
Computer Architecture:
Out-of-Order Execution

Prof. Onur Mutlu (editted by Seth)
Carnegie Mellon University

Reading for Today
 Smith and Sohi, “The Microarchitecture of Superscalar

Processors,” Proceedings of the IEEE, 1995
 More advanced pipelining
 Interrupt and exception handling
 Out-of-order and superscalar execution concepts

2

An In-order Pipeline

 Problem: A true data dependency stalls dispatch of younger
instructions into functional (execution) units

 Dispatch: Act of sending an instruction to a functional unit

3

F D

E

R
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Cache miss

W

Can We Do Better?
 What do the following two pieces of code have in common

(with respect to execution in the previous design)?

 Answer: First ADD stalls the whole pipeline!

 ADD cannot dispatch because its source registers unavailable
 Later independent instructions cannot get executed

 How are the above code portions different?

 Answer: Load latency is variable (unknown until runtime)
 What does this affect? Think compiler vs. microarchitecture

4

IMUL R3 R1, R2
ADD R3 R3, R1
ADD R1 R6, R7
IMUL R5 R6, R8
ADD R7 R3, R5

LD R3 R1 (0)
ADD R3 R3, R1
ADD R1 R6, R7
IMUL R5 R6, R8
ADD R7 R3, R5

Preventing Dispatch Stalls
 Multiple ways of doing it
 You have already seen THREE:

 1. Fine-grained multithreading
 2. Value prediction
 3. Compile-time instruction scheduling/reordering

5

Preventing Dispatch Stalls
 Multiple ways of doing it
 You have already seen THREE:

 1. Fine-grained multithreading
 2. Value prediction
 3. Compile-time instruction scheduling/reordering

 What are the disadvantages of the above three?

 Any other way to prevent dispatch stalls?
 Actually, you have briefly seen the basic idea before

 Dataflow: fetch and “fire” an instruction when its inputs are
ready

 Problem: in-order dispatch (scheduling, or execution)
 Solution: out-of-order dispatch (scheduling, or execution)

6

Out-of-order Execution (Dynamic Scheduling)

 Idea: Move the dependent instructions out of the way of
independent ones
 Rest areas for dependent instructions: Reservation stations

 Monitor the source “values” of each instruction in the

resting area
 When all source “values” of an instruction are available,

“fire” (i.e. dispatch) the instruction
 Instructions dispatched in dataflow (not control-flow) order

 Benefit:

 Latency tolerance: Allows independent instructions to execute
and complete in the presence of a long latency operation

7

In-order vs. Out-of-order Dispatch
 In order dispatch + precise exceptions:

 Out-of-order dispatch + precise exceptions:

 16 vs. 12 cycles
8

F D W E E E E R
F D E R W

F

IMUL R3 R1, R2
ADD R3 R3, R1
ADD R1 R6, R7
IMUL R5 R6, R8
ADD R7 R3, R5

D E R W
F D E R W

F D E R W

F D W E E E E R
F D

STALL
STALL

E R W
F D

E E E E
STALL

E R
F D E E E E R W

F D E R W

WAIT

WAIT

W

Add waits on multiply producing R3

Commit happens in-order

Enabling OoO Execution
1. Need to link the consumer of a value to the producer

 Register renaming: Associate a “tag” with each data value
2. Need to buffer instructions until they are ready to execute

 Insert instruction into reservation stations after renaming
3. Instructions need to keep track of readiness of source values

 Broadcast the “tag” when the value is produced
 Instructions compare their “source tags” to the broadcast tag
 if match, source value becomes ready

4. When all source values of an instruction are ready, need to
dispatch the instruction to its functional unit (FU)
 Instruction wakes up if all sources are ready
 If multiple instructions are awake, need to select one per FU

9

Tomasulo’s Algorithm
 OoO with register renaming invented by Robert Tomasulo

 Used in IBM 360/91 Floating Point Units
 Read: Tomasulo, “An Efficient Algorithm for Exploiting Multiple

Arithmetic Units,” IBM Journal of R&D, Jan. 1967.

 What is the major difference today?
 Precise exceptions: IBM 360/91 did NOT have this
 Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and

introduction,” MICRO 1985.
 Patt et al., “Critical issues regarding HPS, a high performance

microarchitecture,” MICRO 1985.

 Variants used in most high-performance processors
 Initially in Intel Pentium Pro, AMD K5
 Alpha 21264, MIPS R10000, IBM POWER5, IBM z196, Oracle UltraSPARC T4, ARM Cortex A15

 10

Two Humps in a Modern Pipeline

 Hump 1: Reservation stations (scheduling window)
 Hump 2: Reordering (reorder buffer, aka instruction window

or active window)

11

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R
E
O
R
D
E
R

S
C
H
E
D
U
L
E

TAG and VALUE Broadcast Bus

in order out of order in order

General Organization of an OOO Processor

 Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec.
1995.

 12

Reservation stations

Tomasulo’s Machine: IBM 360/91

13

FP FU FP FU

from memory

load
buffers

from instruction unit
 FP registers

store buffers

to memory

operation bus

reservation
stations

Common data bus

Register Renaming
 Output and anti dependencies are not true dependencies

 WHY? The same register refers to values that have nothing to
do with each other

 They exist because not enough register ID’s (i.e.
names) in the ISA

 The register ID is renamed to the reservation station entry
that will hold the register’s value
 Register ID RS entry ID
 Architectural register ID Physical register ID
 After renaming, RS entry ID used to refer to the register

 This eliminates anti- and output- dependencies
 Approximates the performance effect of a large number of

registers even though ISA has a small number
 14

 Register rename table (register alias table)

Tomasulo’s Algorithm: Renaming

15

R0

R1

R2

R3

tag value valid?

R4

R5

R6

R7

R8

R9

1

1
1

1

1

1
1

1
1
1

Tomasulo’s Algorithm
 If reservation station available before renaming

 Instruction + renamed operands (source value/tag) inserted into the
reservation station

 Only rename if reservation station is available
 Else stall
 While in reservation station, each instruction:

 Watches common data bus (CDB) for tag of its sources
 When tag seen, grab value for the source and keep it in the reservation station
 When both operands available, instruction ready to be dispatched

 Dispatch instruction to the Functional Unit when instruction is ready
 After instruction finishes in the Functional Unit

 Arbitrate for CDB
 Put tagged value onto CDB (tag broadcast)
 Register file is connected to the CDB

 Register contains a tag indicating the latest writer to the register
 If the tag in the register file matches the broadcast tag, write broadcast value

into register (and set valid bit)
 Reclaim rename tag

 no valid copy of tag in system!

 16

An Exercise

 Assume ADD (4 cycle execute), MUL (6 cycle execute)
 Assume one adder and one multiplier
 How many cycles

 in a non-pipelined machine
 in an in-order-dispatch pipelined machine with imprecise

exceptions (no forwarding and full forwarding)
 in an out-of-order dispatch pipelined machine imprecise

exceptions (full forwarding)
17

MUL R3 R1, R2
ADD R5 R3, R4
ADD R7 R2, R6
ADD R10 R8, R9
MUL R11 R7, R10
ADD R5 R5, R11

F D E W

Exercise Continued

18

Exercise Continued

19

With forwarding

Exercise Continued

20

MUL R3 R1, R2
ADD R5 R3, R4
ADD R7 R2, R6
ADD R10 R8, R9
MUL R11 R7, R10
ADD R5 R5, R11

How It Works Cycle 0

21

+ *

v tag value v tag value v tag value v tag value

a
b
c
d

x
y
z

v tag value

r1 1 1

r2 1 2

r3 1 3

r4 1 4

r5 1 5

r6 1 6

r7 1 7

r8 1 8

r9 1 9

r10 1 10

r11 1 11

MUL R3 R1, R2
ADD R5 R3, R4
ADD R7 R2, R6
ADD R10 R8, R9
MUL R11 R7, R10
ADD R5 R5, R11

How It Works Cycle 1

22

+ *

v tag value v tag value v tag value v tag value

a
b
c
d

x
y
z

v tag value

r1 1 1

r2 1 2

r3 1 3

r4 1 4

r5 1 5

r6 1 6

r7 1 7

r8 1 8

r9 1 9

r10 1 10

r11 1 11

MUL R3 R1, R2
ADD R5 R3, R4
ADD R7 R2, R6
ADD R10 R8, R9
MUL R11 R7, R10
ADD R5 R5, R11

How It Works Cycle 2

23

+ *

v tag value v tag value v tag value

1 1

v tag value

1 2 a
b
c
d

x
y
z

v tag value

r1 1 1

r2 1 2

r3 0 x ?

r4 1 4

r5 1 5

r6 1 6

r7 1 7

r8 1 8

r9 1 9

r10 1 10

r11 1 11

MUL R3 R1, R2
ADD R5 R3, R4
ADD R7 R2, R6
ADD R10 R8, R9
MUL R11 R7, R10
ADD R5 R5, R11

How It Works Cycle 3

24

+ *

v tag value

0 x ?

v tag value

1 4

v tag value

1 1

v tag value

1 2 a
b
c
d

x
y
z

v tag value

r1 1 1

r2 1 2

r3 0 x ?

r4 1 4

r5 0 a ?

r6 1 6

r7 1 7

r8 1 8

r9 1 9

r10 1 10

r11 1 11

MUL R3 R1, R2
ADD R5 R3, R4
ADD R7 R2, R6
ADD R10 R8, R9
MUL R11 R7, R10
ADD R5 R5, R11

X in E (1)

How It Works Cycle 4

25

+ *

v tag value

0 x ?

1 2

v tag value

1 4

1 6

v tag value

1 1

v tag value

1 2 a
b
c
d

x
y
z

v tag value

r1 1 1

r2 1 2

r3 0 x ?

r4 1 4

r5 0 a ?

r6 1 6

r7 0 b ?

r8 1 8

r9 1 9

r10 1 10

r11 1 11

MUL R3 R1, R2
ADD R5 R3, R4
ADD R7 R2, R6
ADD R10 R8, R9
MUL R11 R7, R10
ADD R5 R5, R11

X in E (2)

How It Works Cycle 5

26

+ *

v tag value

0 x ?

1 2

1 8

v tag value

1 4

1 6

1 9

v tag value

1 1

v tag value

1 2 a
b
c
d

x
y
z

v tag value

r1 1 1

r2 1 2

r3 0 x ?

r4 1 4

r5 0 a ?

r6 1 6

r7 0 b ?

r8 1 8

r9 1 9

r10 0 c ?

r11 1 11

MUL R3 R1, R2
ADD R5 R3, R4
ADD R7 R2, R6
ADD R10 R8, R9
MUL R11 R7, R10
ADD R5 R5, R11

X in E (3) b in E (1)

How It Works Cycle 6

27

+ *

v tag value

0 x ?

1 2

1 8

v tag value

1 4

1 6

1 9

v tag value

1 1

0 b ?

v tag value

1 2

0 C ?

a
b
c
d

x
y
z

v tag value

r1 1 1

r2 1 2

r3 0 x ?

r4 1 4

r5 0 a ?

r6 1 6

r7 0 b ?

r8 1 8

r9 1 9

r10 0 c ?

r11 0 y ?

MUL R3 R1, R2
ADD R5 R3, R4
ADD R7 R2, R6
ADD R10 R8, R9
MUL R11 R7, R10
ADD R5 R5, R11

X in E (4) b in E (2)
c in E (1)

How It Works Cycle 7

28

+ *

v tag value

0 x ?

1 2

1 8

0 a ?

v tag value

1 4

1 6

1 9

0 y ?

v tag value

1 1

0 b ?

v tag value

1 2

0 C ?

a
b
c
d

x
y
z

v tag value

r1 1 1

r2 1 2

r3 0 x ?

r4 1 4

r5 0 d ?

r6 1 6

r7 0 b ?

r8 1 8

r9 1 9

r10 0 c ?

r11 0 y ?

MUL R3 R1, R2
ADD R5 R3, R4
ADD R7 R2, R6
ADD R10 R8, R9
MUL R11 R7, R10
ADD R5 R5, R11

X in E (5) b in E (3)
c in E (2)

How It Works Cycle 8

29

+ *

v tag value

1 x 2

1 2

1 8

0 a ?

v tag value

1 4

1 6

1 9

0 y ?

v tag value

1 1

1 b 8

v tag value

1 2

0 C ?

a
b
c
d

x
y
z

v tag value

r1 1 1

r2 1 2

r3 0 x 2

r4 1 4

r5 0 d ?

r6 1 6

r7 0 b 8

r8 1 8

r9 1 9

r10 0 c ?

r11 0 y ?

MUL R3 R1, R2
ADD R5 R3, R4
ADD R7 R2, R6
ADD R10 R8, R9
MUL R11 R7, R10
ADD R5 R5, R11

X in E (6) b in E (4)
c in E (3)

How It Works Cycle 9

30

+ *

v tag value

1 x 2

1 2

1 8

0 a ?

v tag value

1 4

1 6

1 9

0 y ?

v tag value

1 1

1 b 8

v tag value

1 2

1 C 17

a
b
c
d

x
y
z

v tag value

r1 1 1

r2 1 2

r3 1 x 2

r4 1 4

r5 0 d ?

r6 1 6

r7 1 b 8

r8 1 8

r9 1 9

r10 0 c 17

r11 0 y ?

MUL R3 R1, R2
ADD R5 R3, R4
ADD R7 R2, R6
ADD R10 R8, R9
MUL R11 R7, R10
ADD R5 R5, R11

A in E (1)
c in E (4)

How It Works Cycle 10

31

+ *

v tag value

1 x 2

1 2

1 8

0 a ?

v tag value

1 4

1 6

1 9

0 y ?

v tag value

1 1

1 b 8

v tag value

1 2

1 C 17

a
b
c
d

x
y
z

v tag value

r1 1 1

r2 1 2

r3 1 2

r4 1 4

r5 0 d ?

r6 1 6

r7 1 8

r8 1 8

r9 1 9

r10 1 c 17

r11 0 y ?

MUL R3 R1, R2
ADD R5 R3, R4
ADD R7 R2, R6
ADD R10 R8, R9
MUL R11 R7, R10
ADD R5 R5, R11

A in E (2) y in E (1)

An Exercise, with Precise Exceptions

 Assume ADD (4 cycle execute), MUL (6 cycle execute)
 Assume one adder and one multiplier
 How many cycles

 in a non-pipelined machine
 in an in-order-dispatch pipelined machine with reorder buffer

(no forwarding and full forwarding)
 in an out-of-order dispatch pipelined machine with reorder

buffer (full forwarding)
38

MUL R3 R1, R2
ADD R5 R3, R4
ADD R7 R2, R6
ADD R10 R8, R9
MUL R11 R7, R10
ADD R5 R5, R11

F D E R W

Out-of-Order Execution with Precise Exceptions

 Idea: Use a reorder buffer to reorder instructions before
committing them to architectural state

 An instruction updates the register alias table (essentially a

future file) when it completes execution
 An instruction updates the architectural register file when it

is the oldest in the machine and has completed execution

39

Out-of-Order Execution with Precise Exceptions

 Hump 1: Reservation stations (scheduling window)
 Hump 2: Reordering (reorder buffer, aka instruction window

or active window)

40

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R
E
O
R
D
E
R

S
C
H
E
D
U
L
E

TAG and VALUE Broadcast Bus

in order out of order in order

Enabling OoO Execution, Revisited
1. Link the consumer of a value to the producer

 Register renaming: Associate a “tag” with each data value

2. Buffer instructions until they are ready
 Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction
 Broadcast the “tag” when the value is produced
 Instructions compare their “source tags” to the broadcast tag
 if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)
 Wakeup and select/schedule the instruction

41

Summary of OOO Execution Concepts
 Register renaming eliminates false dependencies, enables

linking of producer to consumers

 Buffering enables the pipeline to move for independent ops

 Tag broadcast enables communication (of readiness of
produced value) between instructions

 Wakeup and select enables out-of-order dispatch

42

OOO Execution: Restricted Dataflow
 An out-of-order engine dynamically builds the dataflow

graph of a piece of the program
 which piece?

 The dataflow graph is limited to the instruction window
 Instruction window: all decoded but not yet retired

instructions

 Can we do it for the whole program?
 Why would we like to?
 In other words, how can we have a large instruction

window?
 Can we do it efficiently with Tomasulo’s algorithm?

43

Dataflow Graph for Our Example

44

MUL R3 R1, R2
ADD R5 R3, R4
ADD R7 R2, R6
ADD R10 R8, R9
MUL R11 R7, R10
ADD R5 R5, R11

State of RAT and RS in Cycle 7

45

Dataflow Graph

46

Restricted Data Flow
 An out-of-order machine is a “restricted data flow” machine

 Dataflow-based execution is restricted to the microarchitecture
level

 ISA is still based on von Neumann model (sequential
execution)

 Remember the data flow model (at the ISA level):

 Dataflow model: An instruction is fetched and executed in
data flow order

 i.e., when its operands are ready
 i.e., there is no instruction pointer
 Instruction ordering specified by data flow dependence

 Each instruction specifies “who” should receive the result
 An instruction can “fire” whenever all operands are received

47

Questions to Ponder
 Why is OoO execution beneficial?

 What if all operations take single cycle?
 Latency tolerance: OoO execution tolerates the latency of

multi-cycle operations by executing independent operations
concurrently

 What if an instruction takes 500 cycles?

 How large of an instruction window do we need to continue
decoding?

 How many cycles of latency can OoO tolerate?
 What limits the latency tolerance scalability of Tomasulo’s

algorithm?
 Active/instruction window size: determined by register file,

scheduling window, reorder buffer

 48

Registers versus Memory, Revisited
 So far, we considered register based value communication

between instructions

 What about memory?

 What are the fundamental differences between registers
and memory?
 Register dependences known statically – memory

dependences determined dynamically
 Register state is small – memory state is large
 Register state is not visible to other threads/processors –

memory state is shared between threads/processors (in a
shared memory multiprocessor)

49

Memory Dependence Handling (I)
 Need to obey memory dependences in an out-of-order

machine
 and need to do so while providing high performance

 Observation and Problem: Memory address is not known
until a load/store executes

 Corollary 1: Renaming memory addresses is difficult
 Corollary 2: Determining dependence or independence of

loads/stores need to be handled after their execution
 Corollary 3: When a load/store has its address ready, there

may be younger/older loads/stores with undetermined
addresses in the machine

50

Memory Dependence Handling (II)
 When do you schedule a load instruction in an OOO engine?

 Problem: A younger load can have its address ready before an
older store’s address is known

51

What if M[r5] == r4?

Ld r2,r5 ; r2 <- M[r5]
St r1,r2 ; M[r2] <- r1
Ld r3,r4 ; r3 <- M[r4]

Memory Dependence Handling (II)
 When do you schedule a load instruction in an OOO engine?

 Problem: A younger load can have its address ready before an
older store’s address is known

 Known as the memory disambiguation problem or the unknown
address problem

 Approaches
 Conservative: Stall the load until all previous stores have

computed their addresses (or even retired from the machine)
 Aggressive: Assume load is independent of unknown-address

stores and schedule the load right away
 Intelligent: Predict (with a more sophisticated predictor) if the

load is dependent on the/any unknown address store

52

Handling of Store-Load Dependencies
 A load’s dependence status is not known until all previous store

addresses are available.

 How does the OOO engine detect dependence of a load instruction on a

previous store?
 Option 1: Wait until all previous stores committed (no need to

check)
 Option 2: Keep a list of pending stores in a store buffer and check

whether load address matches a previous store address

 How does the OOO engine treat the scheduling of a load instruction wrt
previous stores?
 Option 1: Assume load dependent on all previous stores
 Option 2: Assume load independent of all previous stores
 Option 3: Predict the dependence of a load on an outstanding store

53

Memory Disambiguation (I)
 Option 1: Assume load dependent on all previous stores
 + No need for recovery
 -- Too conservative: delays independent loads unnecessarily

 Option 2: Assume load independent of all previous stores
 + Simple and can be common case: no delay for independent loads
 -- Requires recovery and re-execution of load and dependents on misprediction

 Option 3: Predict the dependence of a load on an
outstanding store

 + More accurate. Load store dependencies persist over time
 -- Still requires recovery/re-execution on misprediction

 Alpha 21264 : Initially assume load independent, delay loads found to be dependent
 Moshovos et al., “Dynamic speculation and synchronization of data dependences,”

ISCA 1997.
 Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.

54

Memory Disambiguation (II)
 Chrysos and Emer, “Memory Dependence Prediction Using Store

Sets,” ISCA 1998.

 Predicting store-load dependencies important for performance
 Simple predictors (based on past history) can achieve most of

the potential performance

55

Food for Thought for You
 Many other design choices

 Should reservation stations be centralized or distributed?

 What are the tradeoffs?

 Should reservation stations and ROB store data values or
should there be a centralized physical register file where all
data values are stored?
 What are the tradeoffs?

 Exactly when does an instruction broadcast its tag?

 …

56

More Food for Thought for You
 How can you implement branch prediction in an out-of-

order execution machine?
 Think about branch history register and PHT updates
 Think about recovery from mispredictions

 How to do this fast?

 How can you combine superscalar execution with out-of-
order execution?
 These are different concepts
 Concurrent renaming of instructions
 Concurrent broadcast of tags

 How can you combine superscalar + out-of-order + branch
prediction?

57

Recommended Readings
 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,

March-April 1999.

 Boggs et al., “The Microarchitecture of the Pentium 4
Processor,” Intel Technology Journal, 2001.

 Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, April 1996

 Tendler et al., “POWER4 system microarchitecture,” IBM
Journal of Research and Development, January 2002.

58

	Computer Architecture:�Out-of-Order Execution
	Reading for Today
	An In-order Pipeline
	Can We Do Better?
	Preventing Dispatch Stalls
	Preventing Dispatch Stalls
	Out-of-order Execution (Dynamic Scheduling)
	In-order vs. Out-of-order Dispatch
	Enabling OoO Execution
	Tomasulo’s Algorithm
	Two Humps in a Modern Pipeline
	General Organization of an OOO Processor
	Tomasulo’s Machine: IBM 360/91
	Register Renaming
	Tomasulo’s Algorithm: Renaming
	Tomasulo’s Algorithm
	An Exercise
	Exercise Continued
	Exercise Continued
	Exercise Continued
	How It Works Cycle 0
	How It Works Cycle 1
	How It Works Cycle 2
	How It Works Cycle 3
	How It Works Cycle 4
	How It Works Cycle 5
	How It Works Cycle 6
	How It Works Cycle 7
	How It Works Cycle 8
	How It Works Cycle 9
	How It Works Cycle 10
	An Exercise, with Precise Exceptions
	Out-of-Order Execution with Precise Exceptions
	Out-of-Order Execution with Precise Exceptions
	Enabling OoO Execution, Revisited
	Summary of OOO Execution Concepts
	OOO Execution: Restricted Dataflow
	Dataflow Graph for Our Example
	State of RAT and RS in Cycle 7
	Dataflow Graph
	Restricted Data Flow
	Questions to Ponder
	Registers versus Memory, Revisited
	Memory Dependence Handling (I)
	Memory Dependence Handling (II)
	Memory Dependence Handling (II)
	Handling of Store-Load Dependencies
	Memory Disambiguation (I)
	Memory Disambiguation (II)
	Food for Thought for You
	More Food for Thought for You
	Recommended Readings

