
Computer Architecture:
Dataflow/Systolic Arrays

Prof. Onur Mutlu (editted by seth)
Carnegie Mellon University

Data Flow
 The models we have examined all assumed

 Instructions are fetched and retired in sequential, control flow
order

 This is part of the Von-Neumann model of computation
 Single program counter
 Sequential execution
 Control flow determines fetch, execution, commit order

 What about out-of-order execution?
 Architecture level: Obeys the control-flow model
 Uarch level: A window of instructions executed in data-flow

order execute an instruction when its operands become
available

2

Data Flow
 In a data flow machine, a program consists of data flow

nodes
 A data flow node fires (fetched and executed) when all its

inputs are ready
 i.e. when all inputs have tokens

 Data flow node and its ISA representation

3

Data Flow Nodes

4

Data Flow Nodes (II)

 A small set of dataflow operators can be used to
define a general programming language

Fork Primitive Ops

+

Switch Merge

T F
T F

T T

+ T F
T F

T T

Dataflow Graphs

{x = a + b;
y = b * 7
in

(x-y) * (x+y)}

a b

+ *7

- +

*

yx

1 2

3 4

5

 Values in dataflow graphs are
represented as tokens

 An operator executes when all its
input tokens are present; copies of
the result token are distributed to
the destination operators

token < ip , p , v >
instruction ptr port data

no separate control flow

Example Data Flow Program

7

OUT

Control Flow vs. Data Flow

8

Static Dataflow
 Allows only one instance of a node to be enabled for firing

 A dataflow node is fired only when all of the tokens are
available on its input arcs and no tokens exist on any of its
its output arcs

 Dennis and Misunas, “A Preliminary Architecture for a Basic
Data Flow Processor,” ISCA 1974.

9

Static Dataflow Machine:
Instruction Templates

Each arc in the graph has an
operand slot in the program

Presence bits

1
2
3
4
5

+ 3L 4L
* 3R 4R
- 5L
+ 5R
* out

a b

+ *7

- +

*

yx
1 2

3 4

5

Static Dataflow Machine (Dennis+, ISCA 1974)

<s1, p1, v1>, <s2, p2, v2>

FU FU FU FU FU

Op dest1 dest2 p1 src1 p2 src21
2
.
.
.

Receive

Send

Instruction Templates

 Many such processors can be connected together
 Programs can be statically divided among the processors

Static Data Flow Machines
 Mismatch between the model and the implementation

 The model requires unbounded FIFO token queues per arc but
the architecture provides storage for one token per arc

 The architecture does not ensure FIFO order in the reuse of
an operand slot

 The static model does not support
 Reentrant code (and code sharing)

 Function calls
 Loops

 Data Structures
 Non-strict functions
 Latency hiding

12

Exploiting All The Parallelism
Def Vsum A, B

{ C = array(1,n);
{ For j From 1 To n Do

C[j] = A[j]+B[j]}
In

C};

13

Allocate C

Fetch Fetch

+

store

+

A
B

1

n

Dynamic Dataflow Architectures

 Allocate instruction templates, i.e., a frame, dynamically to
support each loop iteration and procedure call
 termination detection needed to deallocate frames

 The code can be shared if we separate the code and the
operand storage

<fp, ip, port, data>

frame
pointer

instruction
pointer

a token

Static versus Dynamic Dataflow Machines

16

MIT Tagged Token Data Flow Architecture

 Resource Manager Nodes
 responsible for Function allocation (allocation of context/frame

identifiers), Heap allocation, etc.

17

MIT Tagged Token Data Flow Architecture
 Wait−Match Unit:

try to match
incoming token and
context id and a
waiting token with
same instruction
address
 Success: Both

tokens forwarded
 Fail: Incoming

token −−>
Waiting Token
Mem, bubble (no-
op forwarded)

18

TTDA Data Flow Example

19

TTDA Data Flow Example

20

Function Calls
 Need extra mechanism to direct the output token of the

function to the proper calling site

 Usually done by sending special token containing the return
node address

21

Concept of Tagging
 Each invocation receives a separate tag

22

Procedure Linkage Operators
f

get frame extract tag

change Tag 0

change Tag 0

Graph for f

change Tag 1

a1

1:

change Tag n

an

n:

...

change Tag 1

Fork

token in frame 0
token in frame 1

Like standard
call/return
but caller &
callee can be
active
simultaneously

Loops and Function Calls Summary

24

Control of Parallelism
 Problem: Many loop iterations can be present in the

machine at any given time
 100K iterations on a 256 processor machine can swamp the

machine (thrashing in token matching units)
 Not enough bits to represent frame id

 Solution: Throttle loops. Control how many loop iterations
can be in the machine at the same time.
 Requires changes to loop dataflow graph to inhibit token

generation when number of iterations is greater than N

25

Data Structures
 Dataflow by nature has write-once semantics
 Each arc (token) represents a data value
 An arc (token) gets transformed by a dataflow node into a

new arc (token) No persistent state…

 Data structures as we know of them (in imperative
languages) are structures with persistent state

 Why do we want persistent state?
 More natural representation for some tasks? (bank accounts,

databases, …)
 To exploit locality

26

Data Structures in Dataflow

. . . . PP

Memory Data structures reside in a structure
store

 tokens carry pointers

 I-structures: Write-once, Read
multiple times or
 allocate, write, read, ..., read,

deallocate
 No problem if a reader arrives
before the writer at the memory
location

I-fetch

a

I-store

a v

I-Structures

28

Dynamic Data Structures
 Write-multiple-times data structures
 How can you support them in a dataflow machine?

 M-Structures
 Can you implement a linked list?

 What are the ordering semantics for writes and reads?

 Imperative vs. functional languages
 Side effects and mutable state

vs.
 No side effects and no mutable state

29

TTDA Data Flow Example

30

TTDA Synchronization
 Heap memory locations have FULL/EMPTY bits
 if the heap location is EMPTY, heap memory module

queues request at that location When "I−Fetch" request
arrives (instead of "Fetch"),

 Later, when "I−Store" arrives, pending requests are
discharged

 No busy waiting
 No extra messages

31

Monsoon Processor (ISCA 1990)

Instruction
Fetch

Operand
Fetch

ip

fp+r

Network Network

Frames

op r d1,d2

Code

Form
Token

ALU

Token
Queue

Manchester Data Flow Machine

 Matching Store: Pairs
together tokens
destined for the same
instruction

 Large data set
overflow in overflow
unit

 Paired tokens fetch the
appropriate instruction
from the node store

33

A Frame in Dynamic Dataflow
1
2
3
4
5

Program+

*
-

+

3

1

2

4

5

3L, 4L

3R, 4R

5L

5R

out*

1
2

4
5

7

a b

+ *7

- +

*

yx
1 2

3 4

5

Need to provide storage for only one operand/operator

<fp, ip, p , v>

3

Frame

L

Data Flow Summary
 Availability of data determines order of execution
 A data flow node fires when its sources are ready
 Programs represented as data flow graphs (of nodes)

 Data Flow at the ISA level has not been (as) successful

 Data Flow implementations under the hood (while
preserving sequential ISA semantics) have been successful
 Out of order execution
 Hwu and Patt, “HPSm, a high performance restricted data flow

architecture having minimal functionality,” ISCA 1986.

35

Data Flow Characteristics
 Data-driven execution of instruction-level graphical code

 Nodes are operators
 Arcs are data (I/O)
 As opposed to control-driven execution

 Only real dependencies constrain processing
 No sequential I-stream

 No program counter
 Operations execute asynchronously
 Execution triggered by the presence of data
 Single assignment languages and functional programming

 E.g., SISAL in Manchester Data Flow Computer
 No mutable state

36

Data Flow Advantages/Disadvantages
 Advantages

 Very good at exploiting irregular parallelism
 Only real dependencies constrain processing

 Disadvantages
 Debugging difficult (no precise state)

 Interrupt/exception handling is difficult (what is precise state
semantics?)

 Implementing dynamic data structures difficult in pure data
flow models

 Too much parallelism? (Parallelism control needed)
 High bookkeeping overhead (tag matching, data storage)
 Instruction cycle is inefficient (delay between dependent

instructions), memory locality is not exploited

37

Combining Data Flow and Control Flow
 Can we get the best of both worlds?

 Two possibilities
 Model 1: Keep control flow at the ISA level, do dataflow

underneath, preserving sequential semantics
 Model 2: Keep dataflow model, but incorporate control flow at

the ISA level to improve efficiency, exploit locality, and ease
resource management
 Incorporate threads into dataflow: statically ordered instructions;

when the first instruction is fired, the remaining instructions
execute without interruption

38

Model 2 Example: Macro Dataflow

39
Sakai et al., “An Architecture of a Dataflow Single Chip Processor,” ISCA 1989.

 Data flow execution of large blocks, control flow within a block

Benefits of Control Flow within Data Flow
 Strongly-connected block: Strongly-connected subgraph of

the dataflow graph

 Executed without interruption. Atomic: all or none.

 Benefits of the atomic block:
 Dependent or independent instructions can execute back to

back improved processing element utilization
 Exploits locality with registers reduced comm. delay
 No need for token matching within the block simpler, less

overhead
 No need for token circulation (which is slow) within the block
 Easier to implement serialization and critical sections

40

Macro Dataflow Program Example

41

Macro Dataflow Machine Example

42

Macro Dataflow Pipeline Organization

43

Model 1 Example: Restricted Data Flow
 Data flow execution under sequential semantics and precise exceptions

44
Patt et al., “HPS, a new microarchitecture: rationale and introduction,” MICRO 1985.

Systolic Arrays

46

Why Systolic Architectures?
 Idea: Data flows from the computer memory in a rhythmic

fashion, passing through many processing elements before it
returns to memory

 Similar to an assembly line
 Different people work on the same car
 Many cars are assembled simultaneously
 Can be two-dimensional

 Why? Special purpose accelerators/architectures need
 Simple, regular designs (keep # unique parts small and regular)
 High concurrency high performance
 Balanced computation and I/O (memory access)

47

Systolic Architectures
 H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.

48

Memory: heart
PEs: cells

Memory pulses
data through
cells

Systolic Architectures
 Basic principle: Replace a single PE with a regular array of

PEs and carefully orchestrate flow of data between the PEs
 achieve high throughput w/o increasing memory
bandwidth requirements

 Differences from pipelining:
 Array structure can be non-linear and multi-dimensional
 PE connections can be multidirectional (and different speed)
 PEs can have local memory and execute kernels (rather than a

piece of the instruction)

49

Systolic Computation Example
 Convolution

 Used in filtering, pattern matching, correlation, polynomial
evaluation, etc …

 Many image processing tasks

50

Systolic Computation Example: Convolution

 y1 = w1x1 +
w2x2 + w3x3

 y2 = w1x2 +
w2x3 + w3x4

 y3 = w1x3 +
w2x4 + w3x5

51

Systolic Computation Example: Convolution

 Worthwhile to implement adder and multiplier separately
to allow overlapping of add/mul executions

52

 Each PE in a systolic array
 Can store multiple “weights”
 Weights can be selected on the fly
 Eases implementation of, e.g., adaptive filtering

 Taken further
 Each PE can have its own data and instruction memory
 Data memory to store partial/temporary results, constants
 Leads to stream processing, pipeline parallelism

 More generally, staged execution

53

More Programmability Pipeline Parallelism

54

File Compression Example

55

Systolic Array
 Advantages

 Makes multiple uses of each data item reduced need for
fetching/refetching

 High concurrency
 Regular design (both data and control flow)

 Disadvantages
 Not good at exploiting irregular parallelism
 Relatively special purpose need software, programmer

support to be a general purpose model

56

The WARP Computer
 HT Kung, CMU, 1984-1988

 Linear array of 10 cells, each cell a 10 Mflop programmable
processor

 Attached to a general purpose host machine
 HLL and optimizing compiler to program the systolic array
 Used extensively to accelerate vision and robotics tasks

 Annaratone et al., “Warp Architecture and
Implementation,” ISCA 1986.

 Annaratone et al., “The Warp Computer: Architecture,
Implementation, and Performance,” IEEE TC 1987.

57

The WARP Computer

58

The WARP Computer

59

Models and Architectures
 In-order scalar Von-Neumann
 OoO scalar Von-Neumann
 SIMD
 Vector
 SPMD

 Static Dataflow
 Dynamic Dataflow
 Stream processing
 Systolic

60

