
Computer Architecture:
Multithreading

Prof. Onur Mutlu (Editted by Seth)
Carnegie Mellon University

Multithreading (Outline)
 Multiple hardware contexts
 Purpose
 Initial incarnations

 CDC 6600
 HEP

 Levels of multithreading
 Fine-grained (cycle-by-cycle)
 Coarse grained (multitasking)

 Switch-on-event

 Simultaneous
 Uses: traditional + creative (now that we have multiple

contexts, why do we not do …)

2

Multithreading: Basics
 Thread

 Instruction stream with state (registers and memory)
 Register state is also called “thread context”

 Threads could be part of the same process (program) or
from different programs
 Threads in the same program share the same address space

(shared memory model)

 Traditionally, the processor keeps track of the context of a
single thread

 Multitasking: When a new thread needs to be executed, old
thread’s context in hardware written back to memory and
new thread’s context loaded

3

Hardware Multithreading
 General idea: Have multiple thread contexts in a single

processor
 When the hardware executes from those hardware contexts

determines the granularity of multithreading

 Why?
 To tolerate latency (initial motivation)

 Latency of memory operations, dependent instructions, branch
resolution

 By utilizing processing resources more efficiently

 To improve system throughput
 By exploiting thread-level parallelism
 By improving superscalar/OoO processor utilization

 To reduce context switch penalty

4

Initial Motivations
 Tolerate latency

 When one thread encounters a long-latency operation, the
processor can execute a useful operation from another thread

 CDC 6600 peripheral processors
 I/O latency: 10 cycles
 10 I/O threads can be active to cover the latency
 Pipeline with 100ns cycle time, memory with 1000ns latency
 Idea: Each I/O “processor” executes one instruction every 10

cycles on the same pipeline
 Thornton, “Design of a Computer: The Control Data 6600,”

1970.
 Thornton, “Parallel Operation in the Control Data 6600,”

AFIPS 1964.
5

Hardware Multithreading
 Benefit

+ Latency tolerance
+ Better hardware utilization (when?)
+ Reduced context switch penalty

 Cost
- Requires multiple thread contexts to be implemented in

hardware (area, power, latency cost)
- Usually reduced single-thread performance

- Resource sharing, contention
- Switching penalty (can be reduced with additional hardware)

6

Types of Hardware Multithreading
 Fine-grained

 Cycle by cycle

 Coarse-grained
 Switch on event (e.g., cache miss)
 Switch on quantum/timeout

 Simultaneous
 Instructions from multiple threads executed concurrently in

the same cycle

7

Fine-grained Multithreading
 Idea: Switch to another thread every cycle such that no two

instructions from the thread are in the pipeline concurrently

 Improves pipeline utilization by taking advantage of multiple
threads

 Alternative way of looking at it: Tolerates the control and
data dependency latencies by overlapping the latency with
useful work from other threads

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

8

Fine-grained Multithreading
 CDC 6600’s peripheral processing unit is fine-grained

multithreaded
 Processor executes a different I/O thread every cycle
 An operation from the same thread is executed every 10

cycles

 Denelcor HEP
 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
 120 threads/processor

 50 user, 70 OS functions
 available queue vs. unavailable (waiting) queue
 each thread can only have 1 instruction in the processor pipeline; each

thread independent
 to each thread, processor looks like a sequential machine
 throughput vs. single thread speed

9

Fine-grained Multithreading in HEP
 Cycle time: 100ns

 8 stages  800 ns to
complete an
instruction
 assuming no memory

access

10

Fine-grained Multithreading
 Advantages

+ No need for dependency checking between instructions
(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic
+ Otherwise-bubble cycles used for executing useful instructions from

different threads
+ Improved system throughput, latency tolerance, utilization

 Disadvantages
- Extra hardware complexity: multiple hardware contexts, thread

selection logic
- Reduced single thread performance (one instruction fetched every N

cycles)
- Resource contention between threads in caches and memory
- Dependency checking logic between threads remains (load/store)

11

Multithreaded Pipeline Example

 Slide from Joel Emer

12

Sun Niagara Multithreaded Pipeline

13

Tera MTA Fine-grained Multithreading
 256 processors, each with a 21-cycle pipeline
 128 active threads
 A thread can issue instructions every 21 cycles

 Then, why 128 threads?

 Memory latency: approximately 150 cycles
 No data cache
 Threads can be blocked waiting for memory
 More threads  better ability to tolerate memory latency

 Thread state per processor
 128 x 32 general purpose registers
 128 x 1 thread status registers

14

Coarse-grained Multithreading
 Idea: When a thread is stalled due to some event, switch to

a different hardware context
 Switch-on-event multithreading

 Possible stall events
 Cache misses
 Synchronization events (e.g., load an empty location)
 FP operations

 HEP, Tera combine fine-grained MT and coarse-grained MT
 Thread waiting for memory becomes blocked (un-selectable)

 Agarwal et al., “APRIL: A Processor Architecture for Multiprocessing,”
ISCA 1990.

 Explicit switch on event
16

Coarse-grained Multithreading in APRIL
 Agarwal et al., “APRIL: A Processor Architecture for

Multiprocessing,” ISCA 1990.

 4 hardware thread contexts
 Called “task frames”

 Thread switch on
 Cache miss
 Network access
 Synchronization fault

 How?
 Empty processor pipeline, change frame pointer (PC)

17

Fine-grained vs. Coarse-grained MT
 Fine-grained advantages

+ Simpler to implement, can eliminate dependency checking,
branch prediction logic completely

+ Switching need not have any performance overhead (i.e. dead
cycles)
+ Coarse-grained requires a pipeline flush or a lot of hardware

to save pipeline state
 Higher performance overhead with deep pipelines and

large windows

 Disadvantages
- Low single thread performance: each thread gets 1/Nth of the

bandwidth of the pipeline

18

IBM RS64-IV
 4-way superscalar, in-order, 5-stage pipeline
 Two hardware contexts
 On an L2 cache miss

 Flush pipeline
 Switch to the other thread

 Considerations
 Memory latency vs. thread switch overhead
 Short pipeline, in-order execution (small instruction window)

reduces the overhead of switching

19

Intel Montecito
 McNairy and Bhatia, “Montecito: A Dual-Core, Dual-Thread Itanium

Processor,” IEEE Micro 2005.

 Thread switch on
 L3 cache miss/data return
 Timeout – for fairness
 Switch hint instruction
 ALAT invalidation – synchronization fault
 Transition to low power mode

 <2% area overhead due to CGMT
20

Fairness in Coarse-grained Multithreading
 Resource sharing in space and time always causes fairness

considerations
 Fairness: how much progress each thread makes

 In CGMT, the time allocated to each thread affects both
fairness and system throughput
 When do we switch?
 For how long do we switch?

 When do we switch back?

 How does the hardware scheduler interact with the software
scheduler for fairness?

 What is the switching overhead vs. benefit?
 Where do we store the contexts?

21

Fairness in Coarse-grained Multithreading
 Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,”

MICRO 2006.
 How can you solve the below problem?

22

Fairness vs. Throughput
 Switch not only on miss, but also on data return

 Problem: Switching has performance overhead
 Pipeline and window flush
 Reduced locality and increased resource contention (frequent

switches increase resource contention and reduce locality)

 One possible solution
 Estimate the slowdown of each thread compared to when run

alone
 Enforce switching when slowdowns become significantly

unbalanced
 Gabor et al., “Fairness and Throughput in Switch on Event

Multithreading,” MICRO 2006.
23

Simultaneous Multithreading
 Fine-grained and coarse-grained multithreading can start

execution of instructions from only a single thread at a
given cycle

 Execution unit (or pipeline stage) utilization can be low if
there are not enough instructions from a thread to
“dispatch” in one cycle
 In a machine with multiple execution units (i.e., superscalar)

 Idea: Dispatch instructions from multiple threads in the
same cycle (to keep multiple execution units utilized)
 Hirata et al., “An Elementary Processor Architecture with Simultaneous

Instruction Issuing from Multiple Threads,” ISCA 1992.
 Yamamoto et al., “Performance Estimation of Multistreamed, Superscalar

Processors,” HICSS 1994.
 Tullsen et al., “Simultaneous Multithreading: Maximizing On-Chip

Parallelism,” ISCA 1995.
25

Functional Unit Utilization

 Data dependencies reduce functional unit utilization in
pipelined processors

26

Time

Functional Unit Utilization in Superscalar

 Functional unit utilization becomes lower in superscalar,
OoO machines. Finding 4 instructions in parallel is not
always possible

27

Time

Predicated Execution

 Idea: Convert control dependencies into data dependencies
 Improves FU utilization, but some results are thrown away

28

Time

Chip Multiprocessor

 Idea: Partition functional units across cores
 Still limited FU utilization within a single thread; limited

single-thread performance
29

Time

Fine-grained Multithreading

 Still low utilization due to intra-thread dependencies
 Single thread performance suffers

30

Time

Simultaneous Multithreading

 Idea: Utilize functional units with independent operations
from the same or different threads

31

Time

Simultaneous Multithreading
 Reduces both horizontal and vertical waste
 Required hardware

 The ability to dispatch instructions from multiple threads
simultaneously into different functional units

 Superscalar, OoO processors already have this machinery
 Dynamic instruction scheduler searches the scheduling

window to wake up and select ready instructions
 As long as dependencies are correctly tracked (via renaming

and memory disambiguation), scheduler can be thread-
agnostic

33

Basic Superscalar OoO Pipeline

34

Fetch Decode
/Map

Queue Reg
Read

Execute Dcache/
Store
Buffer

Reg
Write

Retire

PC

Icache

Register
Map

Dcache
Regs Regs

Thread-
blind

SMT Pipeline
 Physical register file needs to become larger. Why?

35

Fetch Decode
/Map

Queue Reg
Read

Execute Dcache/
Store
Buffer

Reg
Write

Retire

Icache
Dcache

PC

Register
Map

Regs Regs

Changes to Pipeline for SMT
 Replicated resources

 Program counter
 Register map
 Return address stack
 Global history register

 Shared resources
 Register file (size increased)
 Instruction queue (scheduler)
 First and second level caches
 Translation lookaside buffers
 Branch predictor

36

Changes to OoO+SS Pipeline for SMT

37

Tullsen et al., “Exploiting Choice: Instruction Fetch and Issue on an Implementable
Simultaneous Multithreading Processor,” ISCA 1996.

SMT Scalability
 Diminishing returns from more threads. Why?

38

SMT Design Considerations
 Fetch and prioritization policies

 Which thread to fetch from?

 Shared resource allocation policies
 How to prevent starvation?
 How to maximize throughput?
 How to provide fairness/QoS?
 Free-for-all vs. partitioned

 How to measure performance
 Is total IPC across all threads the right metric?

 How to select threads to co-schedule
 Snavely and Tullsen, “Symbiotic Jobscheduling for a

Simultaneous Multithreading Processor,” ASPLOS 2000.
39

Which Thread to Fetch From?
 (Somewhat) Static policies

 Round-robin
 8 instructions from one thread
 4 instructions from two threads
 2 instructions from four threads
 …

 Dynamic policies
 Favor threads with minimal in-flight branches
 Favor threads with minimal outstanding misses
 Favor threads with minimal in-flight instructions
 …

40

Which Instruction to Select/Dispatch?
 Can be thread agnostic.
 Why?

41

SMT Fetch Policies (I)
 Round robin: Fetch from a different thread each cycle
 Does not work well in practice. Why?

 Instructions from slow threads hog the pipeline and block
the instruction window
 E.g., a thread with long-latency cache miss (L2 miss) fills up

the window with its instructions
 Once window is full, no other thread can issue and execute

instructions and the entire core stalls

42

SMT Fetch Policies (II)
 ICOUNT: Fetch from thread with the least instructions in

the earlier pipeline stages (before execution)

 Why does this improve throughput?

43Slide from Joel Emer

SMT ICOUNT Fetch Policy
 Favors faster threads that have few instructions waiting

 Advantages over round robin
+ Allows faster threads to make more progress (before threads

with long-latency instructions block the window fast)
+ Higher IPC throughput

 Disadvantages over round robin
- Is this fair?
- Prone to short-term starvation: Need additional methods to

ensure starvation freedom

44

Some Results on Fetch Policy

45

Handling Long Latency Loads
 Long-latency (L2/L3 miss) loads are a problem in a single-threaded

processor
 Block instruction/scheduling windows and cause the processor to stall

 In SMT, a long-latency load instruction can block the window for ALL
threads
 i.e. reduce the memory latency tolerance benefits of SMT

 Brown and Tullsen, “Handling Long-latency Loads in a Simultaneous
Multithreading Processor,” MICRO 2001.

46

Proposed Solutions to Long-Latency Loads
 Idea: Flush the thread that incurs an L2 cache miss

 Brown and Tullsen, “Handling Long-latency Loads in a Simultaneous Multithreading
Processor,” MICRO 2001.

 Idea: Predict load miss on fetch and do not insert following instructions from
that thread into the scheduler
 El-Moursy and Albonesi, “Front-End Policies for Improved Issue Efficiency in SMT

Processors,” HPCA 2003.

 Idea: Partition the shared resources among threads so that a thread’s long-
latency load does not affect another
 Raasch and Reinhardt, “The Impact of Resource Partitioning on SMT Processors,”

PACT 2003.

 Idea: Predict if (and how much) a thread has MLP when it incurs a cache miss;
flush the thread after its MLP is exploited
 Eyerman and Eeckhout, “A Memory-Level Parallelism Aware Fetch Policy for SMT

Processors,” HPCA 2007.

47

Runahead Threads
 Idea: Use runahead execution on a long-latency load
+ Improves both single thread and multi-thread performance
 Ramirez et al., “Runahead Threads to Improve SMT

Performance,” HPCA 2008.

50

Commercial SMT Implementations
 Intel Pentium 4 (Hyperthreading)
 IBM POWER5
 Intel Nehalem
 …

52

SMT in IBM POWER5
 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE

Micro 2004.

53

IBM POWER5 Thread Throttling
 Throttle under two conditions:

 Resource-balancing logic detects the point at which a thread
reaches a threshold of load misses in the L2 cache and
translation misses in the TLB.

 Resource-balancing logic detects that one thread is beginning
to use too many GCT (i.e., reorder buffer) entries.

 Throttling mechanisms:
 Reduce the priority of the thread
 Inhibit the instruction decoding of the thread until the

congestion clears
 Flush all of the thread’s instructions that are waiting for

dispatch and stop the thread from decoding additional
instructions until the congestion clears

55

Intel Pentium 4 Hyperthreading

56

Intel Pentium 4 Hyperthreading
 Long latency load handling

 Multi-level scheduling window

 More partitioned structures
 I-TLB
 Instruction Queues
 Store buffer
 Reorder buffer

 5% area overhead due to SMT

 Marr et al., “Hyper-Threading Technology Architecture and
Microarchitecture,” Intel Technology Journal 2002.

57

Other Uses of Multithreading

Now that We Have MT Hardware …
 … what else can we use it for?

 Redundant execution to tolerate soft (and hard?) errors

 Implicit parallelization: thread level speculation
 Slipstream processors
 Leader-follower architectures

 Helper threading
 Prefetching
 Branch prediction

 Exception handling
59

SMT for Transient Fault Detection
 Transient faults: Faults that persist for a “short” duration

 Also called “soft errors”
 Caused by cosmic rays (e.g., neutrons)
 Leads to transient changes in wires and state (e.g., 01)

 Solution
 no practical absorbent for cosmic rays
 1 fault per 1000 computers per year (estimated fault rate)

 Fault rate likely to increase in the feature
 smaller feature size
 reduced voltage
 higher transistor count
 reduced noise margin

60

Need for Low-Cost Transient Fault Tolerance
 The rate of transient faults is expected to increase

significantly  Processors will need some form of fault
tolerance.

 However, different applications have different reliability
requirements (e.g. server-apps vs. games)  Users who do
not require high reliability may not want to pay the
overhead.

 Fault tolerance mechanisms with low hardware cost are
attractive because they allow the designs to be used for a
wide variety of applications.

61

Traditional Mechanisms for Transient Fault Detection

 Storage structures
 Space redundancy via parity or ECC
 Overhead of additional storage and operations can be high in

time-critical paths

 Logic structures
 Space redundancy: replicate and compare
 Time redundancy: re-execute and compare

 Space redundancy has high hardware overhead.
 Time redundancy has low hardware overhead but high

performance overhead.
 What additional benefit does space redundancy have?

62

Lockstepping (Tandem, Compaq Himalaya)

 Idea: Replicate the processor, compare the results of two
processors before committing an instruction

63

R1  (R2)

Input
Replication

Output
Comparison

Memory covered by ECC
RAID array covered by parity
Servernet covered by CRC

R1  (R2)

microprocessor microprocessor

Transient Fault Detection with SMT (SRT)

 Idea: Replicate the threads, compare outputs before
committing an instruction

 Reinhardt and Mukherjee, “Transient Fault Detection
via Simultaneous Multithreading,” ISCA 2000.

 Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault Tolerance
in Microprocessors,” FTCS 1999.

64

R1  (R2)

Input
Replication

Output
Comparison

Memory covered by ECC
RAID array covered by parity
Servernet covered by CRC

R1  (R2)

THREAD THREAD

Sim. Redundant Threading vs. Lockstepping
 SRT Advantages

+ No need to replicate the processor
+ Uses fine-grained idle FUs/cycles (due to dependencies, misses)

to execute the same program redundantly on the same processor
+ Lower hardware cost, better hardware utilization

 Disadvantages
- More contention between redundant threads  higher

performance overhead (assuming unequal hardware)
- Requires changes to processor core for result comparison, value

communication
- Must carefully fetch & schedule instructions from threads
- Cannot easily detect hard (permanent) faults

65

Sphere of Replication
 Logical boundary of redundant execution within a system
 Need to replicate input data from outside of sphere of

replication to send to redundant threads
 Need to compare and validate output before sending it out

of the sphere of replication

66

Rest of System

Sphere of Replication

Output
Compariso

n

Input
Replication

Execution
Copy 1

Execution
Copy 2

Sphere of Replication in SRT

67

Fetch PC

Instruction
Cache

Decode Register
Rename

Fp
Regs

Int .
Regs

Fp
Units

Ld /St
Units

Int .
Units

Thread 0
Thread 1

R1  (R2)

R1  (R2)
R3 = R1 + R7

R8 = R7 * 2

RUU

Input Replication
 How to get the load data for redundant threads

 pair loads from redundant threads and access the cache when
both are ready: too slow – threads fully synchronized

 allow both loads to probe cache separately: false alarms with
I/O or multiprocessors

 Load Value Queue (LVQ)
 pre-designated leading & trailing threads

68

add
load R1(R2)
sub

add
load R1  (R2)
sub

probe cache
LVQ

Output Comparison
 <address, data> for stores from redundant threads

 compare & validate at commit time

 How to handle cached vs. uncacheable loads
 Stores now need to live longer to wait for trailing thread
 Need to ensure matching trailing store can commit

69

Store: ...

Store: R1  (R2)
Store: ...
Store: R1  (R2)
Store: ...
Store: ...

Store: ...Store
Queue

Output
Comparison To Data Cache

Handling of Permanent Faults via SRT
 SRT uses time redundancy

 Is this enough for detecting permanent faults?
 Can SRT detect some permanent faults? How?

 Can we incorporate explicit space redundancy into SRT?

 Idea: Execute the same instruction on different resources in
an SMT engine
 Send instructions from different threads to different execution

units (when possible)

74

SRT Evaluation
 SPEC CPU95, 15M instrs/thread

 Constrained by simulation environment
  120M instrs for 4 redundant thread pairs

 Eight-issue, four-context SMT CPU
 Based on Alpha 21464
 128-entry instruction queue
 64-entry load and store queues

 Default: statically partitioned among active threads
 22-stage pipeline
 64KB 2-way assoc. L1 caches
 3 MB 8-way assoc L2

75

Performance Overhead of SRT

 Performance degradation = 30% (and unavailable thread
context)

 Per-thread store queue improves performance by 4%
76

Chip Level Redundant Threading
 SRT typically more efficient than splitting one processor

into two half-size cores
 What if you already have two cores?

 Conceptually easy to run these in lock-step
 Benefit: full physical redundancy
 Costs:

 Latency through centralized checker logic
 Overheads (e.g., branch mispredictions) incurred twice

 We can get both time redundancy and space redundancy if
we have multiple SMT cores
 SRT for CMPs

77

Chip Level Redundant Threading

78

Some Other Approaches to Transient Fault Tolerance

 Austin, “DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” MICRO 1999.

 Qureshi et al., “Microarchitecture-Based Introspection: A
Technique for Transient-Fault Tolerance in
Microprocessors,” DSN 2005.

79

DIVA
 Idea: Have a “functional checker” unit that checks the

correctness of the computation done in the “main
processor”

 Austin, “DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” MICRO 1999.

 Benefit: Main processor can be prone to faults or
sometimes incorrect (yet very fast)

 How can checker keep up with the main processor?
 Verification of different instructions can be performed in

parallel (if an older one is incorrect all later instructions will be
flushed anyway)

80

DIVA (Austin, MICRO 1999)
 Two cores

81

Microarchitecture Based Introspection
 Idea: Use cache miss stall cycles to redundantly execute

the program instructions

 Qureshi et al., “Microarchitecture-Based Introspection: A
Technique for Transient-Fault Tolerance in
Microprocessors,” DSN 2005.

 Benefit: Redundant execution does not have high
performance overhead (when there are stall cycles)

 Downside: What if there are no/few stall cycles?

86

Introspection

87

MBI (Qureshi+, DSN 2005)

88

MBI Microarchitecture

89

Performance Impact of MBI

90

Helper Threading for Prefetching
 Idea: Pre-execute a piece of the (pruned) program solely

for prefetching data
 Only need to distill pieces that lead to cache misses

 Speculative thread: Pre-executed program piece can be
considered a “thread”

 Speculative thread can be executed
 On a separate processor/core
 On a separate hardware thread context
 On the same thread context in idle cycles (during cache misses)

96

Helper Threading for Prefetching
 How to construct the speculative thread:

 Software based pruning and “spawn” instructions
 Hardware based pruning and “spawn” instructions
 Use the original program (no construction), but

 Execute it faster without stalling and correctness constraints

 Speculative thread
 Needs to discover misses before the main program

 Avoid waiting/stalling and/or compute less

 To get ahead, uses
 Branch prediction, value prediction, only address generation

computation

97

Generalized Thread-Based Pre-Execution
 Dubois and Song, “Assisted

Execution,” USC Tech
Report 1998.

 Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999.

 Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
2001.

98

Thread-Based Pre-Execution Issues
 Where to execute the precomputation thread?

1. Separate core (least contention with main thread)
2. Separate thread context on the same core (more contention)
3. Same core, same context

 When the main thread is stalled

 When to spawn the precomputation thread?
1. Insert spawn instructions well before the “problem” load

 How far ahead?
 Too early: prefetch might not be needed
 Too late: prefetch might not be timely

2. When the main thread is stalled

 When to terminate the precomputation thread?
1. With pre-inserted CANCEL instructions
2. Based on effectiveness/contention feedback

99

Slipstream Processors
 Goal: use multiple hardware contexts to speed up single

thread execution (implicitly parallelize the program)
 Idea: Divide program execution into two threads:

 Advanced thread executes a reduced instruction stream,
speculatively

 Redundant thread uses results, prefetches, predictions
generated by advanced thread and ensures correctness

 Benefit: Execution time of the overall program reduces
 Core idea is similar to many thread-level speculation

approaches, except with a reduced instruction stream

 Sundaramoorthy et al., “Slipstream Processors: Improving
both Performance and Fault Tolerance,” ASPLOS 2000.

100

Slipstreaming
 “At speeds in excess of 190 m.p.h., high air pressure forms at

the front of a race car and a partial vacuum forms behind it. This
creates drag and limits the car’s top speed.

 A second car can position itself close behind the first (a process
called slipstreaming or drafting). This fills the vacuum behind the
lead car, reducing its drag. And the trailing car now has less wind
resistance in front (and by some accounts, the vacuum behind
the lead car actually helps pull the trailing car).

 As a result, both cars speed up by several m.p.h.: the two
combined go faster than either can alone.”

101

Slipstream Processors
 Detect and remove ineffectual instructions; run a shortened

“effectual” version of the program (Advanced or A-stream)
in one thread context

 Ensure correctness by running a complete version of the
program (Redundant or R-stream) in another thread
context

 Shortened A-stream runs fast; R-stream consumes near-
perfect control and data flow outcomes from A-stream and
finishes close behind

 Two streams together lead to faster execution (by helping
each other) than a single one alone

102

Slipstream Idea and Possible Hardware

103

Delay Buffer

Execution
Core

Reorder
Buffer

Instruction
Cache

Branch
Predictor

L1
Data

Cache

Execution
Core

Reorder
Buffer

Instruction
Cache

Branch
Predictor

L1
Data

Cache

IR-Predictor

IR-Detector

A-stream R-stream

L2 Cache (R-stream state only)

Slipstream Questions
 How to construct the advanced thread

 Original proposal:
 Dynamically eliminate redundant instructions (silent stores,

dynamically dead instructions)
 Dynamically eliminate easy-to-predict branches

 Other ways:
 Dynamically ignore long-latency stalls
 Static based on profiling

 How to speed up the redundant thread
 Original proposal: Reuse instruction results (control and data

flow outcomes from the A-stream)
 Other ways: Only use branch results and prefetched data as

predictions

106

Dual Core Execution
 Idea: One thread context speculatively runs ahead on load

misses and prefetches data for another thread context
 Zhou, “Dual-Core Execution: Building a Highly Scalable

Single- Thread Instruction Window,” PACT 2005.

107

Dual Core Execution: Front Processor

 The front processor runs faster by invalidating long-latency cache-
missing loads, same as runahead execution
 Load misses and their dependents are invalidated
 Branch mispredictions dependent on cache misses cannot be resolved

 Highly accurate execution as independent operations are not
affected
 Accurate prefetches to warm up caches
 Correctly resolved independent branch mispredictions

108

Dual Core Execution: Back Processor

 Re-execution ensures correctness and provides precise program
state
 Resolve branch mispredictions dependent on long-latency cache

misses

 Back processor makes faster progress with help from the front
processor
 Highly accurate instruction stream
 Warmed up data caches

109

Dual Core Execution

110

DCE Microarchitecture

111

Dual Core Execution vs. Slipstream
 Dual-core execution does not

 remove dead instructions
 reuse instruction register results
 uses the “leading” hardware context solely for prefetching

and branch prediction

+ Easier to implement, smaller hardware cost and complexity
- “Leading thread” cannot run ahead as much as in slipstream

when there are no cache misses
- Not reusing results in the “trailing thread” can reduce

overall performance benefit

112

Some Results

113

Thread Level Speculation
 Speculative multithreading, dynamic multithreading, etc…

 Idea: Divide a single instruction stream (speculatively) into
multiple threads at compile time or run-time
 Execute speculative threads in multiple hardware contexts
 Merge results into a single stream

 Hardware/software checks if any true dependencies are
violated and ensures sequential semantics

 Threads can be assumed to be independent
 Value/branch prediction can be used to break dependencies

between threads
 Entire code needs to be correctly executed to verify such

predictions
114

Thread Level Speculation Example
 Colohan et al., “A Scalable Approach to Thread-Level

Speculation,” ISCA 2000.

115

TLS Conflict Detection Example

116

Some Sample Results [Colohan+ ISCA 2000]

117

Other MT Issues
 How to select threads to co-schedule on the same

processor?
 Which threads/phases go well together?
 This issue exists in multi-core as well

 How to provide performance isolation (or predictable
performance) between threads?
 This issue exists in multi-core as well

 How to manage shared resources among threads
 Pipeline, window, registers
 Caches and the rest of the memory system
 This issue exists in multi-core as well

118

Why These Uses?
 What benefit of multithreading hardware enables them?

 Ability to communicate/synchronize with very low latency
between threads
 Enabled by proximity of threads in hardware
 Multi-core has higher latency to achieve this

119

