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Reading for Today

Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o More advanced pipelining
o Interrupt and exception handling
o Out-of-order and superscalar execution concepts



An In-order Pipeline

Integer add
E
Integer mul
E|E |E |E .
F ID FP mul R W
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Cache miss

Problem: A true data dependency stalls dispatch of younger
Instructions into functional (execution) units

Dispatch: Act of sending an instruction to a functional unit



Can We Do Better?

What do the following two pieces of code have in common
(with respect to execution in the previous design)?

IMUL R3 € R1, R2 LD R3 < R1(0)
ADD R3 € R3,R1 ADD R3 € R3,R1
ADD R1 € R6, R7 ADD R1 € R6, R7
IMUL R5 € RG6, R8 IMUL R5 €< RG6, R8
ADD R7 € R3,R5 ADD R7 € R3,R5

Answer: First ADD stalls the whole pipeline!
o ADD cannot dispatch because its source registers unavailable
o Later independent instructions cannot get executed

How are the above code portions different?
o Answer: Load latency is variable (unknown until runtime)
o What does this affect? Think compiler vs. microarchitecture



Preventing Dispatch Stalls

= Multiple ways of doing it

= You have already seen THREE:
o 1.
a 2.
a 3.




Preventing Dispatch Stalls

Multiple ways of doing it

You have already seen THREE:

o 1. Fine-grained multithreading

o 2. Value prediction

o 3. Compile-time instruction scheduling/reordering

What are the disadvantages of the above three?

Any other way to prevent dispatch stalls?

o Actually, you have briefly seen the basic idea before

Dataflow: fetch and “fire” an instruction when its inputs are
ready

o Problem: in-order dispatch (scheduling, or execution)
o Solution: out-of-order dispatch (scheduling, or execution)



Out-of-order Execution (Dynamic Scheduling)

Idea: Move the dependent instructions out of the way of
Independent ones

o Rest areas for dependent instructions: Reservation stations

Monitor the source “values” of each instruction in the
resting area

When all source “values” of an instruction are available,
“fire” (i.e. dispatch) the instruction

o Instructions dispatched in dataflow (not control-flow) order

Benefit:

o Latency tolerance: Allows independent instructions to execute
and complete in the presence of a long latency operation



In-order vs. Out-of-order Dispatch

In order dispatch + precise exceptions:

IMUL R3 € R1, R2
FDIEEEIERIW ADD R3 € R3,R1
F|D STALL |E |[R|W ADD R1 € R6, R7
F STALL |D |E |R [W IMUL R5 €< R6, R8
Elplelelelelelr Iw ADD R7 € R3,R5

F D STALL EIR|W

Out-of-order dispatch + precise exceptions:
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Enabling OoO Execution

1. Need to link the consumer of a value to the producer
o Register renaming: Associate a “tag” with each data value

2. Need to buffer instructions until they are ready to execute
o Insert instruction into reservation stations after renaming

3. Instructions need to keep track of readiness of source values
o Broadcast the “tag” when the value is produced

o Instructions compare their “source tags” to the broadcast tag
—> If match, source value becomes ready

4. When all source values of an instruction are ready, need to
dispatch the instruction to its functional unit (FU)
o Instruction wakes up if all sources are ready
o If multiple instructions are awake, need to select one per FU




Tomasulo’s Algorithm

Oo00 with register renaming invented by Robert Tomasulo
o Used in IBM 360/91 Floating Point Units

o Read: Tomasulo, “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units,” IBM Journal of R&D, Jan. 1967.

What is the major difference today?

o Precise exceptions: IBM 360/91 did NOT have this

o Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and
introduction,” MICRO 1985.

o Patt et al., “Critical issues regarding HPS, a high performance
microarchitecture,” MICRO 1985.

Variants used in most high-performance processors

o Initially in Intel Pentium Pro, AMD K5
o Alpha 21264, MIPS R10000, IBM POWERS, IBM 2196, Oracle UltraSPARC T4, ARM Cortex A15
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Two Humps in a Modern Pipeline

TAG and VALUE Broadcast Bus

A 4

(S: e Integer add R

H Integer mul E)

E |E |E |E
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D FP mul S W
U E |E |E |E |E |E |E |E c
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Load/store
in order out of order in order

Hump 1: Reservation stations (scheduling window)

Hump 2: Reordering (reorder buffer, aka instruction window
or active window)
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General Organization of an OOQO Processor
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Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec.

1995.

12



Tomasulo’s Machine: IBM 360/91

: : : FP registers
from memory from instruction unit

load l l

buffers

store buffers

operation bus

reservation
stations
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to memory

Common data bus
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Register Renaming

Output and anti dependencies are not true dependencies

o WHY? The same register refers to values that have nothing to
do with each other

o They exist because not enough register ID’ s (i.e.
names) in the ISA

The register ID Is renamed to the reservation station entry
that will hold the register’ s value

o Register ID - RS entry ID

o Architectural register ID - Physical register 1D

o After renaming, RS entry ID used to refer to the register

This eliminates anti- and output- dependencies

o Approximates the performance effect of a large number of
registers even though ISA has a small number
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Tomasulo’s Algorithm: Renaming

Register rename table (register alias table)

tag value valid?

=

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9
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Tomasulo s Algorithm

If reservation station available before renaming

o Instruction + renamed operands (source value/tag) inserted into the
reservation station

o Only rename if reservation station is available
Else stall

While in reservation station, each instruction:

o Watches common data bus (CDB) for tag of its sources

o When tag seen, grab value for the source and keep it in the reservation station
o When both operands available, instruction ready to be dispatched

Dispatch instruction to the Functional Unit when instruction is ready

After instruction finishes in the Functional Unit
o Arbitrate for CDB
o Put tagged value onto CDB (tag broadcast)
o Register file is connected to the CDB
Register contains a tag indicating the latest writer to the register

If the tag in the register file matches the broadcast tag, write broadcast value
into register (and set valid bit)

o Reclaim rename tag
no valid copy of tag in system!
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An Exercise

MUL
ADD
ADD
ADD
MUL
ADD

Assume ADD (4 cycle execute), MUL (6 cycle execute)

R3 ¢« R1, R2

R5 < R3, R4

R7 € R2, R6 FIDIE |W
R10 €< R8, R9

R11 < R7, R10
R5 < R5, R11

Assume one adder and one multiplier
How many cycles

a

a

In a non-pipelined machine
In an in-order-dispatch pipelined machine with imprecise
exceptions (no forwarding and full forwarding)

In an out-of-order dispatch pipelined machine imprecise
exceptions (full forwarding)

17



Exercise Continued

Mul- Rl,_R2,— R3

ADD  R3 ,RY— RS
S0V R2LRE — R
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AP RS, RN 5 RS
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Exercise Continued
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Exercise Continued

MUL R3 € R1,R2
ADD R5 € R3, R4
ADD R7 € R2,R6
ADD R10 € R8, R9
MUL R11 ¢ R7, R10
ADD R5 € R5,R11

Tm&.ﬁda's olgotnen 5 LA ﬁw""l"":s

D123 LS & W
F D Y4 23 ¢ 0
FD1234 W
Fp123 (W
F D M 23486 W
FD

20 oycles
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v | tag | value
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How It Works Cycle 3
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ri |1 1
r2 |1 2
3 |1 x 2
r4 |1 4
r5 |0 d ?
e |1 6
7 |1 b 8
8 |1 8
9 |1 9
rlO (0| c
ril (0| vy ?

o O T 9
OlkRr|[kR,|R]|<

How It Works Cycle 9

tag

tag

MUL
ADD
ADD
ADD
MUL
ADD

R3 € R1, R2
R5 € R3, R4
R7 € R2, R6
R10 € R8, R9
R11 € R7, R10
R5 € R5, R11

tag

value

tag

value

30




tag

value

rl

r2

r3

rd

r5

re

rv/

r8

r9

RlRr(RP[RP|O|R|R|R|FR|<

O[OV~ |IN|IN|PF

rlo

ril

o O T 9
OlkRr|[kR,|RL]|<

How It Works Cycle 10

tag

tag

MUL
ADD
ADD
ADD
MUL
ADD

R3 € R1, R2
R5 € R3, R4
R7 € R2, R6
R10 € R8, R9
R11 € R7, R10
R5 € R5, R11

tag | value | |v| tag | value

olkRr|[kRPr|kR|<

y

\

v Ain7é)
+

\ ¥

31




An Exercise, with Precise Exceptions

MUL
ADD
ADD
ADD
MUL
ADD

R3 ¢« R1, R2

R5 < R3, R4

R7 € R2, R6 FIDIE IR |W
R10 €< R8, R9

R11 < R7, R10
R5 < R5, R11

Assume ADD (4 cycle execute), MUL (6 cycle execute)
Assume one adder and one multiplier

How many cycles
o In a non-pipelined machine
o In an in-order-dispatch pipelined machine with reorder buffer

(no forwarding and full forwarding)

o In an out-of-order dispatch pipelined machine with reorder

buffer (full forwarding)
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Out-of-Order Execution with Precise Exceptions

ldea: Use a reorder buffer to reorder instructions before
committing them to architectural state

An instruction updates the register alias table (essentially a
future file) when it completes execution

An instruction updates the architectural register file when it
IS the oldest in the machine and has completed execution
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Out-of-Order Execution with Precise Exceptions

TAG and VALUE Broadcast Bus

A 4

(S: e Integer add R

H Integer mul E)

E |E |E |E
F|D E >R =

D FP mul S W
U E |E |E |E |E |E |E |E c

L

- E|E|E|E|E|E|E|E]|.. |R

Load/store
in order out of order in order

Hump 1: Reservation stations (scheduling window)

Hump 2: Reordering (reorder buffer, aka instruction window
or active window)
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Enabling OoO Execution, Revisited

1. Link the consumer of a value to the producer
o Register renaming: Associate a “tag” with each data value

2. Buffer instructions until they are ready
o Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction
o Broadcast the “tag” when the value is produced

o Instructions compare their “source tags” to the broadcast tag
—> If match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

o Wakeup and select/schedule the instruction
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Summary of OOO Execution Concepts

= Register renaming eliminates false dependencies, enables
linking of producer to consumers

= Buffering enables the pipeline to move for independent ops

= Tag broadcast enables communication (of readiness of
produced value) between instructions

= Wakeup and select enables out-of-order dispatch
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OO0 Execution: Restricted Dataflow

An out-of-order engine dynamically builds the dataflow
graph of a piece of the program

o which piece?

The dataflow graph is limited to the instruction window

o Instruction window: all decoded but not yet retired
Instructions

Can we do it for the whole program?
Why would we like to?

In other words, how can we have a large instruction
window?

Can we do it efficiently with Tomasulo’s algorithm?
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Dataflow Graph for Our Example

MUL R3 € R1,R2
ADD R5 € R3, R4
ADD R7 € R2,R6
ADD R10 € R8, R9
MUL R11 € R7, R10
ADD R5 € R5,R11
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end of oyole =

v vehe a - G '

e T AT e
P o — e | ~ 'E t>1%9 ' -~
3 0p X | diol a [~ Jlcly [~ yﬂﬂ =
Shre]
ﬁs Fa v
et \(v / \ f
R} 10| A
SRig) -~ 1 G
RS [ it q
Relo] © T~ 1
R B 2

2 Al £ meindens yerened.
— Nile whd= hoppeneed 4u RS

45



Datatlow Graph
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Restricted Data Flow

An out-of-order machine is a “restricted data flow” machine

o Dataflow-based execution is restricted to the microarchitecture
level

o ISA is still based on von Neumann model (sequential
execution)

Remember the data flow model (at the ISA level):

o Dataflow model: An instruction Is fetched and executed In
data flow order

o l.e., when its operands are ready
o l.e., there is no instruction pointer

o Instruction ordering specified by data flow dependence
Each instruction specifies “who” should receive the result

An instruction can “fire” whenever all operands are received
47



Questions to Ponder

Why is 000 execution beneficial?
o What if all operations take single cycle?

o Latency tolerance: OoO execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

What if an instruction takes 500 cycles?

o How large of an instruction window do we need to continue
decoding?

o How many cycles of latency can OoO tolerate?

o What limits the latency tolerance scalability of Tomasulo’ s
algorithm?

Active/instruction window size: determined by register file,
scheduling window, reorder buffer
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Registers versus Memory, Revisited

So far, we considered register based value communication
between instructions

What about memory?

What are the fundamental differences between registers
and memory?

o Register dependences known statically — memory
dependences determined dynamically

o Register state is small — memory state is large

o Register state is not visible to other threads/processors —
memory state Is shared between threads/processors (in a
shared memory multiprocessor)
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Memory Dependence Handling (1)

Need to obey memory dependences in an out-of-order
machine

o and need to do so while providing high performance

Observation and Problem: Memory address is not known
until a load/store executes

Corollary 1: Renaming memory addresses is difficult

Corollary 2: Determining dependence or independence of
loads/stores need to be handled after their execution

Corollary 3: When a load/store has its address ready, there
may be younger/older loads/stores with undetermined
addresses in the machine
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Memory Dependence Handling (1)

When do you schedule a load instruction in an OOO engine?

o Problem: A younger load can have its address ready before an
older store’s address is known

What if M[r5] ==r4?
Ld 2,5 ;r2<-M[r5]

St rLr2 ;M[r2] <-rl
Ld r3,r4 ;r3 <- M[r4]
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Memory Dependence Handling (1)

When do you schedule a load instruction in an OOO engine?

o Problem: A younger load can have its address ready before an
older store’s address is known

2 Known as the memory disambiguation problem or the unknown
address problem

Approaches

o Conservative: Stall the load until all previous stores have
computed their addresses (or even retired from the machine)

o Aggressive: Assume load is independent of unknown-address
stores and schedule the load right away

o Intelligent: Predict (with a more sophisticated predictor) if the
load is dependent on the/any unknown address store
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Handling of Store-I.oad Dependencies

A load’ s dependence status is not known until all previous store
addresses are available.

How does the OOO engine detect dependence of a load instruction on a
previous store?

o Option 1: Wait until all previous stores committed (no need to
check)

o Option 2: Keep a list of pending stores in a store buffer and check
whether load address matches a previous store address

How does the OOO engine treat the scheduling of a load instruction wrt
previous stores?

o Option 1: Assume load dependent on all previous stores
o Option 2: Assume load independent of all previous stores
o Option 3: Predict the dependence of a load on an outstanding store
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Memory Disambiguation (I)

Option 1: Assume load dependent on all previous stores

+ No need for recovery
-- Too conservative: delays independent loads unnecessarily

Option 2: Assume load independent of all previous stores

+ Simple and can be common case: no delay for independent loads
-- Requires recovery and re-execution of load and dependents on misprediction

Option 3: Predict the dependence of a load on an
outstanding store

+ More accurate. Load store dependencies persist over time

-- Still requires recovery/re-execution on misprediction
o Alpha 21264 : Initially assume load independent, delay loads found to be dependent

o Moshovos et al., “Dynamic speculation and synchronization of data dependences,”
ISCA 1997.

o Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.
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Memory Disambiguation (II)

Chrysos and Emer, “Memory Dependence Prediction Using Store
Sets,” ISCA 1998.
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Predicting store-load dependencies important for performance

Simple predictors (based on past history) can achieve most of
the potential performance
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Food for Thought for You

Many other design choices

Should reservation stations be centralized or distributed?
o What are the tradeoffs?

Should reservation stations and ROB store data values or
should there be a centralized physical register file where all
data values are stored?

o What are the tradeoffs?

Exactly when does an instruction broadcast its tag?
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More Food for Thought for You

= How can you implement branch prediction in an out-of-
order execution machine?

o Think about branch history register and PHT updates

o Think about recovery from mispredictions
= How to do this fast?

= How can you combine superscalar execution with out-of-
order execution?

o These are different concepts
o Concurrent renaming of instructions
o Concurrent broadcast of tags

= How can you combine superscalar + out-of-order + branch
prediction?
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Recommended Readings

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,
March-April 1999.

Boggs et al., “The Microarchitecture of the Pentium 4
Processor,” Intel Technology Journal, 2001.

Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, April 1996

Tendler et al., “POWER4 system microarchitecture,” IBM
Journal of Research and Development, January 2002.
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