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Multithreading (Outline)
 Multiple hardware contexts
 Purpose
 Initial incarnations

 CDC 6600
 HEP

 Levels of multithreading
 Fine-grained (cycle-by-cycle)
 Coarse grained (multitasking)

 Switch-on-event

 Simultaneous
 Uses: traditional + creative (now that we have multiple 

contexts, why do we not do …)
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Multithreading: Basics
 Thread

 Instruction stream with state (registers and memory)
 Register state is also called “thread context”

 Threads could be part of the same process (program) or 
from different programs
 Threads in the same program share the same address space 

(shared memory model)

 Traditionally, the processor keeps track of the context of a 
single thread

 Multitasking: When a new thread needs to be executed, old 
thread’s context in hardware written back to memory and 
new thread’s context loaded
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Hardware Multithreading
 General idea: Have multiple thread contexts in a single 

processor
 When the hardware executes from those hardware contexts 

determines the granularity of multithreading 

 Why?
 To tolerate latency (initial motivation)

 Latency of memory operations, dependent instructions, branch 
resolution

 By utilizing processing resources more efficiently

 To improve system throughput
 By exploiting thread-level parallelism
 By improving superscalar/OoO processor utilization

 To reduce context switch penalty
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Initial Motivations
 Tolerate latency

 When one thread encounters a long-latency operation, the 
processor can execute a useful operation from another thread

 CDC 6600 peripheral processors
 I/O latency: 10 cycles
 10 I/O threads can be active to cover the latency
 Pipeline with 100ns cycle time, memory with 1000ns latency
 Idea: Each I/O “processor” executes one instruction every 10 

cycles on the same pipeline
 Thornton, “Design of a Computer: The Control Data 6600,”

1970. 
 Thornton, “Parallel Operation in the Control Data 6600,”

AFIPS 1964.
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Hardware Multithreading
 Benefit

+ Latency tolerance
+ Better hardware utilization (when?)
+ Reduced context switch penalty

 Cost
- Requires multiple thread contexts to be implemented in 

hardware (area, power, latency cost)
- Usually reduced single-thread performance

- Resource sharing, contention
- Switching penalty (can be reduced with additional hardware) 
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Types of Hardware Multithreading
 Fine-grained

 Cycle by cycle

 Coarse-grained
 Switch on event (e.g., cache miss)
 Switch on quantum/timeout

 Simultaneous
 Instructions from multiple threads executed concurrently in 

the same cycle
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Fine-grained Multithreading
 Idea: Switch to another thread every cycle such that no two 

instructions from the thread are in the pipeline concurrently

 Improves pipeline utilization by taking advantage of multiple 
threads

 Alternative way of looking at it: Tolerates the control and 
data dependency latencies by overlapping the latency with 
useful work from other threads

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 
1964.

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
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Fine-grained Multithreading
 CDC 6600’s peripheral processing unit is fine-grained 

multithreaded
 Processor executes a different I/O thread every cycle
 An operation from the same thread is executed every 10 

cycles

 Denelcor HEP
 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
 120 threads/processor 

 50 user, 70 OS functions 
 available queue vs. unavailable (waiting) queue 
 each thread can only have 1 instruction in the processor pipeline; each 

thread independent 
 to each thread, processor looks like a sequential machine
 throughput vs. single thread speed  
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Fine-grained Multithreading in HEP
 Cycle time: 100ns

 8 stages  800 ns to 
complete an 
instruction
 assuming no memory 

access
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Fine-grained Multithreading
 Advantages

+ No need for dependency checking between instructions
(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic
+ Otherwise-bubble cycles used for executing useful instructions from 

different threads
+ Improved system throughput, latency tolerance, utilization

 Disadvantages
- Extra hardware complexity: multiple hardware contexts, thread 

selection logic
- Reduced single thread performance (one instruction fetched every N 

cycles) 
- Resource contention between threads in caches and memory
- Dependency checking logic between threads remains (load/store)
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Multithreaded Pipeline Example

 Slide from Joel Emer
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Sun Niagara Multithreaded Pipeline
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Tera MTA Fine-grained Multithreading
 256 processors, each with a 21-cycle pipeline
 128 active threads
 A thread can issue instructions every 21 cycles

 Then, why 128 threads?

 Memory latency: approximately 150 cycles
 No data cache
 Threads can be blocked waiting for memory
 More threads  better ability to tolerate memory latency

 Thread state per processor
 128 x 32 general purpose registers
 128 x 1 thread status registers
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Coarse-grained Multithreading
 Idea: When a thread is stalled due to some event, switch to 

a different hardware context
 Switch-on-event multithreading

 Possible stall events
 Cache misses
 Synchronization events (e.g., load an empty location)
 FP operations

 HEP, Tera combine fine-grained MT and coarse-grained MT
 Thread waiting for memory becomes blocked (un-selectable)

 Agarwal et al., “APRIL: A Processor Architecture for Multiprocessing,”
ISCA 1990.

 Explicit switch on event
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Coarse-grained Multithreading in APRIL
 Agarwal et al., “APRIL: A Processor Architecture for 

Multiprocessing,” ISCA 1990.

 4 hardware thread contexts
 Called “task frames”

 Thread switch on
 Cache miss
 Network access
 Synchronization fault

 How?
 Empty processor pipeline, change frame pointer (PC)

17



Fine-grained vs. Coarse-grained MT
 Fine-grained advantages

+ Simpler to implement, can eliminate dependency checking, 
branch prediction logic completely

+ Switching need not have any performance overhead (i.e. dead 
cycles)
+ Coarse-grained requires a pipeline flush or a lot of hardware   

to save pipeline state 
 Higher performance overhead with deep pipelines and 

large windows

 Disadvantages
- Low single thread performance: each thread gets 1/Nth of the 

bandwidth of the pipeline
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IBM RS64-IV
 4-way superscalar, in-order, 5-stage pipeline
 Two hardware contexts
 On an L2 cache miss

 Flush pipeline
 Switch to the other thread

 Considerations
 Memory latency vs. thread switch overhead
 Short pipeline, in-order execution (small instruction window) 

reduces the overhead of switching
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Intel Montecito
 McNairy and Bhatia, “Montecito: A Dual-Core, Dual-Thread Itanium 

Processor,” IEEE Micro 2005.

 Thread switch on
 L3 cache miss/data return
 Timeout – for fairness
 Switch hint instruction
 ALAT invalidation – synchronization fault
 Transition to low power mode

 <2% area overhead due to CGMT
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Fairness in Coarse-grained Multithreading
 Resource sharing in space and time always causes fairness 

considerations
 Fairness: how much progress each thread makes 

 In CGMT, the time allocated to each thread affects both 
fairness and system throughput
 When do we switch?
 For how long do we switch?

 When do we switch back?

 How does the hardware scheduler interact with the software 
scheduler for fairness?

 What is the switching overhead vs. benefit? 
 Where do we store the contexts?
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Fairness in Coarse-grained Multithreading
 Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,”

MICRO 2006.
 How can you solve the below problem?
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Fairness vs. Throughput
 Switch not only on miss, but also on data return

 Problem: Switching has performance overhead
 Pipeline and window flush
 Reduced locality and increased resource contention (frequent 

switches increase resource contention and reduce locality)

 One possible solution
 Estimate the slowdown of each thread compared to when run 

alone
 Enforce switching when slowdowns become significantly 

unbalanced 
 Gabor et al., “Fairness and Throughput in Switch on Event 

Multithreading,” MICRO 2006.
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Simultaneous Multithreading
 Fine-grained and coarse-grained multithreading can start 

execution of instructions from only a single thread at a 
given cycle

 Execution unit (or pipeline stage) utilization can be low if 
there are not enough instructions from a thread to 
“dispatch” in one cycle
 In a machine with multiple execution units (i.e., superscalar)

 Idea: Dispatch instructions from multiple threads in the 
same cycle (to keep multiple execution units utilized) 
 Hirata et al., “An Elementary Processor Architecture with Simultaneous 

Instruction Issuing from Multiple Threads,” ISCA 1992.
 Yamamoto et al., “Performance Estimation of Multistreamed, Superscalar 

Processors,” HICSS 1994.
 Tullsen et al., “Simultaneous Multithreading: Maximizing On-Chip 

Parallelism,” ISCA 1995.
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Functional Unit Utilization

 Data dependencies reduce functional unit utilization in 
pipelined processors
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Functional Unit Utilization in Superscalar

 Functional unit utilization becomes lower in superscalar, 
OoO machines. Finding 4 instructions in parallel is not 
always possible

27

Time

Predicated Execution

 Idea: Convert control dependencies into data dependencies
 Improves FU utilization, but some results are thrown away
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Time

Chip Multiprocessor

 Idea: Partition functional units across cores
 Still limited FU utilization within a single thread; limited 

single-thread performance
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Time

Fine-grained Multithreading

 Still low utilization due to intra-thread dependencies
 Single thread performance suffers
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Simultaneous Multithreading

 Idea: Utilize functional units with independent operations 
from the same or different threads
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Time

Simultaneous Multithreading
 Reduces both horizontal and vertical waste
 Required hardware

 The ability to dispatch instructions from multiple threads 
simultaneously into different functional units

 Superscalar, OoO processors already have this machinery
 Dynamic instruction scheduler searches the scheduling 

window to wake up and select ready instructions
 As long as dependencies are correctly tracked (via renaming 

and memory disambiguation), scheduler can be thread-
agnostic
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Basic Superscalar OoO Pipeline
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SMT Pipeline
 Physical register file needs to become larger. Why?
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Changes to Pipeline for SMT
 Replicated resources

 Program counter
 Register map
 Return address stack
 Global history register

 Shared resources
 Register file (size increased)
 Instruction queue (scheduler)
 First and second level caches
 Translation lookaside buffers
 Branch predictor
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Changes to OoO+SS Pipeline for SMT
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Tullsen et al., “Exploiting Choice: Instruction Fetch and Issue on an Implementable
Simultaneous Multithreading Processor,” ISCA 1996.

SMT Scalability
 Diminishing returns from more threads. Why?
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SMT Design Considerations
 Fetch and prioritization policies

 Which thread to fetch from?

 Shared resource allocation policies
 How to prevent starvation?
 How to maximize throughput?
 How to provide fairness/QoS?
 Free-for-all vs. partitioned

 How to measure performance
 Is total IPC across all threads the right metric?

 How to select threads to co-schedule 
 Snavely and Tullsen, “Symbiotic Jobscheduling for a 

Simultaneous Multithreading Processor,” ASPLOS 2000.
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Which Thread to Fetch From?
 (Somewhat) Static policies

 Round-robin
 8 instructions from one thread
 4 instructions from two threads
 2 instructions from four threads
 …

 Dynamic policies
 Favor threads with minimal in-flight branches
 Favor threads with minimal outstanding misses
 Favor threads with minimal in-flight instructions
 …
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Which Instruction to Select/Dispatch?
 Can be thread agnostic.
 Why?
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SMT Fetch Policies (I)
 Round robin: Fetch from a different thread each cycle
 Does not work well in practice. Why?

 Instructions from slow threads hog the pipeline and block 
the instruction window 
 E.g., a thread with long-latency cache miss (L2 miss) fills up 

the window with its instructions
 Once window is full, no other thread can issue and execute 

instructions and the entire core stalls
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SMT Fetch Policies (II)
 ICOUNT: Fetch from thread with the least instructions in 

the earlier pipeline stages (before execution)

 Why does this improve throughput?

43Slide from Joel Emer



SMT ICOUNT Fetch Policy
 Favors faster threads that have few instructions waiting

 Advantages over round robin
+ Allows faster threads to make more progress (before threads 

with long-latency instructions block the window fast)
+ Higher IPC throughput

 Disadvantages over round robin
- Is this fair?
- Prone to short-term starvation: Need additional methods to 

ensure starvation freedom
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Some Results on Fetch Policy
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Handling Long Latency Loads
 Long-latency (L2/L3 miss) loads are a problem in a single-threaded 

processor
 Block instruction/scheduling windows and cause the processor to stall

 In SMT, a long-latency load instruction can block the window for ALL 
threads
 i.e. reduce the memory latency tolerance benefits of SMT

 Brown and Tullsen, “Handling Long-latency Loads in a Simultaneous 
Multithreading Processor,” MICRO 2001.
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Proposed Solutions to Long-Latency Loads
 Idea: Flush the thread that incurs an L2 cache miss

 Brown and Tullsen, “Handling Long-latency Loads in a Simultaneous Multithreading 
Processor,” MICRO 2001.

 Idea: Predict load miss on fetch and do not insert following instructions from 
that thread into the scheduler
 El-Moursy and Albonesi, “Front-End Policies for Improved Issue Efficiency in SMT 

Processors,” HPCA 2003.

 Idea: Partition the shared resources among threads so that a thread’s long-
latency load does not affect another
 Raasch and Reinhardt, “The Impact of Resource Partitioning on SMT Processors,”

PACT 2003.

 Idea: Predict if (and how much) a thread has MLP when it incurs a cache miss; 
flush the thread after its MLP is exploited
 Eyerman and Eeckhout, “A Memory-Level Parallelism Aware Fetch Policy for SMT 

Processors,” HPCA 2007.
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Runahead Threads
 Idea: Use runahead execution on a long-latency load
+ Improves both single thread and multi-thread performance 
 Ramirez et al., “Runahead Threads to Improve SMT 

Performance,” HPCA 2008.
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Commercial SMT Implementations
 Intel Pentium 4 (Hyperthreading)
 IBM POWER5
 Intel Nehalem
 …
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SMT in IBM POWER5
 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE 

Micro 2004.
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IBM POWER5 Thread Throttling
 Throttle under two conditions:

 Resource-balancing logic detects the point at which a thread 
reaches a threshold of load misses in the L2 cache and 
translation misses in the TLB. 

 Resource-balancing logic detects that one thread is beginning 
to use too many GCT (i.e., reorder buffer) entries.

 Throttling mechanisms:
 Reduce the priority of the thread
 Inhibit the instruction decoding of the thread until the 

congestion clears
 Flush all of the thread’s instructions that are waiting for 

dispatch and stop the thread from decoding additional 
instructions until the congestion clears
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Intel Pentium 4 Hyperthreading
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Intel Pentium 4 Hyperthreading
 Long latency load handling

 Multi-level scheduling window

 More partitioned structures
 I-TLB
 Instruction Queues
 Store buffer
 Reorder buffer

 5% area overhead due to SMT

 Marr et al., “Hyper-Threading Technology Architecture and 
Microarchitecture,” Intel Technology Journal 2002.

57

Other Uses of Multithreading

Now that We Have MT Hardware …
 … what else can we use it for?

 Redundant execution to tolerate soft (and hard?) errors

 Implicit parallelization: thread level speculation
 Slipstream processors
 Leader-follower architectures

 Helper threading 
 Prefetching
 Branch prediction

 Exception handling
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SMT for Transient Fault Detection
 Transient faults: Faults that persist for a “short” duration

 Also called “soft errors”
 Caused by cosmic rays (e.g., neutrons)
 Leads to transient changes in wires and state (e.g., 01)

 Solution
 no practical absorbent for cosmic rays
 1 fault per 1000 computers per year (estimated fault rate)

 Fault rate likely to increase in the feature
 smaller feature size
 reduced voltage
 higher transistor count
 reduced noise margin
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Need for Low-Cost Transient Fault Tolerance
 The rate of transient faults is expected to increase 

significantly  Processors will need some form of fault 
tolerance.

 However, different applications have different reliability 
requirements (e.g. server-apps vs. games)  Users who do 
not require high reliability may not want to pay the 
overhead.

 Fault tolerance mechanisms with low hardware cost are 
attractive because they allow the designs to be used for a 
wide variety of applications.
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Traditional Mechanisms for Transient Fault Detection 

 Storage structures
 Space redundancy via parity or ECC
 Overhead of additional storage and operations can be high in 

time-critical paths

 Logic structures
 Space redundancy: replicate and compare
 Time redundancy: re-execute and compare

 Space redundancy has high hardware overhead. 
 Time redundancy has low hardware overhead but high 

performance overhead.
 What additional benefit does space redundancy have? 
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Lockstepping (Tandem, Compaq Himalaya)

 Idea: Replicate the processor, compare the results of two 
processors before committing an instruction
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R1  (R2)

Input
Replication

Output
Comparison

Memory covered by ECC
RAID array covered by parity
Servernet covered by CRC

R1  (R2)

microprocessor microprocessor



Transient Fault Detection with SMT (SRT) 

 Idea: Replicate the threads, compare outputs before 
committing an instruction

 Reinhardt and Mukherjee, “Transient Fault Detection 
via Simultaneous Multithreading,” ISCA 2000.

 Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault Tolerance 
in Microprocessors,” FTCS 1999.
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R1  (R2)

Input
Replication

Output
Comparison

Memory covered by ECC
RAID array covered by parity
Servernet covered by CRC

R1  (R2)

THREAD THREAD

Sim. Redundant Threading vs. Lockstepping
 SRT Advantages

+ No need to replicate the processor
+ Uses fine-grained idle FUs/cycles (due to dependencies, misses) 

to execute the same program redundantly on the same processor
+ Lower hardware cost, better hardware utilization

 Disadvantages
- More contention between redundant threads  higher 

performance overhead (assuming unequal hardware)
- Requires changes to processor core for result comparison, value 

communication  
- Must carefully fetch & schedule instructions from threads
- Cannot easily detect hard (permanent) faults
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Sphere of Replication
 Logical boundary of redundant execution within a system
 Need to replicate input data from outside of sphere of 

replication to send to redundant threads
 Need to compare and validate output before sending it out 

of the sphere of replication
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Input Replication
 How to get the load data for redundant threads

 pair loads from redundant threads and access the cache when 
both are ready: too slow – threads fully synchronized

 allow both loads to probe cache separately: false alarms with 
I/O or multiprocessors

 Load Value Queue (LVQ)
 pre-designated leading & trailing threads
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add 
load R1(R2)
sub

add 
load R1  (R2)
sub

probe cache
LVQ

Output Comparison
 <address, data> for stores from redundant threads

 compare & validate at commit time

 How to handle cached vs. uncacheable loads
 Stores now need to live longer to wait for trailing thread
 Need to ensure matching trailing store can commit
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Store: ...

Store: R1  (R2)
Store: ...
Store: R1  (R2)
Store: ...
Store: ...

Store: ...Store
Queue

Output
Comparison To Data Cache

Handling of Permanent Faults via SRT
 SRT uses time redundancy

 Is this enough for detecting permanent faults?
 Can SRT detect some permanent faults? How?

 Can we incorporate explicit space redundancy into SRT?

 Idea: Execute the same instruction on different resources in 
an SMT engine
 Send instructions from different threads to different execution 

units (when possible)
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SRT Evaluation
 SPEC CPU95, 15M instrs/thread

 Constrained by simulation environment
  120M instrs for 4 redundant thread pairs

 Eight-issue, four-context SMT CPU
 Based on Alpha 21464 
 128-entry instruction queue
 64-entry load and store queues

 Default: statically partitioned among active threads
 22-stage pipeline
 64KB 2-way assoc. L1 caches
 3 MB 8-way assoc L2
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Performance Overhead of SRT

 Performance degradation = 30% (and unavailable thread 
context)

 Per-thread store queue improves performance by 4%
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Chip Level Redundant Threading
 SRT typically more efficient than splitting one processor 

into two half-size cores
 What if you already have two cores?

 Conceptually easy to run these in lock-step
 Benefit: full physical redundancy
 Costs:

 Latency through centralized checker logic
 Overheads (e.g., branch mispredictions) incurred twice

 We can get both time redundancy and space redundancy if 
we have multiple SMT cores
 SRT for CMPs
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Chip Level Redundant Threading
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Some Other Approaches to Transient Fault Tolerance

 Austin, “DIVA: A Reliable Substrate for Deep Submicron 
Microarchitecture Design,” MICRO 1999.

 Qureshi et al., “Microarchitecture-Based Introspection: A 
Technique for Transient-Fault Tolerance in 
Microprocessors,” DSN 2005.
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DIVA
 Idea: Have a “functional checker” unit that checks the 

correctness of the computation done in the “main 
processor”

 Austin, “DIVA: A Reliable Substrate for Deep Submicron 
Microarchitecture Design,” MICRO 1999.

 Benefit: Main processor can be prone to faults or 
sometimes incorrect (yet very fast)

 How can checker keep up with the main processor?
 Verification of different instructions can be performed in 

parallel (if an older one is incorrect all later instructions will be 
flushed anyway)
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DIVA (Austin, MICRO 1999)
 Two cores
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Microarchitecture Based Introspection
 Idea: Use cache miss stall cycles to redundantly execute 

the program instructions

 Qureshi et al., “Microarchitecture-Based Introspection: A 
Technique for Transient-Fault Tolerance in 
Microprocessors,” DSN 2005.

 Benefit: Redundant execution does not have high 
performance overhead (when there are stall cycles)

 Downside: What if there are no/few stall cycles?
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Introspection
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MBI (Qureshi+, DSN 2005)
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MBI Microarchitecture
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Performance Impact of MBI

90

Helper Threading for Prefetching
 Idea: Pre-execute a piece of the (pruned) program solely 

for prefetching data 
 Only need to distill pieces that lead to cache misses

 Speculative thread: Pre-executed program piece can be 
considered a “thread”

 Speculative thread can be executed 
 On a separate processor/core
 On a separate hardware thread context
 On the same thread context in idle cycles (during cache misses)

96



Helper Threading for Prefetching
 How to construct the speculative thread:

 Software based pruning and “spawn” instructions
 Hardware based pruning and “spawn” instructions
 Use the original program (no construction), but 

 Execute it faster without stalling and correctness constraints

 Speculative thread
 Needs to discover misses before the main program

 Avoid waiting/stalling and/or compute less

 To get ahead, uses
 Branch prediction, value prediction, only address generation 

computation
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Generalized Thread-Based Pre-Execution
 Dubois and Song, “Assisted 

Execution,” USC Tech 
Report 1998.

 Chappell et al., 
“Simultaneous Subordinate 
Microthreading (SSMT),”
ISCA 1999.

 Zilles and Sohi, “Execution-
based Prediction Using 
Speculative Slices”, ISCA 
2001.
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Thread-Based Pre-Execution Issues
 Where to execute the precomputation thread?

1. Separate core (least contention with main thread)
2. Separate thread context on the same core (more contention)
3. Same core, same context 

 When the main thread is stalled

 When to spawn the precomputation thread?
1. Insert spawn instructions well before the “problem” load

 How far ahead? 
 Too early: prefetch might not be needed
 Too late: prefetch might not be timely

2. When the main thread is stalled

 When to terminate the precomputation thread?
1. With pre-inserted CANCEL instructions
2. Based on effectiveness/contention feedback
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Slipstream Processors
 Goal: use multiple hardware contexts to speed up single 

thread execution (implicitly parallelize the program)
 Idea: Divide program execution into two threads:

 Advanced thread executes a reduced instruction stream, 
speculatively

 Redundant thread uses results, prefetches, predictions 
generated by advanced thread and ensures correctness

 Benefit: Execution time of the overall program reduces
 Core idea is similar to many thread-level speculation 

approaches, except with a reduced instruction stream

 Sundaramoorthy et al., “Slipstream Processors: Improving 
both Performance and Fault Tolerance,” ASPLOS 2000.
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Slipstreaming
 “At speeds in excess of 190 m.p.h., high air pressure forms at 

the front of a race car and a partial vacuum forms behind it. This 
creates drag and limits the car’s top speed. 

 A second car can position itself close behind the first (a process 
called slipstreaming or drafting). This fills the vacuum behind the 
lead car, reducing its drag. And the trailing car now has less wind 
resistance in front (and by some accounts, the vacuum behind 
the lead car actually helps pull the trailing car). 

 As a result, both cars speed up by several m.p.h.: the two 
combined go faster than either can alone.”
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Slipstream Processors
 Detect and remove ineffectual instructions; run a shortened 

“effectual” version of the program (Advanced or A-stream) 
in one thread context

 Ensure correctness by running a complete version of the 
program (Redundant or R-stream) in another thread 
context

 Shortened A-stream runs fast; R-stream consumes near-
perfect control and data flow outcomes from A-stream and 
finishes close behind

 Two streams together lead to faster execution (by helping 
each other) than a single one alone 
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Slipstream Idea and Possible Hardware
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Slipstream Questions
 How to construct the advanced thread

 Original proposal: 
 Dynamically eliminate redundant instructions (silent stores, 

dynamically dead instructions)
 Dynamically eliminate easy-to-predict branches

 Other ways:
 Dynamically ignore long-latency stalls
 Static based on profiling

 How to speed up the redundant thread
 Original proposal: Reuse instruction results (control and data 

flow outcomes from the A-stream)
 Other ways: Only use branch results and prefetched data as 

predictions
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Dual Core Execution
 Idea: One thread context speculatively runs ahead on load 

misses and prefetches data for another thread context
 Zhou, “Dual-Core Execution: Building a Highly Scalable 

Single- Thread Instruction Window,” PACT 2005.
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Dual Core Execution: Front Processor

 The front processor runs faster by invalidating long-latency cache-
missing loads, same as runahead execution 
 Load misses and their dependents are invalidated 
 Branch mispredictions dependent on cache misses cannot be resolved

 Highly accurate execution as independent operations are not 
affected 
 Accurate prefetches to warm up caches 
 Correctly resolved independent branch mispredictions
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Dual Core Execution: Back Processor

 Re-execution ensures correctness and provides precise program 
state
 Resolve branch mispredictions dependent on long-latency cache 

misses 

 Back processor makes faster progress with help from the front 
processor
 Highly accurate instruction stream 
 Warmed up data caches 
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Dual Core Execution
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DCE Microarchitecture
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Dual Core Execution vs. Slipstream
 Dual-core execution does not 

 remove dead instructions
 reuse instruction register results
 uses the “leading” hardware context solely for prefetching 

and branch prediction

+ Easier to implement, smaller hardware cost and complexity
- “Leading thread” cannot run ahead as much as in slipstream 

when there are no cache misses
- Not reusing results in the “trailing thread” can reduce 

overall performance benefit
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Some Results
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Thread Level Speculation
 Speculative multithreading, dynamic multithreading, etc…

 Idea: Divide a single instruction stream (speculatively) into 
multiple threads at compile time or run-time
 Execute speculative threads in multiple hardware contexts
 Merge results into a single stream

 Hardware/software checks if any true dependencies are 
violated and ensures sequential semantics

 Threads can be assumed to be independent
 Value/branch prediction can be used to break dependencies 

between threads
 Entire code needs to be correctly executed to verify such 

predictions
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Thread Level Speculation Example
 Colohan et al., “A Scalable Approach to Thread-Level 

Speculation,” ISCA 2000.
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TLS Conflict Detection Example
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Some Sample Results [Colohan+ ISCA 2000]
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Other MT Issues
 How to select threads to co-schedule on the same 

processor?
 Which threads/phases go well together?
 This issue exists in multi-core as well

 How to provide performance isolation (or predictable 
performance) between threads?
 This issue exists in multi-core as well 

 How to manage shared resources among threads
 Pipeline, window, registers
 Caches and the rest of the memory system
 This issue exists in multi-core as well 
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Why These Uses?
 What benefit of multithreading hardware enables them?

 Ability to communicate/synchronize with very low latency 
between threads 
 Enabled by proximity of threads in hardware
 Multi-core has higher latency to achieve this
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