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Key Questions 
Q1. How do we find independent instructions to fetch/execute? 
 
Q2. How do we enable more compiler optimizations? 
 e.g., common subexpression elimination, constant 
propagation, dead code elimination, redundancy elimination, … 
 
Q3. How do we increase the instruction fetch rate?  
 i.e., have the ability to fetch more instructions per cycle 
 
 
A: Enabling the compiler to optimize across a larger number of 
instructions that will be executed straight line (without branches 
getting in the way) eases all of the above 
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VLIW (Very Long Instruction Word 
 Simple hardware with multiple function units 

 Reduced hardware complexity 
 Little or no scheduling done in hardware, e.g., in-order 
 Hopefully, faster clock and less power 

 Compiler required to group and schedule instructions 
(compare to OoO superscalar) 
 Predicated instructions to help with scheduling (trace, etc.) 
 More registers (for software pipelining, etc.) 

 Example machines: 
 Multiflow, Cydra 5 (8-16 ops per VLIW) 
 IA-64 (3 ops per bundle) 
 TMS32xxxx (5+ ops per VLIW) 
 Crusoe (4 ops per VLIW) 
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Comparison between SS ↔ VLIW 

From Mark Smotherman, “Understanding EPIC Architectures and Implementations” 

http://www.cs.clemson.edu/~mark/464/acmse_epic.pdf


Comparison: CISC, RISC, VLIW 







EPIC – Intel IA-64 Architecture 
 Gets rid of lock-step execution of instructions within a VLIW 

instruction 
 Idea: More ISA support for static scheduling and parallelization 

 Specify dependencies within and between VLIW instructions 
(explicitly parallel) 

 
+ No lock-step execution 
+ Static reordering of stores and loads + dynamic checking 
-- Hardware needs to perform dependency checking (albeit aided by 

software) 
-- Other disadvantages of VLIW still exist 
 
 Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro, Sep/Oct 

2000. 
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IA-64 Instructions 
 IA-64 “Bundle” (~EPIC Instruction) 

 Total of 128 bits 
 Contains three IA-64 instructions 
 Template bits in each bundle specify dependencies within a 

bundle 
  
\ 
 
 

 IA-64 Instruction 
 Fixed-length 41 bits long 
 Contains three 7-bit register specifiers 
 Contains a 6-bit field for specifying one of the 64 one-bit 

predicate registers 
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IA-64 Instruction Bundles and Groups 
 Groups of instructions can be 

executed safely in parallel 
 Marked by “stop bits” 

 
 Bundles are for packaging 

 Groups can span multiple bundles 
 Alleviates recompilation need 

somewhat  
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VLIW: Finding Independent Operations 
 Within a basic block, there is limited instruction-level 

parallelism 
 To find multiple instructions to be executed in parallel, the 

compiler needs to consider multiple basic blocks 
 

 Problem: Moving an instruction above a branch is unsafe 
because instruction is not guaranteed to be executed 
 

 Idea: Enlarge blocks at compile time by finding the 
frequently-executed paths 
 Trace scheduling 
 Superblock scheduling  
 Hyperblock scheduling 
 Software Pipelining 
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It’s all about the compiler 
and how to schedule the 
instructions to maximize 
parallelism 



List Scheduling: For 1 basic block 
 Assign priority to each instruction 
 Initialize ready list that holds all ready instructions 

  Ready = data ready and can be scheduled 
 Choose one ready instruction I   from ready list with the 

highest priority 
  Possibly using tie-breaking heuristics  

 Insert I  into schedule  
  Making sure resource constraints are satisfied 

 Add those instructions whose precedence constraints are 
now satisfied into the ready list  
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Data Precedence Graph 
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Instruction Prioritization Heuristics 
 Number of descendants in precedence graph 
 Maximum latency from root node of precedence graph 
 Length of operation latency 
 Ranking of paths based on importance 
 Combination of above 
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VLIW List Scheduling 
 Assign Priorities 
 Compute Data Ready List - all operations whose predecessors have 

been scheduled. 
 Select from DRL in priority order while checking resource constraints 
 Add newly ready operations to DRL and repeat for next instruction 
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Extending the scheduling domain 
 Basic block is too small to get any real parallelism 
 How to extend the basic block? 

 Why do we have basic blocks in the first place? 
 Loops 

 Loop unrolling 
 Software pipelining 

 Non-loops 
 Will almost always involve some speculation 
 And, thus, profiling may be very important 
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Safety and Legality in Code Motion 
 Two characteristics of speculative code motion: 

 Safety: whether or not spurious exceptions may occur 
 Legality: whether or not result will be always correct 

 Four possible types of code motion: 
 

18 

r1 = load A

r1 = ...

r1 = ... r1 = load A

r4 = r1 ... r1 = r2 & r3

r4 = r1 ...

(a) safe and legal (b) illegal

(c) unsafe (d) unsafe and illegal

r1 = r2 & r3



Code Movement Constraints 
 Downward 

 When moving an operation from a BB to one of its dest BB’s, 
 all the other dest basic blocks should still be able to use the result 

of the operation 
 the other source BB’s of the dest BB should not be disturbed 

 
 Upward 

 When moving an operation from a BB to its source BB’s 
 register values required by the other dest BB’s must not be 

destroyed 
 the movement must not cause new exceptions 
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Trace Scheduling  
 Trace: A frequently executed path in the control-flow graph 

(has multiple side entrances and multiple side exits) 
  
 Idea: Find independent operations within a trace to pack 

into VLIW instructions.  
 Traces determined via profiling 
 Compiler adds fix-up code for correctness (if a side entrance 

or side exit of a trace is exercised at runtime, corresponding 
fix-up code is executed) 
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Trace Scheduling Idea 
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Trace Scheduling (II) 
 There may be conditional branches from the middle of the 

trace (side exits) and transitions from other traces into the 
middle of the trace (side entrances). 
 

 These control-flow transitions are ignored during trace 
scheduling. 
 

 After scheduling, fix-up/bookkeeping code is inserted to 
ensure the correct execution of off-trace code. 
 

 Fisher, “Trace scheduling: A technique for global microcode 
compaction,” IEEE TC 1981.  
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Trace Scheduling (III) 
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Instr 1 
Instr 2 
Instr 3 
Instr 4 
Instr 5 

Instr 2 
Instr 3 
Instr 4 
Instr 1 
Instr 5 

What bookeeping is required when Instr 1  
is moved below the side entrance in the trace? 



Trace Scheduling (IV) 
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Instr 1 
Instr 2 
Instr 3 
Instr 4 
Instr 5 

Instr 2 
Instr 3 
Instr 4 
Instr 1 
Instr 5 

Instr 3 
Instr 4 



Trace Scheduling (V) 
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Instr 1 
Instr 2 
Instr 3 
Instr 4 
Instr 5 

Instr 1 
Instr 5 
Instr 2 
Instr 3 
Instr 4 

What bookeeping is required when Instr 5  
moves above the side entrance in the trace? 



Trace Scheduling (VI) 
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Instr 1 
Instr 2 
Instr 3 
Instr 4 
Instr 5 

Instr 1 
Instr 5 
Instr 2 
Instr 3 
Instr 4 

Instr 5 



Trace Scheduling Fixup Code Issues 
 Sometimes need to copy instructions more than once to 

ensure correctness on all paths (see C below) 
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Trace Scheduling Overview 
 Trace Selection 

 select seed block (the highest frequency basic block) 
 extend trace (along the highest frequency edges) 

forward (successor of the last block of the trace) 
backward (predecessor of the first block of the trace) 

 don’t cross loop back edge 
 bound max_trace_length heuristically 

 

  Trace Scheduling 
 build data precedence graph for a whole trace 
 perform list scheduling and allocate registers 
 add compensation code to maintain semantic correctness 

 

 Speculative Code Motion (upward) 
 move an instruction above a branch if safe 
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Trace Scheduling Example (I) 
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beq  r1, $0

fdiv  f1, f2, f3
fadd  f4, f1, f5

ld  r2,  0(r3)

add r2, r2, 4

ld  r2,  4(r3)

add  r3, r3, 4

beq  r2, $0

fsub  f2, f2, f6 fsub  f2, f3, f7st.d  f2, 0(r8)

add  r8, r8, 4

990

990

800

800

10

10

200

200

fdiv  f1,  f2,  f3
fadd   f4,  f1,  f5
beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6
st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B1

B2 B3

B4

B5 B6

B7

r2 and f2

f2 not

9 stalls

1 stall

1 stall

B3

B6

not live 

live out

out



Trace Scheduling Example (II) 
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fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

0 stall
0 stall

B3

B6

1 stall

fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4 B3

B6

fadd f4, f1, f5

Split

fadd f4, f1, f5

comp. code



Trace Scheduling Example (III) 
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fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4 B3 B6

fadd   f4,  f1,  f5

Split

add  r3, r3, 4
add  r8, r8, 4

Join comp. code

fadd   f4,  f1,  f5

comp. code



Trace Scheduling Example (IV) 
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fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B3
fadd   f4,  f1,  f5

fadd   f4,  f1,  f5

Split
add  r2, r2, 4
beq  r2, $0
fsub  f2,  f2,  f6
st.d  f2, 0(r8)
add  r3, r3, 4
add  r8, r8, 4

B6

add  r3, r3, 4
add  r8, r8, 4

Join comp. code

Copied  

comp. code

split
instructions



Trace Scheduling Example (V) 
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fdiv  f1,  f2,  f3
beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

fadd  f4, f1, f5

add  r3, r3, 4
add  r8, r8, 4

fadd  f4, f1, f5
ld  r2,  4(r3)

fadd  f4, f1, f5

fsub  f2, f3, f7

add  r2, r2, 4
beq  r2, $0

fsub  f2, f2, f6
st.d  f2, 0(r8)
add  r3, r3, 4
add  r8, r8, 4

add  r3, r3, 4
add  r8, r8, 4

B3

B6



Trace Scheduling Tradeoffs  
 Advantages 

+ Enables the finding of more independent instructions  fewer 
NOPs in a VLIW instruction 

 
 Disadvantages 

-- Profile dependent  
 -- What if dynamic path deviates from trace  lots of NOPs in the 

VLIW instructions 
-- Code bloat and additional fix-up code executed 
 -- Due to side entrances and side exits 
    -- Infrequent paths interfere with the frequent path 
-- Effectiveness depends on the bias of branches 
 -- Unbiased branches  smaller traces  less opportunity for 

finding independent instructions 
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Superblock Scheduling 
 Trace: multiple entry, multiple exit block 
 Superblock: single-entry, multiple exit block 

 A trace with side entrances are eliminated 
 Infrequent paths do not interfere with the frequent path 

+ More optimization/scheduling opportunity than traces 
+ Eliminates “difficult” bookkeeping due to side entrances 

35 Hwu+, “The Superblock: An Effective Technique for VLIW and superscalar compilation,” J of SC 1991. 



Can You Do This with a Trace? 
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opA: mul r1,r2,3 

opC: mul r3,r2,3 

opB: add r2,r2,1 99 

1 

1 

Original Code 

opA: mul r1,r2,3 

opC: mul r3,r2,3 

opB: add r2,r2,1 99 

1 

Code After Superblock Formation 

opC’: mul r3,r2,3 

opA: mul r1,r2,3 

opC: mov r3,r1 

opB: add r2,r2,1 99 

1 

Code After Common  
Subexpression Elimination 

opC’: mul r3,r2,3 



Superblock Scheduling Shortcomings 
-- Still profile-dependent 
 
-- No single frequently executed path if there is an unbiased 

branch 
 -- Reduces the size of superblocks 
 
-- Code bloat and additional fix-up code executed 
 -- Due to side exits 
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Hyperblock Scheduling 
 Idea: Use predication support to eliminate unbiased branches 

and increase the size of superblocks 
 Hyperblock: A single-entry, multiple-exit block with internal 

control flow eliminated using predication (if-conversion) 
 

 Advantages 
 + Reduces the effect of unbiased branches on scheduled block size 

 
 Disadvantages 

-- Requires predicated execution support 
-- All disadvantages of predicated execution  
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Hyperblock Formation (I) 
 Hyperblock formation 
 1. Block selection 
 2. Tail duplication 
 3. If-conversion 

 
 Block selection 

 Select subset of BBs for inclusion in HB 
 Difficult problem 
 Weighted cost/benefit function 

 Height overhead 
 Resource overhead 
 Dependency overhead 
 Branch elimination benefit 
 Weighted by frequency 

 
 Mahlke et al., “Effective Compiler Support for Predicated Execution Using the 

Hyperblock,” MICRO 1992. 
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Hyperblock Formation (II) 
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BB2 
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BB1 
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10 
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10 
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Tail duplication same as with Superblock formation 



Hyperblock Formation (III) 
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If-convert (predicate) intra-hyperblock branches 



Can We Do Better? 
 Hyperblock still 

 Profile dependent 
 Requires fix-up code 
 And, requires predication support 

 
 Single-entry, single-exit enlarged blocks 

 Block-structured ISA 
 Optimizes multiple paths (can use predication to enlarge blocks) 
 No need for fix-up code (duplication instead of fixup) 
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Non-Faulting Loads and Exception Propagation 

 
 
 
 
 
 
 
 
 
 ld.s fetches speculatively from memory 

 i.e. any exception due to ld.s is suppressed 
 If ld.s r1 did not cause an exception then chk.s r1 is a NOP, else a 

branch is taken (to execute some compensation code) 
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inst 1 
inst 2 
…. 
 

ld r1=[a] 
use=r1 

unsafe 
code  
motion 

…. 

ld.s r1=[a] 
inst 1 
inst 2 
…. 
br 

chk.s r1 
use=r1 

…. ld r1=[a] 

br 



Non-Faulting Loads and Exception Propagation in IA-64 

 
 
 
 
 
 
 
 
 
 

 Load data can be speculatively consumed prior to check 
 “speculation” status is propagated with speculated data 
 Any instruction that uses a speculative result also becomes speculative 

itself (i.e. suppressed exceptions) 
 chk.s checks the entire dataflow sequence for exceptions 
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inst 1 
inst 2 
…. 
br 

ld r1=[a] 
use=r1 

unsafe 
code  
motion 

…. 

ld.s r1=[a] 
inst 1  
inst 2 
use=r1 
…. 
br 

chk.s use …. ld r1=[a] 
use=r1 

br 



Aggressive ST-LD Reordering in IA-64 
 
 
 
 
 
 
 
 
 

 ld.a starts the monitoring of any store to the same address as the 
advanced load 

 If no aliasing has occurred since ld.a, ld.c is a NOP 
 If aliasing has occurred, ld.c re-loads from memory 
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inst 1 
inst 2 
…. 
st [?] 
…. 
ld r1=[x] 
use=r1 

potential 
aliasing 

ld.a r1=[x] 
inst 1 
inst 2 
…. 
st [?] 
…. 
ld.c r1=[x] 
use=r1 

st[?] 



Aggressive ST-LD Reordering in IA-64 
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inst 1 
inst 2 
…. 
st [?] 
…. 
ld r1=[x] 
use=r1 

potential 
aliasing 

ld.a r1=[x] 
inst 1 
inst 2 
use=r1  
…. 
st [?] 
…. 
chk.a X 
…. 

st[?] 

ld r1=[a] 
use=r1 



Summary and Questions 
 Trace, superblock, hyperblock, block-structured ISA 

 
 How many entries, how many exits does each of them have? 

 What are the corresponding benefits and downsides? 
 

 What are the common benefits? 
 Enable and enlarge the scope of code optimizations 
 Reduce fetch breaks; increase fetch rate 

 
 What are the common downsides? 

 Code bloat (code size increase) 
 Wasted work if control flow deviates from enlarged block’s path 
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What about loops? 
 Unrolling 
 Software pipelining 
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Loop Unrolling 
 
 
 
 
 
 
 

 Idea: Replicate loop body multiple times within an iteration 
+ Reduces loop maintenance overhead 

 Induction variable increment or loop condition test 

+ Enlarges basic block (and analysis scope) 
 Enables code optimization and scheduling opportunities 

-- What if iteration count not a multiple of unroll factor? (need extra code to detect 
this) 

-- Increases code size 
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15-745 © Seth Copen Goldstein 2000-5 
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Software Pipelining 
 Software pipelining is an instruction scheduling technique 

that reorders the instructions in a loop. 
 Possibly moving instructions from one iteration to the 

previous or the next iteration. 
 Very large improvements in running time are possible. 

 The first serious approach to software pipelining was 
presented by Aiken & Nicolau. 
 Aiken’s 1988 Ph.D. thesis. 
 Impractical as it ignores resource hazards (focusing only 

on data-dependence constraints). 
 But sparked a large amount of follow-on research. 



15-745 © Seth Copen Goldstein 2000-5 
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Goal of SP 

 Increase distance between dependent operations by 
moving destination operation to a later iteration 

A: a ← ld [d] 
B: b ←  a * a 
C:  st [d], b 
D: d ←  d + 4 

Assume all have latency of 2 

A B C D 



15-745 © Seth Copen Goldstein 2000-5 
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Can we decrease the latency? 

 Lets unroll 

A: a ←  ld [d] 
B: b ←  a * a 
C:  st [d], b 
D: d ←  d + 4 
A1: a ←  ld [d] 
B1: b ←  a * a 
C1:  st [d], b 
D1: d ←  d + 4 

A B C D A1 B1 C1 D1 



15-745 © Seth Copen Goldstein 2000-5 
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Rename variables 

A: a ←  ld [d] 
B: b ←  a * a 
C:  st [d], b 
D: d1 ←  d + 4 
A1: a1 ←  ld [d1] 
B1: b1 ←  a1 * a1 
C1:  st [d1], b1 
D1: d ←  d1 + 4 

A B C D A1 B1 C1 D1 



15-745 © Seth Copen Goldstein 2000-5 
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Schedule 

A: a ←  ld [d] 
B: b ←  a * a 
C:  st [d], b 
D: d1 ←  d + 4 
A1: a1 ←  ld [d1] 
B1: b1 ←  a1 * a1 
C1:  st [d1], b1 
D1: d ←  d1 + 4 

A 

B 

C 

D 

A1 

B1 

C1 

D1 

A B C D1 
D A1 B1 C1 
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Unroll Some More 
A: a ←  ld [d] 
B: b ←  a * a 
C:  st [d], b 
D: d1 ←  d + 4 
A1: a1 ←  ld [d1] 
B1: b1 ←  a1 * a1 
C1:  st [d1], b1 
D1: d2 ←  d1 + 4 
A2: a2 ←  ld [d2] 
B2: b2 ←  a2 * a2 
C2:  st [d2], b2 
D2: d ←  d2 + 4 

A 

B 

C 

D 

A1 

B1 

C1 

D1 

A2 

B2 

C2 

D2 

A B C D2 
D A1 B1 C1 

D1 A2 B2 C2 



15-745 © Seth Copen Goldstein 2000-5 
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Unroll Some More 
A: a ←  ld [d] 
B: b ←  a * a 
C:  st [d], b 
D: d1 ←  d + 4 
A1: a1 ←  ld [d1] 
B1: b1 ←  a1 * a1 
C1:  st [d1], b1 
D1: d2 ←  d1 + 4 
A2: a2 ←  ld [d2] 
B2: b2 ←  a2 * a2 
C2:  st [d2], b2 
D2: d ←  d2 + 4 

A 

B 

C 

D 

A1 

B1 

C1 

D1 

A2 

B2 

C2 

D3 

A B C D3 
D A1 B1 C1 

D1 A2 B2 C2   
  D2   A3 B3 C3 

D2 

A3 

B3 

C3 



15-745 © Seth Copen Goldstein 2000-5 
62 

One More Time 
A 

B 

C 

D 

A1 

B1 

C1 

D1 

A2 

B2 

C2 

D3 A B C D4 
D A1 B1 C1 

D1 A2 B2 C2   
D2 A3 B3 C3   

  D3   A4 B4 C4 

D2 

A3 

B3 

C3 

A4 

B4 

C4 
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Can Rearrange 
A 

B 

C 

D 

A1 

B1 

C1 

D1 

A2 

B2 

C2 

D3 A B C D4 
D A1 B1 C1 

D1 A2 B2 C2   
D2 A3 B3 C3   

  D3   A4 B4 C4 

D2 

A3 

B3 

C3 

A4 

B4 

C4 
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Rearrange 
A 

B 

C 

D 

A1 

B1 

C1 

D1 

A2 

B2 

C2 

D3 

A B C D3 
D A1 B1 C1 

  D1   A2   B2 C2     
      D2 A3 B3 C3 

D2 

A3 

B3 

C3 

A: a ←  ld [d] 
B: b ←  a * a 
C:  st [d], b 
D: d1 ←  d + 4 
A1: a1 ←  ld [d1] 
B1: b1 ←  a1 * a1 
C1:  st [d1], b1 
D1: d2 ←  d1 + 4 
A2: a2 ←  ld [d2] 
B2: b2 ←  a2 * a2 
C2:  st [d2], b2 
D2: d ←  d2 + 4 
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Rearrange 
A 

B 

C 

D 

A1 

B1 

C1 

D1 

A2 

B2 

C2 

D  

A B C D3 
D A1 B1 C1 

  D1   A2   B2 C2     
      D2 A3 B3 C3 

D2 

A3 

B3 

C3 

A: a ←  ld [d] 
B: b ←  a * a 
C:  st [d], b 
D: d1 ←  d + 4 
A1: a1 ←  ld [d1] 
B1: b1 ←  a1 * a1 
C1:  st [d1], b1 
D1: d2 ←  d1 + 4 
A2: a2 ←  ld [d2] 
B2: b2 ←  a2 * a2 
C2:  st [d2], b2 
D2: d ←  d2 + 4 
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SP Loop 
A: a ←  ld [d] 
B: b ←  a * a 
D: d1 ←  d + 4 
A1: a1 ←  ld [d1] 
D1: d2 ←  d1 + 4 
 
C:  st [d], b 
B1: b1 ←  a1 * a1 
A2: a2 ←  ld [d2] 
D2: d ←  d2 + 4 
 
B2: b2 ←  a2 * a2 
C1:  st [d1], b1 
D3: d2 ←  d1 + 4 
C2:  st [d2], b2 

A B C C C D3 
D A1 B1 B1 B1 C1 

  D1   A2 A2 A2 B2 C2 
      D2 D2 D2 

Prolog 

Body 

Epilog 
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Goal of SP 

 Increase distance between dependent operations by 
moving destination operation to a later iteration 

A 

B 

C 

dependencies 
in initial loop 

A 

B 

C 

iteration i i+1 i+2 

after SP 
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Goal of SP 

 Increase distance between dependent operations by 
moving destination operation to a later iteration 

 But also, to uncover ILP across iteration boundaries! 
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Example 
Assume operating on a infinite wide machine 

A0 

A1 B0 

A2 B1 C0 

A3 B2 C1 

B3 C2 

C3 

A0 

A1 B0 

Ai Bi-1 Ci-2 

Bi Ci-1 

Ci 
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Example 
Assume operating on a infinite wide machine 

A0 

A1 B0 

Ai Bi-1 Ci-2 

Bi Ci-1 

Ci 

Prolog 

epilog 

loop body 
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for (i=0; i<N; 
i++)  
{ 
 Ai 
 Bi 
 Ci 
} 
 

Dealing with exit conditions 

 i=0 
 if (i >= N) goto done 
 A0 

 B0 

 if (i+1 == N) goto last 
 i=1 
 A1 

 if (i+2 == N) goto epilog 
 i=2 

loop: 
 Ai 

 Bi-1 

 Ci-2 

 i++ 
 if (i < N) goto loop 
epilog: 
 Bi 

 Ci-1 

last: 
 ci 

done:  
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Loop Unrolling V. SP 

For SuperScalar or VLIW 
 Loop Unrolling reduces loop overhead 
 Software Pipelining reduces fill/drain 
 Best is if you combine them  

Software Pipelining 

Loop Unrolling 

# of 
overlapped 
iterations 

Time 



VLIW 
 Depends on the compiler 

 As often is the case: compiler algs developed for VLIW are 
relevant to superscalar, e.g., software pipelining. 

 Why wouldn’t SS dynamically “software pipeline?” 
 

 As always: Is there enough statically knowable parallelism? 
 

 What about wasted Fus?  Code bloat? 
 

 Many DSPs are VLIW.  Why? 
 

73 


	Computer Architecture:�Static Instruction Scheduling
	Key Questions
	VLIW (Very Long Instruction Word
	Comparison between SS  VLIW
	Comparison: CISC, RISC, VLIW
	Slide Number 6
	Slide Number 7
	EPIC – Intel IA-64 Architecture
	IA-64 Instructions
	IA-64 Instruction Bundles and Groups
	VLIW: Finding Independent Operations
	List Scheduling: For 1 basic block
	Data Precedence Graph
	Instruction Prioritization Heuristics
	VLIW List Scheduling
	Extending the scheduling domain
	Safety and Legality in Code Motion
	Code Movement Constraints
	Trace Scheduling	
	Trace Scheduling Idea
	Trace Scheduling (II)
	Trace Scheduling (III)
	Trace Scheduling (IV)
	Trace Scheduling (V)
	Trace Scheduling (VI)
	Trace Scheduling Fixup Code Issues
	Trace Scheduling Overview
	Trace Scheduling Example (I)
	Trace Scheduling Example (II)
	Trace Scheduling Example (III)
	Trace Scheduling Example (IV)
	Trace Scheduling Example (V)
	Trace Scheduling Tradeoffs	
	Superblock Scheduling
	Can You Do This with a Trace?
	Superblock Scheduling Shortcomings
	Hyperblock Scheduling
	Hyperblock Formation (I)
	Hyperblock Formation (II)
	Hyperblock Formation (III)
	Can We Do Better?
	Non-Faulting Loads and Exception Propagation
	Non-Faulting Loads and Exception Propagation in IA-64
	Aggressive ST-LD Reordering in IA-64
	Aggressive ST-LD Reordering in IA-64
	Summary and Questions
	What about loops?
	Loop Unrolling
	Software Pipelining
	Goal of SP
	Can we decrease the latency?
	Rename variables
	Schedule
	Unroll Some More
	Unroll Some More
	One More Time
	Can Rearrange
	Rearrange
	Rearrange
	SP Loop
	Goal of SP
	Goal of SP
	Example
	Example
	Dealing with exit conditions
	Loop Unrolling V. SP
	VLIW

