
Computer Architecture:
Out-of-Order Execution

Prof. Onur Mutlu (editted by Seth)
Carnegie Mellon University

Reading for Today
 Smith and Sohi, “The Microarchitecture of Superscalar

Processors,” Proceedings of the IEEE, 1995
 More advanced pipelining
 Interrupt and exception handling
 Out-of-order and superscalar execution concepts

2

An In-order Pipeline

 Problem: A true data dependency stalls dispatch of younger
instructions into functional (execution) units

 Dispatch: Act of sending an instruction to a functional unit

3

F D

E

R
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Cache miss

W

Can We Do Better?
 What do the following two pieces of code have in common

(with respect to execution in the previous design)?

 Answer: First ADD stalls the whole pipeline!

 ADD cannot dispatch because its source registers unavailable
 Later independent instructions cannot get executed

 How are the above code portions different?

 Answer: Load latency is variable (unknown until runtime)
 What does this affect? Think compiler vs. microarchitecture

4

IMUL R3  R1, R2
ADD R3  R3, R1
ADD R1  R6, R7
IMUL R5  R6, R8
ADD R7  R3, R5

LD R3  R1 (0)
ADD R3  R3, R1
ADD R1  R6, R7
IMUL R5  R6, R8
ADD R7  R3, R5

Preventing Dispatch Stalls
 Multiple ways of doing it
 You have already seen THREE:

 1. Fine-grained multithreading
 2. Value prediction
 3. Compile-time instruction scheduling/reordering

5

Preventing Dispatch Stalls
 Multiple ways of doing it
 You have already seen THREE:

 1. Fine-grained multithreading
 2. Value prediction
 3. Compile-time instruction scheduling/reordering

 What are the disadvantages of the above three?

 Any other way to prevent dispatch stalls?
 Actually, you have briefly seen the basic idea before

 Dataflow: fetch and “fire” an instruction when its inputs are
ready

 Problem: in-order dispatch (scheduling, or execution)
 Solution: out-of-order dispatch (scheduling, or execution)

6

Out-of-order Execution (Dynamic Scheduling)

 Idea: Move the dependent instructions out of the way of
independent ones
 Rest areas for dependent instructions: Reservation stations

 Monitor the source “values” of each instruction in the

resting area
 When all source “values” of an instruction are available,

“fire” (i.e. dispatch) the instruction
 Instructions dispatched in dataflow (not control-flow) order

 Benefit:

 Latency tolerance: Allows independent instructions to execute
and complete in the presence of a long latency operation

7

In-order vs. Out-of-order Dispatch
 In order dispatch + precise exceptions:

 Out-of-order dispatch + precise exceptions:

 16 vs. 12 cycles
8

F D W E E E E R
F D E R W

F

IMUL R3  R1, R2
ADD R3  R3, R1
ADD R1  R6, R7
IMUL R5  R6, R8
ADD R7  R3, R5

D E R W
F D E R W

F D E R W

F D W E E E E R
F D

STALL
STALL

E R W
F D

E E E E
STALL

E R
F D E E E E R W

F D E R W

WAIT

WAIT

W

Add waits on multiply producing R3

Commit happens in-order

Enabling OoO Execution
1. Need to link the consumer of a value to the producer

 Register renaming: Associate a “tag” with each data value
2. Need to buffer instructions until they are ready to execute

 Insert instruction into reservation stations after renaming
3. Instructions need to keep track of readiness of source values

 Broadcast the “tag” when the value is produced
 Instructions compare their “source tags” to the broadcast tag
 if match, source value becomes ready

4. When all source values of an instruction are ready, need to
dispatch the instruction to its functional unit (FU)
 Instruction wakes up if all sources are ready
 If multiple instructions are awake, need to select one per FU

9

Tomasulo’s Algorithm
 OoO with register renaming invented by Robert Tomasulo

 Used in IBM 360/91 Floating Point Units
 Read: Tomasulo, “An Efficient Algorithm for Exploiting Multiple

Arithmetic Units,” IBM Journal of R&D, Jan. 1967.

 What is the major difference today?
 Precise exceptions: IBM 360/91 did NOT have this
 Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and

introduction,” MICRO 1985.
 Patt et al., “Critical issues regarding HPS, a high performance

microarchitecture,” MICRO 1985.

 Variants used in most high-performance processors
 Initially in Intel Pentium Pro, AMD K5
 Alpha 21264, MIPS R10000, IBM POWER5, IBM z196, Oracle UltraSPARC T4, ARM Cortex A15

 10

Two Humps in a Modern Pipeline

 Hump 1: Reservation stations (scheduling window)
 Hump 2: Reordering (reorder buffer, aka instruction window

or active window)

11

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R
E
O
R
D
E
R

S
C
H
E
D
U
L
E

TAG and VALUE Broadcast Bus

in order out of order in order

General Organization of an OOO Processor

 Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec.
1995.

 12

Reservation stations

Tomasulo’s Machine: IBM 360/91

13

FP FU FP FU

from memory

load
buffers

from instruction unit
 FP registers

store buffers

to memory

operation bus

reservation
stations

Common data bus

Register Renaming
 Output and anti dependencies are not true dependencies

 WHY? The same register refers to values that have nothing to
do with each other

 They exist because not enough register ID’s (i.e.
names) in the ISA

 The register ID is renamed to the reservation station entry
that will hold the register’s value
 Register ID  RS entry ID
 Architectural register ID  Physical register ID
 After renaming, RS entry ID used to refer to the register

 This eliminates anti- and output- dependencies
 Approximates the performance effect of a large number of

registers even though ISA has a small number
 14

 Register rename table (register alias table)

Tomasulo’s Algorithm: Renaming

15

R0

R1

R2

R3

tag value valid?

R4

R5

R6

R7

R8

R9

1

1
1

1

1

1
1

1
1
1

Tomasulo’s Algorithm
 If reservation station available before renaming

 Instruction + renamed operands (source value/tag) inserted into the
reservation station

 Only rename if reservation station is available
 Else stall
 While in reservation station, each instruction:

 Watches common data bus (CDB) for tag of its sources
 When tag seen, grab value for the source and keep it in the reservation station
 When both operands available, instruction ready to be dispatched

 Dispatch instruction to the Functional Unit when instruction is ready
 After instruction finishes in the Functional Unit

 Arbitrate for CDB
 Put tagged value onto CDB (tag broadcast)
 Register file is connected to the CDB

 Register contains a tag indicating the latest writer to the register
 If the tag in the register file matches the broadcast tag, write broadcast value

into register (and set valid bit)
 Reclaim rename tag

 no valid copy of tag in system!

 16

An Exercise

 Assume ADD (4 cycle execute), MUL (6 cycle execute)
 Assume one adder and one multiplier
 How many cycles

 in a non-pipelined machine
 in an in-order-dispatch pipelined machine with imprecise

exceptions (no forwarding and full forwarding)
 in an out-of-order dispatch pipelined machine imprecise

exceptions (full forwarding)
17

MUL R3  R1, R2
ADD R5  R3, R4
ADD R7  R2, R6
ADD R10  R8, R9
MUL R11  R7, R10
ADD R5  R5, R11

F D E W

Exercise Continued

18

Exercise Continued

19

With forwarding

Exercise Continued

20

MUL R3  R1, R2
ADD R5  R3, R4
ADD R7  R2, R6
ADD R10  R8, R9
MUL R11  R7, R10
ADD R5  R5, R11

How It Works Cycle 0

21

+ *

v tag value v tag value v tag value v tag value

a
b
c
d

x
y
z

v tag value

r1 1 1

r2 1 2

r3 1 3

r4 1 4

r5 1 5

r6 1 6

r7 1 7

r8 1 8

r9 1 9

r10 1 10

r11 1 11

MUL R3  R1, R2
ADD R5  R3, R4
ADD R7  R2, R6
ADD R10  R8, R9
MUL R11  R7, R10
ADD R5  R5, R11

How It Works Cycle 1

22

+ *

v tag value v tag value v tag value v tag value

a
b
c
d

x
y
z

v tag value

r1 1 1

r2 1 2

r3 1 3

r4 1 4

r5 1 5

r6 1 6

r7 1 7

r8 1 8

r9 1 9

r10 1 10

r11 1 11

MUL R3  R1, R2
ADD R5  R3, R4
ADD R7  R2, R6
ADD R10  R8, R9
MUL R11  R7, R10
ADD R5  R5, R11

How It Works Cycle 2

23

+ *

v tag value v tag value v tag value

1 1

v tag value

1 2 a
b
c
d

x
y
z

v tag value

r1 1 1

r2 1 2

r3 0 x ?

r4 1 4

r5 1 5

r6 1 6

r7 1 7

r8 1 8

r9 1 9

r10 1 10

r11 1 11

MUL R3  R1, R2
ADD R5  R3, R4
ADD R7  R2, R6
ADD R10  R8, R9
MUL R11  R7, R10
ADD R5  R5, R11

How It Works Cycle 3

24

+ *

v tag value

0 x ?

v tag value

1 4

v tag value

1 1

v tag value

1 2 a
b
c
d

x
y
z

v tag value

r1 1 1

r2 1 2

r3 0 x ?

r4 1 4

r5 0 a ?

r6 1 6

r7 1 7

r8 1 8

r9 1 9

r10 1 10

r11 1 11

MUL R3  R1, R2
ADD R5  R3, R4
ADD R7  R2, R6
ADD R10  R8, R9
MUL R11  R7, R10
ADD R5  R5, R11

X in E (1)

How It Works Cycle 4

25

+ *

v tag value

0 x ?

1 2

v tag value

1 4

1 6

v tag value

1 1

v tag value

1 2 a
b
c
d

x
y
z

v tag value

r1 1 1

r2 1 2

r3 0 x ?

r4 1 4

r5 0 a ?

r6 1 6

r7 0 b ?

r8 1 8

r9 1 9

r10 1 10

r11 1 11

MUL R3  R1, R2
ADD R5  R3, R4
ADD R7  R2, R6
ADD R10  R8, R9
MUL R11  R7, R10
ADD R5  R5, R11

X in E (2)

How It Works Cycle 5

26

+ *

v tag value

0 x ?

1 2

1 8

v tag value

1 4

1 6

1 9

v tag value

1 1

v tag value

1 2 a
b
c
d

x
y
z

v tag value

r1 1 1

r2 1 2

r3 0 x ?

r4 1 4

r5 0 a ?

r6 1 6

r7 0 b ?

r8 1 8

r9 1 9

r10 0 c ?

r11 1 11

MUL R3  R1, R2
ADD R5  R3, R4
ADD R7  R2, R6
ADD R10  R8, R9
MUL R11  R7, R10
ADD R5  R5, R11

X in E (3) b in E (1)

How It Works Cycle 6

27

+ *

v tag value

0 x ?

1 2

1 8

v tag value

1 4

1 6

1 9

v tag value

1 1

0 b ?

v tag value

1 2

0 C ?

a
b
c
d

x
y
z

v tag value

r1 1 1

r2 1 2

r3 0 x ?

r4 1 4

r5 0 a ?

r6 1 6

r7 0 b ?

r8 1 8

r9 1 9

r10 0 c ?

r11 0 y ?

MUL R3  R1, R2
ADD R5  R3, R4
ADD R7  R2, R6
ADD R10  R8, R9
MUL R11  R7, R10
ADD R5  R5, R11

X in E (4) b in E (2)
c in E (1)

How It Works Cycle 7

28

+ *

v tag value

0 x ?

1 2

1 8

0 a ?

v tag value

1 4

1 6

1 9

0 y ?

v tag value

1 1

0 b ?

v tag value

1 2

0 C ?

a
b
c
d

x
y
z

v tag value

r1 1 1

r2 1 2

r3 0 x ?

r4 1 4

r5 0 d ?

r6 1 6

r7 0 b ?

r8 1 8

r9 1 9

r10 0 c ?

r11 0 y ?

MUL R3  R1, R2
ADD R5  R3, R4
ADD R7  R2, R6
ADD R10  R8, R9
MUL R11  R7, R10
ADD R5  R5, R11

X in E (5) b in E (3)
c in E (2)

How It Works Cycle 8

29

+ *

v tag value

1 x 2

1 2

1 8

0 a ?

v tag value

1 4

1 6

1 9

0 y ?

v tag value

1 1

1 b 8

v tag value

1 2

0 C ?

a
b
c
d

x
y
z

v tag value

r1 1 1

r2 1 2

r3 0 x 2

r4 1 4

r5 0 d ?

r6 1 6

r7 0 b 8

r8 1 8

r9 1 9

r10 0 c ?

r11 0 y ?

MUL R3  R1, R2
ADD R5  R3, R4
ADD R7  R2, R6
ADD R10  R8, R9
MUL R11  R7, R10
ADD R5  R5, R11

X in E (6) b in E (4)
c in E (3)

How It Works Cycle 9

30

+ *

v tag value

1 x 2

1 2

1 8

0 a ?

v tag value

1 4

1 6

1 9

0 y ?

v tag value

1 1

1 b 8

v tag value

1 2

1 C 17

a
b
c
d

x
y
z

v tag value

r1 1 1

r2 1 2

r3 1 x 2

r4 1 4

r5 0 d ?

r6 1 6

r7 1 b 8

r8 1 8

r9 1 9

r10 0 c 17

r11 0 y ?

MUL R3  R1, R2
ADD R5  R3, R4
ADD R7  R2, R6
ADD R10  R8, R9
MUL R11  R7, R10
ADD R5  R5, R11

A in E (1)
c in E (4)

How It Works Cycle 10

31

+ *

v tag value

1 x 2

1 2

1 8

0 a ?

v tag value

1 4

1 6

1 9

0 y ?

v tag value

1 1

1 b 8

v tag value

1 2

1 C 17

a
b
c
d

x
y
z

v tag value

r1 1 1

r2 1 2

r3 1 2

r4 1 4

r5 0 d ?

r6 1 6

r7 1 8

r8 1 8

r9 1 9

r10 1 c 17

r11 0 y ?

MUL R3  R1, R2
ADD R5  R3, R4
ADD R7  R2, R6
ADD R10  R8, R9
MUL R11  R7, R10
ADD R5  R5, R11

A in E (2) y in E (1)

An Exercise, with Precise Exceptions

 Assume ADD (4 cycle execute), MUL (6 cycle execute)
 Assume one adder and one multiplier
 How many cycles

 in a non-pipelined machine
 in an in-order-dispatch pipelined machine with reorder buffer

(no forwarding and full forwarding)
 in an out-of-order dispatch pipelined machine with reorder

buffer (full forwarding)
38

MUL R3  R1, R2
ADD R5  R3, R4
ADD R7  R2, R6
ADD R10  R8, R9
MUL R11  R7, R10
ADD R5  R5, R11

F D E R W

Out-of-Order Execution with Precise Exceptions

 Idea: Use a reorder buffer to reorder instructions before
committing them to architectural state

 An instruction updates the register alias table (essentially a

future file) when it completes execution
 An instruction updates the architectural register file when it

is the oldest in the machine and has completed execution

39

Out-of-Order Execution with Precise Exceptions

 Hump 1: Reservation stations (scheduling window)
 Hump 2: Reordering (reorder buffer, aka instruction window

or active window)

40

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R
E
O
R
D
E
R

S
C
H
E
D
U
L
E

TAG and VALUE Broadcast Bus

in order out of order in order

Enabling OoO Execution, Revisited
1. Link the consumer of a value to the producer

 Register renaming: Associate a “tag” with each data value

2. Buffer instructions until they are ready
 Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction
 Broadcast the “tag” when the value is produced
 Instructions compare their “source tags” to the broadcast tag
 if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)
 Wakeup and select/schedule the instruction

41

Summary of OOO Execution Concepts
 Register renaming eliminates false dependencies, enables

linking of producer to consumers

 Buffering enables the pipeline to move for independent ops

 Tag broadcast enables communication (of readiness of
produced value) between instructions

 Wakeup and select enables out-of-order dispatch

42

OOO Execution: Restricted Dataflow
 An out-of-order engine dynamically builds the dataflow

graph of a piece of the program
 which piece?

 The dataflow graph is limited to the instruction window
 Instruction window: all decoded but not yet retired

instructions

 Can we do it for the whole program?
 Why would we like to?
 In other words, how can we have a large instruction

window?
 Can we do it efficiently with Tomasulo’s algorithm?

43

Dataflow Graph for Our Example

44

MUL R3  R1, R2
ADD R5  R3, R4
ADD R7  R2, R6
ADD R10  R8, R9
MUL R11  R7, R10
ADD R5  R5, R11

State of RAT and RS in Cycle 7

45

Dataflow Graph

46

Restricted Data Flow
 An out-of-order machine is a “restricted data flow” machine

 Dataflow-based execution is restricted to the microarchitecture
level

 ISA is still based on von Neumann model (sequential
execution)

 Remember the data flow model (at the ISA level):

 Dataflow model: An instruction is fetched and executed in
data flow order

 i.e., when its operands are ready
 i.e., there is no instruction pointer
 Instruction ordering specified by data flow dependence

 Each instruction specifies “who” should receive the result
 An instruction can “fire” whenever all operands are received

47

Questions to Ponder
 Why is OoO execution beneficial?

 What if all operations take single cycle?
 Latency tolerance: OoO execution tolerates the latency of

multi-cycle operations by executing independent operations
concurrently

 What if an instruction takes 500 cycles?

 How large of an instruction window do we need to continue
decoding?

 How many cycles of latency can OoO tolerate?
 What limits the latency tolerance scalability of Tomasulo’s

algorithm?
 Active/instruction window size: determined by register file,

scheduling window, reorder buffer

 48

Registers versus Memory, Revisited
 So far, we considered register based value communication

between instructions

 What about memory?

 What are the fundamental differences between registers
and memory?
 Register dependences known statically – memory

dependences determined dynamically
 Register state is small – memory state is large
 Register state is not visible to other threads/processors –

memory state is shared between threads/processors (in a
shared memory multiprocessor)

49

Memory Dependence Handling (I)
 Need to obey memory dependences in an out-of-order

machine
 and need to do so while providing high performance

 Observation and Problem: Memory address is not known
until a load/store executes

 Corollary 1: Renaming memory addresses is difficult
 Corollary 2: Determining dependence or independence of

loads/stores need to be handled after their execution
 Corollary 3: When a load/store has its address ready, there

may be younger/older loads/stores with undetermined
addresses in the machine

50

Memory Dependence Handling (II)
 When do you schedule a load instruction in an OOO engine?

 Problem: A younger load can have its address ready before an
older store’s address is known

51

What if M[r5] == r4?

Ld r2,r5 ; r2 <- M[r5]
St r1,r2 ; M[r2] <- r1
Ld r3,r4 ; r3 <- M[r4]

Memory Dependence Handling (II)
 When do you schedule a load instruction in an OOO engine?

 Problem: A younger load can have its address ready before an
older store’s address is known

 Known as the memory disambiguation problem or the unknown
address problem

 Approaches
 Conservative: Stall the load until all previous stores have

computed their addresses (or even retired from the machine)
 Aggressive: Assume load is independent of unknown-address

stores and schedule the load right away
 Intelligent: Predict (with a more sophisticated predictor) if the

load is dependent on the/any unknown address store

52

Handling of Store-Load Dependencies
 A load’s dependence status is not known until all previous store

addresses are available.

 How does the OOO engine detect dependence of a load instruction on a

previous store?
 Option 1: Wait until all previous stores committed (no need to

check)
 Option 2: Keep a list of pending stores in a store buffer and check

whether load address matches a previous store address

 How does the OOO engine treat the scheduling of a load instruction wrt
previous stores?
 Option 1: Assume load dependent on all previous stores
 Option 2: Assume load independent of all previous stores
 Option 3: Predict the dependence of a load on an outstanding store

53

Memory Disambiguation (I)
 Option 1: Assume load dependent on all previous stores
 + No need for recovery
 -- Too conservative: delays independent loads unnecessarily

 Option 2: Assume load independent of all previous stores
 + Simple and can be common case: no delay for independent loads
 -- Requires recovery and re-execution of load and dependents on misprediction

 Option 3: Predict the dependence of a load on an
outstanding store

 + More accurate. Load store dependencies persist over time
 -- Still requires recovery/re-execution on misprediction

 Alpha 21264 : Initially assume load independent, delay loads found to be dependent
 Moshovos et al., “Dynamic speculation and synchronization of data dependences,”

ISCA 1997.
 Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.

54

Memory Disambiguation (II)
 Chrysos and Emer, “Memory Dependence Prediction Using Store

Sets,” ISCA 1998.

 Predicting store-load dependencies important for performance
 Simple predictors (based on past history) can achieve most of

the potential performance

55

Food for Thought for You
 Many other design choices

 Should reservation stations be centralized or distributed?

 What are the tradeoffs?

 Should reservation stations and ROB store data values or
should there be a centralized physical register file where all
data values are stored?
 What are the tradeoffs?

 Exactly when does an instruction broadcast its tag?

 …

56

More Food for Thought for You
 How can you implement branch prediction in an out-of-

order execution machine?
 Think about branch history register and PHT updates
 Think about recovery from mispredictions

 How to do this fast?

 How can you combine superscalar execution with out-of-
order execution?
 These are different concepts
 Concurrent renaming of instructions
 Concurrent broadcast of tags

 How can you combine superscalar + out-of-order + branch
prediction?

57

Recommended Readings
 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,

March-April 1999.

 Boggs et al., “The Microarchitecture of the Pentium 4
Processor,” Intel Technology Journal, 2001.

 Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, April 1996

 Tendler et al., “POWER4 system microarchitecture,” IBM
Journal of Research and Development, January 2002.

58

	Computer Architecture:�Out-of-Order Execution
	Reading for Today
	An In-order Pipeline
	Can We Do Better?
	Preventing Dispatch Stalls
	Preventing Dispatch Stalls
	Out-of-order Execution (Dynamic Scheduling)
	In-order vs. Out-of-order Dispatch
	Enabling OoO Execution
	Tomasulo’s Algorithm
	Two Humps in a Modern Pipeline
	General Organization of an OOO Processor
	Tomasulo’s Machine: IBM 360/91
	Register Renaming
	Tomasulo’s Algorithm: Renaming
	Tomasulo’s Algorithm
	An Exercise
	Exercise Continued
	Exercise Continued
	Exercise Continued
	How It Works Cycle 0
	How It Works Cycle 1
	How It Works Cycle 2
	How It Works Cycle 3
	How It Works Cycle 4
	How It Works Cycle 5
	How It Works Cycle 6
	How It Works Cycle 7
	How It Works Cycle 8
	How It Works Cycle 9
	How It Works Cycle 10
	An Exercise, with Precise Exceptions
	Out-of-Order Execution with Precise Exceptions
	Out-of-Order Execution with Precise Exceptions
	Enabling OoO Execution, Revisited
	Summary of OOO Execution Concepts
	OOO Execution: Restricted Dataflow
	Dataflow Graph for Our Example
	State of RAT and RS in Cycle 7
	Dataflow Graph
	Restricted Data Flow
	Questions to Ponder
	Registers versus Memory, Revisited
	Memory Dependence Handling (I)
	Memory Dependence Handling (II)
	Memory Dependence Handling (II)
	Handling of Store-Load Dependencies
	Memory Disambiguation (I)
	Memory Disambiguation (II)
	Food for Thought for You
	More Food for Thought for You
	Recommended Readings

