
Computer Architecture: 
Out-of-Order Execution 

 
 

Prof. Onur Mutlu (editted by Seth) 
Carnegie Mellon University 

 
 



Reading for Today 
 Smith and Sohi, “The Microarchitecture of Superscalar 

Processors,” Proceedings of the IEEE, 1995 
 More advanced pipelining 
 Interrupt and exception handling 
 Out-of-order and superscalar execution concepts 
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An In-order Pipeline 

 Problem: A true data dependency stalls dispatch of younger 
instructions into functional (execution) units 

 Dispatch: Act of sending an instruction to a functional unit 

3 

F D 

E 

R 
E E E E E E E E 

E E E E 

E E E E E E E E . . . 

Integer add 

Integer mul 

FP mul 

Cache miss 

W 



Can We Do Better? 
 What do the following two pieces of code have in common 

(with respect to execution in the previous design)? 
 
 

 
 
 Answer: First ADD stalls the whole pipeline! 

 ADD cannot dispatch because its source registers unavailable 
 Later independent instructions cannot get executed 

 
 How are the above code portions different? 

 Answer: Load latency is variable (unknown until runtime) 
 What does this affect? Think compiler vs. microarchitecture 
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IMUL  R3  R1, R2 
ADD   R3  R3, R1 
ADD   R1  R6, R7 
IMUL  R5  R6, R8 
ADD   R7  R3, R5 

LD      R3  R1 (0) 
ADD   R3  R3, R1 
ADD   R1  R6, R7 
IMUL  R5  R6, R8 
ADD   R7  R3, R5 



Preventing Dispatch Stalls 
 Multiple ways of doing it 
 You have already seen THREE: 

 1. Fine-grained multithreading 
 2. Value prediction 
 3. Compile-time instruction scheduling/reordering 
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Preventing Dispatch Stalls 
 Multiple ways of doing it 
 You have already seen THREE: 

 1. Fine-grained multithreading 
 2. Value prediction 
 3. Compile-time instruction scheduling/reordering 

 What are the disadvantages of the above three? 
 

 Any other way to prevent dispatch stalls? 
 Actually, you have briefly seen the basic idea before 

 Dataflow: fetch and “fire” an instruction when its inputs are 
ready 

 Problem: in-order dispatch (scheduling, or execution) 
 Solution: out-of-order dispatch (scheduling, or execution) 
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Out-of-order Execution (Dynamic Scheduling) 

 Idea: Move the dependent instructions out of the way of 
independent ones  
 Rest areas for dependent instructions: Reservation stations  

 
 Monitor the source “values” of each instruction in the 

resting area 
 When all source “values” of an instruction are available, 

“fire” (i.e. dispatch) the instruction 
 Instructions dispatched in dataflow (not control-flow) order  

 
 Benefit: 

 Latency tolerance: Allows independent instructions to execute 
and complete in the presence of a long latency operation 
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In-order vs. Out-of-order Dispatch 
 In order dispatch + precise exceptions: 

 
 
 
 
 

 Out-of-order dispatch + precise exceptions: 
 
 
 

 
 

 16 vs. 12 cycles 
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IMUL  R3  R1, R2 
ADD   R3  R3, R1 
ADD   R1  R6, R7 
IMUL  R5  R6, R8 
ADD   R7  R3, R5 
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Add waits on multiply producing R3 

Commit happens in-order 



Enabling OoO Execution 
1. Need to link the consumer of a value to the producer 

 Register renaming: Associate a “tag” with each data value  
2. Need to buffer instructions until they are ready to execute 

 Insert instruction into reservation stations after renaming  
3. Instructions need to keep track of readiness of source values 

 Broadcast the “tag” when the value is produced 
 Instructions compare their “source tags”  to the broadcast tag 
 if match, source value becomes ready 

4. When all source values of an instruction are ready, need to 
dispatch the instruction to its functional unit (FU) 
 Instruction wakes up if all sources are ready 
 If multiple instructions are awake, need to select one per FU 
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Tomasulo’s Algorithm 
 OoO with register renaming invented by Robert Tomasulo 

 Used in IBM 360/91 Floating Point Units 
 Read: Tomasulo, “An Efficient Algorithm for Exploiting Multiple 

Arithmetic Units,” IBM Journal of R&D, Jan. 1967. 
 

 What is the major difference today? 
 Precise exceptions: IBM 360/91 did NOT have this 
 Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and 

introduction,” MICRO 1985. 
 Patt et al., “Critical issues regarding HPS, a high performance 

microarchitecture,” MICRO 1985. 
 

 Variants used in most high-performance processors 
 Initially in Intel Pentium Pro, AMD K5   
 Alpha 21264, MIPS R10000, IBM POWER5, IBM z196, Oracle UltraSPARC T4, ARM Cortex A15 
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Two Humps in a  Modern Pipeline 
 
 
 
 
 
 
 
 
 

 Hump 1: Reservation stations (scheduling window) 
 Hump 2: Reordering (reorder buffer, aka instruction window 

or active window) 
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General Organization of an OOO Processor 

 
 
 
 
 
 
 
 
 
 
 

 Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 
1995. 
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Reservation stations 



Tomasulo’s Machine: IBM 360/91 
 

13 

FP FU FP FU 

from memory 

load 
buffers 

from instruction unit 
 FP registers 

store buffers 

to memory 

operation bus 

reservation  
stations 

Common data bus 



Register Renaming 
 Output and anti dependencies are not true dependencies 

 WHY? The same register refers to values that have nothing to 
do with each other 

 They exist because not enough register ID’s (i.e. 
names) in the ISA 

 The register ID is renamed to the reservation station entry 
that will hold the register’s value 
 Register ID  RS entry ID 
 Architectural register ID  Physical register ID 
 After renaming, RS entry ID used to refer to the register 
 

 This eliminates anti- and output- dependencies 
 Approximates the performance effect of a large number of 

registers even though ISA has a small number 
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 Register rename table (register alias table) 

Tomasulo’s Algorithm: Renaming 
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Tomasulo’s Algorithm 
 If reservation station available before renaming 

 Instruction + renamed operands (source value/tag) inserted into the 
reservation station 

 Only rename if reservation station is available 
 Else stall 
 While in reservation station, each instruction: 

 Watches common data bus (CDB) for tag of its sources 
 When tag seen, grab value for the source and keep it in the reservation station 
 When both operands available, instruction ready to be dispatched 

 Dispatch instruction to the Functional Unit when instruction is ready 
 After instruction finishes in the Functional Unit 

 Arbitrate for CDB 
 Put tagged value onto CDB (tag broadcast) 
 Register file is connected to the CDB 

 Register contains a tag indicating the latest writer to the register 
 If the tag in the register file matches the broadcast tag, write broadcast value 

into register (and set valid bit) 
 Reclaim rename tag 

 no valid copy of tag in system! 
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An Exercise 
 
 
 
 
 

 Assume ADD (4 cycle execute), MUL (6 cycle execute) 
 Assume one adder and one multiplier 
 How many cycles 

 in a non-pipelined machine 
 in an in-order-dispatch pipelined machine with imprecise 

exceptions (no forwarding and full forwarding) 
 in an out-of-order dispatch pipelined machine imprecise 

exceptions (full forwarding) 
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MUL   R3  R1, R2 
ADD   R5  R3, R4 
ADD   R7  R2, R6 
ADD   R10  R8, R9 
MUL   R11  R7, R10 
ADD   R5  R5, R11 

F D E W 



Exercise Continued 

18 



Exercise Continued 

19 

With forwarding 



Exercise Continued 
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MUL   R3  R1, R2 
ADD   R5  R3, R4 
ADD   R7  R2, R6 
ADD   R10  R8, R9 
MUL   R11  R7, R10 
ADD   R5  R5, R11 



How It Works   Cycle 0 
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+ * 

v tag value v tag value v tag value v tag value 

a 
b 
c 
d 

x 
y 
z 

v tag value 

r1 1 1 

r2 1 2 

r3 1 3 

r4 1 4 

r5 1 5 

r6 1 6 

r7 1 7 

r8 1 8 

r9 1 9 

r10 1 10 

r11 1 11 

MUL   R3  R1, R2 
ADD   R5  R3, R4 
ADD   R7  R2, R6 
ADD   R10  R8, R9 
MUL   R11  R7, R10 
ADD   R5  R5, R11 



How It Works   Cycle 1 
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+ * 

v tag value v tag value v tag value v tag value 

a 
b 
c 
d 

x 
y 
z 

v tag value 

r1 1 1 

r2 1 2 

r3 1 3 

r4 1 4 

r5 1 5 

r6 1 6 

r7 1 7 

r8 1 8 

r9 1 9 

r10 1 10 

r11 1 11 

MUL   R3  R1, R2 
ADD   R5  R3, R4 
ADD   R7  R2, R6 
ADD   R10  R8, R9 
MUL   R11  R7, R10 
ADD   R5  R5, R11 



How It Works   Cycle 2 
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+ * 

v tag value v tag value v tag value 

1 1 

v tag value 

1 2 a 
b 
c 
d 

x 
y 
z 

v tag value 

r1 1 1 

r2 1 2 

r3 0 x ? 

r4 1 4 

r5 1 5 

r6 1 6 

r7 1 7 

r8 1 8 

r9 1 9 

r10 1 10 

r11 1 11 

MUL   R3  R1, R2 
ADD   R5  R3, R4 
ADD   R7  R2, R6 
ADD   R10  R8, R9 
MUL   R11  R7, R10 
ADD   R5  R5, R11 



How It Works   Cycle 3 
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+ * 

v tag value 

0 x ? 

v tag value 

1 4 

v tag value 

1 1 

v tag value 

1 2 a 
b 
c 
d 

x 
y 
z 

v tag value 

r1 1 1 

r2 1 2 

r3 0 x ? 

r4 1 4 

r5 0 a ? 

r6 1 6 

r7 1 7 

r8 1 8 

r9 1 9 

r10 1 10 

r11 1 11 

MUL   R3  R1, R2 
ADD   R5  R3, R4 
ADD   R7  R2, R6 
ADD   R10  R8, R9 
MUL   R11  R7, R10 
ADD   R5  R5, R11 

X in E (1) 



How It Works   Cycle 4 
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+ * 

v tag value 

0 x ? 

1 2 

v tag value 

1 4 

1 6 

v tag value 

1 1 

v tag value 

1 2 a 
b 
c 
d 

x 
y 
z 

v tag value 

r1 1 1 

r2 1 2 

r3 0 x ? 

r4 1 4 

r5 0 a ? 

r6 1 6 

r7 0 b ? 

r8 1 8 

r9 1 9 

r10 1 10 

r11 1 11 

MUL   R3  R1, R2 
ADD   R5  R3, R4 
ADD   R7  R2, R6 
ADD   R10  R8, R9 
MUL   R11  R7, R10 
ADD   R5  R5, R11 

X in E (2) 



How It Works   Cycle 5 
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+ * 

v tag value 

0 x ? 

1 2 

1 8 

v tag value 

1 4 

1 6 

1 9 

v tag value 

1 1 

v tag value 

1 2 a 
b 
c 
d 

x 
y 
z 

v tag value 

r1 1 1 

r2 1 2 

r3 0 x ? 

r4 1 4 

r5 0 a ? 

r6 1 6 

r7 0 b ? 

r8 1 8 

r9 1 9 

r10 0 c ? 

r11 1 11 

MUL   R3  R1, R2 
ADD   R5  R3, R4 
ADD   R7  R2, R6 
ADD   R10  R8, R9 
MUL   R11  R7, R10 
ADD   R5  R5, R11 

X in E (3) b in E (1) 



How It Works   Cycle 6 
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+ * 

v tag value 

0 x ? 

1 2 

1 8 

v tag value 

1 4 

1 6 

1 9 

v tag value 

1 1 

0 b ? 

v tag value 

1 2 

0 C ? 

a 
b 
c 
d 

x 
y 
z 

v tag value 

r1 1 1 

r2 1 2 

r3 0 x ? 

r4 1 4 

r5 0 a ? 

r6 1 6 

r7 0 b ? 

r8 1 8 

r9 1 9 

r10 0 c ? 

r11 0 y ? 

MUL   R3  R1, R2 
ADD   R5  R3, R4 
ADD   R7  R2, R6 
ADD   R10  R8, R9 
MUL   R11  R7, R10 
ADD   R5  R5, R11 

X in E (4) b in E (2) 
c in E (1) 



How It Works   Cycle 7 
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+ * 

v tag value 

0 x ? 

1 2 

1 8 

0 a ? 

v tag value 

1 4 

1 6 

1 9 

0 y ? 

v tag value 

1 1 

0 b ? 

v tag value 

1 2 

0 C ? 

a 
b 
c 
d 

x 
y 
z 

v tag value 

r1 1 1 

r2 1 2 

r3 0 x ? 

r4 1 4 

r5 0 d ? 

r6 1 6 

r7 0 b ? 

r8 1 8 

r9 1 9 

r10 0 c ? 

r11 0 y ? 

MUL   R3  R1, R2 
ADD   R5  R3, R4 
ADD   R7  R2, R6 
ADD   R10  R8, R9 
MUL   R11  R7, R10 
ADD   R5  R5, R11 

X in E (5) b in E (3) 
c in E (2) 



How It Works   Cycle 8 
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+ * 

v tag value 

1 x 2 

1 2 

1 8 

0 a ? 

v tag value 

1 4 

1 6 

1 9 

0 y ? 

v tag value 

1 1 

1 b 8 

v tag value 

1 2 

0 C ? 

a 
b 
c 
d 

x 
y 
z 

v tag value 

r1 1 1 

r2 1 2 

r3 0 x 2 

r4 1 4 

r5 0 d ? 

r6 1 6 

r7 0 b 8 

r8 1 8 

r9 1 9 

r10 0 c ? 

r11 0 y ? 

MUL   R3  R1, R2 
ADD   R5  R3, R4 
ADD   R7  R2, R6 
ADD   R10  R8, R9 
MUL   R11  R7, R10 
ADD   R5  R5, R11 

X in E (6) b in E (4) 
c in E (3) 



How It Works   Cycle 9 
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+ * 

v tag value 

1 x 2 

1 2 

1 8 

0 a ? 

v tag value 

1 4 

1 6 

1 9 

0 y ? 

v tag value 

1 1 

1 b 8 

v tag value 

1 2 

1 C 17 

a 
b 
c 
d 

x 
y 
z 

v tag value 

r1 1 1 

r2 1 2 

r3 1 x 2 

r4 1 4 

r5 0 d ? 

r6 1 6 

r7 1 b 8 

r8 1 8 

r9 1 9 

r10 0 c 17 

r11 0 y ? 

MUL   R3  R1, R2 
ADD   R5  R3, R4 
ADD   R7  R2, R6 
ADD   R10  R8, R9 
MUL   R11  R7, R10 
ADD   R5  R5, R11 

A in E (1) 
c in E (4) 



How It Works   Cycle 10 
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+ * 

v tag value 

1 x 2 

1 2 

1 8 

0 a ? 

v tag value 

1 4 

1 6 

1 9 

0 y ? 

v tag value 

1 1 

1 b 8 

v tag value 

1 2 

1 C 17 

a 
b 
c 
d 

x 
y 
z 

v tag value 

r1 1 1 

r2 1 2 

r3 1 2 

r4 1 4 

r5 0 d ? 

r6 1 6 

r7 1 8 

r8 1 8 

r9 1 9 

r10 1 c 17 

r11 0 y ? 

MUL   R3  R1, R2 
ADD   R5  R3, R4 
ADD   R7  R2, R6 
ADD   R10  R8, R9 
MUL   R11  R7, R10 
ADD   R5  R5, R11 

A in E (2) y in E (1) 



An Exercise, with Precise Exceptions 
 
 
 
 
 

 Assume ADD (4 cycle execute), MUL (6 cycle execute) 
 Assume one adder and one multiplier 
 How many cycles 

 in a non-pipelined machine 
 in an in-order-dispatch pipelined machine with reorder buffer 

(no forwarding and full forwarding) 
 in an out-of-order dispatch pipelined machine with reorder 

buffer (full forwarding) 
38 

MUL   R3  R1, R2 
ADD   R5  R3, R4 
ADD   R7  R2, R6 
ADD   R10  R8, R9 
MUL   R11  R7, R10 
ADD   R5  R5, R11 

F D E R W 



Out-of-Order Execution with Precise Exceptions 

 Idea: Use a reorder buffer to reorder instructions before 
committing them to architectural state 

 
 An instruction updates the register alias table (essentially a 

future file) when it completes execution 
 An instruction updates the architectural register file when it 

is the oldest in the machine and has completed execution 
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Out-of-Order Execution with Precise Exceptions 

 
 
 
 
 
 
 
 
 

 Hump 1: Reservation stations (scheduling window) 
 Hump 2: Reordering (reorder buffer, aka instruction window 

or active window) 
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Enabling OoO Execution, Revisited 
1. Link the consumer of a value to the producer 

 Register renaming: Associate a “tag” with each data value  
 

2. Buffer instructions until they are ready 
 Insert instruction into reservation stations after renaming  

 

3. Keep track of readiness of source values of an instruction 
 Broadcast the “tag” when the value is produced 
 Instructions compare their “source tags”  to the broadcast tag 
 if match, source value becomes ready 

 

4. When all source values of an instruction are ready, dispatch 
the instruction to functional unit (FU) 
 Wakeup and select/schedule the instruction 
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Summary of OOO Execution Concepts 
 Register renaming eliminates false dependencies, enables 

linking of producer to consumers 
 

 Buffering enables the pipeline to move for independent ops 
 

 Tag broadcast enables communication (of readiness of 
produced value) between instructions 
 

 Wakeup and select enables out-of-order dispatch 
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OOO Execution: Restricted Dataflow 
 An out-of-order engine dynamically builds the dataflow 

graph of a piece of the program 
 which piece? 

 

 The dataflow graph is limited to the instruction window 
 Instruction window: all decoded but not yet retired 

instructions 
 

 Can we do it for the whole program?  
 Why would we like to? 
 In other words, how can we have a large instruction 

window? 
 Can we do it efficiently with Tomasulo’s algorithm? 
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Dataflow Graph for Our Example 
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MUL   R3  R1, R2 
ADD   R5  R3, R4 
ADD   R7  R2, R6 
ADD   R10  R8, R9 
MUL   R11  R7, R10 
ADD   R5  R5, R11 



State of RAT and RS in Cycle 7 
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Dataflow Graph 
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Restricted Data Flow 
 An out-of-order machine is a “restricted data flow” machine 

 Dataflow-based execution is restricted to the microarchitecture 
level 

 ISA is still based on von Neumann model (sequential 
execution) 

 
 Remember the data flow model (at the ISA level): 

 Dataflow model: An instruction is fetched and executed in 
data flow order 

 i.e., when its operands are ready 
 i.e., there is no instruction pointer 
 Instruction ordering specified by data flow dependence 

 Each instruction specifies “who” should receive the result 
 An instruction can “fire” whenever all operands are received 
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Questions to Ponder 
 Why is OoO execution beneficial? 

 What if all operations take single cycle? 
 Latency tolerance: OoO execution tolerates the latency of 

multi-cycle operations by executing independent operations 
concurrently 

 
 What if an instruction takes 500 cycles? 

 How large of an instruction window do we need to continue 
decoding? 

 How many cycles of latency can OoO tolerate? 
 What limits the latency tolerance scalability of Tomasulo’s 

algorithm? 
 Active/instruction window size: determined by register file, 

scheduling window, reorder buffer 
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Registers versus Memory, Revisited 
 So far, we considered register based value communication 

between instructions 
 

 What about memory? 
 

 What are the fundamental differences between registers 
and memory? 
 Register dependences known statically – memory 

dependences determined dynamically 
 Register state is small – memory state is large 
 Register state is not visible to other threads/processors – 

memory state is shared between threads/processors (in a 
shared memory multiprocessor) 
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Memory Dependence Handling (I) 
 Need to obey memory dependences in an out-of-order 

machine  
 and need to do so while providing high performance 
 

 Observation and Problem: Memory address is not known 
until a load/store executes 
 

 Corollary 1: Renaming memory addresses is difficult 
 Corollary 2: Determining dependence or independence of 

loads/stores need to be handled after their execution 
 Corollary 3: When a load/store has its address ready, there 

may be younger/older loads/stores with undetermined 
addresses in the machine 
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Memory Dependence Handling (II) 
 When do you schedule a load instruction in an OOO engine? 

 Problem: A younger load can have its address ready before an 
older store’s address is known 
 

51 

What if M[r5] == r4? 
 
Ld r2,r5 ; r2 <- M[r5] 
St r1,r2 ; M[r2] <- r1 
Ld r3,r4 ; r3 <- M[r4]    



Memory Dependence Handling (II) 
 When do you schedule a load instruction in an OOO engine? 

 Problem: A younger load can have its address ready before an 
older store’s address is known 

 Known as the memory disambiguation problem or the unknown 
address problem 
 

 Approaches 
 Conservative: Stall the load until all previous stores have 

computed their addresses (or even retired from the machine) 
 Aggressive: Assume load is independent of unknown-address 

stores and schedule the load right away 
 Intelligent: Predict (with a more sophisticated predictor) if the 

load is dependent on the/any unknown address store 
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Handling of Store-Load Dependencies 
 A load’s dependence status is not known until all previous store 

addresses are available.  
 
 How does the OOO engine detect dependence of a load instruction on a 

previous store? 
 Option 1: Wait until all previous stores committed (no need to 

check)  
 Option 2: Keep a list of pending stores in a store buffer and check 

whether load address matches a previous store address 
 

 How does the OOO engine treat the scheduling of a load instruction wrt 
previous stores? 
 Option 1: Assume load dependent on all previous stores 
 Option 2: Assume load independent of all previous stores 
 Option 3: Predict the dependence of a load on an outstanding store 
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Memory Disambiguation (I) 
 Option 1: Assume load dependent on all previous stores 
 + No need for recovery  
    -- Too conservative: delays independent loads unnecessarily 

 

 Option 2: Assume load independent of all previous stores 
 + Simple and can be common case: no delay for independent loads 
 -- Requires recovery and re-execution of load and dependents on misprediction 

 

 Option 3: Predict the dependence of a load on an 
outstanding store 

 + More accurate. Load store dependencies persist over time 
 -- Still requires recovery/re-execution on misprediction 

 Alpha 21264 : Initially assume load independent, delay loads found to be dependent  
 Moshovos et al., “Dynamic speculation and synchronization of data dependences,” 

ISCA 1997. 
 Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998. 
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Memory Disambiguation (II) 
 Chrysos and Emer, “Memory Dependence Prediction Using Store 

Sets,” ISCA 1998. 
 
 
 
 
 
 
 
 

 Predicting store-load dependencies important for performance 
 Simple predictors (based on past history) can achieve most of 

the potential performance  
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Food for Thought for You 
 Many other design choices 

 
 Should reservation stations be centralized or distributed? 

 What are the tradeoffs? 
 

 Should reservation stations and ROB store data values or 
should there be a centralized physical register file where all 
data values are stored? 
 What are the tradeoffs? 

 
 Exactly when does an instruction broadcast its tag? 

 
 … 
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More Food for Thought for You 
 How can you implement branch prediction in an out-of-

order execution machine? 
 Think about branch history register and PHT updates 
 Think about recovery from mispredictions 

 How to do this fast? 
 

 How can you combine superscalar execution with out-of-
order execution? 
 These are different concepts 
 Concurrent renaming of instructions 
 Concurrent broadcast of tags 
 

 How can you combine superscalar + out-of-order + branch 
prediction? 
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Recommended Readings 
 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, 

March-April 1999. 
 

 Boggs et al., “The Microarchitecture of the Pentium 4 
Processor,” Intel Technology Journal, 2001. 
 

 Yeager, “The MIPS R10000 Superscalar Microprocessor,” 
IEEE Micro, April 1996 
 

 Tendler et al., “POWER4 system microarchitecture,” IBM 
Journal of Research and Development, January 2002. 
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