC degradation when increasing critical loops for 4-wide machine.

4

-25.0

-20.0

-15.0

-10.0

-5.0

0.0

C
ha

ng
e

in
 I

P
C

 (
%

)

scheduling loop
execute loop
branch loop

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 1.3: IPC degradation when increasing critical loops for 16-wide machine.

1.2 Critical Loops in the Execution Core

Once sufficient execution resources are provided, the performance bottlenecks are

shifted to the critical loops. This dissertation focuses on those critical loops of the exe-

cution core whose latency increases as execution bandwidth increases, and it introduces

techniques to break these critical loops.

1.2.1 Thesis Statement

The length of a program’s critical path can be shortened by breaking critical data

dependence loops, thereby improving performance.

1.2.2 Breaking Critical Loops

The execute-bypass loop is addressed by means of clustering. An execution core

with many functional units may be partitioned into clusters to reduce the execute-bypass

loop. An example of a clustered execution core is shown in Figure 1.4. In this exam-

5

FU

FILE
REG

FU

SCHED
WINDOW

FU

FILE
REG

FU

SCHED
WINDOW

fast bypass

FU

FILE
REG

FU

SCHED
WINDOW

fast bypassfast bypass

slow bypass

Figure 1.4: A Clustered Execution Core.

ple, parts of the scheduling window and physical register file, as well as a subset of the

functional units, reside within each cluster. A result produced in one cluster can be quickly

forwarded to any functional unit within the same cluster, while additional cycles are needed

to forward the result to functional units in other clusters. By placing dependent instructions

in the same cluster, most of the worst-case communication delays can be avoided, resulting

in an overall performance improvement.

Steering is the process of assigning instructions to clusters. The steering logic is

usually placed in conjunction with the rename logic since both operations require depen-

dence information. It is desirable to steer an instruction to the same cluster as its parent

(i.e. the instruction upon which it is dependent) to reduce forwarding latency. This means

the instruction cannot be steered until after its parent has been steered. Hence the steering

logic forms a critical loop. By breaking the critical steering loop, the steering logic can be

parallelized.

Dynamic instruction scheduling can be described as a series of two steps: wakeup,

and select. The wakeup logic determines when instructions are ready to execute, and the

6

select logic picks ready instructions for execution. These operations are shown in Fig-

ure 1.5. When an instruction is ready for execution, it requests execution from the select

logic. When it is selected for execution, it broadcasts a tag to notify dependent instructions

that it has been scheduled. After a delay determined by its execution latency, the dependent

instructions may wake up, thus completing the loop.1 Because instructions cannot wake

up until all of their parents have broadcast their tags, the wakeup and select logic form a

critical loop.

Request
Execution

WAKEUP SELECT

execution
Delay for

latency

Tag BroadcastOperand is ready

Figure 1.5: Logic in the Scheduling Loop

The critical scheduling loop can be broken by using speculative scheduling. Spec-

ulative scheduling techniques reduce the critical path of the logic forming the critical

scheduling loop. The scheduling logic can then be pipelined over multiple cycles with-

out requiring the scheduling loop to take multiple cycles.

Breaking critical loops can be advantageous in several ways. First, the out-of-order

window size can be increased. The size of the instruction window is typically as large

as it can be while still allowing dependent instructions to be scheduled in back to back

cycles. By reducing the critical path of the scheduling loop, the number of entries in the

window can be increased without affecting clock frequency. Second, clock frequency can

1In some implementations, the tag broadcast may occur after the delay.

7

be increased. By having less logic (or shorter wire delays) in a critical loop, the frequency

can be increased without pipelining the loop over more cycles. Third, power can be reduced

by using slower transistors in the logic that forms the critical loop.

1.3 Contributions

This dissertation introduces techniques for breaking three critical loops in the exe-

cution core: the execute-bypass loop, the steering loop, and the scheduling loop.

1. The length of the execute-bypass loop is reduced by means of clustering. This dis-

sertation compares several clustering paradigms, and analyzes their performance and

power. A mechanism called Selective Cluster Receipt, in which result broadcasts are

only received by the clusters that need them, is introduced to save power for a given

level of performance. The IPC, power, and scheduling and register file latencies of

four paradigms are examined and compared: (1) a unified execution core, (2) a clus-

tered execution core with a replicated register file, (3) a clustered execution core with

a partitioned register file, and (4) a clustered execution core with a replicated regis-

ter file implementing Selective Cluster Receipt. This dissertation demonstrates that

for some clustering configurations it is better to replicate the register file across all

clusters rather than partition it among clusters.

2. This dissertation provides insight as to why steering algorithms perform the way they

do and exposes several problems that occur with existing steering algorithms. Better-

performing steering algorithms that are scalable and can be used in high-bandwidth

execution cores are introduced and evaluated. These scalable algorithms remove the

critical loop that exists in the best previously proposed steering algorithms. Addi-

tionally, two steering mechanisms are introduced that improve performance: out-

of-order steering and virtual cluster assignments. Out-of-order steering algorithms

8

both reduce the amount of inter-cluster communication penalties and reduce resource

contention. Virtual Cluster Assignments significantly improve the performance of

trace-cache based cluster assignment algorithms by improving load balancing.

3. The scheduling loop is broken into multiple smaller loops, thus reducing the critical

path through the scheduling logic. Two speculative scheduling techniques, Specula-

tive Wakeup and Select-Free Scheduling, are introduced and evaluated. With Specu-

lative Wakeup, instructions predict when their parents’ tags will be broadcast. The

prediction occurs after their grandparents’ tags have been broadcast. This technique

allows the scheduling logic to be pipelined over two or more cycles. With Select-

Free Scheduling, instructions assume they will be selected for execution as soon as

they become ready to execute. This technique removes the select logic from the

critical scheduling loop, allowing the wakeup logic to take one full cycle while still

scheduling dependent instructions in back-to-back cycles.

1.4 Dissertation Organization

This dissertation is divided into eight chapters. Chapter 2 discusses related work in

clustering, steering, and dynamic instruction scheduling. Chapter 3 describes the simula-

tion infrastructure, including the performance and power models and benchmarks. Chap-

ter 4 describes the general effects of clustering on IPC, scheduling window and register

file latencies, and power. It also introduces Selective Cluster Receipt (SCR), and compares

SCR to other clustered models. Chapter 5 discusses the impact of steering algorithms on

performance and introduces several new algorithms. Chapter 6 discusses two techniques

to reduce the critical scheduling loop: Speculative Wakeup and Select-Free Scheduling.

Finally, Chapter 7 concludes, summarizes the experimental results which support the thesis

statement, and provides suggestions for future work.

9

Chapter 2

Related Work

2.1 Clustering and Partitioning

In most clustered designs, the output of one functional unit can be forwarded to any

other functional unit within the same cluster without incurring a cycle delay. This output

is latched before being broadcast to other clusters, requiring one or more extra cycles to

forward data between clusters. Hence dependent instructions may execute back-to-back

(i.e. the consumer starts execution the cycle after the producer finishes) within the same

cluster, but there is an inter-cluster forwarding penalty if the producer and consumer reside

in different clusters. By reducing the minimum forwarding delay, the clock frequency of the

execution core can be increased. However, IPC may be reduced because of the inter-cluster

forwarding delays. The discussion in this section will be limited to only those microar-

chitectures which implement Sequential Architectures [58] (i.e. ISAs that don’t explicitly

specify dependences or independences between instructions) such as IA-32, PowerPC, or

Alpha, but not VLIW or data-driven architectures.

This section will discuss several previously proposed clustered paradigms in which

all clusters receive instructions from the same instruction stream. The following attributes

are used to distinguish these paradigms:

• which structures are replicated across clusters. For example, do all clusters share

the same physical register file, or does each cluster contain a local copy?

10

• which structures are partitioned among clusters. For example, if each cluster has

a local physical register file, are all local register files mutually exclusive, identical,

or do they share a subset of their registers?

• how instructions are assigned to clusters. The assignment may be made either

dynamically using a trace cache or steering logic, or statically using a compiler, or a

combination of the two.

• the granularity of instruction distribution. Is there a maximum or minimum limit

on the number of consecutive instructions from an instruction stream assigned to the

same cluster? Some paradigms may assign entire functions to the same cluster, while

others have a limit on the number of instructions within a fetch packet that may be

steered to the same cluster in a given cycle due to a restriction on the number of

issue ports. The granularity of distribution is also determined by the inter-cluster

communication penalty. A smaller granularity of distribution implies more inter-

cluster communications because most instructions’ register inputs were produced by

the immediately preceding instructions from the instruction stream.

2.1.1 Multicluster Architecture

In the Multicluster Architecture [23], the physical register file, scheduling window,

and functional units are partitioned into clusters, so the execution core can be run at a

higher clock frequency compared to a processor with a centralized core. In this paradigm,

each cluster is assigned a subset of the architectural registers, so the cluster assignment

is performed statically by the compiler. If an instruction’s register operands must be read

from or written to more than one cluster, copies of the instruction must be inserted into more

than one cluster. The primary problem with this paradigm is that it lowers IPC for several

reasons. First, these copy instructions must contend with regular instructions for scheduling

11

window write ports, register file ports, execution cycles, and space within the instruction

window. Second, because the compiler does not have knowledge of how balanced the

workload is over all clusters at runtime, it cannot evenly distribute the workload over all

clusters. These two problems cause a degradation in IPC. The clustering paradigms used in

this dissertation have fewer or no copy instructions, and the cluster assignment algorithms

are better at load balancing.

2.1.2 Partitioned Structures with Dynamic Steering and Copy Instructions

In the clustered architecture described by Canal, Parcerisa, and González [16, 52],

each cluster contains a partition of the physical register file and scheduling window, as well

as a subset of the functional units. While dependent instructions within the same cluster

can execute in back-to-back cycles, inter-cluster forwarding takes two or more cycles. An

instruction’s register result is only written to the partition of the physical register file that

is in the instruction’s local cluster. If an instruction needs a source operand that resides in

a remote cluster, a special copy instruction must be inserted into the remote cluster. Only

copy instructions may forward register values between clusters. By limiting the number

of copy instructions that can be executed in a cycle, the number of register file write ports

and global bypass paths can be reduced. This will reduce the register file and scheduling

window access times, and potentially increase the clock frequency. Furthermore, since the

entire physical register file is not replicated across clusters, each partition can have fewer

entries than if the entire register file were replicated, which further reduces the register file

access time. The reduction in the register file and scheduling window area can also save

power in the execution core.

The primary difference between this paradigm and the Multicluster paradigm is

that steering is performed dynamically, so any architectural register could be produced in

any cluster. However, as with the register copies in the Multicluster paradigm, the copy

12

instructions may lower IPC because they occupy resources and increase the length of the

critical path of the data dependence graph. This paradigm will be evaluated in Chapter 4,

and compared against alternative clustering paradigms. Results show that this paradigm

still has a significant loss in IPC (without power savings) as compared to the alternative

paradigms.

2.1.2.1 Consumer-Requested Forwarding

Hrishikesh [36] also uses a clustered model with copy instructions, but introduces

a technique called Consumer-Requested Forwarding to reduce the number of copy in-

structions. Each cluster contains a table, called the IFB Table, which holds “inter-cluster

forwarding bits”. These bits indicate in which clusters a given physical register result is

needed. There is one entry in the table for each physical register stored in the local cluster,

and each entry has one bit associated with each other cluster. A bit of that entry is set if

there is a dependent instruction residing in another cluster.

The primary problem with this technique is that the table that indicates if and where

a result is needed (the IFB) is located in the producing instruction’s cluster, not the consum-

ing instructions’ clusters. The reason this is a problem is that there is a delay between the

time that the dependence analysis logic detects a bit of the IFB table should be set and the

time it actually gets set. Instructions may execute and read the IFB during this time, which

presents the possibility of starvation. Hrishikesh [36] provides several solutions to this

deadlock problem, however. Even with these solutions, simulation results showed that IPC

was lowered if this delay, called the detect-to-set delay, was over three cycles. In a deeply

pipelined machine that has several pipeline stages between rename and the last scheduling

stage in addition to several cycles of inter-cluster forwarding delay, the detect-to-set delay

may be considerably longer than three cycles.

A technique described in Chapter 4 to reduce inter-cluster forwarding and register

13

file writes, called Selective Cluster Receipt, is not affected (in terms of IPC) by the delay

between the rename and scheduling stages. With Selective Cluster Receipt, the information

that indicates where a register value is needed is located in the consumers’ clusters, not the

producer’s cluster. This requires all instructions to broadcast their tags and data along

the inter-cluster portion of the bypass network, but this portion of the network is small

compared to the intra-cluster portions of the bypass network.

2.1.3 Partitioned Structures with Dynamic Steering but no Copy Instructions

The clustered architecture described by Zyuban and Kogge [73] also uses a par-

titioned physical register file. However, rather than using copy instructions to broadcast

results, dedicated hardware is used to support copy operations. Each cluster has an extra

scheduling window for determining when values are ready to be copied to another cluster.

This window is similar to a traditional scheduling window except that it may be smaller,

and only one source is needed per operation, while real instructions may have two (or more)

operands. Each cluster also has a CAM to hold tags and results that were broadcast from

other clusters, rather than using extra physical register file entries as was done in the ar-

chitecture described by Canal, Parcerisa, and González. There are two problems with this

dedicated hardware approach. First, it assumes that an instruction can wake up, arbitrate

for execution, and broadcast its tag to a copy operation which then wakes up, arbitrates for

execution, and broadcasts its tag to a dependent instruction all within one clock cycle. In

other words, there are two critical scheduling loops within one cycle, rather than just one,

as in the other clustered paradigms. Hence it may not be able to run at as high a clock

frequency as other paradigms. The second problem with this paradigm is that extra buffers

are used to hold copy instructions, rather than just adding a few entries to each scheduling

window. This adds additional complexity to the design. The clustered architectures used in

this dissertation do not use dedicated structures to hold inter-cluster broadcasts and do not

14

have two scheduling loops within one cycle.

2.1.4 Register Read and Write Specialization

The paper by Seznec et al. [61] proposes a paradigm with four symmetrical clusters

in which the physical register file is broken into four subsets. With Read Specialization,

each cluster has the capability to read from three of the four subsets: the local subset

and the two most adjacent subsets. Read Specialization puts a constraint on the steering

logic because instructions with source operands can only be steered to a subset of the four

clusters and in some cases only one cluster. Read specialization suffers from load balancing

problems, so it will not be evaluated in this dissertation.

With Write Specialization, instructions in a given cluster may write to only one

of the four subsets. This reduces the number of write word lines in each subset. This

technique is used to bank the register file used in the baseline processor register files in this

dissertation, and is described in more detail in Section 3.1.5.

2.1.5 Paradigms with Replicated Register Files

The Alpha 21264 [29] is an example of a product with a clustered execution core.

The functional units are partitioned into two clusters, and there is a 1-cycle penalty for

forwarding results between clusters. Both clusters contain identical copies of the physi-

cal register file. When an instruction broadcasts its result, the result is written into both

copies of the register file. A replicated register file will be used in the baseline clustered

architecture in this dissertation.

The paper by Palacharla et al. [51] proposes a clustered microarchitecture in which

out-of-order scheduling windows are replaced with in-order queues. Each cluster contains

a set of FIFOs from which instructions are selected for execution. Each FIFO contains a

chain of dependent instructions, and only instructions at the heads of FIFOs may be selected

15

for execution. By reducing the number of instructions that could be selected for execution

each cycle, the scheduling logic can be simplified. The main drawback to this technique is

that it is difficult to balance the workload across FIFOs.

Another clustering paradigm with a centralized register file is the PEWs [40] (Paral-

lel Execution Windows) microarchitecture. A PEWs processor contains several execution

windows that are connected in a ring. Buffers between each adjacent pew hold register

values that need to be broadcast to other pews. Only one value can be forwarded between

adjacent pews per cycle. The buffers add latency to the inter-cluster communication, which

makes this paradigm undesirable for the same reason as the other clustered paradigms re-

quiring buffers for inter-cluster communication.

2.1.6 Multiscalar Processors

In the Multiscalar processing paradigm [63], a program’s instruction stream is di-

vided into tasks which are executed concurrently on several processing units. Each pro-

cessing unit contains its own physical register file. Because there may be data dependences

between the tasks, the processor must support register result forwarding and memory de-

pendence detection between the processing units. Because each task is a contiguous por-

tion of a program’s dynamic instruction stream, only the live-out register values from a task

must be forwarded to successive tasks executing on other processing units. The compiler

can identify the instructions that may produce live-out register values, and inserts instruc-

tions called release instructions into the code indicating that the values may be forwarded

to other processing units. This paradigm may be appropriate for programs that can be bro-

ken into tasks that communicate few values, but it still has some problems. First, the cost

of communication between processing units is high for both register and memory values.

Hence this paradigm is not as good as other clustering paradigms at exploiting fine-grained

ILP. Furthermore, the compiler’s job of breaking a program into appropriately-sized tasks

16

has been shown to be quite difficult, and achieving high IPC with this paradigm is limited

by control flow and data dependence predictions [67].

2.2 Other Approaches to Breaking the Critical Execute-Bypass Loop

In addition to clustering, several other approaches have been used to break the

execute-bypass loop. One technique is to use pipelined digit-serial adders [20] to forward

intermediate arithmetic results to subsequent instructions, as was done in the Intel Pen-

tium 4 [35]. In this processor, the ALUs are double-pumped, meaning they are pipelined

over two cycles while still allowing dependants to execute in back-to-back cycles. This

is accomplished by computing the result for the lower two bytes in the first cycle and the

upper two bytes in the second cycle. The carry-out of the 16th bit is passed from the first

stage to the second stage. Redundant binary arithmetic [1] can also be used to pipeline

the functional units while still allowing a dependence chain to execute in back-to-back cy-

cles [8, 31]. All of these approaches are orthogonal to clustered paradigms, so clustered

paradigms may use pipelined functional units that produce values in intermediate formats

to further reduce the length of the execute-bypass loop.

2.3 Steering

Steering is the process of deciding to which cluster an instruction should be issued.

Existing steering algorithms can be divided into three general classes: (1) static, (2) history-

based, and (3) front-end. Static steering algorithms are performed by the compiler. Cluster

assignments are indicated either by the architectural destination register number or the

position of the instruction, in the case of a VLIW architecture. History-based algorithms

are typically performed after instructions have executed and cluster assignments are stored

in a table or trace cache. Front-end algorithms are performed after dependence analysis but

17

before issuing instructions into the scheduling window. This section discusses previously

proposed steering algorithms according to their classification.

2.3.1 Static Steering Algorithms

With static steering algorithms, cluster assignments are determined by the compiler.

This is generally the case for some VLIW processors where the location of an instruction

within a word determines its cluster assignment [27]. The paper by Sastry et al. [60] studies

compile-time cluster assignment for a processor that had two clusters: one which executed

only integer instructions, and one which executed both floating point and integer instruc-

tions. The Multicluster Architecture [23] also uses the compiler to assign instructions to

clusters by assigning each cluster a subset of the architectural registers. Because static

steering heuristics have no knowledge of dynamic microarchitecture state, they suffer from

load balancing problems. Furthermore, because an instruction’s architectural destination

register determines its cluster assignment, all dynamic instances of the instruction are as-

signed to the same cluster. Poor load balancing lowers IPC.

2.3.2 History-Based Steering Algorithms

With history-based algorithms, cluster assignment is determined dynamically, and

the cluster assignment is typically stored in a history table or as part of an instruction cache

or trace cache. The cluster assignment is usually based on behavior of previous instances

of that static instruction. In the work on fill-unit optimization by Friendly et al. [28], cluster

assignments are stored in the trace cache. The fill unit analyzes the instruction stream at

retire time and forms optimized traces to be stored in the trace cache. One optimization

is to assign instructions to one of four clusters, each of which has four issue ports. The

assignment algorithm works as follows: for each issue port, pick the first instruction in the

trace that has source operands previously assigned to that port’s cluster. If no instruction is

18

found, then the first unplaced instruction is assigned to that port. One problem with history-

based algorithms is that the cluster assignment logic does not have precise knowledge of

all register dependences – only those dependences on earlier instructions within the same

trace packet are known to be correct. Dependences on instructions in other trace packets

can only be predicted.

The paper by Canal et al. [16] investigates steering algorithms for the two-cluster

processor first introduced by Sastry et al. [60]. This processor has an integer cluster and

an integer/floating-point cluster. The steering algorithms in this paper are based on the ex-

amination of the register dependency graph (RDG). They partitioned the instruction stream

into slices and assign all instructions in the same slice to the same cluster. A slice is the

set of all ancestors (i.e. producers, producers’ producers, etc.) of a given instruction. The

algorithms described in this paper use slices of either load or branch instructions. Slices are

identified using a table of slice IDs indexed by PC. Instructions can update their parent’s

slice IDs upon execution. The steering paper by Baniasadi and Moshovos [3] shows that

the slice algorithm does not perform as well as other steering algorithms discussed in this

section.

More recently, Bhargava and John [4] have come up with a trace-cache based

heuristic called Feedback-Directed Retire-Time (FDRT) assignment that shows further im-

provement in IPC over previous trace-cache algorithms. This algorithm distinguishes be-

tween “inter-trace” register dependences and “intra-trace” dependences. As in the paper by

Friendly et al. [28], the fill unit is used to assign instructions to clusters. However, in [4],

some instructions may be “pinned” to clusters. Once an instruction becomes pinned, it must

keep the same cluster assignment for the entire time that its trace cache line is resident in

the trace cache. The process of pinning prevents completely new cluster assignments for

each trace cache line from being made every time the trace is retired and re-analyzed by

the fill-unit. By adding this stability to the cluster assignments, instructions are more likely

19

to be placed in the same cluster as their inter-trace dependents.

The FDRT algorithm works as follows: entries for each instruction stored in the

trace cache can be designated as a leader, or a follower, or neither. Once an instruction

is marked as a leader or follower, it stays that way for the duration of the lifetime of the

trace cache line. An instruction is marked as a leader if it is not already a leader or follower

and it has dependants which belong to younger fetch packets. An instruction is marked

as a follower if the following hold true: (1) it has not already been marked as a leader

or follower, (2) the instruction that produces its last-arriving source operand was part of

a different fetch packet, and (3) that parent was marked as a leader or follower. When an

instruction gets marked as a leader or follower, it is pinned to a particular cluster (the cluster

of its parent that was pinned) until its trace cache line gets kicked out of the trace cache.

Instructions that are not pinned are steered towards the cluster of their source operands,

preferably towards source operands produced by instructions in a different fetch packet.

This algorithm is implemented as a baseline history-based algorithm and discussed further

in Section 5.1.1.4.

Another type of history-based steering uses critical path prediction. The work by

Fields et al. [25] uses a critical path predictor to steer instructions to either slow or fast

scheduling pipelines. Instructions that are latency-critical are steered to the fast pipeline,

while others are steered to the slower pipeline.

History-based algorithms such as FDRT have the advantage that they do not in-

crease the pipeline depth because the fill-unit is on the back end of the pipeline. The main

problem with history-based algorithms is that they suffer from poor load balancing for

some cluster configurations. This in turn limits their performance potential. Results of

simulations revealing the load balancing problems in history-based algorithms are shown

in Section 5.1, and a technique to improve the load balancing in history-based algorithms

is described in Section 5.2.1.

20

2.3.3 Front-End Steering Algorithms

With front-end algorithms, cluster assignment is determined dynamically either dur-

ing or after the instruction fetch stage. Unlike static and history-based algorithms, front-end

algorithms may use knowledge of the current microarchitecture state at the time the instruc-

tions to be steered are about to be placed in the instruction window. However, they may not

have knowledge (or a good prediction) of when and where an instruction’s register result

will be used by dependent instructions.

A dependence-based steering algorithm was used by Palacharla et al. [51] to assign

instructions to one of several FIFOs in the execution core. When using a dependence-based

algorithm, an instruction is usually assigned to the same cluster as its parents. There are

several variations of this algorithm. Many variations use secondary heuristics to determine

where to send an instruction. Examples of such heuristics are (1) how are instructions

steered if their parents have already retired? (2) How are instructions steered if their parents

have not retired, but have finished execution? (3) How are instructions steered if the desired

cluster is already full? (4) Are other metrics used in the cluster assignment, such as the age

of the parent instructions, predictions of the last available source operand, or the number of

instructions waiting to execute in each cluster? Variations of dependence-based algorithms

and improvements to them are evaluated in Chapter 5.

The steering paper by Baniasadi and Moshovos [3] includes a comparison of several

classes of steering algorithms on a four-cluster processor with two functional units per

cluster. They evaluated both adaptive and non-adaptive steering algorithms. The heuristics

used by non-adaptive algorithms do not change over run-time, while the heuristics used

by the adaptive algorithms may change. Chapter 5 evaluates two fundamental types of

algorithms evaluated in their paper: modulo-N (MOD-N) and dependence-based (DEP)

algorithms.

With the modulo algorithm, n consecutive instructions are assigned to each cluster

21

before moving on to the next one. For example, when using MOD-6, the first six instruc-

tions would be assigned to cluster 0, the next six to cluster 1, and so on. For a given modulo

value, a bound can be placed on the number of instructions that can be steered to each clus-

ter in any given cycle. For example, when using a four-cluster processor with an issue

width of 16, six ports are needed for the issue window in each cluster when using MOD-6.

To implement an exact MOD-3 heuristic, six ports would be needed: two clusters would

be allocated six instructions each, and the remaining two clusters would be allocated three

instructions each, assuming 16 instructions total were issued.

The adaptive steering algorithms investigated by Baniasadi and Moshovos include

voting-based methods and an adaptive-modulo algorithm. The voting-based methods used

a PC-indexed lookup table with four 2-bit saturating counters per entry. The counters mea-

sured how much functional unit contention the instruction had experienced in the past.

Instructions were steered to the cluster with the highest counter value (the cluster in which

resource contention was least likely). If there was a tie among clusters, a backup non-

adaptive algorithm was used to assign a cluster. With the adaptive-modulo algorithm, the

modulo value could be changed over the course of the program. The best value was se-

lected by periodically incrementing or decrementing the modulo value, and comparing

how often instructions had to stall their execution when using each modulo value. Hence

a local minimum could be found. Modulo steering algorithms do not perform as well as

dependence-based algorithms because they do not consider data dependences.

The DCOUNT algorithm was introduced by Parcerisa, and González [15, 52]. This

is a dependence-based algorithm which uses a load-balancing heuristic. The DCOUNT

is a measure of load imbalance. If this imbalance reaches a threshold, then instructions

will be steered to the least-loaded cluster. Otherwise, they are steered to a cluster using a

dependence-based algorithm.

The DCOUNT algorithm is the best performing previously published steering al-

22

gorithm. The problem with it along with other dependence-based algorithms is that it is

not scalable to high-bandwidth front-ends (whether “high-bandwidth” means wide-issue

or high-frequency). The reason why dependence-based algorithms are not scalable is dis-

cussed in Section 5.1.3. A solution that makes dependence-based algorithms more scalable

is discussed in Section 5.2.2.

2.4 Scheduling

The schedulers introduced in this dissertation are designed to break the critical

scheduling loop by pipelining the scheduling logic over multiple cycles. This section dis-

cusses other techniques that can be used to pipeline the scheduling logic. It also discusses

other techniques that don’t necessarily break the critical scheduling loop, but do potentially

reduce scheduling latency.

Clustering is actually a form of pipelined scheduling because tag broadcasts are

pipelined across clusters. Likewise, any scheduler with a partitioned window that takes

multiple cycles to forward tags between partitions is pipelined. Section 2.4.1 describes

proposals of partitioned schedulers.

Several schedulers have used prescheduling to reduce or eliminate the wakeup

portion of instruction scheduling. These techniques are discussed in Section 2.4.2. Sec-

tion 2.4.3 describes another speculative scheduler that removes the wakeup logic from the

scheduling window. Other schedulers that reduce or eliminate tag broadcasts by using

reverse data dependence pointers are described in Section 2.4.4. Finally, Section 2.4.5

describes other dynamic scheduling logic circuit designs.

23

2.4.1 Partitioning Schemes

The paper by Hrishikesh et al. [37] describes techniques to pipeline both the wakeup

logic and the select logic. The wakeup logic is pipelined by means of partitioning the

window and pipelining the tag broadcast across the partitions. The select logic is also

pipelined by means of partitioning. Instructions from each partition of the window are

first pre-selected, and then a subset of the pre-selected instructions are actually selected

for execution. However, instructions in the highest-priority partition (containing the oldest

instructions) do not have to be pre-selected. The request logic for instructions from that

partition are not pipelined, but are fed directly to the final selection stage so that dependent

instructions may execute in back-to-back cycles.

The scheduler proposed by Lebeck et al. [42] exploits the fact that most instructions

that reside in the window for a long period of time are waiting on a load miss. With their

technique, instructions that would normally wait in the scheduling window for a long period

of time are moved to another structure called the Waiting Instruction Buffer (WIB). When

the load miss is filled, the dependent instructions are then re-inserted into the scheduling

window. While the implementation of the scheduling window is not modified by this tech-

nique, it does allow the effective size of the scheduling window to be increased without

physically increasing its size.

The scheduler proposed by Brekelbaum et al. [6] divides the scheduling window

into two partitions: a small, fast partition that holds latency critical instructions, and a

large, slow window that holds latency tolerant instructions. All instructions are first issued

into the slow window. A heuristic is used to select possibly latency-critical instructions

to be moved to the fast window. The heuristic selects old, non-ready instructions to be

moved. This scheduler is effective at exploiting far-flung ILP with the slow window while

scheduling latency-critical instructions back-to-back in the small window.

24

All of these partitioning schemes share the same problem: the critical wakeup-

select-broadcast loop must still be evaluated in a single cycle for a subset of instructions in

the window or instructions in a particular partition of the window. This is not the case for

the speculative scheduling techniques described in Chapter 6. With speculative scheduling,

the critical scheduling loop can be pipelined while still allowing back-to-back execution of

dependent instructions regardless of where the instructions are located within the window.

The speculative scheduling techniques can be used in conjunction with the partitioning

schemes described here.

2.4.2 Avoiding Wakeup by Prescheduling

Many proposed schedulers take advantage of the fact that most instruction laten-

cies, except for loads, are known at decode time. These schedulers use a technique called

prescheduling, in which estimated wakeup times are computed when instructions are in the

decode stage. Canal and González [13] published the first such technique. When instruc-

tions are decoded, they check a table indexed by physical register, called the Distance Table,

that stores the estimated time that register will be produced. Loads, as well as instructions

dependent on loads, have invalid entries in the table until their availability time is known.

Instructions that do not know their wakeup time when they are dispatched are placed in

a Wait Queue which is similar to a scheduling window. Instructions that do know their

wakeup time are placed in an in-order queue, and are positioned according to their wakeup

time. When a load’s availability time is known, it broadcasts its tag, along with its avail-

ability time, to the Wait Queue and the Distance Table. Dependent instructions in the Wait

Queue can then then broadcast their tags to the Wait Queue, update the Distance Table, and

move to the in-order queue. This technique is modified in their follow-on paper [14]. In

this paper, loads are assumed to hit in the cache, so the Wait Queue is not needed. Instead,

all instructions are first placed in the in-order queue. If there is a load miss, dependants

25

are placed in a separate out-of-order scheduling window called the Delayed Issue Queue.

Instructions may be scheduled out of either the Wait Queue or the Delayed Issue Queue in

this technique.

A paper by Michaud and Seznec [44] also proposed prescheduling instructions be-

fore placing them in an in-order queue. The paper explains the prescheduler implemen-

tation in detail. Load-store dependences are predicted using a store-set predictor [18],

although the simulations assume a perfect data cache.

Ernst et al. [22] proposed the Cyclone scheduler, which uses a prescheduler to place

instructions in a countdown queue from which instructions are scheduled in-order. Instruc-

tions are always inserted into the tail of the countdown queue, but they may skip over a

section of the queue using bypasses that are internal to the queue. The queue is actually

circular; when instructions are at the head of the queue, they check a scoreboard to see if

they are ready. If they are not (due to an earlier load latency misprediction), then they are

re-inserted into the queue.

In follow-on work to the Cyclone scheduler, Hu et al. [38] developed techniques

to avoid some of the problems with resource contention found in the Cyclone scheduler.

They added selection logic that can select any instruction that is ready for execution from

the queue. By removing instructions that are not at the head of the queue, there is less

contention for issue queue slots in the latter half of the queue.

The problem with all prescheduling techniques is that they significantly increase

pipeline depth. Instruction execution times must be computed before inserting instructions

into the in-order queue. Because it is possible that a group of consecutive instructions form

a serial dependence chain, this technique adds a serialization bottleneck to the front end of

the pipeline. Ernst et al. describes a way to get rid of this bottleneck, but their solution is

not scalable to wide-issue pipelines.

26

2.4.3 Other Speculative Schedulers

Ehrhart and Patel [19] proposed a scheduler which removes the wakeup logic by

predicting the wakeup time of an instruction. When an instruction is issued, its wakeup

time is calculated with two components: a predicted wakeup time and an allowance. An

instruction’s predicted wakeup time is a function of the static instruction’s previous wakeup

times and the estimated cost of replaying the instruction if there is a wakeup time mispre-

diction. The allowance is added to the predicted wakeup time to re-adjust the wakeup time

if replays occur while the instruction is waiting to execute. This technique suffers a 7% loss

in IPC in an 8-wide machine with a 64-entry scheduling window and 2-cycle ALU latency.

The speculative scheduling techniques described in Chapter 6 do not suffer that much loss

in IPC.

2.4.4 Indexed Schemes

Several papers describe schedulers which attempt to remove the associative search

needed for tag broadcasts by using reverse pointers, effectively replacing the CAM with a

RAM [13, 14, 48, 49, 65, 68]. With reverse pointers, instructions keep track of their depen-

dants rather than their source operands. Weiss and Smith [68] described the first indexed

scheduler called Direct Tag Store (DTS). The scheduler in this paper uses a table with one

entry for each instruction that points to a dependent instruction. Only that one instruc-

tion can be directly awakened. If an instruction has more than one dependant, the issue

of the latter dependant is stalled. Follow-on techniques have described implementations

where more than one dependant may be immediately awakened [14, 39, 48, 49, 65]. These

papers also introduced new techniques for handling the situation where an instruction has

more dependants than can be held in the RAM. Canal and González [13, 14] also compared

performance when stalling issue to placing excess dependants in either an in-order or out-

of-order small window. Sato and Arita [65] also compared performance of stalling issue

27

to placing excess dependants into an in-order queue. Önder and Gupta [48, 49] handled

this situation by adding additional dependences between two “sibling” instructions with

the same source operand. Huang et al. [39] investigated stalling issue as well as reverting

back to broadcasting to excess dependants.

The biggest problem with indexed schedulers is that additional hardware support

is required for branch misprediction recovery. It is difficult to recover before the branch

is the oldest instruction in the machine. Rather than just flushing particular entries of the

window, as with traditional schedulers, the entries of instructions that are not flushed must

be modified to remove information about off-path dependants. Additionally, this style of

wakeup logic does not perform well when instructions have more than one dependant,

which is frequently the case. The techniques for handling additional dependants require

either adding new scheduling structures, increasing the latency of the RAM, or increasing

the program’s critical path.

2.4.5 New Circuit Designs

The paper by Henry et al. [34] discusses how to simplify the associative searches

required in conventional wakeup logic by attaching cyclic segmented prefix (CSP) circuits

to the reorder buffer. The scheduling latency is reduced when using a logarithmic imple-

mentation of a CSP circuit for wakeup. The problem with this design is that it requires

all reorder buffer entries to be a part of the scheduling window logic. Simulation results in

Chapter 4 show that the scheduling window can have half as many entries as the instruction

window without an impact on IPC. Furthermore, the amount of wakeup logic scales linearly

with the number of architectural registers, which may be undesirable for some ISAs.

The paper by Goshima et al. [32] describes a scheduling implementation that uses

dependence matrices. It is similar to the array scheduler used in Chapter 6, and will be

described in Section 6.2.3.

28

Chapter 3

Simulation Infrastructure

3.1 Baseline Microarchitecture Model

The baseline microarchitecture used in this dissertation is a superscalar out-of-order

processor designed to exploit instruction-level parallelism. Figure 3.1 shows the stages of

the pipeline. Each stage may consist of one or more cycles, although each stage is fully

pipelined. The thick lines represent the boundaries of the in-order and out-of-order portions

of the pipeline. Instructions are fetched and decoded in the first 5 cycles. The rename stage

identifies instructions’ register dependences and translates architectural register identifiers

into physical register identifiers. Because this stage includes dependence analysis and steer-

ing for 16-instruction fetch packets, it takes 10 cycles. After instructions are renamed, they

are then issued to the scheduling window. The scheduler is responsible for determining

when an instruction is ready to execute and scheduling it on a functional unit. After being

scheduled for execution, instructions read the Payload RAM and physical register file to

get any source operands that are not read from the bypass network. After all instructions in

the oldest fetch packet have completed execution, they can retire. After they retire, their re-

RetireScheduleFetch Decode Issue
PayloadRename/ Register Execute

RAM Read BypassSteer

1 cycle1 cycle 1 cycle5 cycles 2 cycles1+ cycles2 cycles10 cycles

branch redirect: 2 cycles (23 cycle penalty)

Figure 3.1: Processor Pipeline

29

sources (except for the youngest instance of each architectural register) are freed and may

be used by subsequent instructions. A block diagram of a 4-cluster configuration of the

processor datapath is shown in Figure 3.2.

3.1.1 The Pipeline Front-End

The fetch mechanism can fetch up to three basic blocks (where a basic block is

defined as a group of instructions ending in a control flow) per cycle. Some experiments

have used a trace cache, and that will be indicated when those experiments are discussed.

The instruction cache is a 4-way set associative 64KB cache with 64-byte lines. It takes

five cycles to fetch and decode the instructions before they reach the rename stage.

The conditional branch predictor is a hybrid conditional branch predictor [43] in-

dexed by a combination of branch addresses and branch history. The predictor contains

two pattern history tables, gshare [43] and PAs [70], each 16KB in size and containing

64K 2-bit saturating counters. The selection mechanism is a table of 64K 2-bit saturating

counters indexed by a hash of the branch address and global history. In addition to the

conditional branch predictor, there is a 4K-entry, 4-way set associative BTB, a 32-entry

call-return stack, and a 64K-entry indirect branch predictor.

3.1.2 Register Renaming and Dependence Analysis

In the Rename stage, each instance of an architectural register is assigned an entry

in the physical register file. Dependence analysis logic identifies the physical register iden-

tifiers of an instruction’s source operands. It also determines where those source operands

will be produced or where they reside. They may either already reside in the register file

at the time the dependent instruction is renamed and issued, or they may be broadcast at a

later time. Additionally, the renaming logic may determine if the instructions producing its

source operands have already been scheduled for execution, or if the dependent instruction

30

Bypass network

FU FU FU FU

Bypass network

FU FU FU FU

Bypass network

FU FU FU FU

Bypass network

FU FU FU FU

Physical

Register File

Window

Scheduling

Payload

RAM

register IDs

select

da
ta

Physical

Register File

Window

Scheduling

Payload

RAM

register IDs

select

da
ta

Physical

Register File

Window

Scheduling

Payload

RAM

register IDs

select

da
ta

Physical

Register File

Window

Scheduling

Payload

RAM

register IDs

select

da
ta

is
su

e

is
su

e

is
su

e

Data Cache Copy 0 LSQ Data Cache Copy 1

Cache
InstructionFetch

Unit

Branch

is
su

e

Branch resolution PC

Miss Request
Buffer

Level−2 Cache

Memory Request
Buffer

MEMORY

Decode, Dependence Analysis and Rename, Steer, Issue

Figure 3.2: Processor Datapath

31

must wait for the tags of its source operands to be broadcast.

The Register Alias Table (RAT) is a table with one entry for each architectural

register that contains a mapping from the architectural register to an entry in the physical

register file. During renaming, an instruction reads the RAT for each architectural source

register to obtain the physical register identifier for that source. It also writes the identifier

of its allocated physical register into the rename map entry associated with its architectural

destination register.

In a superscalar processor, all instructions in a fetch packet are renamed in the same

cycle. To detect dependencies between instructions in the same packet, the sources of each

instruction are compared to the destinations of all previous instructions in the packet. If an

instruction’s parent (i.e. the instruction producing its source operand) is in its packet, the

identifier of the physical register allocated to the parent overrides the identifier obtained

from the rename map. Figure 3.3 shows the dependency analysis logic for the first three

instructions in a packet. On the left side are the physical register identifiers that were

outputs of the RAT. These will only be used if there are no subsequent instructions writing

to the same architectural registers. The architectural register identifiers of each instruction’s

source and destination operands are listed across the top. For each source operand, there is

one comparator for the destination operand of every older instruction. The priority circuits

select the youngest instruction with a matching register identifier.

Due to the fact that it is a wide-issue pipeline, the instruction renaming phase takes

10 cycles. Renaming logic can be pipelined by assigning physical destination registers in

advance using a free pool of physical registers [33, 55]. The dependence analysis logic may

be pipelined as well. For example, the logic on the upper-right side of the dotted line is the

dependence analysis logic which sets the mux controls. This logic may be pipelined over

multiple cycles without increasing the number of comparators as long as the RAT is still

accessible in one cycle. The comparator logic is pipelined over five cycles in this model.

32

Preg(Op3_dest)

Preg(Op2_dest)

Preg(Op1_dest)

Preg(Op3_src2)

Preg(Op3_src1)

Preg(Op2_src2)

Preg(Op2_src1)

Preg(Op1_src2)

Preg(Op1_src1)

numbers from RAT

OUTPUTS

Physical register

Architectural Register Numbers

Op3_destOp3_src2Op3_src1

Encoder
Priority

Encoder
Priority

Op2_destOp2_src2Op2_src1Op1_dest

Op2 Op2 Op2
Src1 Tag Src2 Tag Dest Tag

Op3Op3
Src1 Tag Src2 Tag Dest Tag

Op3
Src2 Tag

Op1
Src1 Tag

Op1
Dest Tag

Op1

Figure 3.3: Dependency Analysis Logic for Three Instructions.

In the latter stages of the Rename phase, entries in the instruction and scheduling windows

are allocated, and instructions are steered to particular locations within the execution core.

3.1.3 Instruction Window

After instructions are renamed, they are issued into the instruction window. The

instruction window holds up to 512 instructions. Each entry contains information an in-

struction needs to determine when it can retire as well as what action to take if a mispre-

diction or exception occurs. Instructions reside in the instruction window until they are

retired. All instructions in a fetch packet are retired atomically. If the fetch packet con-

tains a mispredicted branch or an excepting instruction, then the wrong-path instructions

and excepting instructions are squashed. It is possible to squash part of a fetch packet. In-

structions in a fetch packet can retire (or be squashed, in the case wrong-path instructions

or excepting instructions) when all previous fetch packets have retired and all instructions

have completed execution. The issue stage is assumed to take only 1 cycle because much

33

of the work required to allocate instructions in the instruction and scheduling windows can

be overlapped with the rename stage.

3.1.4 Instruction Scheduling

After instructions are renamed, they are placed into the scheduling window at the

same time that they are placed in the instruction window. Unlike the instruction window,

instructions reside in the scheduling window only until they have finished execution. The

scheduling window for the baseline machine holds up to 256 instructions1. Each entry only

holds information an instruction needs to be scheduled for execution (no data).

The baseline wakeup logic is implemented using CAMs. Each entry of the schedul-

ing window keeps track of the tags of an instruction’s source operands and whether or

not those operands are available. In conventional processors, the tags are the same as the

physical register identifiers, although this does not have to be the case. Figure 3.4 shows

information associated with one entry of the scheduling window. The SRC TAG fields con-

tain the physical register numbers of the source operands. The DELAY field indicates the

latency (or predicted latency) of the source operands. The M (Match) bits indicate if the

source tags have been broadcast. The COUNT fields are used as countdown timers. When

a source tag is broadcast, the M bit is set and the COUNT field begins counting down the

SELECT
LOGIC

GrantRequest

SRC TAG M COUNTER R DELAY

Destination Tag Bus

SRC TAG M COUNTER R DELAY DEST TAG

Figure 3.4: A Scheduling Window Entry

1Simulations in Chapter 4 show that the scheduling window can be much smaller than the instruction
window without a large impact on IPC, since many instructions do not stay in the scheduling window very
long.

34

cycles of the parent instruction’s latency, as indicated by the DELAY field. After the la-

tency of the source operand instruction has been counted, the R (Ready) bit is set. 2 Once

both Ready bits are set, the instruction may be selected for execution. The select logic

consists of a priority circuit. The output of the priority circuit is used to gate the destination

tag (stored in a RAM) onto one of the Destination Tag Buses.

The scheduling window is built as a random access structure. In other words, en-

tries may be allocated and de-allocated out-of-order. It is not implemented as a priority

queue because collapsible buffers consume a large amount of power [12]. Typically one

or more instructions are selected for execution each cycle, so with collapsible buffers, the

instructions in the queue younger than the selected instruction must be shifted down. This

results in high dynamic power consumption from the switching activity. Implementations

of oldest-first selection priority exist for this type of scheduler implementation [12]. How-

ever, simulations of our baseline machine show that using select logic in which priority is

hardcoded by an instruction’s location in the window lowers IPC by less than 0.7% com-

pared to perfect oldest-first priority. Oldest-first priority will be used in all experiments

unless otherwise indicated.

After being scheduled for execution, instructions read the Payload RAM. The Pay-

load RAM is a table with one entry for each instruction in the scheduling window. It

contains information that an instruction needs to execute such as its opcode, immediate

2Note that this is only one of many possible implementations. For example, if each functional unit only
executes instructions that all have the same latency (or predicted latency), the tag broadcast can simply be
delayed so that it occurs a fixed number of cycles before the result broadcast. This eliminates the need
for the DELAY, M, and COUNTER fields. However, if functional units can execute instructions of differing
latencies, this solution is unsuitable at high clock frequencies: Multiple pipeline stages may need to broadcast
tags, rather than just one. Either these pipeline stages would need to arbitrate for tag buses, or the number of
tag buses would need to be increased.

35

data values, and the source operand physical register numbers3. No decoder is needed for

this RAM because the select logic selects the rows to be read.

3.1.4.1 Busy-Bit Table

Before an instruction is issued into the window and allocated a scheduling entry, it

must know how to initialize the M, READY, and COUNT fields. If an instruction is issued

after one of its source operand tags was broadcast, the corresponding M bit should be set,

and the COUNT field and READY bit should be initialized to the correct values according

to how may cycles ago the tag was broadcast. If the instruction must wait for the tag to

be broadcast, the READY and MATCH bits should be initialized to 0 and the COUNTER

field should remain the initial value determined by the producer instruction’s latency.

The Busy-Bit Table [69], shown in Figure 3.5, is used to retrieve information about

source operand availability. This table must be accessed after an instruction’s source

operands have been renamed but before it is placed into the scheduling window. The BBT

has one entry for each physical register to indicate if that register value has been produced.

In actual implementation, it may contain MATCH, COUNT, and READY fields just like

the scheduling logic.4 The countdown timer begins counting down when the instruction

writing to that physical register has been scheduled to execute on a functional unit. When

an instruction is issued, it reads the BBT entries corresponding to the physical registers of

its source operands, as well as the tag buses. If a source operand’s BBT entry is set or

3If the source operand physical register numbers were read out of the CAMs, then the Payload RAM could
be accessed in parallel with the register file. However, additional ports would be needed to read these values.
That would increase the latency and power of the register file. In deep pipelines, he performance decrease of
adding a pipeline stage to access the Payload RAM is less than the performance decrease of increasing the
latency of the scheduling window. Data is shown in Chapter 4.

4As with the scheduling logic, alternative and simplified implementations exist. It is possible to build
this table with a single bit per entry (hence the name Busy Bit Table) but for purposes of explanation we will
discuss only the general case that supports instructions of multiple latencies.

36

Preg
ctr

available /

cycles until available

BBT
0

Pregs − 1

COUNTER RM

number

Scheduler
Entry

Figure 3.5: Busy-Bit Table Initializing Scheduler Entry

its tag is broadcast in that cycle, then the instruction sets the corresponding COUNTER or

READY bit in its scheduler entry. A BBT entry is initialized when a new instruction is

assigned to the corresponding physical register.

Rather than using a BBT, it is possible to add the information stored in this table

to the RAT. However, this alternative implementation is more complicated. Since the RAT

is indexed by architectural register rather than physical register, the RAT would have to

be augmented to include a CAM in which the physical register identifier for each entry

is compared against all tag broadcasts. When physical register tags are broadcast, a match

would occur if the corresponding architectural register had not subsequently been renamed.

Additionally, as with the conventional RAT, support for branch misprediction recovery is

required. For these reasons, a BBT is used in the baseline model.

3.1.5 Physical Register File

The physical register file is a separate structure from the instruction and scheduling

windows. In a processor with maximum execution width N , a conventional unified physical

register file would have N write ports and 2N read ports, assuming each instruction can

have a maximum of one destination register and two source registers. This number of ports

37

is needed only for the worst case, and rarely are all ports used in the same cycle. However,

reducing the number of write ports would require the scheduling logic to support arbitration

for the ports. However, the baseline processor does use techniques to reduce the number of

write word lines and read ports. These techniques are described below.

The register file used as a baseline for this dissertation reduces the number of write

word lines (thereby reducing the area, latency, and power) by using Register Write Spe-

cialization, first published by Seznec, Toullec, and Rochecouste [61]. The register file is

divided into sets in order to reduce the number of write word lines per bit cell. For exam-

ple, suppose there are 512 registers, divided into four sets. The first set contains physical

register numbers 0 to 127; the second set contains physical register numbers 128 to 255;

and so on. Assuming a traditional register file has N write ports, each entry of each set of

a write-specialized register file would have only N/4 write ports. However, an additional

restriction is placed on instruction execution. An instruction’s set is identified by its physi-

cal destination register number. Only N/4 instructions in each set may write to the register

file (and hence execute, unless buffers are used) in the same cycle. While this requires

support by the scheduling logic in an unclustered machine, this constraint is inherent when

the functional units are clustered because each cluster has its own scheduling logic. Even

on an unclustered machine this technique has little impact on IPC, however. Simulation of

the unclustered baseline model used in this dissertation showed that incorporating register

write specialization lowers IPC by less than 0.14% on average and 1% in the worst case for

the SPEC2000 integer benchmarks. It reduces the area of the physical register file by 75%,

assuming the area is a function of the number of word lines and bit lines running over each

bitcell. The size of the write word line decoders is reduced as well, since two fewer bits are

needed as input.

A second technique is also used to reduce the area (and hence latency and power)

of the register file. The register file is replicated 4 times in order to reduce the number of

38

read ports. Each replica has 8 read ports and is used by instructions executing on a group

of 4 functional units. Even though there are now four times as many bits of state total, the

access latency and power are reduced since each replica occupies considerably less area.

As a result of these two techniques, each register bitcell has 12 word lines (eight

for reading, four for writing) and 24 bit lines (eight for reading, 16 for writing), as opposed

to 48 of each, as a centralized register file would have. For the unclustered model, this

replication technique and register file write specialization combined reduce the register file

latency by 65%.

3.1.6 Execution

The baseline microarchitecture contains 16 functional units which can execute any

instruction, although there are further limitations on the number of loads and stores that can

execute per cycle. Instruction replay occurs if more loads are selected for execution than

there are free cache ports. Execution latencies are shown in Table 3.1. Most multi-cycle

operations are pipelined. Loads take a minimum of three cycles (assuming a hit in the L1

cache or load-store buffer).

Instruction Class Latency (in Cycles)

integer arithmetic 1
integer multiply 8, pipelined
fp arithmetic 4, pipelined
fp divide 16
loads and stores 3 minimum
store to load forwarding 3 minimum
all others 1

Table 3.1: Instruction Latencies

39

3.1.7 Memory System

The data cache is a 4-way set associative 64KB cache with 64-byte line size. The

cache is divided into 16 banks, each with one write and two read ports. Although previous

work has examined the use of a partitioned cache with a clustered execution core [57], the

baseline architecture here simply assumes there are two identical copies of the data cache to

reduce access latency. The data cache latency is two cycles, and load and store instructions

take an additional cycle for address computation. Perfect memory dependence prediction

is assumed since previous work [18, 46, 47, 66] has shown that memory dependence pre-

dictors can be used to obtain performance comparable to that of a machine with perfect

memory dependence prediction.

Misses in both the Level-1 instruction and data caches are placed in the memory

request buffer. This buffer contains 32 entries, and memory accesses generated from several

instructions may all be piggybacked on the same entry. Different types of memory requests

are prioritized in the following order, from highest to lowest: instruction fetches, data

fetches, data stores, instruction and data prefetches, and lastly, write-backs. A request

accesses the Level-2 cache when a port for its desired bank is available. The L2 cache is an

8-way set associative 1MB cache with 64-byte line size. It is divided into eight banks, each

with one read and one write port. The access latency is a minimum of 10 cycles. When a

memory request hits in the L2 cache, the instructions associated with that miss are notified.

Memory requests that miss in the L2 cache are placed in a miss request queue.

Instruction fetches and write-backs have the highest priority in this queue, followed by

data loads and stores, followed by prefetches. Requests may access the desired memory

bank when it is available. The main memory is modeled as having 32 banks interleaved on

64-byte boundaries, with a minimum access latency of 100 cycles.

40

3.2 Evaluation Methodology

Results are shown for the SPEC2000 integer benchmarks, as these benchmarks are

sensitive to the microarchitecture of the execution core. Whenever possible, an input set

provided by SPEC was used. However, in many benchmarks, some of the input files were

truncated in order to reduce simulation time. The truncated inputs were designed to have

execution behavior similar to the behavior when using the original inputs. A summary of

the benchmarks and the input sets used are shown in Table 3.2. Because no profiling was

performed, only one input set per benchmark was used for all experiments.

Benchmark Name Description Input set

gzip compression algorithm ref.graphic (trunc)
vpr FPGA circuit placement and routing place.in (test)
gcc C compiler jump.i
mcf combinatorial optimization inp.in (test)
crafty chess game crafty.in (trunc)
parser English text processing test.in (trunc)
eon computer visualization test inputs
perlbmk PERL interpreter perfect.pl (test)
gap group theory, interpreter test inputs (trunc)
vortex object-oriented database test inputs (trunc)
bzip2 compression algorithm input.source (trunc)
twolf Place and Route Simulator test inputs

Table 3.2: SPEC CPU2000 Integer Benchmarks

3.3 Performance and Power Models

3.3.1 Performance Simulator

The performance results in this dissertation were produced using a simulator (scarab)

for the Alpha ISA developed by members of the HPS research group [17]. It is a cycle-

41

accurate, executable-driven simulator that models wrong-path events. The simulator does

not model system calls; they are executed on the host machine.

3.3.2 Power Simulator

3.3.2.1 Overview of Wattch

The power model is based on the Wattch toolset [7]. Wattch has a set of functions

that compute capacitances of on-chip structures given a microarchitecture definition, de-

fined by the user, and the physical circuit characteristics, defined by the Cacti [62] toolset.

Wattch uses these capacitance estimates along with switching activity computed by the

performance simulator to model dynamic power consumption.

The physical design parameters are calculated based on the feature size (transistor

length). The user can define the feature size in a header file of the simulator. Given the

feature size, physical design parameters are computed using information contained in the

Cacti [62] header files. Examples of physical design parameters are the capacitance for

a given wire length for different metal layers, the minimum wire pitch for each layer of

metal, and supply voltage.

The user must specify the microarchitecture definition. Wattch provides a sample

microarchitecture definition that is similar to the one used by the sim-outorder model of

SimpleScalar [11], although Wattch also provides functions with which the user can define

a new microarchitecture. These functions calculate the capacitance of common building

blocks such as RAM and CAM arrays, register files, decoders, latches, wires (per unit

length), and the select logic used by the instruction scheduler. The user must specify the

number of entries and ports for each structure, along with other specific information needed

for certain types of structures. Clock power was estimated from the Alpha 21264 [2], but

is scaled according to physical parameters, clock frequency, and area estimates. Combina-

tional logic is difficult to model with Wattch. Power estimates for functional units, control

42

logic, and decode logic were based on previous publications [2, 5, 71].

Switching activity is monitored by interfacing Wattch to the performance simulator.

Event counters are added to the performance simulator (scarab in this case) to obtain this

information. These counters are then used by the Wattch model to measure dynamic power

consumption.

3.3.2.2 Modifications to Wattch

The Wattch model has been heavily modified to work with our performance simula-

tor and accurately represent each processor model studied in this dissertation. This section

describes some of the modifications.

First, a new microarchitecture definition, the one previously described in this chap-

ter, is used. The functions for estimating the maximum power consumption of the ba-

sic processor building blocks (arrays, CAMS, control logic and other combinational logic,

wires, and clock distribution) are taken from Wattch, although they are scaled appropriately

to match the performance model. Power models for additional microarchitecture features

not present in the original Wattch model (e.g., the memory request buffers, multi-ported

instruction cache and L2 cache, branch prediction structures, two copies of the data cache,

latches for additional pipeline stages, and all other structures mentioned in this chapter)

have been added. Many of these structures can be implemented as a simple RAM and/or

CAM, some with and some without decoders. The capacitance of the register file was re-

computed to model a replicated register file using Register Write Specialization. This was

accomplished by recomputing the bit line and word line lengths given the configuration

described in Section 3.1.5.

Some assumptions about floorplanning were made for the machine configurations

which model a clustered core. These floorplanning assumptions are used to model capac-

itances of wires running between clusters as well as capacitances of tag and data buses

43

within clusters. Groups of four functional units (assuming four functional units per cluster)

are stacked vertically so that the data bit lines are interleaved. The register file sits directly

above the functional units, muxes, and the latches which hold data being read from and

written to the register file, in addition to the data that was broadcast from other clusters.

The width of each cluster is a function of both functional unit area estimates [50] as well

as the maximum number of bit lines at any point in the datapath for wide-issue clusters.

We conservatively assume that this width is constrained by the width of the register file.

The result bus from each functional unit runs vertically within its own cluster to the register

file write latch, as well as horizontally to the other clusters and then vertically across all

other stacks of functional units as well. In the clustered models, the tag and data buses

that are received from other clusters are also considered when calculating the number of

word lines and bit lines for each structure in a cluster. Section 4.4 will discuss alternative

designs which have differing numbers of word lines and bit lines for the register files and

scheduling windows.

Most of the event counters and the functions for measuring dynamic power con-

sumption (as a fraction of maximum power consumption) have been changed from those

present in the original Wattch framework. The modified power model distinguishes be-

tween different types of accesses to many structures. For example, data cache reads and

writes do not consume equal amounts of power in the model. The most obvious difference

is due to the fact that the cache is duplicated in order to reduce the access latency by halv-

ing the number of read ports to each copy. A write, from either a store instruction or a

cache-line fill, must update both copies of the cache.

Register file writes also have a disproportionate power dissipation compared to

reads [72]. The primary distinction is that the register file bit cells in this model have

two bit lines for each write port and one bit line for each read port [24]. As a result, register

file reads and writes are modeled as different types of accesses.

44

The conditional clock gating style called CC3 in Wattch is modified as follows: un-

used ports dissipate at least 19% of their maximum power even when they are not accessed,

and data bit lines that do not switch still dissipate power even when the port is active. This

overhead is a very rough estimate of leakage power, although it is not a very precise esti-

mate because leakage power is primarily determined by transistor features rather than wire

capacitance.

45

Chapter 4

Clustering

Clustering the execution core reduces the time to execute a chain of dependent

instructions as long as all instructions in the chain execute in the same cluster. Cluster-

ing reduces the execute-bypass loop latency by reducing the forwarding latency between

functional units within the same cluster. As the number of functional units per cluster is

reduced, the forwarding latency in the cluster is reduced and the clock frequency can be

increased. However, the IPC may go down because of load balancing problems and extra

cycles required to forward values between clusters. The biggest frequency gains can be

made by using clusters of size one (one functional unit per cluster), but this configuration

also suffers from the most inter-cluster communication delays. By bitwise interleaving two

or more functional units that perform simple ALU operations, it may be possible to build

clusters with more than one functional unit with little or no increase in the wire delays

incurred when forwarding the output of one functional unit to the input of the other. The

cluster configurations studied in this dissertation use two to four functional units per cluster.

Clustering may also be used to reduce power consumption. However, depending

on the amount of loss in IPC and changes in critical loop latency, there may or may not

be a reduction in power consumption. This chapter explains several factors that may af-

fect performance and power of a clustered processor. Section 4.1 examines the reasons

that clustering lowers IPC – specifically, the causes of resource contention and inter-cluster

communication delays. Section 4.2 examines the scheduling window and register file laten-

cies of several clustered configurations. Section 4.3 examines how clustering affects power

46

consumption. The clustering paradigm in these first three sections uses a register file that is

replicated across all clusters. Any register data that is produced is broadcast to all clusters.

Section 4.4 examines two alternative clustering paradigms in which register values

are not broadcast to all clusters when they are produced. The first, called PART, uses

a partitioned register file like the one described by Canal, Parcerisa, and González [16,

52]. The second, called Selective Cluster Receipt (SCR), uses a replicated register file,

although register values are only sent to the register files and functional units of the clusters

that contain dependent instructions. The PART model reduces the size of the inter-cluster

bypass network, but the SCR model does not. Section 4.4 examines the window latency of

the PART model and compares the power and performance of similarly sized PART, SCR,

and baseline clustered models.

4.1 Effects of Clustering on IPC

This section analyzes the effects that cause IPC degradations in clustered processors

relative to an unclustered processor. These effects include inter-cluster communication

delays and load balancing. Inter-cluster communications may increase the delays between

producer and consumer instructions, which will increase the length of the program’s critical

path. As illustrated by Figures 1.2 and 1.3, this is becoming a bigger problem as execution

width increases. With poor load balancing, instructions in a given cluster may be delayed

due to lack of available functional units in that cluster.

Seven machine models are investigated in this section. They are identified in Ta-

ble 4.1. The processor model parameters common to all models was discussed in detail

in Chapter 3, but the relevant model parameters and the differences between these models

will be described below.

The processor pipeline in all models can fetch, issue, and execute up to 16 instruc-

47

Name Steering Scheduling Window Functional Units

CS-CF front-end partitioned clustered
FlexCS-CF front-end partitioned, clustered

4 or 8X as big as CS-CF
CS-16CF front-end partitioned 16 per cluster

(max 16 exec width)
US-CF schedule time unified clustered
US-UF n/a unified unified
US-UF+1 n/a unified unified

1-cycle delay between
ALL units

US-UF+2 n/a unified unified
2-cycle delay between
ALL units

Table 4.1: Summary of seven models.

tions per cycle. The instruction window consists of all instructions that have been issued

(placed into one of the scheduling windows) but have not yet retired. Up to 512 instruc-

tions can be in the instruction window. Instructions are selected for execution from the

scheduling window, which holds only those issued instructions that have not successfully

completed execution. The instruction window contains all information necessary to retire

instructions in program order, while the scheduling window contains only information nec-

essary to schedule instructions for execution. The size of the scheduling window, not the

instruction window, is what determines the scheduling latency. The baseline model, called

US-UF (for Unified Scheduling window, Unified Functional units) uses a single 256-entry

scheduling window with no clustering of functional units.

In the first clustered model, called CS-CF (for Clustered Scheduling window, Clus-

tered Functional units), the scheduling window and functional units are divided equally

among all clusters. This model will also be referred to as the baseline clustered model

48

throughout this dissertation. Two configurations of this model are evaluated: the first with

four clusters each containing four functional units and a 64-entry scheduling window, and

the second with eight clusters each containing two functional units and a 32-entry schedul-

ing window. There is a 2-cycle inter-cluster forwarding delay in the 4-cluster configuration.

In the 8-cluster configuration, there is a 1-cycle delay between two clusters within an ad-

jacent pair of clusters (i.e. clusters 0 and 1; 2 and 3; 4 and 5; 6 and 7), and 2-cycle delay

between functional units in different pairs of clusters.

The remaining models in this section are not intended to be considered for actual

implementation; they are used just for this clustering behavior study. In the second clus-

tered model, called FlexCS-CF, the total scheduling window size is still the same (256

entries) as that of the unclustered model, US-UF, although there is no limit on the num-

ber of instructions in any one scheduling window. In other words, it is possible that one

scheduling window contains 256 instructions, but the others would all have to be empty.

It allows us to see the effects of issue stalls or undesirable cluster assignments that appear

in the baseline clustered model when a particular cluster’s window is full. For example,

if memory latency or too few execution units are a performance bottleneck (as may be the

case for easily predictable instruction streams) then a particular scheduling window may be

full, although other windows may have free space. The FlexCS-CF model does not have

this restriction. It is desirable to steer an instruction to the cluster containing its producer.

If the desired scheduling window is full, the instruction may be steered to an alternate clus-

ter and incur an inter-cluster forwarding delay penalty. With this model, no “alternate”

steering assignments needs to be made. An instruction can always be steered to its desired

cluster unless the instruction window is full.

The third model, called CS-16CF also uses clustered scheduling windows and func-

tional units. The difference between this model and CS-CF is that each cluster contains

16 functional units. The total execution width of the machine is still limited to 16 instruc-

49

tions, however. With this model, up to 16 instructions may execute per cycle, but those

instructions may be distributed among the clusters in any permutation. For example, 16 in-

structions all residing within one cluster may execute in the same cycle, but no instructions

from other clusters could execute in that cycle. When compared to the CS-CF model, this

model allows us to see the effects of functional unit contention on IPC.

The fourth model, called US-CF uses a unified scheduling window, but the func-

tional units are partitioned into clusters. Instructions are dynamically assigned to a cluster

at schedule time from the unified window as follows: when an instruction’s last-arriving

source operand broadcasts its tag, the instruction is scheduled immediately on the same

cluster as its last-arriving source operand if a functional unit in that cluster is available. If

no functional unit in that cluster is available, it must wait until the following cycle to be

scheduled. The instruction may execute in other clusters when the result is available in

those clusters. If there is no contention for functional units in the source operand’s cluster,

it will be scheduled on that cluster. When there is contention, the scheduler gives priority

to the oldest instructions.

The US-CF model is used to analyze the impact that steering at schedule-time rather

than issue-time can have on IPC. When steering at issue time, instruction execution latency

(or at least the latency of memory operations) is not known. This information is known

later after source operands have been scheduled. This model should not be used as an

upper bound on clustering or steering algorithm performance for several reasons. First,

there are no limitations on load balancing. For example, it is theoretically possible that

all instructions could execute on only one cluster (although the maximum IPC would be

limited to the cluster width), which may not be possible with clustered paradigms that have

a partitioned scheduling window. Second, it does not have oracle information about the

future critical path of the program, and hence cannot make optimal cluster assignments.

The last two models are called US-UF+1 and US-UF+2. These are the same as the

50

model with the unified execution core but with an extra 1- or 2-cycle data forwarding delay

for all execution results. With the US-UF+1 model, the scheduling logic may be pipelined

over two cycles since all instructions take a minimum of two cycles to execute. With the

US-UF+2 model, the scheduling logic may be pipelined over three cycles. Alternatively,

these models could represent a worst-case steering scenario in which all instructions are

delayed by inter-cluster forwarding penalties.

In all of the models with clustered scheduling windows described above, instruc-

tions are steered, or assigned to a cluster, during the renaming process. High-performance

steering algorithms were used with all models, but a detailed discussion of these algorithms

is deferred until Chapter 5. In brief, all models used dependence-based steering algorithms

which try to send instructions to the same clusters as their source operands in order to

reduce the number of inter-cluster bypasses.

Figure 4.1 shows the IPC for six models, all except US-UF+1, with the 4-cluster

configuration1, and Figure 4.2 shows the results of all seven models with the 8-cluster

configuration. For the 4-cluster configuration, the fully clustered model (CS-CF, the set of

bars second to the right) shows a 23% IPC improvement over the model with a minimum

2-cycle execution and scheduling latency (US-UF+2). For the 8-cluster configuration, the

CS-CF model has an IPC 17% higher than US-UF+2, and 1% higher than US-UF+1. These

comparisons demonstrate that many of the worst-case clustering delays were avoided by

steering instructions to the same cluster as their source operands. It also demonstrates that

if an instruction window is so large that the scheduling logic must be pipelined over two or

more cycles, it is better to divide the window into clusters.

The model that increases the size of each scheduling window (FlexCS-CF) per-

forms only about 1% better than the CS-CF model. This indicates that alternate steering

1Results for the US-UF+1 model are not shown for the 4-cluster configuration because the 4-cluster
configuration has a two-cycle delay between clusters.

51

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

In
st

ru
ct

io
ns

 p
er

 C
yc

le

US-UF
US-CF
CS-16CF
FlexCS-CF
CS-CF
US-UF+2

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 4.1: IPC for baseline and 4-cluster configurations.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

In
st

ru
ct

io
ns

 p
er

 C
yc

le

US-UF
US-CF
CS-16CF
FlexCS-CF
CS-CF
US-UF+1
US-UF+2

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 4.2: IPC for baseline and 8-cluster configurations.

52

assignments due to full scheduling windows have little overall effect on IPC, provided that

the steering algorithm assigns instructions to an alternate cluster (as opposed to stalling

issue) when the desired cluster is full. The effect of full windows will be discussed further

in Chapter 5, when steering algorithms are evaluated.

The model that allows up to 16 instructions in a given cluster to be scheduled (CS-

16CF) performs about 2% better than the CS-CF model, indicating functional unit con-

tention when clustering has a small effect on IPC. However, inter-cluster bypass delays

have a much bigger impact on IPC. This is also true for the 8-cluster configurations.

The improvement in IPC of the unified model (US-UF) over the fully clustered

model (CS-CF) is 11.6% and 17.5% for the 4-cluster and 8-cluster configurations, respec-

tively. Of the experimental clustered models, the biggest gains in IPC are made when

cluster assignments are made at schedule time, as with the US-CF model.

Figure 4.3 shows a breakdown of where the last source operand comes from for

all instructions. The left and right bars for each benchmark show the breakdown for the

fully-clustered 4- and 8-cluster configurations, respectively. The top portion of each bar

represents the fraction of instructions that either have no source operands or do not need to

wait for any source operands to become ready before they can be scheduled for execution.

On average, this is 22% of all instructions. For the 4-cluster configuration, half of all

instructions, on average, received their last source operand from their own cluster, and the

remaining 28% of all instructions had to wait to receive their last operand from another

cluster. When using 8 clusters, 34% of instructions received their last source operand

from the same cluster, while 44% received their last source operand from another cluster.

While the fraction of instructions waiting for their last source operand to be forwarded

from another cluster is highly dependent on the steering algorithm, the data presented here

is representative for a high-performance dependence-based steering algorithm. Chapter 5

will use this metric, along with others, to understand the behavior of steering algorithms.

53

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n
of

 I
ns

tr
uc

ti
on

s

CS-CF 4cl, ready at issue
CS-CF 4cl, same cluster
CS-CF 4cl, other cluster
CS-CF 8cl, ready at issue
CS-CF 8cl, same cluster
CS-CF 8cl, other cluster

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

am
ea

n

Figure 4.3: Location of last arriving source operand for all instructions.

4.2 Effects of Clustering on Latency

This section discusses how clustering and partitioning can affect the scheduling

and register file access latencies. These effects are measured for the baseline clustered

model, which replicates the register file on all clusters. The scheduling window is evenly

partitioned among all clusters. Sections 4.2.1 and 4.2.2 discuss how latency changes as

parameters are scaled. Section 4.2.3 provides data (Cacti estimates) for the scheduling

window and register file configurations discussed in this section.

4.2.1 The Scheduling Window

The scheduling window was modeled as a CAM structure with two tags per in-

struction entry. The latency of the scheduling loop is the sum of the select logic latency

and the scheduling window latency. Scheduling window latency depends on the following

parameters:

54

1. Machine execution width. When execution width increases, more instructions must

be selected for execution each cycle and more instructions broadcast their tags each

cycle. Each tag bus is a read port for the CAM. Increasing the number of ports means

increasing the number of bit lines and word lines needed for each CAM bitcell. This

means that increasing the number of tag buses in the scheduling window increases the

area of the scheduling window as well as the amount of comparator logic needed for

CAM matches. This increases both the latency and power of the scheduling window.

2. Tag buses per cluster. For an unclustered processor, the number of tag buses is

the same as the execution width. For a clustered processor, the number may still be

equal to the total machine execution width if there are point-to-point connections be-

tween all scheduling windows and functional units for tags and data. This is the case

for the baseline clustered model. However, in some clustered designs, particularly

the models with partitioned register files described in Sections 2.1.1 through 2.1.3,

only a subset of register values may be sent between clusters. In these models, the

number of tag and data buses may be reduced, although this is not necessary just for

implementation. Reducing the number of buses will reduce the scheduling window

latency, area, and power, although it requires arbitration for the buses. Arbitration

may increase inter-cluster forwarding latency.

3. Number of entries per scheduling window. The number of instructions that can

reside in each window affects the amount of ILP that may be exploited. Also note that

clustered configurations that require copy instructions to send data between clusters

may need additional entries per window to hold the copy instructions.

4. Number of issue (i.e. write) ports per window. The number of instructions that

can be allocated to a given cluster in a given cycle is determined by the number of

issue ports. The scheduling latency is longer with a larger number of issue ports

55

because the area is increased. However, this also means that average communication

delays may be reduced because the steering algorithm has more opportunity to steer

an instruction to its desired cluster. The performance impact of changing the number

of issue ports is discussed in detail in the Steering chapter in Section 5.1.1.

4.2.2 The Register File

1. Machine execution width. The number of register file ports is determined by the

execution width. For the baseline, we assume two read ports and one write port for

each instruction that can begin execution in the same cycle. Clustering may be used

to reduce the number of ports by using register files local to each cluster.

2. Cluster execution width. In the baseline clustered model, the execution width of

a cluster affects the number of read ports but not the number of write ports, as all

results are broadcast to all clusters by default. In clustered designs introduced later

in this chapter, the number of write ports may be limited to the execution width of

the cluster plus a few more write ports needed to receive data forwarded from other

clusters.

3. Number of entries. Models with partitioned register files need fewer entries in each

local register file. However, as with the number of entries in the scheduling window,

these models may need additional register file entries total since some register values

may be duplicated across clusters. For example, with 4 clusters, each cluster may

need more than N/4 entries (where N is the number of entries in an unclustered

register file).

4. Number of write ports. The number of write ports to each register file is the same

as the number of scheduling window tag buses because every register tag broadcast

56

is associated with a data broadcast that occurs a few cycles later in conventional

out-of-order processors.

5. Effect of register write specialization. By using the optimization described in Sec-

tions 2.1.4 and 3.1.5, the number of write word lines is reduced by a factor of 4. This

reduces the area of the register file by 75%, and the latency by 45%.

4.2.3 Latency Estimates

Latency estimates were obtained using Cacti [60] with 0.09µm feature size. For the

scheduling window, Cacti is used to model the tag broadcast and tag match (i.e. wakeup)

latency, but not the latency of the select logic. The window is modeled as a CAM structure

with two CAM tags per instruction. Cacti was slightly modified to model register files with

Register Write Specialization as follows: the decoder and bit line delays were computed

by using one fourth the number of write word lines as in a conventional register file. There

was no modification to the word line delay because of the assumed layout of the register

file: all four banks are stacked vertically such that all bit lines run across all four banks.

The latency estimates are intended to make the fairest possible comparisons be-

tween the various clustered configurations examined later in this chapter. Tables 4.2 and 4.3

show latencies obtained from Cacti of the scheduling window (tag broadcast and wakeup

latencies combined) and register file while scaling the parameters discussed above. The

columns of the table, from left to right, are the total execution width, the number of clus-

ters, the total number of scheduling window entries for all clusters combined, the number

of write (i.e. issue) ports for each scheduling window, the scheduling window (wakeup and

tag broadcast) latency, and the register file latency. The number of entries in the register

file is held constant at 512. Each cluster contains a copy of all 512 register file entries,

although the scheduling window is partitioned among the clusters. The main observations

from these tables are that increasing the number of ports to either the scheduling window or

57

the register file has a much larger impact on latency than increasing the number of entries.

When dividing the execution core into four clusters, the scheduling window latency can be

reduced by as much as 55%. The register file latency is reduced by 40%. Partitioning the

execution core into 8 clusters can provide further reductions in latency.

Exe Num S.W. S. W. Window Reg File
Width Clusters Entries W Ports Latency Latency

16 1 192 16 1.66 1.08
16 1 256 16 2.02 1.08
16 1 384 16 2.84 1.08
16 1 512 16 3.74 1.08

16 4 192 4 0.90 0.64
16 4 192 6 0.93 0.64
16 4 192 8 0.96 0.64
16 4 192 12 1.02 0.64
16 4 192 16 1.08 0.64

16 4 256 4 1.01 0.64
16 4 256 6 1.05 0.64
16 4 256 8 1.08 0.64
16 4 256 12 1.16 0.64
16 4 256 16 1.23 0.64

16 4 384 4 1.25 0.64
16 4 384 6 1.30 0.64
16 4 384 8 1.36 0.64
16 4 384 12 1.47 0.64
16 4 384 16 1.59 0.64

16 8 256 4 0.78 0.58
16 8 256 6 0.80 0.58
16 8 256 8 0.82 0.58
16 8 256 12 0.86 0.58
16 8 256 16 0.90 0.58

Table 4.2: Scheduling Window and Register File Latency estimates, 16-wide execution.

58

Exe Num S.W. S.W. Window Reg File
Width Clusters Entries W Ports Latency Latency

16 8 384 4 0.90 0.58
16 8 384 6 0.93 0.58
16 8 384 8 0.96 0.58
16 8 384 12 1.02 0.58
16 8 384 16 1.08 0.58

4 1 192 4 1.00 0.39
4 1 256 4 1.13 0.39
4 1 384 4 1.41 0.39

8 1 192 8 1.21 0.57
8 1 256 8 1.41 0.57
8 1 384 8 1.85 0.57

8 2 192 4 1.05 0.46
8 2 192 6 1.10 0.46
8 2 192 8 1.16 0.46

8 2 256 4 1.21 0.46
8 2 256 6 1.28 0.46
8 2 256 8 1.35 0.46

8 2 384 4 1.56 0.46
8 2 384 6 1.15 0.46
8 2 384 8 1.21 0.46

8 4 192 2 0.77 0.41
8 4 192 4 0.80 0.41
8 4 192 6 0.83 0.41

8 4 256 2 0.84 0.41
8 4 256 4 0.88 0.41
8 4 256 6 0.92 0.41

8 4 384 2 1.00 0.41
8 4 384 4 1.05 0.41
8 4 384 6 1.10 0.41

Table 4.3: Scheduling Window and Register File Latency estimates, contd.

59

4.3 Effects of Clustering on Power Consumption

Even though the register file is replicated in our baseline clustered architecture,

power consumption when clustering, as compared to an unclustered processor, is still re-

duced because the number of read ports to the register file and the number of issue ports for

each scheduling window are reduced. This is because register file area typically grows with

the square of the number of ports (assuming a wire-bound structure). Hence, by reducing

the number of ports to each copy, total power consumption is reduced.

Figure 4.4 shows the breakdown of the relative power consumption for three 16-

wide machines (shown left to right in the figure): the first with a unified execution core,

the second with four clusters, and the third with eight clusters. Figure 4.5 shows the IPC of

these models. Switching from a unified core to four clusters results in a 12.7% reduction

in IPC on average, but a 19% reduction in power2. Switching from four to eight clusters

results in an additional 4.2% reduction in IPC and 4.3% reduction in power. The clustered

configurations shown are not the highest-performing nor the lowest-power configurations.

They were selected because they showed the best performance for a given power con-

sumption3. Additional configurations are shown later in this section. Note that the same

clock frequency was assumed in all designs, although the clustered designs may run with

a higher frequency core, increasing both performance and power consumption. The power

consumption breakdown is explained in detail below.

The power consumption results are shown relative to the average power consump-

tion of the unified machine. The breakdown of the power consumption for each microar-

2These experiments use no modifications in clock frequency. The scheduling window, register files, and
execution units of the clustered core can either be designed with slower transistors for additional power
savings, or a higher clock frequency for performance improvement

3The four-cluster configuration has six issue ports per scheduling window. The eight-cluster configuration
has three ports per scheduling window. More ports would improve the performance at the cost of higher power
consumption.

60

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e
P

ow
er

 C
on

su
m

pt
io

n

Other
Data Bypass
Execution
Reg File
LSQ
PRAM
Select
Wakeup
BBT
Rename

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

am
ea

n

Figure 4.4: Relative power consumption for 1, 4, and 8-clustered models (shown left to
right).

0.0

1.0

2.0

3.0

4.0

5.0

In
st

ru
ct

io
ns

 p
er

 C
yc

le

1 Cluster
4 Clusters
8 Clusters

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 4.5: IPC for 1, 4, and 8-clustered models.

61

chitectural unit is shown within each bar. The power of the Rename unit consists of the

Register Alias Table along with all of the dependency analysis logic. The power of the RAT

makes up about 40% of the Rename power in these models; the rest is consumed by the

comparators and muxes. The next unit, the BBT, is replicated among each cluster in the

clustered configurations. This reduces the power consumption since each replica has fewer

read ports. The power of the Wakeup logic is shown in white above the BBT power. The

wakeup power is significantly reduced in the clustered machines because the scheduling

window is partitioned, and each cluster has fewer than 16 issue ports. The Select logic is

a very small component of total power consumption and is not visible in the figure. The

Payload RAM is a table (one per cluster) that holds all information that instructions need

to execute other than source operand data. There is one entry per instruction in the schedul-

ing window, and each entry contains 20 bits. When clustering, the Payload RAM has lower

power consumption because each partition has fewer ports. Each cluster’s partition has

as many write ports as the scheduling window has issue ports, and as many read ports as

the number of instructions that can be selected for execution from within the cluster. The

64-entry Load-Store Queue consumes a relatively small amount of the total power con-

sumption. The bars for its power consumption, shown in white, are barely visible. The

Register File consumes considerably less power in the clustered models even though it is

replicated across all clusters. This is because the number of read ports to each replica is

significantly reduced. There is no change in the number of write ports, however. The Exe-

cution power is fairly constant among all configurations. The Data Bypass network, shown

in white, consumes more power in the clustered configurations because of the inter-cluster

forwarding buses and the considerably longer wires required to route results to any cluster.

In the baseline clustered model, there is no reduction in the number of data bypasses, so all

functional unit results are forwarded to all replicas of the register file. The Other category

consists of branch prediction structures, memory request buffers, the instruction, data, and

Level-2 caches, and clock tree power. Because the power consumption of these units does

62

not change much among the different configurations (aside from minor variances due to

different levels of performance), they are combined into one bucket in the figures to make

them easier to read. Power consumption is not constant among benchmarks, but it does

correlate with the amount of both on-path and off-path instructions executed per cycle.

The remaining results in this section will only show results for the 4-cluster config-

uration, as the 8-cluster configuration shows a more significant IPC loss.

Figure 4.6 shows the effect of scaling the number of issue ports for each scheduling

window on the total power consumption. All models have 4 clusters, and the number of

issue ports per cluster for each configuration, shown from left to right, are 4, 6, 8, 12, and

16. The improvement in IPC, shown in Figure 4.7, from using 16 ports does not make

up for the increased power consumption. High-performance steering algorithms were used

with all configurations. Steering algorithms, when considering the number of ports per

cluster, are discussed in detail in Chapter 5.

Figures 4.8 and 4.9 show the relative power consumption and IPC when scaling

the number of scheduling window entries. All of these configurations have 4 clusters with

8 issue ports per cluster. Using more than 256 entries does not seem to show much im-

provement in IPC. The power consumption continues to increase, however. Based on these

results, the baseline clustered model has scheduling windows with a total of 256 entries, or

64 entries per cluster.

63

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
P

ow
er

 C
on

su
m

pt
io

n

Other
Data Bypass
Execution
Reg File
LSQ
PRAM
Select
Wakeup
BBT
Rename

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

am
ea

n

Figure 4.6: BASE model power consumption while scaling the number of issue ports per
cluster: 4, 6, 8, 12, 16 ports.

0.0

1.0

2.0

3.0

4.0

In
st

ru
ct

io
ns

 p
er

 C
yc

le

4 ports
6 ports
8 ports
12 ports
16 ports

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 4.7: BASE model IPC while scaling the number of issue ports.

64

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
el

at
iv

e
P

ow
er

 C
on

su
m

pt
io

n

Other
Data Bypass
Execution
Reg File
LSQ
PRAM
Select
Wakeup
BBT
Rename

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

am
ea

n

Figure 4.8: BASE model relative power consumption when scaling the number of schedul-
ing window entries (128, 192, 256, 384, 512).

0.0

1.0

2.0

3.0

4.0

In
st

ru
ct

io
ns

 p
er

 C
yc

le

128-entry
192-entry
256-entry
384-entry
512-entry

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 4.9: IPC when scaling the number of scheduling window entries.

65

4.3.1 Summary

Section 4.2 showed that clustering is an effective technique to reduce latency of

structures in the execution core. By replicating the instruction window and register file

across clusters, the number of ports can be reduced. This reduces the latency for each

replica. Section 4.3 showed that replication can even reduce power consumption. This is

because area grows with the square of the number of ports. Hence, replicating a structure

can reduce area if enough ports in each copy are eliminated.

The performance results demonstrated that no more than 256 scheduling window

entries are needed given an instruction window size of 512. Furthermore, for a designer

targeting a specific cycle time, it may be better to increase the number of ports at the cost

of reducing the number of entries.

4.4 Replication vs. Partitioning

The previous performance and power results of clustered designs shown in this

chapter have used register files that were replicated across all clusters. Each cluster con-

tained copies of all 512 entries of the physical register file. This section compares clustered

paradigms with a replicated register file to those with a partitioned register file.

With a partitioned register file, a given register value may reside in only one cluster,

or it may reside in multiple clusters if it is needed by instructions in multiple clusters.

Register values do not have to be forwarded to clusters where they are not needed. This

means that each register file partition may have a reduced number of entries and write ports.

Because all register values are not stored in all clusters, the scheduling tags associated with

the instructions producing those values do not have to be broadcast to all clusters. This

means that each scheduling window may have fewer tag buses and fewer entries. The

latency savings that result from using partitioned register files are shown in Section 4.2.

66

When limiting the number of tag buses and write ports in each cluster, a mechanism

for arbitration must exist to handle contention for available buses and ports. This mecha-

nism could use additional broadcast buffers [73], or transfer or copy instructions [15, 23,

36]. When using copy instructions, values may be sent between clusters using either global

buses or a point-to-point network. As observed by Parcerisa et al. [53], global buses shared

by multiple clusters slow down the inter-cluster forwarding in a machine with several clus-

ters because the arbitration for the buses must be centralized. Centralized arbitration can

be avoided with a point-to-point network. That is, each cluster has a dedicated path to each

other cluster. Copy instructions must be scheduled within their own cluster to be trans-

fered on an inter-cluster bypass path. Register values forwarded from other clusters may

be stored in either transfer buffers [23, 36] or within the local register file partition.

A model using a partitioned register file is described in more detail in Section 4.4.1.

Section 4.4.2 describes an improved clustered design with replicated register files using a

technique called Selective Cluster Receipt. Power and performance of both of these models

is discussed in Section 4.4.3.

4.4.1 Partitioned Register File Model

The PART model assumes that values are moved between clusters via copy instruc-

tions. A point-to-point bypass network is used to avoid the centralized arbitration unit. The

bypass network assumes full connectivity between functional units within the same cluster,

although there is limited connectivity between functional units in different clusters in order

to reduce the number of register file write ports and scheduling tag buses. Each cluster has

at least one bypass path to each other cluster, and clusters do not share bypass paths4. This

4It is possible for clusters to share bypass paths. For example, one cluster can use a bus in even cycles and
one can use it in odd cycles. However, this severely limits IPC because the average inter-cluster forwarding
delays are increased.

67

means each scheduling window has enough tag buses for all instructions issued within its

own cluster, plus one or more additional buses for each other cluster. Assuming the mini-

mum connectivity (each cluster has one path to each other cluster), for a 16-wide machine

with four clusters, this means there are seven tag buses per window, rather than 16, as used

in the baseline clustered architecture.

Register values forwarded from other clusters are stored in the register file rather

than in a separate buffer. This eliminates the need for a separate transfer buffer that in-

structions must read for the location of their source operands, although it places additional

pressure on the register file.

The register alias table (RAT) and renaming logic must be augmented to support

multiple mappings for each architectural register. With four clusters, there may be up

to four mappings of each architectural register. When an instruction renames its source

operands, the RAT indicates which clusters contain a valid mapping of their source operands.

If the instruction’s cluster does not contain a valid mapping, then a copy instruction must be

inserted into the scheduling window containing a valid copy of the source operand, and an

additional physical register must be allocated in the consuming instruction’s cluster. Copy

insertion requires additional write ports to the scheduling window and additional physical

register file entries for best performance. The power model models multiple copies of the

RAT (with fewer read ports per copy) because this technique reduces power consumption.

To determine the optimal design points, the partitioned model is evaluated while

scaling the number of register file entries, window entries, the number of bypass paths be-

tween clusters, the number of issue ports to each scheduling window, and the total number

of RAT ports. The experimental results of IPC and power consumption of selected design

points are shown in Section 4.4.3.

68

4.4.2 Replication with Selective Cluster Receipt

Selective Cluster Receipt (SCR) (formerly called Demand-Only Broadcast [9, 10])

is a technique which uses a replicated register file with enough ports to support maximum

throughput but does not always broadcast register results within all clusters, thereby sav-

ing dynamic power consumption. In a conventional clustered processor with a replicated

register file, register values are received by all clusters. With selective cluster receipt, an

instruction’s result is only received by the remote clusters if it is needed by dependants

within those clusters. For the configurations presented in this dissertation, this eliminates

66% of the register file writes and bypasses within clusters. Unlike the PART model, tags

are always broadcast to all clusters.

This section discusses the implementation of Selective Cluster Receipt. Experimen-

tal results of its performance and power savings are shown in Section 4.4.3.

4.4.2.1 Justification and Grounds for SCR

The primary aim of SCR is to have a clustering paradigm that avoids the penalty

associated with inter-cluster bypass arbitration while getting the lower power consumption

that results from fewer bypasses and register file writes. Arbitration increases the length of

the execute-bypass loop between clusters. Previous works use one of two techniques for

handling this arbitration. Both are explained below.

The first arbitration technique was described by Hrishikesh [36]. With this arbitra-

tion technique, each producer has information indicating where its dependants reside. This

information is stored in a table in each cluster called the Inter-cluster Forwarding Bit Table

(IFB Table). This table indicates, for each physical register, to which clusters that register

value should be forwarded. This table is read after instructions are selected for execution

so that they know where to broadcast their tags. The first problem with this approach is

that the table lookup increases the inter-cluster scheduling latency (the time to forward tags

69

between clusters), and possibly intra-cluster scheduling latency as well (depending on the

specific implementation). This is the increase in execute-bypass latency referred to ear-

lier. The IFB Table must be updated by the steering logic after instructions are assigned

to clusters. The steering logic would have to inform each cluster (probably every cycle) of

any dependants that were issued to the other clusters. This information is not available in

a timely manner because of a delay between the steering and scheduling logic, called the

detect-to-set delay by Hrishikesh [36]. If a producer instruction were scheduled for execu-

tion after its dependant was steered to another cluster, then the table lookup would indicate

that the producer had a consumer in another cluster – the one containing the consumer. For

instance, if a dependent instruction is issued just a few cycles before, at the same time as, or

after the producer instruction is scheduled, the information arrives too late. The producer

instruction would not have broadcast its tag to the other clusters because the IFB Table had

not been updated by that point in time. Hrishikesh [36] investigates several techniques to

avoid this problem, but IPC is lowered as compared to the second arbitration technique,

discussed below.

The second arbitration technique, and the one used by the PART model, is to use

copy instructions rather than IFB Tables. Copy instructions are issued to the producer’s

cluster regardless of whether the producer instruction has been scheduled, so there is no

possibility of deadlock as long as the copy instruction actually gets inserted before its con-

sumer5. Copy instructions add a cycle of arbitration latency to the execute-bypass loop

between clusters. This is because they add a node in the dependence chain between pro-

ducers and consumers in different clusters, and they take a cycle to be scheduled after the

producer has been scheduled.

5If an instruction is issued before a copy instruction on which it is dependent, the copy may get stalled
because of a full window. If all instructions in the window were dependent on stalled copies, deadlock would
occur. Hence copies must be issued before their dependants.

70

Since the aim of SCR is to avoid increasing the length of critical loops, both of

these approaches are undesirable. An alternative implementation, and the one used by

SCR, is to forward the scheduling tag to all clusters, as in the baseline model. Hence there

is no arbitration. Each cluster contains a table indicating which register values produced

by instructions in other clusters are needed by instructions in that cluster. In fact, a table

indexed by physical register number already exists in each cluster – the BBT. This table can

be used to determine if a given cluster holds consumers of a particular register value. Each

cluster decides whether or not to accept a register value forwarded from another cluster

based on the contents of its own BBT. Hence the name Selective Cluster Receipt. This

technique avoids the timing problems that would have existed if the inter-cluster forwarding

was blocked from within the producing cluster using an IFB Table.

4.4.2.2 Implementation of SCR

When using Selective Cluster Receipt, an instruction’s result is not received by the

register file and functional units within a cluster unless that cluster holds a consumer at the

time that the instruction’s tag is broadcast. Each cluster contains a copy of the Busy-Bit

Table (BBT), just as the baseline clustered model does. However, rather than just one bit

for each BBT entry, there are two: the Broadcast bit indicates if the tag has been broadcast

to that cluster, just like the single bit in the original BBT entry. The Use bit indicates if

there are any instructions within that cluster requiring that physical register. BBT entries

are reset when an architectural register is first mapped to a physical register, just as in the

conventional design.

Table 4.4 shows the possible states of a BBT entry along with their meanings. A

summary of all possible state transitions of a BBT entry is given in Figure 4.10. This

diagram is shown in the form of a Mealy machine. The arcs indicate both the input action

that causes a BBT entry to be accessed, as well as the output action that results from reading

71

B.C. USE Status

0 0 Tag not yet broadcast. Data will not be received.
0 1 Tag not yet broadcast. Data will be received.
1 0 Tag was broadcast, but data was / will not be received.
1 1 Tag and data were both broadcast; result is available.

Table 4.4: Possible states of a BBT entry.

the table. The input actions are the times which the BBT is accessed: at issue time, when the

entries for source and destination operands are accessed, and at tag broadcast time, when

the entry for the destination operand is accessed. The output actions are either initializing

the Ready bits, which is done at issue time, or controlling a cluster’s receipt of a register

value, which is done at tag broadcast time. These state transitions are explained below.

When an instruction is first placed into a cluster, it reads the BBT entries corre-

sponding to its source operands. If both the Use and Broadcast bits of a source operand’s

entry are set, then the source operand is available and the corresponding Ready bit in the

instruction’s reservation station entry is set. If the Broadcast bit is clear but the Use bit

is set, then either the instruction producing that source operand is waiting to be scheduled

in that cluster, or there is an older instruction in that cluster waiting for the result to be

broadcast, but it has not been broadcast yet. After reading the contents, it sets the Use bits

of the entries corresponding to its destination and source registers.

If the Broadcast bit is set but the Use bit is clear when the BBT entry of a source

operand is read, that means the instruction producing that value has already broadcast its

tag, but the data value was not received in that cluster because there were no previous in-

structions in that cluster requiring the value. A copy instruction must be inserted. The

mechanism for inserting copy instructions is discussed in detail in Section 4.4.2.3. Addi-

tionally, the Broadcast bit of that entry must be cleared, and the Use bit is set.

72

00 01

10 11

Src@Issue / R=0

Src@
Iss

ue
 /

D
es

t@
B

ro
ad

ca
st

 /
D

on
’t

 B
lo

ck

R = 0
Src@Issue /

Don’t Block
Dest@Broadcast /

B
lo

ck
D

es
t@

B
ro

ad
ca

st
 /

R = 1
Src@Issue /

Block

Dest@Broadcast /
R =

 0,
 re

qu
es

t c
op

y i
ns

tru
cti

on

Dest@Issue

Key:
State bits: {XY} = {Broadcast bit, Use bit}
"Src", "Dest": reading BBT entry for source or destination operand
"@Issue", "@Broadcast": at Issue or Broadcast time
"R": Ready bit of wakeup logic
"Block": refers to blocking data receipt by a cluster

Figure 4.10: Mealy diagram for a BBT entry.

When an instruction’s tag is broadcast to a cluster, the Broadcast bit for its desti-

nation register is set, just as in the baseline. Additionally, it reads out the value of the Use

bit. If the Use bit is set, the instruction’s result will be broadcast to the register file and

functional units in this cluster. If the Use bit is not set, the data broadcast will be blocked

by that cluster. The logic for blocking the broadcast may add one gate to the data path,

depending on the implementation. Note that the controls for blocking a data broadcast are

located entirely within a cluster, so that no arbitration or acknowledgment signal between

clusters is required to block the broadcast.

There is plenty of time to set the controls to block the data broadcast and prevent

73

the register file write. This is because normally the instruction’s data would be broadcast

N cycles after its tag is broadcast (assuming N is the number of pipeline stages between

the last scheduling stage and the last execution stage for a majority of integer instructions).

When the Use bit is read, it will enable the latch for the data result bus N cycles later. N is

generally at least as large as the minimum number of cycles for the register file access plus

execution, and will increase as pipeline depths increase. As an example, N is 5 cycles in

the Intel Pentium 4 [35].

Table 4.5 gives an example in which instruction A in Cluster 0 produces a value

needed by instruction B, which is issued to Cluster 1. BBT-0[A] refers to the BBT entry

in Cluster 0 corresponding to A’s destination register, and BBT-1[A] refers to the BBT

entry for A in Cluster 1. In this example, an instruction’s result is broadcast 3 cycles after

its tag, and there is a 2-cycle delay between the two clusters. Initially, A resides in Cluster

0 but B has not yet been issued to Cluster 1’s window. The Use bit for A in BBT-0 is set

because instructions always write back to their own cluster. In Cycle 0, A broadcasts its

tag to Cluster 0. In cycle 1, instruction B is issued to cluster 1. B sets the USE bit of A’s

BBT entry in that cluster to indicate that there is an instruction in Cluster 1 that will need

A’s result. Since B is issued to Cluster 1 before A’s tag is broadcast to that cluster, no copy

instruction is needed. When A’s tag is broadcast within Cluster 1 in Cycle 2, BBT-1 is read

to see if there are consumers of B in that cluster. Since there are, A’s data result broadcast

is not blocked.

4.4.2.3 Copy Instructions

In the previous example, if instruction B were issued to cluster 1 after A’s tag was

broadcast within that cluster and the Use bit for A’s BBT entry in Cluster 1 (BBT-1[A].Use)

was not set, then A’s data would not be broadcast to that cluster in cycle 5. In this situation,

a copy instruction is required to re-broadcast the result. The copy instruction is inserted

74

BBT-0 BBT-1
Cycle Action BC USE BC USE
Init A is in Cluster 0. A X

B
0 A is selected, broadcasts tag A X X

to cluster 0. B
1 B issued to cluster 1. A X X X

B reads Use bit of source operand. B X
B sets Use bit for its sources and destination.

2 A’s tag is broadcast to cluster 1. A X X X X
Read BBT-1[A].Use. It’s set, so A’s tag will B X
be broadcast 3 cycles later. B wakes up.

3 A’s data broadcast to Cluster 0. A X X X X
B broadcasts its tag in Cluster 1. B X X

5 A’s data broadcast to Cluster 1. A X X X X
B broadcasts its tag in Cluster 0. B X X X

Table 4.5: Example of inter-cluster forwarding with Selective Cluster Receipt.

into the cluster that produced the source operand (although it could actually be inserted

into any cluster that didn’t block the broadcast). After being scheduled, it reads the register

file and re-broadcasts the physical register destination tag and the data, similar to a MOVE

instruction with the same physical source and destination register.

In order to detect if a copy instruction is needed, when an instruction is first issued

and reads the BBT entry of its source operand, it must read out the old contents before it

is set, like a scoreboard. If the Use bit is clear and the Broadcast bit is set, then a copy

instruction must be inserted, and the instruction’s Ready bit is not set.

In each cluster there is a bit-vector specifying which physical registers require copy

instructions to re-broadcast the data. All instructions issued to a cluster may set bits of this

bit-vector. If an instruction reads a 1 for the Broadcast bit and a 0 for the Use bit of one of

its source operands, the bit of the vector corresponding to that physical register is set. The

bit vectors from all four clusters are ORed together to form the Copy Request Vector. This

75

vector specifies all physical registers requiring a copy instruction. The process of updating

this vector is pipelined over two cycles to account for wire delays, and it is later used by the

steering logic to insert copy instructions. Assuming all instructions could have at most two

source operands, up to 32 bits of this vector could be set each cycle if 16 instructions are

issued per cycle. A priority circuit is used to pick up to four physical registers per cluster

for which to create copy instructions. The steering logic will then clear the selected bits of

this vector and insert copy instructions for the selected physical registers. Copy instructions

have issue priority over instructions just fetched from the instruction cache.

Copy instructions are not inserted until at least five cycles after the consumer in-

structions requiring the re-broadcast have been issued. This 5-cycle delay is due partially

to the fact that the steering logic may have already begun to steer instructions that will be

issued within the next three cycles, and there is a 2-cycle delay between the clusters’ issue

logic and the steering logic, which accounts for the delay for updating the Copy Request

Vector. Performance is relatively insensitive to this delay since the scenario where copy in-

structions are needed is rare: only about 1% of retired instructions require copy instructions

to be inserted.

The fact that copy instructions are inserted into the window after the instructions

which are dependent on them means that deadlock may occur if the following criteria are

met: (1) the issue of the copy instruction is stalled because the cluster it needs to be steered

to is full, (2) all instructions in that cluster are dependent upon instructions that are de-

pendent upon copy instructions that cannot be issued, hence nothing in the window can be

scheduled for execution. To prevent this scenario from ever happening, one entry of each

cluster’s scheduling window is reserved for copy instructions. Copy instructions are always

ready for execution when they are issued and may be removed from the window when they

are scheduled. The fraction of copy instructions that are not selected for execution the first

cycle they are in the window is less than 1% on average (with the highest fraction being

76

1.3% in the perl benchmark), so only one dedicated entry is necessary to prevent deadlock.

Table 4.6 shows an example of an inter-cluster broadcast in which a copy instruction

is needed. This is similar to the previous example, except that instruction B is not issued

to Cluster 1 until cycle 3, which is after A’s tag was broadcast to that cluster. Because the

Use bit of A’s BBT entry was not set when the tag was broadcast in Cluster 1, A’s data

broadcast will be blocked by Cluster 1. When B is issued in cycle 3, it reads the Broadcast

and Use bits of A’s BBT entry. Because A had already broadcast its tag but there were no

older dependants in Cluster 1, a copy instruction will have to be issued to Cluster 0 to re-

broadcast the data. Because it takes five cycles for the copy request to be sent to the issue

BBT-0 BBT-1
Cycle Action BC USE BC USE
Init A is in Cluster 0. A X

B
0 A is selected, broadcasts tag A X X

to cluster 0. B
2 A’s tag is broadcast to cluster 1. A X X X

BBT-1[A].Use is clear, so A’s tag will not B
be broadcast 3 cycles later.

3 B is issued to Cluster 1. Read BBT-1[A]. A X X X
BBT-1[A].BC bit was set and BBT-1[A].Use B X
bit was clear, so insert copy.
Clear BBT-1[A].BC.
Set Use bits for all of sources and destinations.

8 Copy instruction issued to Cluster 0. A X X X
B X

9 Copy instruction is scheduled, broadcasts tag to A X X X
Cluster 0 (no effect). B X

11 Copy broadcasts tag in Cluster 1. Set A X X X X
BBT-1[A].BC, Read BBT-1[A].Use, so data B X
will be broadcast. B wakes up.

12 B broadcasts its tag in Cluster 1. A X X X X
B X X

Table 4.6: Selective Cluster Receipt: inter-cluster forwarding with a copy instruction.

77

logic and for the copy to be issued, the copy instruction is not issued until cycle 8. It gets

scheduled in cycle 9, and broadcasts its tag to Cluster 1 in cycle 11. Finally, B broadcasts

its tag in cycle 12. If Selective-Cluster Receipt were not used, B would have broadcast its

tag in cycle 4. Hence there was an 8-cycle penalty for this particular example.

Not only do copy instructions delay the execution of their dependants, but they

may take resources away from real instructions performing useful work. They occupy

issue ports, possibly causing instructions in the renaming stage to be stalled or steered

to an undesired cluster. They will also occupy space in the scheduling window before

they are executed, although unlike the models with partitioned register files, they do not

remain in the window long because they are already “Ready” when they are placed in the

window. They may also prevent a real instruction from being selected for execution as soon

as possible, since copy instructions must be selected and access the physical register file

like regular instructions. This extra demand on the hardware resources may lower IPC and

consume power. However, because copy instructions are only inserted if an instruction’s

source operand was steered to a different cluster and that operand was already broadcast

and it was not written to the local physical register file, copy instructions are rarely needed

and a small impact on IPC. A summary of the differences in the behavior and requirements

of copy instructions in the SCR and PART models is provided in Table 4.7. Power and

performance results are shown in Section 4.4.3.

78

Requirements SCR PART

When are When a consumer is issued to a cluster whenever a consumer is
they needed? other than the producer’s cluster mapped to a cluster

after the producer broadcast its tag, without a valid source
and there were no older dependants without a valid source
in that cluster. operand.

Additional no yes
RAT mapping?
Schedule time? 1 cycle 1 cycle
Bandwidth no (full connectivity yes (limited bypass
limitation? between clusters) connectivity)
Space in sched yes (usually 1 cycle) yes (potentially many
window? cycles)
Extra reg file no yes
entries?

Table 4.7: Differences between copy instructions in the SCR and PART models.

4.4.3 Results for PART and SCR Models

4.4.3.1 Design Space Exploration of PART model

Before comparing models with partitioning against models with replication, the

latency, power, and IPC of configurations of the PART model are evaluated. Table 4.8

shows the estimated latency of the scheduling windows and register files when scaling

the following parameters (listed left to right in the table): the total number of scheduling

window entries in all clusters, the number of scheduling window issue ports (for each

cluster), the inter-cluster bypass connectivity (C), and the total number of physical register

file entries for all clusters combined. The connectivity is the number of inter-cluster buses,

from each cluster, that are sent to each other cluster. Note that the number of register

file and window entries in each cluster is the number indicated in the table divided by four,

since these resources are partitioned (not replicated) across all four clusters. The purpose of

the simulation results is not to find an “optimal” configuration, since no artificial constraint

79

S.W. S.W. C R.F. S.W. R.F.
Entries Wr Ports (ns) (ns)

256 4 1 768 0.86 0.45
256 6 1 768 0.90 0.45
256 8 1 768 0.93 0.45
256 12 1 768 1.01 0.45
256 16 1 768 1.08 0.45
256 16 1 768 1.08 0.45
384 16 1 768 1.35 0.45
512 16 1 768 1.61 0.45
640 16 1 768 1.91 0.45
768 16 1 768 1.41 0.45
512 16 1 512 1.61 0.41
512 16 1 768 1.61 0.45
512 16 1 1024 1.61 0.50
768 16 1 768 1.41 0.45
768 16 1 1024 1.41 0.50
512 16 1 768 1.61 0.45
512 16 2 768 1.72 0.51
512 16 3 768 1.83 0.58

Table 4.8: Scheduling Window and Register File Latency estimates, PART model.

is being placed on power consumption. The purpose is to find configurations which can

be used to fairly compare this paradigm to other clustered paradigms. Not all possible

permutations of these parameters are shown – only those that are used to produce the results

shown in this chapter.

Figures 4.11 and 4.12 show the power and IPC of the PART model when varying the

number of issue ports per cluster. The power consumption when using 4, 6, 8, 12, and 16

issue ports per cluster is shown relative to the arithmetic mean for the PART configuration

with four ports per cluster. All configurations shown use a 256-entry scheduling window

and a 768-entry physical register file. As compared to the baseline clustered model (Fig-

80

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
P

ow
er

 C
on

su
m

pt
io

n

Other
Bypass
Execution
Reg File
LSQ
PRAM
Select
Wakeup
BBT
Rename

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

am
ea

n

Figure 4.11: PART model Power Consumption while scaling the number of issue ports per
cluster : 4, 6, 8, 12, 16 ports.

0.0

1.0

2.0

3.0

4.0

In
st

ru
ct

io
ns

 p
er

 C
yc

le

4-port
6-port
8-port
12-port
16-port

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 4.12: PART model IPC while scaling the number of issue ports.

81

ure 4.7), the IPC of the PART model improves significantly as the number of issue ports

is increased. This is because inter-cluster forwarding results in a much larger penalty in

the PART model than in the baseline clustered model. In addition to the wire delays of the

inter-cluster forwarding paths, the copy instructions must be scheduled. This makes the

penalty a minimum of three cycles rather than two. When the number of ports is increased,

instructions can more easily be steered to the same cluster as their dependants. Hence there

are fewer copy instructions when the number of ports is increased. Additionally, the copy

instructions are occupying resources, which further reduces IPC.

Because copy instructions take up scheduling window slots, it is expected that the

PART model needs larger scheduling windows than the baseline model. Figures 4.13

and 4.14 show the power and IPC when scaling the number of entries. For all of these

configurations, the number of issue ports was held at 16; the size of the physical register

file was 786 entries (partitioned among four clusters); and the bypass connectivity was 1.

Increasing the size from 192 to 256 improves IPC by 1.5%, and the same improvement is

seen when moving to a 384-entry scheduling window. However, the power consumption

increases about 5% each time. Hence the most appropriate design would depend on the

power budget as well as how potential changes in clock frequency effected both power and

performance of other parts of the chip.

Figures 4.15 and 4.16 show the effect on power and IPC when scaling the number

of physical register file entries. All configurations use 16 issue ports per cluster. Large

scheduling windows were used to prevent full scheduling window stalls from effecting the

IPC and to allow the physical register file to be fully utilized. The scheduling window

held 512 instructions for the first three configurations, and 768 instructions for the last

two. Although copy instructions occupy physical register file entries, performance was

not significantly improved by adding more entries. This is partly due to the fact that win-

dow utilization is limited by branch prediction accuracy. Averaged over all benchmarks,

82

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
P

ow
er

 C
on

su
m

pt
io

n

Other
Bypass
Execution
Reg File
LSQ
PRAM
Select
Wakeup
BBT
Rename

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

am
ea

n

Figure 4.13: PART model relative power consumption when scaling the number of schedul-
ing window entries (128, 192, 256, 384, 512).

0.0

1.0

2.0

3.0

4.0

In
st

ru
ct

io
ns

 p
er

 C
yc

le

128-entry SW
192-entry SW
256-entry SW
384-entry SW
512-entry SW

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 4.14: PART model IPC when scaling the number of scheduling window entries.

83

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e
P

ow
er

 C
on

su
m

pt
io

n

Other
Bypass
Execution
Reg File
LSQ
PRAM
Select
Wakeup
BBT
Rename

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

am
ea

n

Figure 4.15: PART model relative power consumption when scaling the register file size.
SW/RF entries: 512/512, 512/768, 512/1024, 768/768, 768/1024

0.0

1.0

2.0

3.0

4.0

In
st

ru
ct

io
ns

 p
er

 C
yc

le

512/512
512/768
512/1024
768/768
768/1024

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 4.16: PART model IPC when scaling the register file size.

84

there were an average of 144 instructions between mispredicted branches. (Full window

utilization occurs because of the high variance in the number of instructions between mis-

predicts.) The renaming power changes partially because the number of bits needed to

encode each physical register number changes. The power simulator models each RAT

entry as containing log(N)+1 bits, where N is the number of physical registers.

Figures 4.17 and 4.18 show the results when changing the bypass connectivity.

Increasing the bypass connectivity adds write ports to each register file and tag buses to each

scheduling window. Hence the window and register file power increase as the connectivity

increases. Increasing the connectivity reduces contention that copy instructions have for the

intra-cluster bypasses. However, increasing the connectivity results in little improvement

in IPC.

In addition to a limitation on the number of issue ports for each scheduling window,

there is a limit on the number of Register Alias Table ports. The number of ports deter-

mines the number of instructions that can access the Register Alias Table each cycle. For

the baseline clustered model, no more than 16 instructions can access this table per cycle.

However with the PART model, copy instructions need to update this table when new phys-

ical registers are allocated to existing architectural registers. Figures 4.19 and 4.20 show

the effects when the maximum number of instructions that can access the table per cycle is

16, 18, and 20. If enough ports were not available for all instructions within a fetch packet

in addition to the copy instructions that had to be inserted, instructions in the fetch packet

that did not have access to RAT ports would be stalled in the rename stage. Each increment

increases the IPC by 0.5%, although power consumption is increased by about 2% each

time.

85

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e
P

ow
er

 C
on

su
m

pt
io

n

Other
Bypass
Execution
Reg File
LSQ
PRAM
Select
Wakeup
BBT
Rename

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

am
ea

n

Figure 4.17: PART relative power when scaling the bypass connectivity: 1, 2, 3.

0.0

1.0

2.0

3.0

4.0

In
st

ru
ct

io
ns

 p
er

 C
yc

le

connectivity 1
connectivity 2
connectivity 3

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 4.18: PART model IPC when scaling the bypass connectivity.

86

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
P

ow
er

 C
on

su
m

pt
io

n

Other
Bypass
Execution
Reg File
LSQ
PRAM
Select
Wakeup
BBT
Rename

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

am
ea

n

Figure 4.19: PART model relative power consumption when scaling the rename width.

0.0

1.0

2.0

3.0

4.0

In
st

ru
ct

io
ns

 p
er

 C
yc

le

width 16
width 18
width 20

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 4.20: PART model IPC when scaling the rename width.

87

4.4.3.2 Comparing BASE, SCR, and PART Models

In this section, the power and performance of three models are compared: a con-

ventional clustered architecture (BASE), a model with a partitioned register file (PART),

and a model implementing Selective Cluster Receipt (SCR). By comparing the latencies

in Tables 4.2 and 4.8, we can see that the scheduling windows of the baseline model with

256 entries and six issue ports has about the same (slightly longer) latency as the schedul-

ing window of the PART model with 256 entries and 12 ports. The scheduling window

of the baseline model with 256 entries and eight issue ports has about the same latency

as the scheduling window of the PART model with 256 entries and 16 issue ports. For

both the PART model and the baseline model, using scheduling window entries greater

than 256 instructions did not significantly improve performance. Increasing the number of

issue ports did, however. Because of this, power and performance results of each config-

uration with the greater number of ports (eight for the BASE and SCR models and 16 for

the PART model) will be shown. The PART models in this section assume a connectivity

of 1 since increasing the inter-cluster bypass connectivity did not significantly help perfor-

mance. The size of the physical register file for the PART model was 768 entries, although

it was 512 entries for the BASE and SCR models. A summary of these three models is

shown in Table 4.9. The number of scheduling window entries (for all clusters), scheduling

window issue ports (for each cluster), and register file write ports (for each cluster) are

shown. While the PART model has more register file entries, they are partitioned among

Model S.W. S.W. R.F. R.F. C max issue
Entries W Ports Entries W Ports per cycle

BASE 256 8 512 16 n/a 16
SCR-8 256 8 512 16 n/a 16

PART-16 256 16 768 7 1 18

Table 4.9: Summary of three models.

88

the clusters, whereas the other models all have 512 entries in each cluster. The Connectivity

is fixed at the maximum amount (no contention for ports or bypasses) for the BASE and

SCR models. With the PART model, up to 18 instructions (some of which may be copy

instructions) may be issued per cycle, although no more than 16 may be issued to any given

cluster.

Figure 4.21 shows the IPC of these three models. On average, the IPC of the SCR

model is less than 0.5% lower than the IPC of the BASE model and 5% higher than that of

the PART model. The SCR model performs almost as well as the baseline because copy

instructions in this model are rare. The PART model requires significantly more copy in-

structions, which is why its IPC is lower. Figure 4.22 shows the fraction of instructions

that require copy instructions to be inserted. This metric measures only the copy instruc-

tions required by correct-path instructions, relative to correct-path instructions, although

wrong-path instructions may also generate copy instructions. On average, the PART model

requires 12 times as many copies as the SCR model.

Figure 4.23 shows the relative power consumption of these three models. The power

consumption of the rename logic is the bottom-most portion of each bar. The power con-

sumption of the rename logic of the PART model is significantly increased for two reasons.

The first reason is that the PART model requires multiple mappings of each architectural

register, so each entry of the RAT is larger. The second reason is that more write ports for

the RAT are needed in the PART model because the copy instructions must also update the

RAT. Because rename width is limited to 18 in this model, the RAT has 18 rather than 16

write ports. Additional rename logic is required in this model as well. The SCR model

models rename width to 16 because so few copy instructions are needed. While it is not

indicated in the figure, 71% of the rename power in the PART model is consumed by the

RAT, and 29% is consumed by the register comparators and muxes. In the SCR model,

41% is consumed by the RAT and 59% is consumed by the comparators and muxes.

89

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

In
st

ru
ct

io
ns

 p
er

 C
yc

le

BASE
SCR
PART

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 4.21: IPC of the BASE, SCR, and PART models.

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28

F
ra

ct
io

n
of

 I
ns

tr
uc

ti
on

s
R

eq
ui

ri
ng

 C
op

y

SCR
PART

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 4.22: Copies per instruction for the SCR and PART models.

90

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
P

ow
er

 C
on

su
m

pt
io

n

Other
Global Bypass
Local Bypass
Execution
Reg File Write
Reg File Read
LSQ
PRAM
Select
Wakeup
BBT
Rename

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

am
ea

n

Figure 4.23: Power consumption of the BASE, SCR, and PART models.

The power consumption for the scheduling window (“Wakeup”) is the bottom-most

black portion of each bar. The PART model has lower power consumption for the schedul-

ing window despite the fact that it has 16 rather than 8 issue ports. This is because its

scheduling window has fewer tag buses (7 rather than 16 per cluster) and less CAM match-

ing logic (3584 tag match circuits rather than 8192 tag match circuits). The power con-

sumption of the Select logic is not visible in the graph. The Payload RAM (shown in dark

gray above the Wakeup power) for the PART model has higher power consumption because

it has more issue ports than the other models. (The number of write ports for the Payload

RAM is the same as the number of issue ports for the scheduling window.) The Load-Store

queue power is barely visible in most benchmarks, and not visible in others.

The power breakdown in Figure 4.23 separates the register file power into two com-

91

ponents: that caused by writes to the register file and that caused by reads. Static power

is distributed to the two categories according to the ratio of the areas consumed by write

ports and read ports. The register file read power is the second black portion of each bar.

The PART model has lower read power because it has smaller register files. The register

file write power is above that in light gray. The register file write power for the SCR model

is reduced by 33% compared to the BASE model. This is because the number of register

file writes is reduced by 66%. The PART model has significantly lower register file power

overall. Its register file is much smaller because it has fewer write ports: 7 instead of 16.

Additionally, each register file has fewer entries. Table 4.10 shows the average number of

clusters in which an on-path architectural register value must be stored. This also represents

the number of register file writes per instruction. The PART model requires fewer replica-

tions than the SCR model because its scheduling windows have more issue ports. Having

more issue ports gives the steering logic the opportunity to steer instructions to their desired

cluster. This reduces the number of instructions that are either stalled or sent to a cluster

that doesn’t contain valid mappings of its source operands. Replications are required when

an instruction’s cluster does not have valid mappings of the instruction’s source operands.

The power consumption of the bypass network is also broken into two parts: the

portion of the bypass network internal to a cluster (all four of them), labeled “Local By-

pass”, and the pipelined buses that run between the the clusters, labeled “Global Bypass.”

The internal bypass network consists of a bus to the register file and muxes for each of the

four functional units in its cluster, whereas the global bypass network is just a collection

Num clusters 1 2 3 4
SCR 65.6% 30.6% 2.4% 0.4%
PART 74.5% 21.2% 1.8% 0.4%

Table 4.10: Fraction of results with given number of cluster broadcasts.

92

of pipelined wires with low fanout. These two components are shown directly beneath the

“Other” category in the figure. As expected, the internal bypass power is reduced for the

SCR model due to blocking the intra-cluster broadcasts. The external bypass power is about

the same in the SCR and Baseline models because register results are always forwarded on

the external pipelined inter-cluster buses.

Overall, the model using Selective Cluster Receipt reduced the power consumption

of the baseline model by 5% while having less than 1% impact on IPC. The power con-

sumption for the PART model increased because of the extra work required by the rename

logic. Furthermore, it had a 5% reduction in IPC due to the copy instructions.

4.5 Conclusions

Clustering is an effective technique for reducing the latency of the execute-bypass

loop. If the execute-bypass loop is too long to fit in one cycle, the IPC is degraded by over

15% as was shown in Chapter 1. However, when clustering, the IPC degradation is less

than 10% while offering a potential increase in cycle time or power savings.

This chapter has examined three clustering configurations: (1) conventional clus-

tered models that replicate the register file across all clusters, (2) models that partition the

register file, and (3) a model with a replicated register file that implements Selective Clus-

ter Receipt (SCR). SCR was introduced as a way to reduce the number of intra-cluster data

broadcasts and register file writes by 66% without requiring very many copy instructions,

which lower IPC.

The model with Selective Cluster Receipt performed within 1% of a baseline clus-

tered model with a 5% reduction in power. It had an IPC 5% higher than the model with a

partitioned register file while consuming less power. When compared to an unclustered, 16-

wide machine, clustering with SCR reduces power consumption by 25% while having half

93

the scheduling latency and a 10% degradation in IPC. Even though the clustered models

have a considerably shorter scheduling latency and register file latency, all models assume

equal pipeline depths. In implementation, the baseline unclustered model would likely re-

quire at least one extra pipeline stage for scheduling, possibly having to implement one

of the pipelined scheduling implementations described in Chapter 6 in order to run at the

same frequency as the clustered model. Additional pipeline stages for register file access

would be needed as well, which may add additional bypass paths. Hence, the actual degra-

dation in IPC of SCR as compared to an unclustered machine could be far less then 10%.

The extra pipeline stages were not modeled since the performance degradation would be

dependent on the branch prediction accuracy, which is not the subject of this dissertation.

94

Chapter 5

Steering

Steering is the process of dynamically assigning instructions to clusters. Several

previous steering algorithms have been described in the literature [3, 16, 23, 28, 30, 59].

Section 5.1 shows the experimental results from modeling the performance of these algo-

rithms and discusses some of the shortcomings that these algorithms have. Section 5.2

presents new steering algorithms that overcome these shortcomings. Finally, Section 5.3

presents a summary of all of the steering algorithms, including those formerly published.

5.1 Shortcomings of Current Steering Algorithms

There are some microarchitectural features that strongly impact the performance

of most steering algorithms that were not considered in previous studies. This section

examines those microarchitectural features in the context of previously published steering

algorithms. These features include the number of issue ports for each scheduling window

partition, and the scalability of these algorithms to wide-issue machines. It also discusses

several characteristics of steering algorithms that were not addressed in previous work.

Section 5.1.1 will discuss how the number of issue ports for each scheduling window affects

the performance of a steering algorithm. Section 5.1.2 will discuss how the occurrence of

full window stalls affects the behavior of steering algorithms. Section 5.1.3 explains why

there is a critical loop within the steering logic.

95

5.1.1 Scheduling Window Issue Ports

Recall that issue is the process of allocating an instruction in the window, and an

issue port is a write port for the scheduling window. The number of issue ports to each

scheduling window determines the maximum number of instructions that can be steered

to a given cluster per cycle. This parameter has not been investigated in previous studies

on instruction steering. Most previous algorithms were designed assuming that either the

number of ports is equal to the issue width divided by the number of clusters (i.e. the

minimum that doesn’t restrict issue bandwidth) or else the number of issue ports is equal

to the maximum issue bandwidth of the front-end of the pipeline. There are advantages

to both approaches, and they will be discussed in this section. Results shown later in this

chapter demonstrate that a hybrid of the two approaches (i.e. a weakly restricted amount of

bandwidth) works best for many clustering configurations.

By limiting the number of issue ports per cluster, the area of each scheduling win-

dow can be reduced. This will reduce both the issue time and the scheduling wakeup

and broadcast latency. Table 5.1 shows the relative times required to broadcast a tag and

wake up an instruction using scheduling windows with the indicated number of write ports,

as compared to the window with four ports. Relative power consumption (when using a

dependence-based steering algorithm) was shown in Figure 4.6. The other parameters of

the window are the same as the baseline machine: 16 tag broadcasts per cycle, 64 entries

per cluster, and two tag matches per entry. IPC must be improved as the number of ports is

increased in order to make up for the increases in latency.

Issue ports 4-port 6-port 8-port 12-port 16-port
Relative Wakeup Latency 1 1.04 1.07 1.16 1.24

Table 5.1: Relative Wakeup Latencies when varying the number of issue ports.

The downside of using a limited number of ports per cluster is that it limits the

96

ability to steer an instruction to the same cluster as its source operands. In a worst case sce-

nario, the 16 instructions in one issue packet form a linear chain of dependent instructions.

In this situation, it would be beneficial to steer all 16 instructions to the same cluster. If the

number of ports per cluster were less than 16, then the dependence chain would be broken

across clusters, adding inter-cluster forwarding delays to the execution time of the chain.

5.1.1.1 Modulo Algorithm

Figure 5.1 shows the IPC when assigning clusters using the modulo (MOD) steering

algorithm. The modulo steering value for each configuration was equal to the number of

issue ports per cluster: the 4-port configuration uses mod-4; the 6-port configuration uses

mod-6 and so-on. Using a modulo value equal to the number of ports yielded the highest

IPC since this algorithm benefits from using the highest possible modulo value. Since in-

structions are most likely to be dependent on instructions that are nearby in the instruction

stream, the IPC increases as the number of ports increases. These results are very different

from those presented by Baniasadi and Moshovosh, but that is mostly because the configu-

ration used in the previous work was an 8-wide machine with only two functional units per

cluster. There was more functional unit contention in their machine model.

The IPC is influenced by both the amount of inter-cluster forwarding of source

operands and the amount of functional unit contention. Figure 5.2 shows the distribution

of the location of each instruction’s last available source operand when varying the number

of issue ports. The light gray portion at the bottom of each bar represents the fraction of

instructions whose last source operand was produced in the same cluster. The dark gray

represents the fraction of instructions whose last source operand was forwarded from a dif-

ferent cluster, causing the instruction’s execution to be delayed. The black portion of each

bar represents those instructions that were ready to execute as soon as they were issued into

the window. One can clearly see that as the number of ports and the steering modulo value

97

0.0

1.0

2.0

3.0

4.0

In
st

ru
ct

io
ns

 p
er

 C
yc

le

MOD, 4 ports
MOD, 6 ports
MOD, 8 ports
MOD, 12 ports
MOD, 16 ports

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 5.1: IPC using the MOD cluster assignment.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

F
ra

ct
io

n
of

 I
ns

tr
uc

ti
on

s
(%

)

ready at issue
other cluster
same cluster

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

am
ea

n

Figure 5.2: Source location distribution using the MOD cluster assignment. From left to
right: 4, 6, 8, 12, and 16 issue ports per cluster.

98

increase, instructions are more likely to be in the same cluster as their source operands.

When using only 4 issue ports per cluster, 59% of the instructions received their critical

source operand from another cluster. After increasing to 16 ports, only 32% of instructions

received their last source operand from another cluster. Figure 5.3 shows fraction of in-

structions that were delayed because of contention for functional units in their cluster. As

the number of ports increases, there is more contention for functional units. Despite the

increase in functional unit contention as the number of ports is increased, IPC improved

by 6% in the 16-port configuration as compared to the 4-port configuration because of the

reduction in the number of critical inter-cluster forwarding delays. However, this increase

in IPC came at the cost of a 24% increase in dynamic instruction wakeup latency.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

F
ra

ct
io

n
of

 I
ns

tr
uc

ti
on

s
(%

)

MOD, 4 ports
MOD, 6 ports
MOD, 8 ports
MOD, 12 ports
MOD, 16 ports

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

am
ea

n

Figure 5.3: MOD: Fraction of instructions for which execution was delayed because of
functional unit contention.

5.1.1.2 Dependence-Based Algorithm

Figure 5.4 shows the IPC when using a dependence-based steering algorithm (la-

beled DEP) which tries to steer instructions to the clusters that contain their register source

99

operands. It works as follows: an instruction’s preferred cluster is the cluster containing its

producer. If it has more than one register source operand, the cluster of its “left” operand

(as determined by the instruction’s opcode) is selected. It does not matter if the instruction

producing that operand has already executed or even if it has retired. If the desired cluster

is full or there are no more available ports for that cluster, then the instruction is assigned to

another available cluster. This alternate cluster is chosen by a modulo counter, so it is not

necessarily the least loaded cluster. If an instruction has no register source operands, the

cluster indicated by the modulo counter is the preferred cluster. The modulo value is equal

to the number of ports per cluster. There is a slight improvement in IPC when increasing

the number of issue ports per cluster from four to six or eight, but then the IPC levels off

or even drops for some benchmarks. This is because this steering algorithm has no load

balancing heuristic, and too many instructions get steered to the same cluster.

0.0

1.0

2.0

3.0

4.0

In
st

ru
ct

io
ns

 p
er

 C
yc

le

DEP, 4 ports
DEP, 6 ports
DEP, 8 ports
DEP, 12 ports
DEP, 16 ports

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 5.4: IPC using a dependence-based steering algorithm.

100

5.1.1.3 DCOUNT Algorithm

Figure 5.5 shows the IPC when using the DCOUNT algorithm while varying num-

ber of ports per cluster. The DCOUNT is a metric which measures load imbalance, and its

value is a function of the number of instructions that have been assigned to each cluster.

Each cluster has a counter associated with it that is used to measure load balance. When an

instruction is assigned to a given cluster, its counter is incremented by N - 1 (where N is the

number of clusters). All other clusters have their counters decremented by 1. Hence, the

sum of all counter values is always 0. When the difference between the highest and lowest

counter values exceeds a threshold, the instruction is steered to the “least-loaded” clus-

ter. The “least-loaded” cluster is defined as the cluster with the lowest DCOUNT value, not

necessarily the cluster with the fewest instructions waiting to execute, although simulations

showed that these two metrics resulted in similar IPC. When the threshold is not exceeded,

an enhanced version of the DEP algorithm is used. The enhanced dependence-based algo-

rithm incorporates two additional heuristics not used in the DEP algorithm: source operand

availability and knowledge of which cluster is least loaded. It works as follows: instruc-

0.0

1.0

2.0

3.0

4.0

In
st

ru
ct

io
ns

 p
er

 C
yc

le

DCOUNT, 4 ports
DCOUNT, 6 ports
DCOUNT, 8 ports
DCOUNT, 12 ports
DCOUNT, 16 ports

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 5.5: IPC using the DCOUNT steering algorithm.

101

tions are steered to the same cluster as their parent if the parent’s result is not available.

If the result is available, then the parent’s location is not considered by the steering algo-

rithm. If the instruction has more than one source operand that is not available, it is steered

toward the least-loaded cluster of the parents’ clusters. If all source operands have been

produced, the instruction is steered to the least-loaded cluster in which the source operands

are available.

Various DCOUNT thresholds in the range of 16 to 128 were evaluated. Regardless

of the number of issue ports, the baseline clustered configuration performed best with a

very large DCOUNT threshold, meaning the threshold was so large that it had no effect.1

The DCOUNT algorithm still outperformed the DEP algorithm because of the additional

heuristics used by the DCOUNT algorithm. The source operand availability heuristic al-

lows non-critical dependences to be ignored, and the “least-loaded” cluster heuristic im-

proves load balancing. Since the DCOUNT algorithm incorporates these heuristics, the

IPC does improve slightly as the number of ports is increased.

The load balancing heuristics used in the DCOUNT algorithm decrease the amount

of functional unit contention as compared to the DEP algorithm. However, it also means

fewer instructions are steered to the same cluster as their source operands, which means the

number of instructions waiting to receive source operands from other clusters increases.

Figure 5.6 shows the percentage of instructions whose last source operand comes from

another cluster. Except for two configurations simulating the vpr benchmark, the top set of

bars are the percentages when using the DCOUNT algorithm, and the bottom set of bars are

the percentages when using the DEP algorithm. Overall, for both algorithms, the number

of instructions that are delayed decreases as the number of issue ports increases because

1Simulations revealed that smaller DCOUNT thresholds were effective on 8-wide machines with four
clusters because they had more functional unit contention. Machines with this configuration performed best
using a DCOUNT threshold between 16 and 32.

102

more instructions can be steered to their desired cluster.

Figure 5.7 shows the fraction of instructions whose execution is delayed because

of functional unit contention. Except for running the gzip benchmark with four issue ports

per cluster, the top set of bars are the percentages when using the DEP algorithm. As the

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

P
er

ce
nt

ag
e

of
 I

ns
tr

uc
ti

on
s

W
ai

ti
ng

DCOUNT, 4 ports
DEP, 4 ports
DCOUNT, 6 ports
DEP, 6 ports
DCOUNT, 8 ports
DEP, 8 ports
DCOUNT, 12 ports
DEP, 12 ports
DCOUNT, 16 ports
DEP, 16 ports

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

am
ea

n

Figure 5.6: Fraction of instructions waiting for the last source operand from another cluster.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

F
ra

ct
io

n
of

 I
ns

tr
uc

ti
on

s
D

el
ay

ed

DEP, 4 ports
DCOUNT, 4 ports
DEP, 6 ports
DCOUNT, 6 ports
DEP, 8 ports
DCOUNT, 8 ports
DEP, 12 ports
DCOUNT, 12 ports
DEP, 16 ports
DCOUNT, 16 ports

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

am
ea

n

Figure 5.7: Fraction of instructions delayed due to functional unit contention.

103

number of issue ports is increased, the fraction of instructions that are delayed increases

because the workload is not as evenly balanced.

5.1.1.4 FDRT Algorithm

Previous works proposing history-based steering algorithms have assumed each

cluster had the minimum number of issue ports (e.g., four ports per cluster in a 16-wide

machine with four clusters). There is a reason besides low scheduling latency why this is

advantageous. With this limitation, the fill unit can physically reorder the instructions in

the trace cache line, and instruction ordering within the trace cache line determines cluster

assignment. This means that no crossbar is needed in the front end of the pipeline. For ex-

ample, the first four instructions are issued to the first cluster; the second four are issued to

the second cluster; and so on. This may reduce the latency of the front-end of the pipeline,

although this latency may have been overlapped by other operations that occur in the front

of the pipeline such as decode and rename.

It was stated earlier that history-based algorithms have no knowledge of the mi-

croarchitectural state of the pipeline at the time that instructions are issued to the window.

For example, with the trace-cache cluster assignment algorithms, when the fill unit is as-

signing instructions in a trace packet to clusters, it does not know how full those clusters

will be when that trace cache line is fetched in the future. If the number of ports per cluster

were greater than four, then there may be a load balancing problem.

To illustrate the effects of increasing the number of issue ports, a trace cache (or

rather, the portion of the trace cache holding cluster assignments and enough information

to identify basic blocks forming trace cache packets) was added to the baseline model and

cluster assignment was performed using the FDRT algorithm [4]. This algorithm was de-

scribed in Section 2.3.2. The trace cache held entries for 4096 lines (or 65536 instructions),

and was indexed similarly to the branch predictor. Each entry needs one or two bits to in-

104

dicate the cluster assignment, depending on the number of issue ports per cluster and the

amount of instruction reordering done by the fill unit. Figure 5.8 shows the performance

when using the FDRT algorithm to assign instructions to clusters when scaling the number

of issue ports. The IPC actually decreased as the number of ports was increased because

load balancing was a problem.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

In
st

ru
ct

io
ns

 p
er

 C
yc

le

FDRT, 4 ports
FDRT, 6 ports
FDRT, 8 ports
FDRT, 12 ports
FDRT, 16 ports

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 5.8: IPC using the FDRT history-based cluster assignment.

5.1.1.5 Conclusions

From investigating the effect of the number of issue ports per cluster on IPC for

many steering algorithms, we conclude that for most algorithms, fewer than 16 issue ports

per cluster are needed to obtain the highest performance. There are three reasons for this.

First, the scheduling windows with fewer ports have a lower latency. In some cases it may

be advantageous to increase the number of entries and reduce the number of ports in order

to implement a window with a specified latency. Second, none of these steering algorithms

are optimal. For some algorithms, having fewer ports is beneficial because the limitation

acts as a load-balancing heuristic, improving the steering algorithm. Third, it is rarely the

105

case that all last-arriving source operands of all instructions in a fetch packet reside in the

same cluster, so there is no need to steer all instructions to the same cluster. Even if all

instructions in a fetch packet share the same source operand, they would not all be able to

execute in the same cycle because of contention for functional units.

Table 5.2 lists the harmonic means of the benchmarks using the configurations

shown in this section. Considering that the FDRT algorithm does not add any latency

to the front-end of the pipeline, this algorithm is a good steering candidate when using few

ports per cluster. This algorithm cannot be used with many ports per cluster, though. The

Modulo steering algorithm is extremely simple in comparison to the other front-end algo-

rithms, but its relative performance is best when using the maximum number of ports per

cluster.

Algorithm 4-port 6-port 8-port 12-port 16-port

MOD 2.03 2.07 2.11 2.15 2.19
DEP 2.15 2.21 2.23 2.24 2.24

DCOUNT 2.14 2.20 2.23 2.25 2.27
FDRT 2.10 2.10 2.06 2.05 2.02

Table 5.2: IPC Harmonic Means.

5.1.2 Full windows

Another issue that must be addressed by the steering algorithm is what happens

when an instruction’s preferred cluster is full. Options include stalling the entire fetch

packet, stalling part of the fetch packet (while keeping in-order issue), or steering the in-

struction to an alternate cluster. Stalling will be investigated in Section 5.2.5. With some

steering algorithms, it is quite common for an instruction’s desired cluster to be full. Fur-

thermore, when the number of ports per cluster is greater than the minimum, it is more

likely for the scheduling windows to become unbalanced. With an unlimited number of

106

issue ports and a pure dependence-based algorithm, all instructions would be steered to the

same cluster until that cluster reached full capacity. Most steering algorithms incorporate

load-balancing heuristics to prevent this from happening, however.

Figure 5.9 shows the fraction of instructions for which the preferred cluster was un-

available when using FDRT, DCOUNT, and dependence-based steering algorithms, with 4

and 8 write ports per cluster. The results of six configurations are shown. The first three

configurations for each benchmark are the configurations with 4 write ports for each issue

window, and the last three are the 8-port configurations. Each bar is divided into three parts.

The black part shows the fraction of instructions that did not get assigned to their preferred

cluster because all ports for that cluster had been claimed by earlier instructions within

the same fetch group. Note that this never happens with the FDRT algorithm. With this

algorithm, exactly four instructions from a 16-instruction fetch packet are assigned to each

cluster. The gray part of each bar is the fraction of instructions whose preferred cluster’s is-

0

10

20

30

40

50

60

70

80

90

100

D
es

ir
ed

 C
lu

st
er

 A
va

ila
bi

lit
y

(%
)

no ports
full
free

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

am
ea

n

Figure 5.9: Percent of instructions with desired cluster free or unavailable. Six configu-
rations from left to right: FDRT, 4-port; DCOUNT, 4-port; DEP, 4-port; FDRT, 8-port;
DCOUNT, 8-port; DEP, 8-port.

107

sue window was full. For the dependence-based steering algorithm, the average number of

instructions that do not get their preferred cluster because all ports have been used by ear-

lier instructions within the same fetch group decreased from 31% to 14% when increasing

from 4 to 8 ports per cluster. However, the number of instructions whose preferred cluster

was full increased from 7.4% to 13.8%. This is because the dependence-based algorithm

does not use an explicit load-balancing heuristic. The limitation of the number of ports

acts as a natural load-balancing heuristic for this algorithm. Because the DCOUNT algo-

rithm does have some load-balancing heuristics, more instructions can be steered to their

preferred cluster. It should be noted that the preferred cluster, as determined by the steering

algorithm, is not always the best cluster in the long run. For example, for the 8-port config-

urations, 85% of instructions got their preferred cluster with the DCOUNT algorithm while

only 76.4% of instructions got their preferred cluster with the dependence-based algorithm,

yet these two configurations had about the same average IPC.

5.1.3 Critical Loops Within the Steering Logic

Dependence-based steering algorithms are inherently serial. Given an instruction B

that depends on an instruction A, B will be steered to A’s cluster using a pure dependence-

based algorithm. This means that the cluster assignment for B cannot be made until the

cluster assignment for A has been made. Note that this is not true for register renaming, in

which all instructions in an issue packet can be renamed in parallel. With register renam-

ing, instruction B’s destination physical register is independent of A’s destination register.

All destination registers can hence be assigned in parallel2. The process of identifying the

source operands is described in Section 3.1.2. Pipelining the steering logic does not allevi-

ate the serialization problem. Dependence-based steering algorithms create a serialization

2This assumes that physical register numbers are independent of cluster assignment, as is the case for the
baseline clustered machine.

108

bottleneck in an otherwise instruction-parallel pipeline.

The critical loop of these algorithms is the process of assigning one instruction to

a cluster given the cluster assignments of all previous instructions. A conceptual view of

three such loops is shown in Figure 5.10. Each box represents the logic needed to im-

plement the steering heuristic for steering one instruction. The RAT contains cluster as-

signments for all architectural registers produced by instructions in previous fetch packets.

The inputs on the left side of each box are the locations of the source operands, which

may come either from the RAT, or a bypass from an earlier instruction in the same fetch

packet. The inputs on the top are the cluster assignments for all older instructions in the

fetch packet. For a pure dependence-based algorithm that assigns instructions to the same

location as its “left” source operand (as determined by the binary instruction format) and

does not consider the number of instructions already assigned to each cluster or the full-

ness of each cluster, the critical path through this logic is just the path through all muxes.

However, if metrics such as cluster fullness or the number of available ports left over after

assigning earlier instructions are needed by the steering algorithm, the critical path may

be much longer. These metrics must be considered by the steering algorithm unless issue

CLUSTER

ASSIGNMENT

CLUSTER

ASSIGNMENT

CLUSTER

ASSIGNMENT

Results of
Dependence
Analysis

SLOT 2
RAT output

RAT output
SLOT 1

SLOT 0

RAT output

SLOT 0 Cluster Assignment

SLOT 1 Cluster Assignment

SLOT 2
Cluster

Assignment

Figure 5.10: Serialized Steering Logic.

109

is stalled when a resource is unavailable. Scalable dependence-based algorithms will be

discussed in Section 5.2.2.

5.2 Steering Improvements

5.2.1 Virtual Cluster Assignments

The history-based algorithms have the advantage that they remove the steering al-

gorithm from the front end of the processor pipeline, which would probably reduce the

branch misprediction penalty. Additionally, they may remove the crossbar that is needed

to route instructions to clusters when the number of issue ports per cluster is the minimum

(i.e. the total issue bandwidth is equal to the fetch bandwidth). Increasing the number of

ports has been shown to improve IPC for previous steering algorithms. However, when the

number of issue ports per cluster is greater than the minimum, load balancing becomes a

problem for history-bsed algorithms as was demonstrated in Figure 5.8. The problem is

that for several consecutive fetch packets, a majority of the instructions get assigned to the

same cluster because the algorithms utilize information about the dependence graph. Over

time, some clusters may become full while others are relatively empty.

To correct the load balancing problem, we treat the cluster assignment assigned by

the fill-unit as a virtual assignment. That assignment is then renamed in the front-end of

the pipeline to a physical cluster. The logic required to rename the clusters is simple and

does not increase the length of the front-end of the pipeline because it is placed in parallel

with other longer-latency logic such as decode logic. Cluster renaming does not require

the complex logic needed for cluster assignment such as data dependence analysis and

counting the number of instructions from the checkpoint assigned to a given cluster. That

logic can be kept in the fill-unit. On the front-end of the pipeline, only a simple virtual to

physical mapping is needed.

110

Virtual cluster assignments were added to the best-performing previously published

history-based algorithm: FDRT [4]. This algorithm was described in Section 2.3.2. When

using cluster renaming in conjunction with the FDRT algorithm in the fill-unit, the FDRT

algorithm is not modified. The front-end of the pipeline contains a renamer that creates a

1-to-1 mapping from virtual to physical cluster numbers. The mapping is modified when

one of the clusters desired by an instruction is full. The mapping changes as follows:

the mappings of the most and least-loaded clusters are swapped, and the mappings of the

other two clusters are swapped. Figure 5.11 shows the speedups achieved over the original

FDRT algorithm when clusters are remapped dynamically. Speedups of the 6, 8, 12 and

16-port configurations with remapping are compared to the FDRT algorithm using only 4

issue ports per cluster, since that configuration had the highest IPC when using the original

FDRT algorithm. Overall, using virtual cluster assignments with the FDRT algorithm can

0.0

2.0

4.0

6.0

8.0

10.0

IP
C

 I
m

pr
ov

em
en

t
(%

)

6 ports
8 ports
12 ports
16 ports

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 5.11: Speedups of FDRT with cluster remapping (FDRT+VC) over original FDRT
with 4 ports.

111

allow up to a 4% improvement in IPC, on average.3

5.2.2 Scalable Dependence-Based Algorithms

The serialization created by the critical steering loop can be avoided by using depen-

dence chain depths to limit the number of instructions in a fetch packet steered per cycle.

A similar technique was used by Ernst et al. [22] to reduce the critical path of instruction

prescheduling logic [44]. With their technique, dependence chains were limited to a depth

of 2 in a 4-wide pipeline. If a group of instructions had a chain depth greater than 2, then

instruction issue was stalled. They note that this has little performance degradation because

most of the instructions that are stalled are not ready for execution anyway. Figure 5.12

shows the fraction of retired instructions at a given chain depth. If an instruction has no

source operands produced by older instructions within the same fetch packet, then it has a

3The mcf benchmark performed worse with more than 4 issue ports per cluster because the contention for
data cache ports was increased. Each cluster has access to only a subset of the L1 data cache ports, and loads
that were steered to the same cluster contended for those ports.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

F
ra

ct
io

n
of

 I
ns

tr
uc

ti
on

s
(%

)

depth 6+
depth 5
depth 4
depth 3
depth 2
depth 1

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

am
ea

n

Figure 5.12: Chain depths of retired instructions.

112

chain depth of 1. Otherwise, an instruction takes the maximum chain depth of all parents

residing in the same fetch packet and adds 1. For example, in gzip, 59% of instructions

did not have source operands produced by older instructions in the same fetch packet. 24%

of instructions had a parent in the same fetch packet, but no grandparents within the same

fetch packet. On average for all benchmarks, 20% of instructions had a chain depth of 3 or

greater, meaning at least one of their grandparents was in the same fetch packet.

Because very few instructions have a large chain depth, dependence-based algo-

rithms can stall issue when an instruction’s chain depth exceeds a certain limit without a

large performance degradation. Figure 5.13 shows the reduction in IPC of the DEP algo-

rithm when the dependence chains were limited to depths of 2, 3, and 4. For example, with

a maximum chain depth of 3, if an instruction were in the same fetch packet as any of its

great-grandparents, then its issue (along with the issue of all younger instructions) would

be stalled until the following cycle. These slowdowns are relative to a 16-wide pipeline

with four clusters using a dependence-based algorithm that tries to send instructions to the

same cluster as their “left” source operand. As long as the cluster assignment logic allows

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

C
ha

ng
e

in
 I

P
C

 (
%

)

DEP+lim-2
DEP+lim-3
DEP+lim-4

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 5.13: Limiting dependence chain depths to 2, 3, and 4 (DEP+lim-N vs. DEP).

113

dependence chain depths of at least 3, IPC is not significantly degraded.4

5.2.3 Out-of-Order Steering

Cluster assignment for all previous front-end algorithms was done in program order

one instruction at a time (still several per cycle in a superscalar processor). However, as

shown in Figure 4.3, many instructions have no cluster preference. To exploit this fact,

we could assign instructions to clusters out of program order so that instructions with no

cluster preference don’t get assigned to a cluster that is in high demand, preventing younger

instructions from being steered to that cluster. Note that the process of issuing instructions

into the window is still performed in program order.

Figure 5.14 shows the performance of a limited out-of-order steering algorithm,

called 2PASS, compared to the DCOUNT and DEP algorithms when using four and six

ports per cluster in 4-cluster configurations. The algorithm used here is quite simple: it is

a two-pass dependence-based algorithm. Two passes are made over each fetch packet of

instructions. On the first pass, only instructions that are waiting for a source operand to be

produced are assigned to a cluster. Those instructions are assigned to clusters using the DEP

algorithm. The second pass assigns all remaining instructions to clusters. An instruction

cannot be assigned to a cluster during the first pass unless its parent was assigned to a

cluster during the first pass. The second pass does not use dependency-graph information;

instructions are simply assigned to the least-loaded cluster. This algorithm uses the same

heuristics as the DCOUNT algorithm, but has the advantage of assigning instructions out-

of-order. This allows more instructions to be placed in the same cluster as their source

4The large performance degradation in bzip2 with a chain depth limit of 2 is due to the fact that frequently
a chain of 3 or more instructions ends in a mispredicted branch. The execution of the mispredicted branch gets
delayed, thus increasing the total number of cycles spent fetching the wrong path. The instruction window
utilization was reduced by 8% for this configuration, while the number of cycles spent fetching down the
wrong path increased by 34%.

114

0.0

1.0

2.0

3.0

4.0

In
st

ru
ct

io
ns

 p
er

 C
yc

le

DEP, 4 ports
DCOUNT, 4 ports
2PASS 4 ports
DEP, 6 ports
DCOUNT, 6 ports
2PASS 6 ports

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 5.14: IPC for DEP, DCOUNT, and a 2-pass out-of-order algorithm with 4 and 6
ports per cluster.

operands, particularly when the number of issue ports for each cluster is small. When

compared to the DCOUNT algorithm, it improves IPC by 1.5% when using 4 issue ports

per cluster, and by 1% with 6 ports. Because this algorithm is most beneficial when using

few ports per cluster, results with more issue ports were not shown.

A second out-of-order steering algorithm, called a tree-based steering algorithm,

combines out-of-order steering with virtual cluster assignments. This steering algorithm

has three steps: the first two steps assign instructions to virtual clusters; the third step maps

the virtual clusters to physical clusters. In the first step, instructions in a fetch packet are

assigned to groups using a dependence-based heuristic. If an instruction is the first one

in the fetch packet or the instruction’s source operands were produced by instructions in

previous fetch packets, then the instruction is allocated a new group identifier. If an in-

struction’s source operand was produced within the same fetch packet, then the instruction

is assigned to the same virtual cluster as its source operand, so long as the number of in-

structions in that virtual cluster does not exceed the number of scheduling window write

115

ports. By default, as with the other dependence-based algorithms, the “left” source operand

is used, unless that operand was produced by an instruction in a different fetch packet. Be-

cause the dependency graph formed by the instructions in a virtual cluster form a tree, the

instructions in a given virtual cluster will henceforth be called a trees. There may be more

or fewer trees than physical clusters. If all 16 instructions in a fetch packet are independent,

then they will form 16 separate trees.

Figure 5.15 shows an example of the dependency graph of the instructions in a

fetch packet from the eon benchmark. Dependences to instructions in earlier fetch groups

are not shown since they are not used by the algorithm. The numbers in each node indicate

the program order of the instructions, and the dotted lines mark the groups of instructions

that form trees. Instructions 0, 1, 3, 5, 10, and 14 have no source operands generated by

older instructions in the same packet, so they each start a new tree. Hence, there are a total

of six trees for this fetch packet. Note that instruction 7 is placed in the tree with instruction

2 because it uses the dependence indicated by its left source operand, leaving instruction 5

to be in a tree of its own (there is no backwards propagation of the dependence graph).

2

0

97

5

4

6

1

8

11

12

13

15

3 10 14

lef
tri

gh
t

Figure 5.15: Dependency graph and trees for one fetch packet.

116

The second step is to map trees to virtual clusters. For this algorithm, the number

of virtual clusters is the same as the number of physical clusters: four in the baseline

clustered configuration. Several heuristics were evaluated to group the trees into clusters.

Ideally, all instructions in a given tree will be mapped to the same cluster, but this does

not always happen due to a limit on the number of write ports in each cluster. The most

complex heuristic sorts the trees according to the number of instructions they contain, and

minimizes the number of cuts while mapping the trees to clusters. A simpler algorithm was

implemented as follows: first, any trees larger than N instructions (where N is the number

of issue ports per cluster) are broken. The N oldest instructions form a sub-tree, then the

next N form another tree, and so on. For example, in Figure 5.15, instructions 1, 4, 6, and

8 form a tree, and instructions 11, 12, 13, and 15 form a tree, assuming four issue ports

per cluster. Second, the trees are assigned to virtual clusters from largest to smallest. For

the example above, the three trees each with four instructions are assigned a virtual cluster,

and the remaining four trees with one instruction are assigned the last virtual cluster. While

this is complex because the trees must be sorted by size, the fill unit can perform this work

(i.e. forming trees and virtual cluster assignments) in parallel for each fetch packet, and the

information is stored in a trace cache.

The third step assigns virtual clusters to physical clusters according to dependences:

a virtual cluster is mapped to the physical cluster which has the greatest number of live-ins

for the instructions in the virtual cluster. Figure 5.16 shows the improvements of using

this algorithm over the dependence-based algorithm. This algorithm was beneficial when

using fewer ports per cluster. However, IPC was lower when using many issue ports per

cluster. This is because the algorithm is effective at reducing the number of inter-cluster

communications, but there was a larger amount of contention for execution resources with

this algorithm.

Out-of-order windows spanning more than one fetch group are not considered be-

117

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

C
ha

ng
e

in
 I

P
C

 (
%

)

4 ports
6 ports
8 ports
12 ports
16 ports

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 5.16: Speedups of tree-based steering (TREE) over dependence-based (DEP).

cause they would potentially delay instruction issue. They would also increase the number

of steering stages in the pipeline, thus increasing the branch misprediction penalty. During

recovery, it is beneficial to issue all instructions in the first fetch group after the mispre-

dicted branch as soon as possible.

5.2.4 Secondary Heuristics

Several additional metrics have been considered in previous steering algorithms

such as the DCOUNT steering algorithm. Source Availability indicates whether or not an

instruction’s source operand has already been produced when an instruction is assigned to a

cluster. Cluster Availability depends on both whether or not a cluster is full, and whether or

not there are currently write ports available for a given cluster. This section discusses how

these metrics can be used by dependence-based steering algorithms, and how they affect

performance.

118

-3.0

-2.0

-1.0

0.0

1.0

2.0

C
ha

ng
e

in
 I

P
C

 (
%

)

4 ports
6 ports
8 ports
12 ports
16 ports

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 5.17: Speedups when considering availability of source operands (DEP+avail vs.
DEP).

5.2.4.1 Source Operand Availability

One important piece of information used in some steering algorithms is whether

or not an instruction’s source operands are already available at the time an instruction is

assigned to a cluster. Many source operands have already been produced when instructions

are first placed in the window (see Figure 4.3). If a source operand is already available in

all clusters, then there is no need to assign the instruction to the same cluster in which the

source operand was produced. Hence, a secondary heuristic, if one exists, can be used for

cluster assignment.

Figure 5.17 shows the performance improvement of a dependence-based algorithm

that considers source operand availability over a simple dependence-based steering algo-

rithm that does not consider source operand availability. In both algorithms, if an instruc-

tion does not have a source operand, the instruction is assigned to a random cluster. Results

were shown for five configurations using different numbers of write ports per cluster. Keep

119

in mind that, as shown in Figure 5.7, the configurations with many ports have higher con-

tention for functional units. The source operand availability heuristic is effective at reduc-

ing this contention. It allows the steering logic to distribute instructions among the clusters

more evenly because the data dependence graph is not strictly used in determining cluster

assignments. For instance, the fraction of instructions delayed due to limited functional

units is reduced from 8.6% to 6.2% in the 16-port configuration and 7.6% to 5.5% in the

12-port configuration.

5.2.4.2 Cluster Fullness

A second heuristic used by many steering algorithms is Cluster Fullness. This could

be simply knowledge of which scheduling window contains the fewest instructions, or a

measure of imbalance such as the DCOUNT heuristic. If an instruction has no cluster pref-

erence based on source operands, it can be assigned to the least-loaded cluster to improve

workload balance. Figure 5.18 shows the performance improvement of a dependence-based

steering algorithm that assigns instructions with no source operands to the least-loaded

cluster over a dependence-based steering algorithm that assigns instructions with no source

operands to a random cluster (same baseline as used in Figure 5.17). This heuristic alone

does not add much benefit. There is a small benefit for the configurations with many ports

per cluster since these have the most resource contention.

5.2.4.3 Combining the load and avail Heuristics

The two heuristics previously described, knowledge of the least-loaded cluster com-

bined with knowledge of source operand availability, can be combined for further perfor-

mance improvements. Figure 5.19 shows the IPC improvements of an algorithm that steers

instructions to the cluster where their source operands will be produced, or to the least

loaded cluster if either they have no source operands or their source operands have al-

120

-1.5

-1.0

-0.5

0.0

0.5

1.0

C
ha

ng
e

in
 I

P
C

 (
%

)

4 ports
6 ports
8 ports
12 ports
16 ports

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 5.18: Speedups when considering least-loaded cluster (DEP+load vs. DEP).

-2.0

-1.0

0.0

1.0

2.0

3.0

C
ha

ng
e

in
 I

P
C

 (
%

)

4 ports
6 ports
8 ports
12 ports
16 ports

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 5.19: Speedups when considering both source availability and the least-loaded clus-
ter (DEP+load+avail vs. DEP).

ready been produced. This algorithm is compared to the same baseline algorithm as used

in Figures 5.17 and 5.18. When these heuristics are combined, they result in super-linear

121

speedups for the configuration with 16 ports per cluster.

5.2.4.4 Last-Source Prediction

With dependence-based algorithms, instructions are steered to the cluster contain-

ing their “left” source operand if they have more than one operand, unless an additional

heuristic suggests to do otherwise. However, if an instruction is waiting for two source

operands to be produced, it is desirable to steer the instruction towards the cluster con-

taining the operand that will be produced last. By predicting which source operand will

be produced last and steering instructions toward the cluster containing the predicted-last

operand, these instructions can frequently eliminate many inter-cluster forwarding delays.

Simulations were run when adding a last-source predictor [64] to the steering logic.

The last-source predictions are made using 2-bit saturating counters stored along with each

instruction in the instruction cache. When an instruction is fetched, the upper bit of the

counter specifies whether the first or second parent would finish last. The prediction accu-

racy when using a 4KB Icache is 92%. Figure 5.20 shows the improvement in IPC when

adding this predictor (lsp) to the DEP algorithm. On average, there was a 1% improve-

ment for the configuration with 4 issue ports per cluster, and a 1.6% improvement for the

configuration with 6 issue ports. Despite the modest improvement in IPC, this heuristic

did effectively reduce the number of instructions that had to wait because of inter-cluster

forwarding delays. This metric is shown in Figure 5.21. The top set of bars in this graph are

the fraction of instructions delayed using the original DEP algorithm, and the bottom set

of bars are the results when adding last-source prediction (DEP+lsp). On average, there

was a 14% reduction in the fraction of instructions waiting in the 4-port configuration, and

a 21% reduction in the 16-port configuration.

The lsp heuristic was also implemented with the DEP+load+avail, DCOUNT,

and TREE algorithms. The performance was increased by 1 to 2% when adding last-

122

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
ha

ng
e

in
 I

P
C

 (
%

)

DEP+lsp, 4 ports
DEP+lsp, 6 ports
DEP+lsp, 8 ports
DEP+lsp, 12 ports
DEP+lsp, 16 ports

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 5.20: Change in IPC when adding last-source prediction to the DEP algorithm
(DEP+lsp vs. DEP).

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

F
ra

ct
io

n
of

 I
ns

tr
uc

ti
on

s
(%

)

DEP, 4-port
DEP+lsp, 4-port
DEP, 6-port
DEP+lsp, 6-port
DEP, 8-port
DEP+lsp, 8-port
DEP, 12-port
DEP+lsp, 12-port
DEP, 16-port
DEP+lsp, 16-port

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 5.21: Fraction of instructions getting last source from another cluster (DEP,
DEP+lsp).

source prediction to the DEP+load+avail algorithm. The performance improvement

when adding lsp to the TREE algorithm was less than 1%, and there was no noticeable

improvement when adding lsp to the DCOUNT algorithm because the DCOUNT and

123

TREE algorithms already incorporate several steering heuristics.

5.2.5 Steer or Stall?

If an instruction cannot be steered to its desired cluster, it could either be steered to

an alternate cluster according to a secondary heuristic or the fetch packet could be stalled

until the instruction could be steered to its desired cluster. If the instruction is steered to an

undesired cluster, it would incur an inter-cluster communication penalty. If the fetch packet

were stalled, younger instructions would also be stalled due to the in-order issue constraint.

This could also lower window utilization and possibly prevent younger, ready instructions

from executing.

The DCOUNT algorithm was investigated using two heuristics for stalling pack-

ets: (1) stall a fetch packet when an instruction’s desired cluster was full, and (2) stall a

fetch packet when there was no available write port for the desired cluster. Both techniques

resulted in an IPC degradation. Figure 5.22 shows the change in IPC when adding the

first heuristic to the DCOUNT algorithm, compared to the original DCOUNT algorithm in

which an instruction is assigned to the least-loaded cluster if its desired cluster is unavail-

able. This heuristic is effective at reducing the number of inter-cluster communications, as

shown in Figure 5.23. The fraction of instructions that are delayed due an inter-cluster

bypass is reduced on average by 35% for the 4-port configuration, and 17% for the 16-port

configuration. However, window utilization is decreased. Figure 5.24 shows the average

number of instructions that are in the instruction window each cycle. (This includes cycles

in which the window is empty due to branch mispredictions.) The top bars are the results

for the original DCOUNT algorithm, while the bottom bars are the results of the DCOUNT

algorithm with the stalling heuristic. The reduction in inter-cluster communication does

not make up for this decrease in window utilization.

The second stalling heuristic, stalling when there was no free port for the de-

124

-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

C
ha

ng
e

in
 I

P
C

 (
%

)

DCOUNT, 4 ports
DCOUNT, 6 ports
DCOUNT, 8 ports
DCOUNT, 12 ports
DCOUNT, 16 ports

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 5.22: Change in IPC when stalling due to a full desired cluster, relative to using
DCOUNT secondary heuristics (DCOUNT+S vs. DCOUNT).

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

F
ra

ct
io

n
of

 I
ns

tr
uc

ti
on

s
(%

)

DCOUNT, 4-port
DCOUNT+S, 4-port
DCOUNT, 6-port
DCOUNT+S, 6-port
DCOUNT, 8-port
DCOUNT+S, 8-port
DCOUNT, 12-port
DCOUNT+S, 12-port
DCOUNT, 16-port
DCOUNT+S, 16-port

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 5.23: Fraction of instructions getting last source from another cluster (DCOUNT).

sired cluster, performed quite poorly with all steering algorithms evaluated. The first

stalling heuristic may be useful in clustered paradigms with a severe inter-cluster for-

warding penalty, however. This heuristic was evaluated with the PART model presented

in Section 4.4.1. This model had a large performance penalty when instructions were

125

0.0

100.0

200.0

300.0

400.0

A
vg

. N
um

. I
ns

ts
. i

n
W

in
do

w

DCOUNT, 4-port
DCOUNT+S, 4-port
DCOUNT, 6-port
DCOUNT+S, 6-port
DCOUNT, 8-port
DCOUNT+S, 8-port
DCOUNT, 12-port
DCOUNT+S, 12-port
DCOUNT, 16-port
DCOUNT+S, 16-port

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 5.24: Average number of instructions in the window. Top bars: original DCOUNT.
Bottom bars: DCOUNT while stalling due to full cluster.

not steered to the same cluster as their source operand. Figure 5.25 shows the results of

adding this heuristic to the original dependence-based algorithm with the PART model. The

dependence-based algorithm outperformed the DCOUNT algorithm for the PART model,

so IPC results for the PART model with DCOUNT steering are not shown.

Note that stalling heuristics should only be used with algorithms that incorporate

other heuristics for load balancing. For pure dependence-based algorithms, stalling when

the desired cluster is unavailable lowers IPC because there is no mechanism to steer in-

structions to an alternate cluster, and only one cluster is utilized. Hence, simulation results

are only shown for the DCOUNT algorithm.

5.3 Summary and Conclusions

Table 5.3 gives a very brief summary of most of the steering algorithms that have

been discussed. The first column gives the name of the algorithm that was used in the

graphs. The second and third columns provide a brief summary of what the algorithm does

126

Name Description Strengths Scale?

MOD Modulo-N Load balancing good
(typically N = num ports)

DEP Dependence-Based Avoids inter-cluster poor
communications.
Poor load balancing

FDRT Trace-cache algorithm Does not increase pipeline good
with pinning. depth.

DCOUNT DEP with load balancing Balances minimizing poor
heuristic built in inter-cluster communications

and load balancing

FDRT+VC FDRT with virtual Does not increase pipeline good
cluster renaming depth. Great with more than

minimum ports per cluster
2PASS Out-of-order DEP-based Avoids inter-cluster poor

communications. Better at load
balancing than DEP

TREE Out-of-order algorithm Avoids inter-cluster poor
using dependence trees communications

. . . +lim-N Limit dependence chain Makes a poorly scalable n/a
depth to N. algorithm scalable with

performance close to
original algorithm.

. . . +avail consider source availability Eliminate useless n/a
Secondary heuristic dependence information

. . . +load Least-loaded cluster is default. Improves load balancing n/a
(secondary heuristic)

. . . +lsp last-source prediction Avoids inter-cluster good
for 2-source instructions communications

. . . +S Stall if cluster unavailable. Avoids inter-cluster n/a
(no secondary heuristic) communications

Table 5.3: Summary of steering algorithms. Top: previously published algorithms. Middle:
algorithms introduced in this chapter. Bottom: additional heuristics.

127

-22.0
-20.0
-18.0
-16.0
-14.0
-12.0
-10.0
-8.0
-6.0
-4.0
-2.0
0.0
2.0
4.0
6.0
8.0

10.0

C
ha

ng
e

in
 I

P
C

 (
%

)

DEP, 4 ports
DEP, 6 ports
DEP, 8 ports
DEP, 12 ports
DEP, 16 ports

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 5.25: PART Model: Change in IPC when stalling due to a full desired cluster
(DEP+S vs. DEP).

and its strengths. The fourth column in this table indicates if the algorithm is scalable to

wide-issue or high-bandwidth machines. The first set of algorithms (MOD, DEP, FDRT,

and DCOUNT) are those which were previously published and are discussed in the related

work in Section 2.3. Performance results and analysis of these algorithms were presented in

Section 5.1. Three additional algorithms (FDRT+VC, 2PASS, and TREE) were introduced

in Section 5.2. The FDRT+VC and TREE algorithms use virtual cluster renaming, and the

2PASS and TREE algorithms use out-of-order steering.

The last set of entries in this table are the additional heuristics that can be used

in combination with other steering algorithms. The heuristic lim-N can be added to any

dependence-based algorithm to make it more scalable to wide-issue machines. Scalable

implementations of dependence-based algorithms were evaluated in section 5.2.2. The

DCOUNT algorithm uses the avail and load heuristics, but these can be used with

other dependence-based algorithms as well. The lsp and S heuristics can be added to any

dependence-based algorithm.

128

There are three primary benefits that have come from the work presented in this

chapter:

• scalability. Previous dependence-based algorithms were not scalable to high-band-

width machines because of the serialization point in the steering logic: an instruc-

tion’s steering assignment could not be finalized until each previous instruction’s

steering assignment was finalized. This chapter has introduced two techniques that

scale dependence-based algorithms. The first technique is to limit the depth of a

chain of dependent instructions that can be steered in one cycle. When limiting the

depth to four instructions, there is virtually no impact on IPC regardless of the num-

ber of issue ports per cluster. The second technique is to use dependence tree-based

algorithms that do not consider inter-fetch-packet dependences. These algorithms

are scalable, plus they showed an IPC improvement for machines with few ports per

cluster: 2% on average with four ports per cluster.

• virtual cluster assignments. Cluster renaming significantly improves the perfor-

mance of trace cache cluster assignment algorithms by allowing the number of issue

ports per cluster to be greater than the minimum while still distributing instructions

among all clusters. Improvements of up to 4% are possible when the number of issue

ports per cluster is increased to 12. While the windows with 12 issue ports have a

latency that is 16% longer than the windows with four ports, the number of entries

in the window can be scaled to accommodate the difference in latency. IPC results

of scaling the number of entries in a clustered machine were shown in Figure 4.9.

Decreasing the number of scheduling window entries from 256 to 192 (which would

more than make up for the increase in scheduling latency) would reduce IPC by less

than 1%, even with a state-of-the-art hybrid branch predictor.

• out-of-order steering algorithms. Out-of-order steering algorithms allow both im-

129

provements in load balancing and reduction in inter-cluster communication delays

in many configurations. The 2PASS algorithms improved IPC by a modest amount

(1.5%) over dependence-based algorithms. The TREE algorithm assigns instructions

to clusters out-of-order, and is scalable to high-bandwidth machines.

Clustering paradigms cannot be properly evaluated without using steering algo-

rithms appropriate for each paradigm. Conversely, steering algorithms that perform well

with some clustering configurations may perform poorly with others. Consequently, the

results shown for each clustering paradigm presented in Chapter 4 were produced us-

ing the most appropriate high-performance steering algorithm. All results shown in that

chapter use front-end steering algorithms. Front-end algorithms have demonstrated higher

performance than history-based algorithms, although using history-based algorithms to

store cluster assignments in the trace cache may reduce the latency of the front-end of

the pipeline, which in turn can reduce the branch misprediction penalty.

The latency of the scheduling window correlates with the number of issue ports.

Using 16 issue ports per cluster has a wakeup and tag broadcast latency that is 24% greater

than using four issue ports per cluster. This latency increases two components of the critical

scheduling loop: wakeup and tag broadcast. Select latency is unaffected, however. To

compensate for the increase in latency, the number of entries in the scheduling window can

be reduced to meet cycle time criteria if necessary. The effects on IPC and power of scaling

the window sizes were investigated in Chapter 4. For steering algorithms that improve with

a high number of ports, it is beneficial to reduce the window size, if necessary, in order to

use more issue ports. Power constraints must also be met, however. The effect of scaling

the number of ports on power consumption was also investigated in Chapter 4.

130

Chapter 6

Pipelined Instruction Scheduling

Dynamic instruction scheduling logic allows instructions to execute out of program

order as long as all data dependences are obeyed. Palacharla, Jouppi, and Smith [51] first

recognized the fact that the scheduling loop may limit performance. The scheduling loop

(see Figure 1.5) is a critical loop because an instruction cannot be scheduled until the in-

structions producing its source operands have been scheduled. Pipelining this loop over

multiple cycles prevents data dependent instructions from executing in back-to-back cy-

cles. This is illustrated in Figure 6.11. The SUB, which is dependent on the ADD instruc-

tion, cannot be scheduled until after the SUB is scheduled. When the scheduling logic is

pipelined over two cycles, IPC will be reduced as shown in Figures 1.2 and 1.3, but the

scheduling logic may limit clock frequency if it is not pipelined.

This dissertation proposes speculative scheduling as a means of breaking the critical

scheduling loop. This chapter evaluates two speculative scheduling techniques that can be

used to pipeline the scheduling logic without prohibiting back-to-back data-dependent ex-

ecution: speculative wakeup and select-free scheduling. Section 6.1 discusses speculative

wakeup, and Section 6.2 discusses select-free scheduling.

1In 1-cycle scheduling logic, there is one latch within the wakeup-select-broadcast loop. The location of
this latch is dependent on the scheduling logic implementation. Hence, in some pipeline diagrams, wakeup
and select will fall in the same cycle, while in others, where a different scheduler implementation is assumed,
wakeup and select operations may fall in consecutive cycles. However, the total time for the scheduling loop
must still take one cycle in order for dependent instructions to execute in back-to-back cycles.

131

Wake Select

Wake Select

Wake/

Select

Wake/

Select

ADD

SUB

EXE

EXE

RF

RF

...

...

ADD

SUB

SELECTWAKEUP
grantrequest

SELECTWAKEUP
grantrequest

ADD

SUB

EXE

EXE

RF

RF

...

...

1−cycle loop

2−cycle loop

pipeline diagram for 1−cycle loop

pipeline diagram for 2−cycle loop

Figure 6.1: One and Two-Cycle Scheduling Loops

6.1 Speculative Wakeup

With conventional dynamic scheduling, an instruction wakes up after its last parent

has been selected for execution. With Speculative Wakeup, an instruction assumes that

its parents will wake up and be selected for execution immediately after their last parents

were selected for execution. For example, in Figure 6.2, the grandparents of the SUB

instruction are the AND, OR, and XOR instructions. When using Speculative Wakeup,

the SUB instruction assumes that the ADD instruction is selected the cycle immediately

after the latter of the AND and OR instructions is selected (since the AND and OR are

both 1-cycle instructions). It also assumes that the NOT is selected one cycle after the

XOR is selected. Speculative Wakeup allows the scheduling logic to be pipelined over two

cycles by letting instructions wake up when their last grandparent’s tag is broadcast. The

scheduling loop is stretched over two cycles while still allowing dependent instructions to

execute in back-to-back cycles.

For example, Figure 6.3 shows a pipeline diagram assuming that the AND instruc-

tion is the last grandparent of the SUB to broadcast its tag when using conventional 1-cycle

scheduling. The arrows represent which tag broadcasts are waking up which instructions.

132

SUB’s parents

SUB’S grandparents

NOTADD

AND XOROR

SHIFT

MULT

SUB

Figure 6.2: A Dependency Graph

Select/
Broadcast

Execute/
Bypass

Execute/
Bypass

Execute/
Bypass

Select/
Broadcast

Select/
BroadcastWait

Wait

Wakeup

Wakeup

Wait

Reg Read

Wakeup

Reg Read

Reg Read

Clock: Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

AND:

ADD:

SUB:

1−cycle loop

Figure 6.3: Pipeline Diagram with Conventional Scheduling

Conventional scheduling forms a 1-cycle critical loop because the SUB’s tag broadcast is

one cycle after its wakeup, and it cannot wake up until the ADD’s tag is broadcast. Hence,

an instruction’s wakeup and select phases must complete within one cycle, even though the

clock edge may fall between them.

Figure 6.4 shows the same instructions being scheduled when 2-cycle scheduling

with speculative wakeup is used. In cycle 3, the SUB instruction wakes up when the AND

instruction broadcasts its tag. In this case, the scheduling logic forms a 2-cycle loop be-

cause the SUB’s tag is broadcast two cycles after it wakes up. However, a chain of depen-

dent instructions are still scheduled in back-to-back cycles.

133

Execute/
Bypass

Execute/
Bypass

Execute/
Bypass

Reg Read

Reg Read

Reg Read

Clock: Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

Wait

Wait

Wakeup

Wakeup

Wait WakeupSUB:

ADD:

AND: Select

Select

Select

Broadcast

Broadcast

Broadcast

2−cycle loop

Figure 6.4: Pipeline Diagram with Speculative Wakeup

As long as an instruction’s parents are single-cycle instructions, it will wake up

when its last grandparent tag is broadcast when using 2-cycle pipelined scheduling. How-

ever, if a parent is a multi-cycle instruction, the parent’s source tags are not needed by the

child. If the parent takes N cycles to execute, the child will wake up N-2 cycles after the

parent’s tag is broadcast (whereas with traditional 1-cycle scheduling the child would wake

up N-1 cycles after its parent’s tag was broadcast). For example, if the MULT instruction

in Figure 6.2 has a 4-cycle execution latency, the SHIFT instruction would wake up two

cycles after the MULT’s tag broadcast.

6.1.1 False Selection

An instruction may wake up based on its grandparents’ tags even if one of its parents

is delayed due to functional unit contention. A false selection would occur if that instruction

were selected for execution. Suppose the ADD was not selected for execution in Cycle 3 of

Figure 6.4. The SUB would still wake up and request execution since the AND’s tag was

broadcast in cycle 3. A false selection would occur if the SUB were selected for execution.

False selections only affect performance if the instructions that are falsely selected prevent

really ready instructions from being selected for execution. The mechanism to detect false

134

selections is explained in the following section.

6.1.2 Implementation

To support speculative wakeup, the rename logic must be modified to track grand-

parent dependences, and the wakeup logic must be modified to hold additional operand

tags. This section explains the modifications.

6.1.2.1 Rename Logic

For pipelined scheduling with speculative wakeup, the rename logic is responsible

for determining the destination tags of an instruction’s grandparents as well as the desti-

nation tags of its parents. Note that the destination tags of an instruction’s grandparents

are the same as the source operand tags of the parents. In order to determine the source

operand tags of the parents, the Register Alias Table must be augmented. Each map entry

is extended so that, in addition to the original physical register number, it contains the set

of physical register numbers needed to produce the original physical register number. In

other words, an entry contains the destination tag and source operand tags of the instruction

that updated the entry.

In addition to augmenting the Register Alias Table, the dependency analysis logic

must be modified. An instruction must obtain its parents’ source tags as well as the parents’

destination tags. Two multiplexors, called grandparent multiplexors are required for each

instruction being renamed (except for the first two instructions in the fetch group). One

example of such a multiplexor is shown in Figure 6.5. This is one of two grandparent

multiplexors for Op3, the third instruction in the fetch group. The first input to the MUX,

labeled Parent Preg(Op3 src1), is the pair of source operand tags from the RAT

entry of Op3’s first architectural source register. These two tags are selected when the

grandparent was in a previous fetch group (i.e. not instructions Op1 or Op2). The next

135

two pair of tags are the source operand tags for the first two instructions in the fetch group.

These tags are the outputs of the dependency analysis logic shown in Figure 3.3. The

control for this MUX is the same as the control used for the MUX to select the third

instruction’s first source tag shown in Figure 3.3. The grandparent multiplexors have the

same number of inputs as the source operand multiplexors, but each input contains two

tags instead of one. These muxes add at most one multiplexor input-to-output delay to the

critical path of the rename logic.

{Op1_src1 Tag, Op1_src2 Tag}

{Op2_src1 Tag, Op2_src2 Tag}

{Op3_GP1 Tag, Op3_GP2 Tag}

Control
Op3_src1 MUX

Parent_Preg(Op3_src1)

Figure 6.5: A Grandparent MUX for the 3rd Instruction in a Packet

6.1.2.2 Wakeup Logic

Even though instructions wake up using their grandparent tags when their parents

are single-cycle instructions, the parent tags are still needed to detect false wakeups. Hence,

the CAM arrays must store up to six tags per instruction (assuming two parents per instruc-

tion). This may increase the area of the scheduling window unless the window is wire-

bound from all of the tag buses. Section 6.2 discusses a simplification to save area where

fewer tags are needed.

The modified scheduling logic is shown in Figure 6.6. For simplicity, only the

Ready bits are shown. Other fields for each tag are similar to the ones in the original

scheduling logic shown in Figure 3.4. If a parent is a single-cycle instruction, then the cor-

responding grandparent pair of tags can be marked invalid (Ready bit set). An instruction

136

GP1 R GP2 R P1 R GP3 R GP4 R P2 R DEST TAG

LOGIC
SELECT

Destination Tag Bus

Request

LATCH

Confirm
Grant

Figure 6.6: Speculative Scheduling Logic

requests execution when, for each parent, either the parent is ready or the parent’s parents

are ready.

The Confirm line is used to verify that an instruction is really ready to execute and is

not a false selection. The confirm line is only asserted when all of the instruction’s parents

(not just grandparents) are ready. Assuming the parents are single-cycle instructions and

are not stalled, it is asserted one cycle after the request line. If the instruction is granted ex-

ecution and the Confirm line is asserted, then the instruction’s destination tag is broadcast.

An instruction cannot be removed from the window until after its grant is confirmed. This

may keep instructions in the scheduling window one cycle longer than with a conventional

scheduler.

6.1.3 Preventing Deadlock

Suppose the ADD was not actually selected for execution in Cycle 3 of Figure 6.4.

Then in Cycle 4, both the ADD and its child, the SUB, would request execution. If the

SUB had higher priority than the ADD, then deadlock may occur. In order to prevent

deadlock, the select logic must use a priority such as oldest-first, or a rotating priority so

that the ADD will not be starved of execution. With oldest-first selection priority, a child

137

will not be falsely selected for execution before the parent is selected, although they may

both be selected in the same cycle. If they were both selected in the same cycle, the child’s

execution grant would not be confirmed because it had not yet received its parent’s schedul-

ing tag, so the child would remain in the scheduling window and would not broadcast its

tag. When the scheduling window is clustered and the parent and child reside in different

clusters, the child may be granted execution before its parent. However, as before, the

child will remain in the window because its execution grant was not confirmed. As long

as all clusters schedule instructions in program order, the parent will eventually be selected

for execution. Oldest-first priority is assumed in all simulations, although a round-robin

priority mechanism would work as well.

6.1.4 Last-Source Prediction

Frequently, for instructions with two parents, it is easy to predict which source will

be broadcast last. Hence, it is easy to predict which pair of grandparents will broadcast the

last grandparent tag. With Last-Source Prediction, only the parents of the predicted-last

parent are stored in the scheduling entry. Hence, there are four tags per entry rather than

six: both parents, as needed for confirmation, and the two parents of the parent predicted

to be last. This will reduce the area of the scheduling window if it is in fact wire-bound.

The last-source predictions are made using 2-bit saturating counters stored along

with each instruction in the instruction cache. When an instruction is fetched, the up-

per bit of the counter specifies whether the first or second parent would finish last. If

the predictions are incorrect, instructions will eventually wake up when both parents have

broadcast their tags. At worst, this delays an instruction’s execution by one cycle. The

prediction accuracy when using a 4KB Icache is 92%, which is good enough given a 1-

cycle misprediction penalty. Performance results using last-source prediction are shown in

Section 6.1.5.

138

6.1.5 Performance Results

Speculative wakeup was evaluated using four machine configurations: (1) an un-

clustered 4-wide pipeline, (2) an unclustered 8-wide pipeline, (3) an unclustered 16-wide

pipeline, and (4) a 16-wide pipeline with four clusters using the DCOUNT steering al-

gorithm. The configurations with narrow execution widths are provided just to see the

effects of functional unit contention on scheduling behavior. All configurations have the

same size scheduling and instruction windows, so the narrow-width machines have a large

amount of functional unit contention. Figure 6.7 shows the difference in IPC of Speculative

wakeup versus conventional scheduling for these four configurations. The machines with

speculative wakeup have the same branch misprediction penalties as the machines with

conventional scheduling so that the results are not primarily determined by branch predic-

tion accuracy. For many benchmarks, there was little to no change in IPC so the bars are

not visible. The 4-wide configuration had about a 1% IPC degradation, while the others

had almost no degradation.2

False selections only occur when an instruction’s execution is delayed due to func-

tional unit contention. Figure 6.8 shows the fraction of retired instructions that were stalled

one or more cycles. The 4-wide configuration had the most contention for functional units.

The 16-wide clustered configuration had more stalls than the 16-wide unclustered config-

uration because instructions could only be scheduled on one of the four functional units

2The anomaly in perl is due to the fact that the indirect branch target address misprediction rate decreases
relatively by 15% (from 16.6% to 14.1%) when using a pipelined scheduler. This decrease in target address
misprediction rate in turn decreases the total number of cycles spent on the wrong path by 8%. To confirm
this, simulations were run using perfect indirect branch target address prediction. When this was used, specu-
lative wakeup performed 0.5% lower than conventional scheduling. The reason the target prediction rate can
change when changing the scheduling latency is that the indirect branch target buffer gets updated as soon
as the target address is known, before instructions retire. This means that wrong-path branches may possi-
bly update this buffer, and correct-path instructions may update this buffer out-of-order since they execute
out-of-order. This anomaly shows up again in Figure 6.11.

139

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

C
ha

ng
e

in
 I

P
C

 (
%

)

4-wide
8-wide
16-wide, 1 cluster
16-wide, 4 clusters

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 6.7: Performance of Speculative Wakeup compared to Conventional Scheduling.

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

F
ra

ct
io

n
of

 I
ns

tr
uc

ti
on

s
(%

)

4-wide
8-wide
16-wide, 1 cluster
16-wide, 4 clusters

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 6.8: Fraction of Retired Instructions with delayed execution due to functional unit
contention.

within their cluster. The higher the contention for functional units, the greater the chance

that instructions will wake up before they are really ready to execute.

Not all false selections prevent really ready instructions from being selected for ex-

ecution. If an instruction was falsely selected for execution but it did not contend with a

140

really ready instruction for a functional unit, then it has no impact on performance. Hence,

the 16-wide configuration is less likely to have instructions being stalled due to other in-

structions being falsely selected. Figure 6.9 shows two overlapped bars for each simulation:

the top bar is the number of times, per instruction, that an instruction on the correct path

was falsely selected. The bottom bar is the number of times, per instruction, that a false

selection prevented a really ready correct-path instruction from executing. Of the non-

clustered machines, the 4-wide configuration had the most false selections because it had

the highest contention for functional units. However, even though the 4-wide configuration

had over 2.3 times as much contention as the 8-wide configuration, it only had 36% more

false selections. This is because the scheduler selects instructions in program order, which

means many of the instructions that woke up too early in the 4-wide machine were not

selected for execution anyway.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

E
ve

nt
s

pe
r

In
st

ru
ct

io
n

4-wide, false selection
4-wide, stall
8-wide, false selection
8-wide, stall
16-wide, false selection
16-wide, stall
clustered, false selection
clustered, stall

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

0.23, 0.50, 0.57, 0.54

Figure 6.9: False Selections (top) and Scheduling Stalls (bottom).

In the 4-wide configuration, most of the false selections resulted in another really

ready instruction being stalled because the execution units were a tight bottleneck. In the

16-wide configuration, fewer of the false selections resulted in execution stalls of really

ready instructions. In the benchmarks gap and vortex, 16-wide configuration had more false

141

selections because there were enough functional units to select the younger instructions that

woke up too early for execution. Because the clustered configuration allowed children to

be falsely selected for execution before their parents, it had far more false selections than

the other configurations with strictly in-order scheduling.

The mcf benchmark had an unusually high number of false selections because of

instruction replays. The replays were caused by loads that were delayed because of con-

tention for the data cache read ports. Dependants of the load instructions were scheduled

before the loads were known to have been delayed. Most of the false selections in mcf did

not affect performance, however. In fact, generally most of the false selections are caused

by few instructions that are falsely selected over and over. Figure 6.10 shows the percent-

age of retired instructions that were falsely selected one or more times. When compared to

Figure 6.9, one can conclude that some instructions are falsely selected many times.

0.0

2.0

4.0

6.0

8.0

F
ra

ct
io

n
of

 I
ns

tr
uc

ti
on

s
(%

)

4-wide
8-wide
16-wide, 1 cluster
16-wide, 4 clusters

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

Figure 6.10: Fraction of Retired Instructions that were Falsely Selected.

142

6.1.5.1 Performance with Last-Source Prediction

Figure 6.11 shows the IPC degradation of speculative scheduling with a limit of

two grandparents as compared to conventional scheduling. There was almost no change

because most instructions don’t need to use four grandparent operands. Figure 6.12 shows

the fraction of instructions that had to actually reduce the number of grandparents used

for scheduling. Only about 18% of instructions had two single-cycle parents and at least

three grandparents that had not yet broadcast their tags to the BBT in the issue stage.

Even for the instructions that would have used three or more grandparents when not using

last-source prediction, the prediction accuracy of the last-source predictor, as shown in

Figure 6.13, was adequate enough to prevent IPC degradation. Figure 6.14 shows the

number of false selections per instruction. This is considerably higher than when using

regular speculative wakeup because if the last-source prediction is wrong, an instruction

may wake up several cycles earlier than it should have. As with speculative wakeup without

last-source prediction, most instructions that are falsely selected are falsely selected several

times, as one can see by comparing the number of false selections per instruction to the

number of instructions that were falsely selected in Figure 6.15.

When using speculative wakeup with last-source prediction, each entry of the sched-

uling window must have CAMs for four tags instead of just the two which are needed in

the baseline scheduler. The impact of the additional CAMs and tags on the latency of the

scheduling window is highly dependent on the scheduling window configuration. For a

unified 256-entry window with 16 tag broadcasts and 16 write ports, the wakeup latency is

increased by 85%. When the window is partitioned over 4 clusters and each cluster has only

4 issue ports, the increase in latency is only 4.7% because the area is bound by the wires of

the tag buses, not the CAM logic. Regardless of the configuration, because the wakeup and

tag broadcast comprise only a portion of the clock cycle (around a half for many config-

urations [51]), additional time is available when pipelining the scheduling logic over two

143

-2.0

-1.5

-1.0

-0.5

0.0

C
ha

ng
e

in
 I

P
C

 (
%

)

4-wide
8-wide
16-wide, 1 cluster
16-wide, 4 clusters

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 6.11: Relative IPC when using two grandparents compared to four grandparents.

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0
22.0
24.0
26.0
28.0
30.0
32.0

F
ra

ct
io

n
of

 I
ns

tr
uc

ti
on

s

4-wide
8-wide
16-wide, 1 cluster
16-wide, 4 clusters

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 6.12: Fraction of instructions limiting the number of grandparent scheduling tags.

cycles. This slack could be used to increase the size of the scheduling window to get gains

in IPC that will make up for the degradation in IPC caused by false selections. Further

reduction in the number of tags is possible as well [21].

144

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

M
is

pr
ed

ic
ti

on
 R

at
e

(%
)

4-wide
8-wide
16-wide, 1 cluster
16-wide, 4 clusters

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 6.13: Misprediction rate of the Last-Source Predictor.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

E
ve

nt
s

pe
r

In
st

ru
ct

io
n

4-wide, false selection
4-wide, stall
8-wide, false selection
8-wide, stall
16-wide, false selection
16-wide, stall
clustered, false selection
clustered, stall

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

0.23, 0.50, 0.58, 0.55

Figure 6.14: False Selections (top) and Scheduling Stalls (bottom), 2 grandparents.

6.2 Select-Free Scheduling

Select-free scheduling exploits the fact that most instructions are selected for exe-

cution the first cycle that they request execution. With select-free scheduling, instructions

are predicted to be selected for execution the first cycle they are awake, so it is a form

of speculative scheduling. Instructions broadcast their tags as soon as they wake up and

145

0.0

2.0

4.0

6.0

8.0

F
ra

ct
io

n
of

 I
ns

tr
uc

ti
on

s
(%

)

4-wide
8-wide
16-wide, 1 cluster
16-wide, 4 clusters

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

Figure 6.15: Fraction of Retired Instructions that were Falsely Selected, 2 grandparents.

request execution, before their selection has been confirmed. This reduces the amount of

logic in the critical scheduling loop. The select-free loop contains only the wakeup logic

and tag broadcast. This shortened scheduling loop is shown in Figure 6.16. The selection

logic may be pipelined over multiple cycles if necessary without affecting the execution of

dependent instructions in back-to-back cycles.

may be pipelined

WAKEUP SELECT

select−free loop

To Payload RAM

Figure 6.16: Select-Free Scheduling Loop

146

6.2.1 Collisions and Pileups

With select-free scheduling, instructions may broadcast their tags even when they

are not granted execution. A collision occurs when more instructions wake up than can be

selected, resulting in a misspeculation. For example, in Figure 6.17, suppose the MULT

and the SHIFT both wake up in the same cycle after the SUB’s tag is broadcast, but only

the MULT is selected for execution. The SHIFT is a collision victim and broadcasts its tag,

speculating that it is selected for execution, even though it is not.

SUB

SHIFT

ADD

LOAD

MULT

collision victim

pileup victims

Figure 6.17: Dependency Graph with Collision and Pileup Victims

Because a collision victim broadcasts its tag too early, its dependants wake up and

request execution too early. These instructions are called pileup victims. For example, the

ADD instruction will wake up when the SHIFT broadcasts its tag and requests execution

before it is really ready. The ADD in turn broadcasts its tag too early, causing the LOAD

to also wake up too early. Hence, a collision can cause a chain of pileups. The next section

explains how collision and pileup victims are detected and rescheduled.

147

6.2.2 Implementation

6.2.3 Array Schedulers

Select-free scheduling is implemented using an array-style scheduling window. De-

pendences are indicated using a dependency matrix rather than source operand tags. De-

pendency matrices were originally used in the context of scheduling to schedule memory

operations [56]. Recently, they have been used for scheduling register-register instructions

as well, and have been shown to have lower latency than CAM implementations for some

configurations [32].

With a dependency matrix, there is one row for each instruction waiting in the

window. This row contains a bit vector that indicates which resources are necessary for the

instruction to execute. Each bit corresponds to a particular resource. Resources may be

either source operands or hardware resources, such as functional units.

For example, Figure 6.18 shows a dependency graph and the contents of a wakeup

array for the instructions in the dependency graph. The instructions in entries 1–4 are the

SHIFT, SUB, ADD, and MULT instructions from the dependency graph. In this example,

the instructions that produced the values for the unspecified source operands of the SHIFT,

SUB, ADD, and MULT are available from the register file. The SHIFT instruction only

requires the shifter, so only the bit corresponding to the shifter is set. The SUB and ADD

instructions depend on the result of the SHIFT and require the ALU, and the MULT in-

struction depends on the result of the SUB and requires the multiplier. Instructions request

execution when all required resources are available and the SCHEDULED bit is not set.

Running vertically across the array are wires, called AVAILABLE lines, which in-

dicate which resources are available. The scheduling logic for one entry is shown in Fig-

ure 6.19. A wired-OR circuit may be used for this implementation. When the AVAILABLE

lines of all required resources (as indicated by set bits of the row) have been asserted and

the SCHEDULED bit is not set, the instruction requests execution. The select logic is a

148

SHIFT

ADD SUB

MULT

Dependency Graph

SC
H

E
D

U
L

E
D

1
1
1

1

1
1

SH
IF

T
E

R
A

L
U

M
U

L
T

IP
L

IE
R

E
N

T
R

Y
 1

E
N

T
R

Y
 2

E
N

T
R

Y
 3

E
N

T
R

Y
 4

ENTRY 1
ENTRY 2
ENTRY 3
ENTRY 4

Functional
Unit

Required

Result
Required
From ...

(SHIFT)

(MULT)

(SUB)
(ADD)

1

Wakeup Array

Figure 6.18: Dependency Graph and Corresponding Wakeup Array Contents.

priority circuit as in the CAM-based scheduler implementation. The output of the select

logic is used to set the SCHEDULED bit so that the instruction will not repeatedly request

execution until it is removed from the window. It also triggers the countdown timer associ-

ated with that entry to count the latency of the instruction’s execution, similar in behavior

to the COUNTER field of the CAM-based scheduler. After N − 1 cycles (assuming an

N -cycle latency) the AVAILABLE line associated with that instruction is set. The output

of the select logic also feeds the Payload RAM. In the previous example, there was a 1-to-1

correspondence between the rows of the scheduler and the AVAILABLE lines of source

operands, although this does not have to be the case.

When an instruction’s wakeup array entry is deallocated, it may still have dependent

instructions residing in the wakeup array. Because entries are deallocated soon after they

are scheduled, it is possible that the entry of one of its source operands may be re-allocated

to a younger instruction. Several implementations exist that avoid incorrect dependences.

For example, when an entry is deallocated, every wakeup array entry in the scheduling

window clears the bit corresponding to the deallocated entry.

149

RESOURCE
VECTOR:

SELECT

LOGIC

COUNTDOWN

TIMERS

A
L

U
 A

V
A

IL
A

B
L

E
M

U
L

T
IP

L
IE

R
 A

V
A

IL
A

B
L

E

SH
IF

T
E

R
 A

V
A

IL
A

B
L

E

E
N

T
R

Y
 1

 R
E

SU
L

T
 A

V
A

IL
A

B
L

E
E

N
T

R
Y

 2
 R

E
SU

L
T

 A
V

A
IL

A
B

L
E

E
N

T
R

Y
 3

 R
E

SU
L

T
 A

V
A

IL
A

B
L

E
E

N
T

R
Y

 4
 R

E
SU

L
T

 A
V

A
IL

A
B

L
E

A
N

D

Request
Execution

Grant RAM

PAYLOAD

Set

Reset

Reschedule

S

AVAILABLE
RESULT

Figure 6.19: Logic for One Wakeup Array Entry

6.2.4 Select-Free Implementation

With a matrix scheduler, there is no limit on the number of instructions that can

broadcast their “tags” (which are actually AVAILABLE lines) each cycle. To implement a

select-free scheduling loop using a matrix scheduler, the pipeline must be modified to detect

and reschedule collision and pileup victims. Figure 6.20 shows the modified pipeline. Two

new structures are added. The Collision Detection Logic identifies the collision victims.

This circuit is similar to the select logic, which is a priority circuit, except that rather

than selecting the N (where N is the number of instructions that can be selected) highest

priority requesting instructions, all requesting instructions except for the N highest priority

instructions are selected. These instructions must be rescheduled, so the SCHEDULED

bits of their scheduling entries (labeled “S” in Figure 6.19) are reset.

150

DETECT
LOGIC

COLLISION

SCORE−
BOARD

AND
REG
FILE

Pileup
Victims

Collision
Victims

LOGIC RAM
SELECTrequest grant PAYLOAD

reschedule

RENAME
STAGE

"tag broadcast"

ARRAY
WAKEUP

Figure 6.20: Schedulers with support for Select-Free Scheduling

The second structure added to the pipeline is a scoreboard. The scoreboard is used

to detect pileup victims. The scoreboard contains one bit per physical register that indicates

if the instruction producing that physical register has been successfully scheduled. After

an instruction is selected for execution, it accesses the Payload RAM to get the physical

register identifiers of its source operands. It uses those identifiers to index the scoreboard.

If the scoreboard bits of all source operands have been set, then the instruction is not a

pileup victim, and it sets the bit corresponding to its own destination register. Because the

scoreboard is accessed in parallel with the physical register file, it does not add any latency

to the pipeline.

After an instruction has been identified as a collision or pileup victim, it must be

rescheduled. Note that because modern schedulers speculate that loads will hit in the

Level-1 data cache and schedule dependent instructions accordingly, they must already

have support for rescheduling instructions [41, 45, 69]. The delay for detecting collision

victims is similar to the latency of the select logic. The pileup victims cannot be detected

until after the Payload RAM has been accessed; hence, it takes longer to reschedule them.

151

With the replay implementation used in all models, instructions are not removed

from the scheduling window until their execution has been confirmed. Hence, select-free

scheduling adds some pressure on the scheduling window since instructions that misspec-

ulate must reside in the window for a longer period of time. This may not be necessary

in alternative implementations of replay where instructions are removed and placed into a

separate buffer as soon as they are scheduled, and re-inserted upon misspeculation [45].

6.2.5 Performance Results

Figure 6.21 shows the impact on IPC when using select-free schedulers for 4-wide,

8-wide, and 16-wide machines as well as a 16-wide machine with four clusters. 3 These

are the same configurations as used in Section 6.1.5. The 4-wide machine had a 3% impact

on IPC, while the 8-wide and clustered machines both had about a 1% impact on IPC on

average. The reason that the 4-wide machine had the biggest performance impact is that

it had the most collision victims, as shown in Figure 6.22. Figure 6.23 shows the fraction

of instructions that are pileup victims. A collision victim may cause zero, one, or multiple

instructions to become pileup victims. On average, there were 0.65 pileup victims per

collision victim. The 16-wide machine had the most pileup victims per collision victim

(0.79) while the 4-wide machine had the fewest (0.46). This is because contention for

functional units was high enough in the 4-wide configuration that many of the “would-be”

pileup-victims were not selected for execution. By the time they were actually selected for

execution, their parents had actually been selected for execution.

3In the mcf benchmark when using the 8-wide configuration, the baseline machine actually has more
contention for data cache ports.

152

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

C
ha

ng
e

in
 I

P
C

 (
%

)

4-wide
8-wide
16-wide, 1 cluster
16-wide, 4 clusters

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

hm
ea

n

Figure 6.21: Performance of Select-Free Scheduling compared to Conventional Schedul-
ing.

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0

C
ol

lis
io

n
V

ic
ti

m
s

(%
 o

f
In

st
ru

ct
io

ns
) 4-wide

8-wide
16-wide, 1 cluster
16-wide, 4 clusters

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

am
ea

n

Figure 6.22: Retired Collision Victims.

6.3 Conclusions

Both Speculative Wakeup and Select-Free Scheduling are effective techniques for

breaking the critical scheduling loop. Without these techniques, the degradation in IPC

when pipelining the scheduling loop is 10% as was shown in Chapter 1. However, both of

153

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

P
ile

up
 V

ic
ti

m
s

(%
 o

f
In

st
ru

ct
io

ns
) 4-wide

8-wide
16-wide, 1 cluster
16-wide, 4 clusters

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

am
ea

n

Figure 6.23: Retired Pileup Victims.

these techniques have a very small impact on IPC – less than 0.2% on average for spec-

ulative wakeup, and less than 0.5% for select-free scheduling on a 16-wide unclustered

machine. These techniques allow the clock frequency to be increased, thereby obtain-

ing higher performance. Both techniques exploit the fact that scheduling time is highly

predictable when the prediction is made just a few cycles in advance. On the event of a

misspeculation, Select-Free Scheduling uses the existing replay mechanism to reschedule

instructions. With Speculative Wakeup, rescheduling happens automatically because the

parent tags are used to confirm that instructions are actually ready for execution.

154

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Critical loops are a hindrance to achieving both high clock rate and high IPC be-

cause they limit the latency between processing dependent instructions. In the future, as

execution width increases, critical loops will become even bigger bottlenecks to high per-

formance. By breaking critical loops in wide-issue machines, ILP can be exploited while at

the same time computing chains of dependent instructions quickly. This dissertation eval-

uates several techniques for breaking the critical execute-bypass, steering, and scheduling

loops.

Clustering reduces the latency of both the scheduling and execute-bypass loops.

Partitioning a 16-wide execution core into four clusters reduces the latency of the schedul-

ing window by 50% and the latency of the register file with Register Write Specialization by

41%. When using a high-performance steering algorithm (DEP+lsp) with 8 issue ports per

cluster, there is less than 10% reduction in IPC. This beats the alternative of pipelining the

execute-bypass loop over two cycles, which was shown in Chapter 1 to have a 15% degra-

dation in IPC (and no reduction in latency). The reduction in scheduling window latency is

a reduction in the wakeup and tag broadcast portions of the scheduling loop. The latency

of the execute-bypass loop is reduced by limiting the number of functional units which re-

ceive bypassed values within one cycle. Another advantage of clustering is reduced power

consumption. A conventional clustering paradigm reduces power consumption by 19%.

Chapter 4 introduced a new clustering paradigm called Selective Cluster Receipt

155

that reduced power by about 5% as compared to the traditional clustered machine while

having less than 0.5% impact in IPC. This is because there are 66% fewer fewer register

file writes when using SCR. When using SCR, power consumption of a clustered core can

be reduced by 25% as compared to the machine with a unified core because of the reduced

area of the scheduling windows and register files. In the future, execution cores will have

even more clusters. Selective Cluster Receipt will then allow an even greater reduction in

power because the fraction of register file writes that are eliminated will be even larger.

Chapter 4 also compared the baseline clustered paradigm and Selective Cluster Re-

ceipt against a clustered paradigm with a partitioned register file. The model with a parti-

tioned register file had 5% lower IPC because of the arbitration required to send data be-

tween clusters. Although it had lower power consumption in the register file and scheduling

windows, it had greater power consumption overall because of the increased complexity in

the front-end of the pipeline.

Chapter 5 showed how to implement high-performance steering algorithms that are

scalable. By using Virtual Cluster Assignments with trace-cache-based steering algorithms,

the number of issue ports per cluster can be increased, allowing for up to a 5% improvement

in IPC. As the forwarding delays between clusters increase, the IPC gain from using Virtual

Cluster Assignments will increase even more because virtual cluster assignments allow the

number of issue ports to be increased while keeping the load balanced across clusters. This

increases IPC because it reduces the number of inter-cluster forwarding operations. Out-

of-order steering algorithms yield modest improvements in IPC (2%) as compared to other

front-end algorithms, but these improvements, too, will increase as the number of clusters

increases and the inter-cluster forwarding penalty increases.

Chapter 6 demonstrated that it is possible to break the critical scheduling loop over

two or more cycles while still executing dependent instructions in back-to-back cycles.

When using speculative wakeup in a 16-wide machine, IPC was reduced by 0.2%. With

156

Select-Free scheduling, the select logic is removed from the critical scheduling loop. This

technique had virtually no effect (less than 0.2%) on IPC. These definitely beat the alter-

native of pipelining a conventional scheduling loop over two cycles, which was shown in

Chapter 1 to have a 10% degradation in IPC.

These techniques have demonstrated that while maintaining a given IPC (or a small

reduction in IPC coupled with latency and/or power savings, as is the case for clustering),

the latency of the critical loops in the execution core can be reduced. Once critical loops

are smaller, either the clock frequency could be increased, or additional resources such as

more scheduling window entries or functional units, could be added to fill the clock cycle.

By breaking critical loops, several possible improvements that improve perfor-

mance and/or reduce power could be made: (1) the size of the out-of-order scheduling

window can be increased, which can allow more ILP to be exploited and increase IPC;

(2) by reducing critical loop latency, clock frequency can be increased without impacting

IPC; (3) power can be reduced by using smaller structures or slower transistors in the logic

comprising the critical loop. This dissertation has demonstrated that breaking critical loops

can have all of these advantages.

7.2 Future Work

7.2.1 Improvements to Wattch

Several improvements could be made to the power model to more accurately mea-

sure static power consumption. In the Wattch model, static power consumption is mod-

eled as a fraction of maximum dynamic power consumption. Wattch calculates maximum

dynamic power consumption as a function of wire capacitance (as well as frequency, sup-

ply voltage, and transistor sizing), which has little influence on leakage power. A set of

functions for computing leakage power could be added to the model. Leakage power can

157

be computed as a function of the number of transistors in a block and threshold voltages

and sizes of the transistors used in the block. The number of transistors in a block can

be computed using the same basic building block parameters used by the existing Wattch

functions. The transistor sizes and threshold voltages can be given as part of the physical

design parameters in a header file.

7.2.2 Speculative Inter-Cluster Broadcast

The purpose of Selective Cluster Receipt is to reduce register file power without

adding the latency of arbitration to the tag and data communication between clusters. By

combining select-free scheduling with clustering, it is possible to reduce the number of reg-

ister file ports without adding arbitration to the communication path. With this technique,

all instructions broadcast their tags to other clusters (possibly using a matrix-style sched-

uler), but instructions speculate that they will broadcast their data N cycles later (where

N is the number of cycles between scheduling and execution). During those N cycles, an

arbitration mechanism can select a subset of the data values to be broadcast to a particular

cluster. This technique would still add some latency to the critical path of the data by-

passes: the data path through a 4:1 mux would be added to the critical path. The control

for this mux could be set up ahead of time. However, the added latency of this mux can be

compensated for by reducing the number of write ports to the register file. Like Selective

Cluster Receipt, no arbitration mechanism is needed to reduce the number of data values

that are broadcast to each cluster. However, this mechanism would allow the number of

write ports for each physical register file to be reduced without adding arbitration to the

scheduling latency.

158

7.2.3 Increasing Window Size with Speculative Scheduling

Speculative Scheduling could be used to increase the scheduling window size as

well as reduce its latency. Section 6.1.4 described how Last-Source Prediction can be

used to reduce the number of tags in each scheduling entry. A similar technique called

Tag Elimination published by Ernst and Austin [21] could be combined with the existing

mechanism for further reduction in the number of tags needed for each entry. By reducing

the area of each entry, more entries could be added, effectively increasing the size of the

scheduling window.

7.2.4 Additional Speculative Scheduling Implementations

Speculative Scheduling can be combined with Select-Free Scheduling or some of

the techniques used to implement Select-Free Scheduling for further simplification of the

wakeup logic. For example, rather than using parent tags in the wakeup logic to confirm

when an instruction is really ready to execute, the availability of source operands could be

checked in a scoreboard after instructions have been selected for execution, as is done with

Select-Free Scheduling. In this case, Speculative Scheduling would have pileups and colli-

sions like Select-Free Scheduling. Unlike Select-Free Scheduling, however, although there

would still be a limit on the number of instructions selected for execution each cycle. If

this technique is implemented using array-style wakeup logic, then Speculative Scheduling

could be combined with Select-Free scheduling to pipeline the scheduling logic over even

more cycles.

7.2.5 Future Work on Steering Algorithms

Additional improvements in steering algorithms can be made for clustered ma-

chines that use partitioned Level-1 data caches. For example, the steering algorithms de-

scribed in this dissertation could be combined with the memory steering heuristics used by

159

Racunas and Patt [57]. The partitioned cache described in their work can further reduce

load latency as compared to the replicated, reduced-port cache used in this dissertation.

Another potential area of improvement for steering algorithms is to increase the

scope data dependence graph seen by the steering logic. Front-end in-order steering algo-

rithms do not have knowledge of the future data dependence graph beyond the instruction

that is currently being steered. The out-of-order steering algorithms presented in Sec-

tion 5.2.3 have limited knowledge of the future data dependence graph, but the scope is

still limited to one fetch packet. Several techniques could be used to see farther ahead in

the dependence graph. First, the compiler has partial knowledge of how and when an in-

struction’s result will be used, although the compiler’s scope is limited by control flows

not known at compile time. Second, dynamic compilation techniques such as the rePLay

Framework [54] can be used to see farther into the data dependence graph. Finally, token-

passing techniques such as those used for critical-path predictors [26] can be used to predict

when and where register values will be used in the future. Any of these techniques could

be implemented to use future dependence graph information to aid in steering decisions.

For example, if an instruction is known to have no dependants, it could be steered to any

cluster. If the instruction is known to have several dependants, it could be steered to a clus-

ter where there is likely to be room for the dependants as well. As a second example, if an

instruction has two parents, both parents could be steered to the same cluster.

Another steering area that has potential is to incorporate a predicted schedule time

into the steering algorithm. Note this does not have to be the same as instruction preschedul-

ing (see Section 2.4.2), which adds latency to the front-end of the pipeline. Using tech-

niques such as wakeup prediction [19] as part of the steering heuristic could give front-end

steering algorithms insight as to how instructions could be steered in order to minimize

functional unit contention.

160

Bibliography

[1] Algirdas Avizienis. Signed-digit number representations for fast parallel arithmetic.

IRE Transactions on Electronic Computers, EC-10(9):389–400, September 1961.

[2] Daniel W. Bailey and Bradley J. Benschneider. Clocking design and analysis for a

600-MHz Alpha microprocessor. IEEE Journal of Solid-State Circuits, 33(11):1627–

1633, November 1998.

[3] Amirali Baniasadi and Andres Moshovos. Instruction distribution heuristics for quad-

cluster, dynamically-scheduled, superscalar processors. In Proceedings of the 33rd

Annual ACM/IEEE International Symposium on Microarchitecture, pages 337–347,

December 2000.

[4] Ravi Bhargava and Lizy K. John. Improving dynamic cluster assignment for clus-

tered trace cache processors. In Proceedings of the 30th Annual International Sym-

posium on Computer Architecture, pages 264–274, June 2003.

[5] M. Borah, R. M. Owens, and M. J. Irwin. Transistor sizing for low power CMOS

circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 15(9):665–671, June 1996.

[6] Edward Brekelbaum, Jeff Rupley II, Chris Wilkerson, and Bryan Black. Hierarchical

scheduling windows. In Proceedings of the 35th Annual ACM/IEEE International

Symposium on Microarchitecture, pages 27–36, November 2002.

[7] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for architectural-level

power analysis and optimizations. In Proceedings of the 27th Annual International

161

Symposium on Computer Architecture, pages 83–94, June 2000.

[8] Mary D. Brown and Yale N. Patt. Using internal redundant representations and lim-

ited bypass to support pipelined adders and register files. In Proceedings of the Eighth

IEEE International Symposium on High Performance Computer Architecture, pages

289–298, February 2002.

[9] Mary D. Brown and Yale N. Patt. Demand-only broadcast: Reducing register file

and bypass power in clustered execution cores. Technical Report TR-HPS-2004-001,

HPS Research Group, The University of Texas at Austin, May 2004.

[10] Mary D. Brown and Yale N. Patt. Demand-only broadcast: Reducing register file

and bypass power in clustered execution cores. In Proceedings of the First Watson

Conference on Interaction between Architecture, Circuits, and Compilers, Yorktown

Heights, NY, October 2004.

[11] Doug Burger, Todd Austin, and Steve Bennett. Evaluating future microprocessors:

The simplescalar tool set. Technical Report 1308, University of Wisconsin - Madison

Technical Report, July 1996.

[12] Alper Buyuktosunoglu, Ali El-Moursy, and David H. Albonesi. An oldest-first se-

lection logic implementation for non-compacting issue queues. In 15th International

ASIC/SOC Conference, pages 31–35, September 2002.

[13] Ramon Canal and Antonio González. A low-complexity issue logic. In Proceedings

of the 2000 International Conference on Supercomputing, pages 327–335, May 2000.

[14] Ramon Canal and Antonio González. Reducing the complexity of the issue logic.

In Proceedings of the 2001 International Conference on Supercomputing, pages 312–

320, 2001.

162

[15] Ramon Canal, Joan-Manuel Parcerisa, and Antonio González. A cost-effective clus-

tered architecture. In Proceedings of the 1999 ACM/IEEE International Conference

on Parallel Architectures and Compilation Techniques, pages 160–168, October 1999.

[16] Ramon Canal, Joan-Manuel Parcerisa, and Antonio González. Dynamic cluster as-

signment mechanisms. In Proceedings of the Sixth IEEE International Symposium

on High Performance Computer Architecture, pages 133–142, February 2000.

[17] R.S. Chappell, P.B. Racunas, Francis Tseng, S.P. Kim, M.D. Brown, Onur Mutlu,

Hyesoon Kim, and M.K. Qureshi. The scarab microarchitectural simulator. Unpub-

lished documentation.

[18] George Z. Chrysos and Joel S. Emer. Memory dependence prediction using store

sets. In Proceedings of the 25th Annual International Symposium on Computer Ar-

chitecture, pages 142–153, June 1998.

[19] Todd E. Ehrhart and Sanjay J. Patel. Reducing the scheduling critical cycle using

wakeup prediction. In Proceedings of the Tenth IEEE International Symposium on

High Performance Computer Architecture, 2004.

[20] M. D. Ercegovac. On-line arithmetic: An overview. SPIE Real-Time Signal Process-

ing VII, 495:86–93, August 1984.

[21] Dan Ernst and Todd Austin. Efficient dynamic scheduling through tag elimination.

In Proceedings of the 29th Annual International Symposium on Computer Architec-

ture, pages 37–46, May 2002.

[22] Dan Ernst, Andrew Hamel, and Todd Austin. Cyclone: A broadcast-free dynamic

instruction scheduler with selective replay. In Proceedings of the 30th Annual Inter-

national Symposium on Computer Architecture, pages 253–262, 2003.

163

[23] Keith I. Farkas, Paul Chow, Norman P. Jouppi, and Zvonko Vranesic. The multiclus-

ter architecture: Reducing cycle time through partitioning. In Proceedings of the 30th

Annual ACM/IEEE International Symposium on Microarchitecture, pages 149–159,

December 1997.

[24] Keith I. Farkas, Norman P. Jouppi, and Paul Chow. Register file design consid-

erations in dynamically scheduled processors. In Proceedings of the Fourth IEEE

International Symposium on High Performance Computer Architecture, pages 40–51,

1998.

[25] Brian Fields, Rastislav Bodı́k, and Mark D. Hill. Slack: maximizing performance

under technological constraints. In Proceedings of the 29th Annual International

Symposium on Computer Architecture, pages 47–58, May 2002.

[26] Brian Fields, Shai Rubin, and Rastislav Bodı́k. Focusing processor policies via

critical-path prediction. In Proceedings of the 28th Annual International Symposium

on Computer Architecture, 2001.

[27] Joseph A. Fisher. Very long instruction word architectures and the ELI-512. In

Proceedings of the 10th Annual International Symposium on Computer Architecture,

pages 140–150, 1983.

[28] Daniel H. Friendly, Sanjay J. Patel, and Yale N. Patt. Putting the fill unit to work:

Dynamic optimizations for trace cache microprocessors. In Proceedings of the 31st

Annual ACM/IEEE International Symposium on Microarchitecture, pages 173–181,

November 1998.

[29] Bruce A. Gieseke, Randy L. Allmon, Daniel W. Bailey, Bradley J. Benschneider,

Sharon M. Britton, John D. Clouser, Harry R. Fair III, James A. Farrell, Michael K.

164

Gowan, Christopher L. Houghton, James B. Keller, Thomas H. Lee, Daniel L. Leib-

holz, Susan C. Lowell, Mark D. Matson, Richard J. Matthew, Victor Peng, Michael D.

Quinn, Donald A. Priore, Michael J. Smith, and Kathryn E. Wilcox. A 600MHz

superscalar RISC microprocessor with out-of-order execution. In 1997 IEEE Inter-

national Solid-State Circuits Conference Digest of Technical Papers, pages 176–178,

February 1997.

[30] Enric Gilbert, Jesus Sanches, and Antonio González. An interleaved cache clustered

VLIW processor. In Proceedings of the 2002 International Conference on Supercom-

puting, pages 210–219, 2002.

[31] Andy Glew. Processor with architecture for improved pipelining of arithmetic in-

structions by forwarding redundant intermediate data forms. U.S. Patent Number

5,619,664, 1997.

[32] M. Goshima, K. Nishino, Y. Nakashima, S. Mori, T. Kitamura, and S. Tomita. A

high-speed dynamic instruction scheduling scheme for superscalar processors. In

Proceedings of the 34th Annual ACM/IEEE International Symposium on Microarchi-

tecture, pages 225–236, December 2001.

[33] Greg F. Grohoski. Machine organization the IBM RISC system/6000 processor. IBM

Journal of Research and Development, 34:72–84, 1990.

[34] Dana S. Henry, Bradley C. Kuszmaul, Gabriel H. Loh, and Rahul Sami. Circuits

for wide-window superscalar processors. In Proceedings of the 27th Annual Interna-

tional Symposium on Computer Architecture, pages 236–247, June 2000.

[35] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, Doug Carmean, Alan Kyker,

and Patrice Roussel. The microarchitecture of the Intel Pentium 4 Processor. Intel

Technology Journal, Q1, 2001.

165

[36] M.S. Hrishikesh. Design of Wide-Issue High-Frequency Processors in Wire Delay

Dominated Technologies. Doctoral Dissertation, The University of Texas at Austin,

2004.

[37] M.S. Hrishikesh, Norman P. Jouppi, Keith I. Farkas, Doug Burger, Stephen W. Keck-

ler, and Premkishore Shivakumar. The optimal logic depth per pipeline stage is 6 to

8 FO4 inverter delays. In Proceedings of the 29th Annual International Symposium

on Computer Architecture, pages 14–24, 2002.

[38] Jie S. Hu, N. Vijaykrishnan, and Mary Jane Irwin. Exploring wakeup-free instruction

scheduling. In Proceedings of the Tenth IEEE International Symposium on High

Performance Computer Architecture, February 2004.

[39] Michael Huang, Jose Renau, and Josep Torrellas. Energy-efficient hybrid wakeup

logic. In International Sysmposim on Low-Power Electronics and Design, pages

196–201, August 2002.

[40] Gregory A. Kemp and Manoj Franklin. PEWs: A decentralized dynamic scheduler

for ILP processing. In International Conference on Parallel Processing, pages 239–

246, August 1996.

[41] R. E. Kessler, E. J. McLellan, and D. A. Webb. The alpha 21264 microprocessor ar-

chitecture. In Proceedings of the 16th International Conference on Computer Design,

pages 90–95, October 1998.

[42] Alvin R. Lebeck, Tong Li, Eric Rotenberg, Jinson Koppanalil, and Jaidev Patwardhan.

A large, fast instruction window for tolerating cache misses. In Proceedings of the

29th Annual International Symposium on Computer Architecture, pages 59–70, May

2002.

166

[43] Scott McFarling. Combining branch predictors. Technical Report TN-36, Digital

Western Research Laboratory, June 1993.

[44] P. Michaud and A. Seznec. Data-flow prescheduling for large instruction windows in

out-of-order processors. In Proceedings of the Seventh IEEE International Sympo-

sium on High Performance Computer Architecture, pages 27–36, January 2001.

[45] Enric Morancho, José Marı́a Llaberı́a, and Àngel Olivé. Recovery mechanism for

latency misprediction. In Proceedings of the 2001 ACM/IEEE International Confer-

ence on Parallel Architectures and Compilation Techniques, pages 118–128, Septem-

ber 2001.

[46] Andreas Moshovos, Scott E. Breach, T. N. Vijaykumar, and Gurindar S. Sohi. Dy-

namic speculation and synchronization of data dependences. In Proceedings of the

24th Annual International Symposium on Computer Architecture, pages 181–193,

June 1997.

[47] Andreas Moshovos and Gurindar S. Sohi. Streamlining inter-operation memory

communication via data dependence prediction. In Proceedings of the 30th Annual

ACM/IEEE International Symposium on Microarchitecture, pages 235–245, Decem-

ber 1997.

[48] Soner Önder. Scalable Instruction Processing. Dissertation, The University of

Pittsburgh, 1999.

[49] Soner Önder and Rajiv Gupta. Superscalar execution with dynamic data forwarding.

In Proceedings of the ACM/IEEE Conference on Parallel Architectures and Compila-

tion Techniques, pages 130–135, October 1998.

167

[50] S. Palacharla, N. P. Jouppi, and J. E. Smith. Quantifying the complexity of super-

scalar processors. Technical Report TR-96-1328, Computer Sciences Department,

University of Wisconsin - Madison, November 1996.

[51] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective superscalar pro-

cessors. In Proceedings of the 24th Annual International Symposium on Computer

Architecture, pages 206–218, June 1997.

[52] Joan-Manuel Parcerisa and Antonio González. Reducing wire delay penalty through

value prediction. In Proceedings of the 33rd Annual ACM/IEEE International Sym-

posium on Microarchitecture, pages 317–326, December 2000.

[53] Joan-Manuel Parcerisa, Julio Sahuquillo, Antonio González, and José Duato. Ef-

ficient interconnects for clustered microarchitectures. In Proceedings of the 2002

ACM/IEEE International Conference on Parallel Architectures and Compilation Tech-

niques, pages 291–300, September 2002.

[54] Sanjay J. Patel, Tony Tung, Satarupa Bose, and Matthew M. Crum. Increasing the

size of atomic instruction blocks using control flow assertions. In Proceedings of

the 33rd Annual ACM/IEEE International Symposium on Microarchitecture, pages

303–313, December 2000.

[55] Yale Patt, W. Hwu, and Michael Shebanow. HPS, a new microarchitecture: Ratio-

nale and introduction. In Proceedings of the 18th Annual ACM/IEEE International

Symposium on Microarchitecture, pages 103–107, December 1985.

[56] Yale N. Patt, Steven W. Melvin, W. Hwu, and Michael C. Shebanow. Critical issues

regarding HPS, a high performance microarchitecture. In Proceedings of the 18th

Annual ACM/IEEE International Symposium on Microarchitecture, pages 109–116,

1985.

168

[57] Paul Racunas and Yale N. Patt. Partitioned first-level cache design for clustered

microarchitectures. In Proceedings of the 17th Annual International Conference on

Supercomputing, pages 22–31, June 2003.

[58] B. Ramakrishna Rau and Joseph A. Fisher. Instruction-level parallel processing:

History, overview, and perspective. The Journal of Supercomputing, 7:9–50, 1993.

[59] Eric Rotenberg, Quinn Jacobsen, Yiannakis Sazeides, and James E. Smith. Trace

processors. In Proceedings of the 30th Annual ACM/IEEE International Symposium

on Microarchitecture, 1997.

[60] S. Subramanya Sastry, Subbarao Palacharla, and James E. Smith. Exploiting idle

floating-point resources for integer execution. In Proceedings of the ACM SIG-

PLAN’98 Conference on Programming Language Design and Implementation, pages

118–129, 1998.

[61] André Seznec, Eric Toullec, and Olivier Rochecouste. Register write specialization

register read specialization: A path to complexity-effective wide-issue superscalar

processors. In Proceedings of the 35th Annual ACM/IEEE International Symposium

on Microarchitecture, pages 383–394, 2002.

[62] Premkishore Shivakumar and Norman P. Jouppi. Cacti 3.0: An integrated cache tim-

ing, power, and area model. Technical report, Compaq Western Research Laboratory,

August 2001.

[63] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar processors. In

Proceedings of the 22nd Annual International Symposium on Computer Architecture,

pages 414–425, June 1995.

169

[64] Jared Stark, Mary D. Brown, and Yale N. Patt. On pipelining dynamic instruction

scheduling logic. In Proceedings of the 33rd Annual ACM/IEEE International Sym-

posium on Microarchitecture, 2000.

[65] Itsujiro Arita Toshinori Sato. Simplifying wakeup logic in superscalar processors. In

Proceedings of the Euromicro Symposium on Digital Systems Design, pages 341–346,

September 2002.

[66] Gary Scott Tyson and Todd M. Austin. Improving the accuracy and performance

of memory communication through renaming. In Proceedings of the 30th Annual

ACM/IEEE International Symposium on Microarchitecture, pages 218–227, Decem-

ber 1997.

[67] T. N. Vijaykumar and Gurindar S. Sohi. Task selection for a multiscalar processor.

In Proceedings of the 31st Annual ACM/IEEE International Symposium on Microar-

chitecture, 1998.

[68] Shlomo Weiss and James E. Smith. Instruction issue logic in pipelined supercomput-

ers. IEEE Transactions on Computers, C-33(11):1013–1022, November 1984.

[69] Kenneth C. Yeager. The MIPS R10000 superscalar microprocessor. In Proceedings

of the 29th Annual ACM/IEEE International Symposium on Microarchitecture, pages

28–41, December 1996.

[70] Tse-Yu Yeh and Yale N. Patt. Two-level adaptive branch prediction. In Proceedings

of the 24th Annual ACM/IEEE International Symposium on Microarchitecture, pages

51–61, November 1991.

[71] R. Zimmermann and W. Fichtner. Low-power logic styles: CMOS versus pass-

transistor logic. IEEE Journal of Solid-State Circuits, 92(7):1079–1090, July 1997.

170

[72] Victor V. Zyuban and Peter M. Kogge. The energy complexity of register files. In

Proceedings of the 1998 International Symposium on Low Power Electronic Design,

pages 305–310, August 1998.

[73] Victor V. Zyuban and Peter M. Kogge. Inherently low-power high-performance su-

perscalar architectures. IEEE Transactions on Computers, 50(3):268–286, March

2001.

171

Vita

Mary Douglass Brown was born in Lee County, Alabama on October 3, 1974, the

daughter of Dr. Jack B. Brown and Jane Isenhower Brown. She received the Bachelor

of Arts degree in Music and the Bachelor of Science degree in Computer Science from

Florida State University in 1997. The following year she entered the Ph.D. program at

the University of Michigan where she began working with her Ph.D. advisor Dr. Yale N.

Patt. She received the Master of Science degree in Computer Science and Engineering in

1999. In the fall of 1999, she followed her advisor to The University of Texas where she

continued her Ph.D. studies.

While in graduate school, she served as a teaching assistant for two semesters at

The University of Michigan and one semester at The University of Texas. She had summer

internships at Motorola, IBM, and Intel. She has published papers in The International

Symposium on Microarchitecture (MICRO-33 and MICRO-34), The International Sym-

posium on High Performance Computer Architecture (HPCA-8), and The First Watson

Conference on Interaction between Architecture, Circuits, and Compilers (PAC-2). Her

graduate studies were supported in part by a University of Michigan Rackham Engineering

Fellowship, an IBM Ph.D. Fellowship, and a University of Texas Graduate Engineering

Fellowship.

Permanent address: 2600 Lake Austin Blvd, Apt. 4302
Austin, Texas 78703

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of Donald
Knuth’s TEX Program.

172

