
The Memory Hierarchy
Caches, and VM

CS 740

10/2/2013
Topics

• The memory hierarchy
• Cache design
• Virtual Memory

CS 740 – 2 –

Ideal Memory

Zero access time (latency)
Infinite capacity
Zero cost
Infinite bandwidth (to support multiple accesses in
parallel)

2

CS 740 – 3 –

The Problem

Ideal memory’s requirements oppose each other

Bigger is slower
• Bigger  Takes longer to determine the location

Faster is more expensive
• Memory technology: SRAM vs. DRAM

Higher bandwidth is more expensive
• Need more banks, more ports, higher frequency, or faster

technology

3

CS 740 – 4 –

Computer System

diskDiskdiskDisk

Memory-I/O bus

Processor

Cache

Memory

I/O
controller

I/O
controller

I/O
controller

Display Network

interrupts

CS 740 – 5 –

The Tradeoff

CPU

regs

C
a
c
h
e

Memory disk

size:
speed:
$/Mbyte:
block size:

608 B
1.4 ns

4 B

register
reference

L2-cache
reference

memory
reference

disk memory
reference

512kB -- 4MB
16.8 ns
$90/MB
16 B

128 MB
112 ns
$2-6/MB
4-8 KB

27GB
9 ms
$0.01/MB

larger, slower, cheaper

16 B 8 B 4 KB

cache virtual memory

C
a
c
h
e

128k B
4.2 ns

4 B

L1-cache
reference

(Numbers are for a 21264 at 700MHz circa ~2000)

CS 740 – 6 –

Why is bigger slower?

• Physics slows us down
• Racing the speed of light: (3.0x10^8m/s)

• clock = 500MHz
• how far can I go in a clock cycle?
• (3.0x10^8 m/s) / (500x10^6 cycles/s) = 0.6m/cycle
• For comparison: 21264 is about 17mm across

• Capacitance:
• long wires have more capacitance
• either more powerful (bigger) transistors required, or slower
• signal propagation speed proportional to capacitance
• going “off chip” has an order of magnitude more capacitance

CS 740 – 7 –

Alpha 21164 Chip Photo

Microprocessor
Report 9/12/94

Caches:
L1 data
L1 instruction
L2 unified
+ L3 off-chip

CS 740 – 8 –

Alpha 21164 Chip Caches

Caches:
L1 data
L1 instruction
L2 unified
+ L3 off-chip

Right Half
L2

Right Half
L2

L1

I
n
s
t
r.

L1
Data

L2
Tags

L3 Control

CS 740 – 9 –

Memory in a Modern System

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E
CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 B
A

N
K

S

DRAM MEMORY
CONTROLLER

CS 740 – 10 –

Locality of Reference

Principle of Locality:
• Programs tend to reuse data and instructions near those they

have used recently.
• Temporal locality: recently referenced items are likely to be

referenced in the near future.
• Spatial locality: items with nearby addresses tend to be

referenced close together in time.

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
*v = sum;

Locality in Example:
• Data

– Reference array elements in succession
(spatial)

• Instructions
– Reference instructions in sequence (spatial)
– Cycle through loop repeatedly (temporal)

CS 740 – 11 –

Caching: The Basic Idea

Main Memory
• Stores words

A–Z in example

Cache
• Stores subset of the

words
4 in example

• Organized in lines
– Multiple words
– To exploit spatial

locality

Access
• Word must be in cache

for processor to access

Big, Slow Memory

A
B
C
•
•
•
Y
Z

Small,
Fast Cache

A
B

G
H

Processor

CS 740 – 12 –

How important are caches?

(Figure from Jim Keller, Compaq Corp.)

•21264 Floorplan

•Register files in
middle of execution
units

•64k instr cache

•64k data cache

•Caches take up a
large fraction of the
die

CS 740 – 13 –

• Between any two levels, memory is divided into lines (aka “blocks”)
• Data moves between levels on demand, in line-sized chunks
• Invisible to application programmer

– Hardware responsible for cache operation
• Upper-level lines a subset of lower-level lines

a

a
b

Access word w in line a (hit)

a

a
b

Access word v in line b (miss)

w

b

a

b

a
b

v

Accessing Data in Memory Hierarchy

High
Level

Low
Level

CS 740 – 14 –

Register File
32 words, sub‐nsec

L1 cache
~32 KB, ~nsec

L2 cache
512 KB ~ 1MB, many nsec

L3 cache,
.....

Main memory (DRAM),
GB, ~100 nsec

Swap Disk
100 GB, ~10 msec

A Modern Memory Hierarchy

manual/compiler
register spilling

automatic
demand
paging

Automatic
HW cache

management

Memory
Abstraction

CS 740 – 15 –

Design Issues for Caches

Key Questions:
• Where should a line be placed in the cache? (line placement)
• How is a line found in the cache? (line identification)
• Which line should be replaced on a miss? (line replacement)
• What happens on a write? (write strategy)

Constraints:
• Design must be very simple

– Hardware realization
– All decision making within nanosecond time scale

• Want to optimize performance for “typical” programs
– Do extensive benchmarking and simulations
– Many subtle engineering tradeoffs

CS 740 – 16 –

Direct-Mapped Caches

Simplest Design
• Each memory line has a unique cache location

Parameters
• Line (aka block) size B = 2b

– Number of bytes in each line
– Typically 2X–8X word size

• Number of Sets S = 2s

– Number of lines cache can hold
• Total Cache Size = B*S = 2b+s

Physical Address
• Address used to reference main memory
• n bits to reference N = 2n total bytes
• Partition into fields

– Offset: Lower b bits indicate which byte within line
– Set: Next s bits indicate how to locate line within cache
– Tag: Identifies this line when in cache

n-bit Physical Address

t s b

tag set index offset

CS 740 – 17 –

Indexing into Direct-Mapped Cache

• Use set index bits
to select cache set

Set 0: 0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

Set 1:

Set S–1:

•
•
•

t s b

tag set index offset

Physical Address

CS 740 – 18 –

Direct-Mapped Cache Tag Matching

Identifying Line
• Must have tag match high

order bits of address
• Must have Valid = 1

0 1 • • • B–1Tag Valid

Selected Set:

t s b

tag set index offset

Physical Address

= ?

= 1?

• Lower bits of address
select byte or word
within cache line

CS 740 – 19 –

Properties of Direct Mapped Caches

Strength
• Minimal control hardware overhead
• Simple design
• (Relatively) easy to make fast

Weakness
• Vulnerable to thrashing
• Two heavily used lines have same cache index
• Repeatedly evict one to make room for other

Cache Line

CS 740 – 20 –

Vector Product Example

Machine
• DECStation 5000
• MIPS Processor with 64KB direct-mapped cache, 16 B line size

Performance
• Good case: 24 cycles / element
• Bad case: 66 cycles / element

float dot_prod(float x[1024], y[1024])
{
float sum = 0.0;
int i;
for (i = 0; i < 1024; i++)
sum += x[i]*y[i];

return sum;
}

CS 740 – 21 –

Thrashing Example

• Access one element from each array per iteration

x[1]
x[0]

x[1020]

•
•
•

•
•
•

x[3]
x[2]

x[1021]
x[1022]
x[1023]

y[1]
y[0]

y[1020]

•
•
•

•
•
•

y[3]
y[2]

y[1021]
y[1022]
y[1023]

Cache
Line

Cache
Line

Cache
Line

Cache
Line

Cache
Line

Cache
Line

CS 740 – 22 –

x[1]
x[0]

x[3]
x[2]

y[1]
y[0]

y[3]
y[2]

Cache
Line

Thrashing Example: Good Case

Access Sequence
• Read x[0]

– x[0], x[1], x[2], x[3] loaded
• Read y[0]

– y[0], y[1], y[2], y[3] loaded
• Read x[1]

– Hit
• Read y[1]

– Hit
• • • •
• 2 misses / 8 reads

Analysis
• x[i] and y[i] map to different cache

lines
• Miss rate = 25%

– Two memory accesses / iteration
– On every 4th iteration have two

misses

Timing
• 10 cycle loop time
• 28 cycles / cache miss
• Average time / iteration =

10 + 0.25 * 2 * 28

CS 740 – 23 –

x[1]
x[0]

x[3]
x[2]

y[1]
y[0]

y[3]
y[2]

Cache
Line

Thrashing Example: Bad Case

Access Pattern
• Read x[0]

– x[0], x[1], x[2], x[3] loaded
• Read y[0]

– y[0], y[1], y[2], y[3] loaded
• Read x[1]

– x[0], x[1], x[2], x[3] loaded
• Read y[1]

– y[0], y[1], y[2], y[3] loaded
• • •
• 8 misses / 8 reads

Analysis
• x[i] and y[i] map to same cache lines
• Miss rate = 100%

– Two memory accesses / iteration
– On every iteration have two misses

Timing
• 10 cycle loop time
• 28 cycles / cache miss
• Average time / iteration =

10 + 1.0 * 2 * 28

CS 740 – 24 –

Miss Types

Compulsory Misses – required to warm up the cache

Capacity Misses – occur when the cache is full

Conflict Misses – Block placement may cause
these in direct or non-fully
associative caches

Coherence Misses – occur because of invalidations
caused between threads

CS 740 – 25 –

Set Associative Cache

Mapping of Memory Lines
• Each set can hold E lines (usually E=2-8)
• Given memory line can map to any entry within its given set

Eviction Policy
• Which line gets kicked out when bring new line in
• Commonly either “Least Recently Used” (LRU) or pseudo-random

– LRU: least-recently accessed (read or written) line gets evicted

Set i:
0 1 • • • B–1Tag Valid

•
•
•

0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

LRU State

Line 0:

Line 1:

Line E–1:

CS 740 – 26 –

Set 0:

Set 1:

Set S–1:

•
•
•

t s b

tag set index offset

Physical Address

Indexing into 2-Way Associative Cache

• Use middle s bits to
select from among S = 2s

sets

0 1 • • • B–1Tag Valid
0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid
0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid
0 1 • • • B–1Tag Valid

CS 740 – 27 –

Associative Cache Tag Matching

Identifying Line
• Must have one of the

tags match high order
bits of address

• Must have Valid = 1 for
this line

Selected Set:

t s b

tag set index offset

Physical Address

= ?

= 1?

• Lower bits of address
select byte or word
within cache line

0 1 • • • B–1Tag Valid
0 1 • • • B–1Tag Valid

CS 740 – 28 –

Two-Way Set Associative Cache
Implementation

• Set index selects a set from the cache
• The two tags in the set are compared in parallel
• Data is selected based on the tag result

Cache Data
Cache Line 0

Cache TagValid

:: :

Cache Data
Cache Line 0

Cache Tag Valid

: ::

Set Index

Mux 01Sel1 Sel0

Cache Line

Compare
Adr Tag

Compare

OR

Hit

Adr Tag

CS 740 – 29 –

Fully Associative Cache

Mapping of Memory Lines
• Cache consists of single set holding E lines
• Given memory line can map to any line in set
• Only practical for small caches

Entire Cache

0 1 • • • B–1Tag Valid

•
•
•

0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

LRU State

Line 0:

Line 1:

Line E–1:

CS 740 – 30 –

Fully Associative Cache Tag Matching

Identifying Line
• Must check all of the tags for

match
• Must have Valid = 1 for this

line

t b

tag offset
Physical Address

= ?

= 1?

• Lower bits of address
select byte or word
within cache line

0 1 • • • B–1Tag Valid

•
•
•

0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

•
•
•

CS 740 – 31 –

Replacement Algorithms
• When a block is fetched, which block in the target set should be

replaced?
Optimal algorithm:

– replace the block that will not be used for the longest period of time
– must know the future

Usage based algorithms:
• Least recently used (LRU)

– replace the block that has been referenced least recently
– hard to implement (unless low associativity)

• Not most recently used
• Victim/next-victim

Non-usage based algorithms:
• First-in First-out (FIFO)

– treat the set as a circular queue, replace block at head of queue.
– Essentially replace oldest

• Random (RAND)
– replace a random block in the set
– even easier to implement

CS 740 – 32 –

Implementing RAND and FIFO

FIFO:
• maintain a modulo E counter for each set.
• counter in each set points to next block for replacement.
• increment counter with each replacement.

RAND:
• maintain a single modulo E counter.
• counter points to next block for replacement in any set.
• increment counter according to some schedule:

– each clock cycle,
– each memory reference, or
– each replacement anywhere in the cache.

LRU
• Need state machine for each set
• Encodes usage ordering of each element in set
• E! possibilities ==> ~ E log E bits of state

CS 740 – 33 –

Write Policy

• What happens when processor writes to the cache?
• Should memory be updated as well?

Write Through:
• Store by processor updates cache and memory
• Memory always consistent with cache
• Never need to store from cache to memory
• ~2X more loads than stores

Processor

Cache

Memory
Store

Load
Cache
Load

CS 740 – 34 –

Write Policy (Cont.)

Write Back:
• Store by processor only updates cache line
• Modified line written to memory only when it is evicted

– Requires “dirty bit” for each line
» Set when line in cache is modified
» Indicates that line in memory is stale

• Memory not always consistent with cache

Processor

Cache
Memory

Store

Load Cache
Load

Write
Back

CS 740 – 35 –

Write Buffering

Write Buffer
• Common optimization for all caches
• Overlaps memory updates with processor execution
• Read operation must check write buffer for matching address

Cache

CPU

Memory

Write
Buffer

CS 740 – 36 –

Multi-Level Caches

Memory disk

L1 Icache

L1 Dcacheregs L2
Cache

Processor

Options: separate data and instruction caches, or a unified cache

How does this affect self modifying code?

CS 740 – 37 –

Bandwidth Matching

Challenge
• CPU works with short cycle times
• DRAM (relatively) long cycle times
• How can we provide enough bandwidth between processor

& memory?
Effect of Caching

• Caching greatly reduces amount of traffic to main
memory

• But, sometimes need to move large amounts of data from
memory into cache

Trends
• Need for high bandwidth much greater for multimedia

applications
– Repeated operations on image data

• Recent generation machines (e.g., Pentium II) greatly
improve on predecessors

CPU

cache

M

bus

Short
Latency

Long
Latency

CS 740 – 38 –

High Bandwidth Memory Systems

CPU

cache

M

bus

mux

CPU

cache

M

bus

Solution 1
High BW DRAM

Solution 2
Wide path between memory & cache

Example:
Page Mode DRAM
RAMbus

Example: Alpha AXP 21064
256 bit wide bus, L2 cache,
and memory.

CS 740 – 39 –

Cache Performance Metrics

Miss Rate
• fraction of memory references not found in cache

(misses/references)
• Typical numbers:

3-10% for L1
can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time
• time to deliver a line in the cache to the processor (includes time

to determine whether the line is in the cache)
• Typical numbers:

1-3 clock cycles for L1
3-12 clock cycles for L2

Miss Penalty
• additional time required because of a miss

– Typically 25-100 cycles for main memory

CS 740 – 40 –

Hierarchical Latency Analysis
For a given memory hierarchy level i it has a technology‐intrinsic
access time of ti, The perceived access time Ti is longer than ti

Except for the outer‐most hierarchy, when looking for a given
address there is
• a chance (hit‐rate hi) you “hit” and access time is ti
• a chance (miss‐rate mi) you “miss” and access time ti +Ti+1
• hi + mi = 1

Thus
Ti = hi∙ti + mi∙(ti + Ti+1)
Ti = ti + mi ∙Ti+1

keep in mind, hi and mi are defined to be the hit‐rate
and miss‐rate of just the references that missed at Li‐1

40

CS 740 – 41 –

Hierarchy Design Considerations
Recursive latency equation

Ti = ti + mi ∙Ti+1
The goal: achieve desired T1 within allowed cost
Ti  ti is desirable

Keep mi low
• increasing capacity Ci lowers mi, but beware of increasing ti
• lower mi by smarter management (replacement::anticipate what you don’t need,
prefetching::anticipate what you will need)

Keep Ti+1 low
• faster lower hierarchies, but beware of increasing cost
• introduce intermediate hierarchies as a compromise

41

CS 740 – 42 –

90nm P4, 3.6 GHz
L1 D‐cache

• C1 = 16K
• t1 = 4 cyc int / 9 cycle fp

L2 D‐cache
• C2 =1024 KB
• t2 = 18 cyc int / 18 cyc fp

Main memory
• t3 = ~ 50ns or 180 cyc

Notice
• best case latency is not 1
• worst case access latencies are into 500+ cycles

if m1=0.1, m2=0.1
T1=7.6, T2=36

if m1=0.01, m2=0.01
T1=4.2, T2=19.8

if m1=0.05, m2=0.01
T1=5.00, T2=19.8

if m1=0.01, m2=0.50
T1=5.08, T2=108

Intel Pentium 4 Example

CS 740 – 43 –

Impact of Cache and Block Size

Cache Size
• Effect on miss rate?

• Effect on hit time?

Block Size
• Effect on miss rate?

• Effect on miss penalty?

• Effect on hit time?

CS 740 – 44 –

Impact of Associativity

• Direct-mapped, set associative, or fully associative?

Total Cache Size (tags+data)?

Miss rate?

Hit time?

Miss Penalty?

CS 740 – 45 –

Impact of Replacement Strategy

• RAND, FIFO, or LRU?

Total Cache Size (tags+data)?

Miss Rate?

Miss Penalty?

CS 740 – 46 –

Impact of Write Strategy

• Write-through or write-back?

Advantages of Write Through?

Advantages of Write Back?

CS 740 – 47 –

Allocation Strategies

• On a write miss, is the block loaded from memory into the cache?
Write Allocate:

• Block is loaded into cache on a write miss.
• Usually used with write back
• Otherwise, write-back requires read-modify-write to replace word within

block

• But if you’ve gone to the trouble of reading the entire block, why not load
it in cache?

17

5 7 11 13

write buffer block

memory block

17

5 7 11 13

read

5 7 11 13

17

5 7 11 13

modify

5 7 17 13

17

5 7 17 13

write

5 7 17 13temporary buffer

CS 740 – 48 –

Allocation Strategies (Cont.)

• On a write miss, is the block loaded from memory into the cache?

No-Write Allocate (Write Around):
• Block is not loaded into cache on a write miss
• Usually used with write through

– Memory system directly handles word-level writes

CS 740 – 49 –

Qualitative Cache Performance Model

Miss Types
• Compulsory (“Cold Start”) Misses

– First access to line not in cache
• Capacity Misses

– Active portion of memory exceeds cache size
• Conflict Misses

– Active portion of address space fits in cache, but too many lines
map to same cache entry

– Direct mapped and set associative placement only
• Coherence Misses

– Block invalidated by multiprocessor cache coherence mechanism
Hit Types

• Reuse hit
– Accessing same word that previously accessed

• Line hit
– Accessing word spatially near previously accessed word

CS 740 – 50 –

Interactions Between Program & Cache

Major Cache Effects to Consider
• Total cache size

– Try to keep heavily used data in highest level cache
• Block size (sometimes referred to “line size”)

– Exploit spatial locality

Example Application
• Multiply n X n matrices
• O(n3) total operations
• Accesses

– n reads per source element
– n values summed per destination

» But may be able to hold in register

/* ijk */

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

Variable sum
held in register

CS 740 – 51 –

0

20

40

60

80

100

120

140

160

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

matrix size (n)

m
flo

ps
 (d

.p
.)

ijk
ikj
jik
jki
kij
kji

Matmult Performance (Alpha 21164)
Too big for L1 Cache Too big for L2 Cache

CS 740 – 52 –

Block Matrix Multiplication

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

A11 A12

A21 A22

Example n=8, B = 4:

B11 B12

B21 B22
X =

C11 C12

C21 C22

Key idea: Sub-blocks (i.e., Aij) can be treated just like scalars.

CS 740 – 53 –

Blocked Matrix Multiply (bijk)
for (jj=0; jj<n; jj+=bsize) {
for (i=0; i<n; i++)
for (j=jj; j < min(jj+bsize,n); j++)
c[i][j] = 0.0;

for (kk=0; kk<n; kk+=bsize) {
for (i=0; i<n; i++) {
for (j=jj; j < min(jj+bsize,n); j++) {
sum = 0.0
for (k=kk; k < min(kk+bsize,n); k++) {
sum += a[i][k] * b[k][j];

}
c[i][j] += sum;

}
}

}
}

CS 740 – 54 –

Blocked Matrix Multiply Analysis

A B C

block reused
n times
in succession

row sliver accessed
bsize times

Update successive
elements of sliver

i i
kk

kk jjjj

for (i=0; i<n; i++) {
for (j=jj; j < min(jj+bsize,n); j++) {
sum = 0.0
for (k=kk; k < min(kk+bsize,n); k++) {
sum += a[i][k] * b[k][j];

}
c[i][j] += sum;

}

• Innermost loop pair multiplies 1 X bsize sliver of A times bsize X
bsize block of B and accumulates into 1 X bsize sliver of C

• Loop over i steps through n row slivers of A & C, using same B

Innermost
Loop Pair

CS 740 – 55 –

Blocked matmult perf (Alpha 21164)

0

20

40

60

80

100

120

140

160

50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

matrix size (n)

m
flo

ps
 (d

.p
.)

bijk
bikj
ijk
ikj

CS 740 – 56 –

Why VM?: 1) DRAM a “Cache” for Disk

The full address space is quite large:
• 32-bit addresses: ~4,000,000,000 (4 billion) bytes
• 64-bit addresses: ~16,000,000,000,000,000,000 (16 quintillion) bytes

Disk storage is ~30X cheaper than DRAM storage
• 8 GB of DRAM: ~ $12,000
• 8 GB of disk: ~ $200

To access large amounts of data in a cost-effective
manner, the bulk of the data must be stored on disk

20 GB: ~$400256 MB: ~$400
4 MB: ~$400

DiskDRAMSRAM

CS 740 – 57 –

Levels in Memory Hierarchy

CPU
regsregs

C
a
c
h
e

Memory disk

size:
speed:

$/Mbyte:
block size:

200 B
3 ns

8 B

Register Cache Memory Disk Memory
32 KB / 4MB

6 ns
$100/MB

32 B

128 MB
60 ns

$1.50/MB
8 KB

20 GB
8 ms

$0.05/MB

larger, slower, cheaper

8 B 32 B 8 KB

cache virtual memory

CS 740 – 58 –

DRAM vs. SRAM as a “Cache”

DRAM vs. disk is more extreme than SRAM vs. DRAM
• access latencies:

– DRAM is ~10X slower than SRAM
– disk is ~100,000X slower than DRAM

• importance of exploiting spatial locality:
– first byte is ~100,000X slower than successive bytes on disk

» vs. ~4X improvement for page-mode vs. regular accesses to DRAM
• “cache” size:

– main memory is ~100X larger than an SRAM cache
• addressing for disk is based on sector address, not memory address

DRAMSRAM Disk

CS 740 – 59 –

Impact of These Properties on Design

If DRAM was to be organized similar to an SRAM cache,
how would we set the following design parameters?
• Line size?

• Associativity?

• Replacement policy (if associative)?

• Write through or write back?

What would the impact of these choices be on:
• miss rate
• hit time
• miss latency
• tag overhead

CS 740 – 60 –

Locating an Object in a “Cache”

1. Search for matching tag
• SRAM cache

X
Object Name

2. Use indirection to look up actual object location
• virtual memory

Data
243
17

105

•••

0:
1:

N-1:

X
Object Name

Location

•••

D:
J:

X: 1

0
N-1

Tag Data
D 243
X 17

J 105

•••
•••

0:
1:

N-1:

= X?

“Cache”

“Cache”Lookup Table

CS 740 – 61 –

A System with Physical Memory Only
Examples:

• most Cray machines, early PCs, nearly all embedded systems, etc.

CPU

0:
1:

N-1:

Memory

Store 0x10

Load 0xf0

CPU’s load or store addresses used directly to access memory.

CS 740 – 62 –

A System with Virtual Memory
Examples:

• workstations, servers, modern PCs, etc.

Address Translation: the hardware converts virtual addresses into
physical addresses via an OS-managed lookup table (page table)

CPU

0:
1:

N-1:

Memory

Load 0xf0

0:
1:

P-1:

Page Table

Store 0x10

Disk

Virtual
Addresses Physical

Addresses

CS 740 – 63 –

Page Faults (Similar to “Cache Misses”)
What if an object is on disk rather than in memory?

• Page table entry indicates that the virtual address is not in memory
• An OS trap handler is invoked, moving data from disk into memory

– current process suspends, others can resume
– OS has full control over placement, etc.

CPU

0:
1:

N-1:

Memory

Load 0x05

0:
1:

P-1:

Page Table

Store 0xf8

Disk

Virtual
Addresses Physical

Addresses

CS 740 – 64 –

Servicing a Page Fault
Processor Signals
Controller
• Read block of length P

starting at disk address X
and store starting at memory
address Y

Read Occurs
• Direct Memory Access
• Under control of I/O

controller

I / O Controller Signals
Completion
• Interrupt processor
• Can resume suspended

process
diskDis

k
diskDisk

Memory-I/O bus

Processor

Cache

Memory
I/O

controller

Reg

(2) DMA Transfer

(1) Initiate Block Read

(3) Read
Done

CS 740 – 65 –

Why VM? 2) Memory Management
Multiple processes can reside in physical memory.
How do we resolve address conflicts?

Reserved

Text (Code)

Static Data

Not yet allocated

Stack

Dynamic Data

0000 03FF 8000 0000
Reserved

Not yet allocated

0000 0001 2000 0000

0000 0000 0001 0000

$gp

$sp

e.g., what if two different
Alpha processes access their

stacks at address
0x11fffff80 at the same

time?

(Virtual) Memory Image for Alpha Process

CS 740 – 66 –

Process 1:

Virtual Addresses Physical Addresses

VP 1
VP 2

Process 2:

PP 2
Address

Translation
0

0

N-1

0

N-1
M-1

VP 1
VP 2

PP 7

PP 10

(Read-only
library code)

Soln: Separate Virtual Addr. Spaces
• Virtual and physical address spaces divided into equal-sized blocks

– “Pages” (both virtual and physical)
• Each process has its own virtual address space

– operating system controls how virtual pages as assigned to physical
memory

CS 740 – 67 –

Why VM? 3) Protection
Page table entry contains access rights information

• hardware enforces this protection (trap into OS if violation occurs)
Page Tables

Process i:

Physical AddrRead? Write?
PP 9Yes No

PP 4Yes Yes

XXXXXXXNo No

VP 0:

VP 1:

VP 2:
•••

•••
•••

Process j:

0:
1:

N-1:

Memory

Physical AddrRead? Write?
PP 6Yes Yes

PP 9Yes No

XXXXXXXNo No
•••

•••
•••

VP 0:

VP 1:

VP 2:

CS 740 – 68 –

VM Address Translation
V = {0, 1, . . . , N–1} virtual address space

P = {0, 1, . . . , M–1} physical address space

MAP: V  P U {} address mapping function

N > M

MAP(a) = a' if data at virtual address a is present at physical
address a' in P

=  if data at virtual address a is not present in P

Processor

Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
memorya

a'



missing item fault

physical address OS performs
this transfer
(only if miss)

CS 740 – 69 –

virtual page number page offset virtual address

physical page number page offset physical address
0p–1

address translation

pm–1

n–1 0p–1p

Notice that the page offset bits don't change as a result of translation

VM Address Translation
Parameters

• P = 2p = page size (bytes). Typically 4KB–64KB
• N = 2n = Virtual address limit
• M = 2m = Physical address limit

CS 740 – 70 –

Page Tables
Page Table
(physical page
or disk address) Physical Memory

Disk Storage

Valid

1
1

1
1
1

1

1
0

0

0

Virtual Page
Number

CS 740 – 71 –

Address Translation via Page Table

virtual page number page offset

virtual address

physical page number page offset

physical address

0p–1pm–1

n–1 0p–1p
page table base register

if valid=0
then page

not in memory

valid physical page numberaccess

VPN acts
as

table index

Address

CS 740 – 72 –

Page Table Operation

Translation
• Separate (set of) page table(s) per process
• VPN forms index into page table

Computing Physical Address
• Page Table Entry (PTE) provides information about page

– if (Valid bit = 1) then page in memory.
» Use physical page number (PPN) to construct address

– if (Valid bit = 0) then page in secondary memory
» Page fault
» Must load into main memory before continuing

Checking Protection
• Access rights field indicate allowable access

– e.g., read-only, read-write, execute-only
– typically support multiple protection modes (e.g., kernel vs. user)

• Protection violation fault if don’t have necessary permission

CS 740 – 73 –

CPU Trans-
lation Cache Main

Memory

VA PA miss

hit
data

Integrating VM and Cache

Most Caches “Physically Addressed”
• Accessed by physical addresses
• Allows multiple processes to have blocks in cache at same time
• Allows multiple processes to share pages
• Cache doesn’t need to be concerned with protection issues

– Access rights checked as part of address translation

Perform Address Translation Before Cache Lookup
• But this could involve a memory access itself
• Of course, page table entries can also become cached

CS 740 – 74 –

CPU TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

Speeding up Translation with a TLB

“Translation Lookaside Buffer” (TLB)
• Small, usually fully associative cache
• Maps virtual page numbers to physical page numbers
• Contains complete page table entries for small number of pages

CS 740 – 75 –

Address Translation with a TLB

virtual addressvirtual page number page offset

physical address

N–1 0p–1p

valid physical page numbertag
valid

dirty
valid
valid
valid

valid tag data

data
=

cache hit

tag byte offsetindex

=

TLB hit

process ID

TLB

Cache

CS 740 – 76 –

Alpha AXP 21064 TLB

• page size: 8KB
• hit time: 1 clock
• miss penalty: 20 clocks
• TLB size: ITLB 8 PTEs, DTLB 32 PTEs
• placement: Fully associative

CS 740 – 77 –

TLB-Process Interactions

TLB Translates Virtual Addresses
• But virtual address space changes each time have context switch

Could Flush TLB
• Every time perform context switch
• Refill for new process by series of TLB misses
• ~100 clock cycles each

Could Include Process ID Tag with TLB Entry
• Identifies which address space being accessed
• OK even when sharing physical pages

CS 740 – 78 –

TLB
Lookup

Cache

VA PA

CPU
Data

Tag = HitIndex

Virtually-Indexed Cache

Cache Index Determined from Virtual Address
• Can begin cache and TLB index at same time

Cache Physically Addressed
• Cache tag indicates physical address
• Compare with TLB result to see if match

– Only then is it considered a hit
What extra info needs to be included in cache?
When Can Cache be virtually tagged?

CS 740 – 79 –

Generating Index from Virtual Address

Size cache so that index is determined by page offset
• Can increase associativity to allow larger cache
• E.g., early PowerPC’s had 32KB cache

– 8-way associative, 4KB page size

Page Coloring
• Make sure lower k bits of VPN match those of PPN
• Page replacement becomes set associative
• Number of sets = 2k

physical page number page offset
0111229

virtual page number page offset
31 01112

Index

Index

CS 740 – 80 –

(Single Level) Page Tables
Page Table
(physical page
or disk address) Physical Memory

Disk Storage

Valid

1
1

1
1
1

1

1
0

0

0

Virtual Page
Number

Single level page table:
- 64-bit address space
- 4kb page size
- 512MB physical memory

Page table entries: 264/212 entries!
Entry size: 229/212 -> 17bits per entry + other
Page table size: 252*22 = 254!!

CS 740 – 81 –

Alpha Virtual Addresses
Page Size

• 8KB (and some multiples)

Page Tables
• Each table fits in single page
• Page Table Entry 8 bytes

– 4 bytes: physical page number
– Other bytes: for valid bit, access information, etc.

• 8K page can have 1024 PTEs

Alpha Virtual Address
• Based on 3-level paging structure

• Each level indexes into page table
• Allows 43-bit virtual address when have 8KB page size

page offsetlevel 3level 2level 1

13101010

CS 740 – 82 –

Alpha Page Table Structure

Tree Structure
• Node degree  1024
• Depth = 3

Nice Features
• No need to enforce contiguous

page layout
• Dynamically grow tree as

memory needs increase

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

Level 1
Page Table

Level 2
Page Tables

Physical
Pages

Level 3
Page Tables

CS 740 – 83 –

Mapping an Alpha 21064 Virtual Address

Page offset

Virtual address

Page table
base register +

seg0/seg1
Selector

Physical address

Page offsetPhysical page-frame number

Main memory

L1 page table

L2 page table

+ L3 page table

+

Level1 Level2 Level3
000 … 0 or
111 … 1

Page table entry

Page table entry

Page table entry

PTE size:
8 Bytes

13 bits10 bits

PT size:
1024 PTEs

13 bits
21 bits

CS 740 – 84 –

Virtual Address Ranges

Binary Address Segment Purpose
1…1 11 xxxx…xxx seg1 Kernel accessible virtual addresses

– Information maintained by OS but not to be accessed by user
1…1 10 xxxx…xxx kseg Kernel accessible physical addresses

– No address translation performed
– Used by OS to indicate physical addresses

0…0 0x xxxx…xxx seg0 User accessible virtual addresses
– Only part accessible by user program

Address Patterns
• Must have high order bits all 0’s or all 1’s

– Currently 64–43 = 21 wasted bits in each virtual address
• Prevents programmers from sticking in extra information

– Could lead to problems when want to expand virtual address space
in future

CS 740 – 85 –

Alpha Seg0 Memory Layout
Regions

• Data
– Static space for global variables

» Allocation determined at compile
time

» Access via $gp
– Dynamic space for runtime

allocation
» E.g., using malloc

• Text
– Stores machine code for program

• Stack
– Implements runtime stack
– Access via $sp

• Reserved
– Used by operating system

» shared libraries, process info,
etc.

Reserved

Text (Code)

Static Data

Not yet allocated

Stack

Dynamic Data

3FF 8000 0000
Reserved

(shared libraries)

Not yet allocated

001 2000 0000

000 0001 0000

$sp

Not used

001 4000 0000

3FF FFFF FFFF

CS 740 – 86 –

Alpha Seg0 Memory Allocation
Address Range

• User code can access memory
locations in range
0x0000000000010000 to
0x000003FFFFFFFFFF

• Nearly 242  4.3980465 X1012 byte
range

• In practice, programs access far
fewer

Dynamic Memory Allocation
• Virtual memory system only allocates

blocks of memory as needed
• As stack reaches lower addresses,

add to lower allocation
• As break moves toward higher

addresses, add to upper allocation
– Due to calls to malloc, calloc, etc.

Text (Code)

Static Data

Stack
Region

Dynamic Data
break

Current $sp

Minimum $sp

Shared
Libraries

(Read Only)

Gap

Gap

CS 740 – 87 –

Minimal Page Table Configuration

User-Accessible Pages
• VP4: Shared Library

– Read only to prevent undesirable
interprocess interactions

– Near top of Seg0 address space
• VP3: Data

– Both static & dynamic
– Grows upward from virtual

address 0x140000000
• VP2: Text

– Read only to prevent corrupting
code

• VP1: Stack
– Grows downward from virtual

address 0x120000000 VP1

0000 0001 2000 0000

0000 0001 2000 1FFF

0000 03FF 8000 0000

0000 03FF 8000 1FFF

0000 0001 1FFF E000

0000 0001 1FFF FFFF

VP2

VP3

0000 0001 4000 0000

0000 0001 4000 1FFF

VP4

CS 740 – 88 –

Partitioning Addresses
Address 0x001 2000 0000

• Level 1: 0 Level 2: 576 Level 3: 0

Address 0x001 4000 0000

• Level 1: 0 Level 2: 640 Level 3: 0

Address 0x3FF 8000 0000

• Level 1: 511 Level 2: 768 Level 3: 0

0000 0000 0001 0010 0000 0000 0000 0000 0000 0000 0000

000000000000000000000001001000000000000000

0011 1111 1111 1000 0000 0000 0000 0000 0000 0000 0000

000000000000000000000001100000000111111111

0000 0000 0001 0100 0000 0000 0000 0000 0000 0000 0000

000000000000000000000001010000000000000000

CS 740 – 89 –

Mapping Minimal Configuration

VP1

0000 0001 2000 0000

0000 0001 2000 1FFF

0000 03FF 8000 0000

0000 03FF 8000 1FFF

0000 0001 1FFF E000

0000 0001 1FFF FFFF

VP2

VP3

0000 0001 4000 0000

0000 0001 4000 1FFF

VP4

0

511

768

575
576

0

0

1023

0

640

CS 740 – 90 –

Increasing Heap Allocation
Without More Page Tables

• Could allocate 1023 additional
pages

• Would give ~8MB heap space

Adding Page Tables
• Must add new page table with

each additional 8MB increment

Maxiumum Allocation
• Our Alphas limit user to 1GB

data segment
• Limit stack to 32MB

0000 0001 4000 0000

0000 0001 4000 1FFF

VP3

0000 0001 4000 2000

0000 0001 407F FFFF

0
1

1023

•
•
•

•
•
•

CS 740 – 91 –

Expanding Alpha Address Space
Increase Page Size

• Increasing page size 2X increases virtual address space 16X
– 1 bit page offset, 1 bit for each level index

Physical Memory Limits
• Cannot be larger than kseg

VA bits –2 ≥ PA bits
• Cannot be larger than 32 + page offset bits

– Since PTE only has 32 bits for PPN

Configurations
• Page Size 8K 16K 32K 64K
• VA Size 43 47 51 55
• PA Size 41 45 47 48

page offsetlevel 3level 2level 1

13+k10+k10+k10+k

CS 740 – 92 –

Page Size Trade-offs

• As page size increases?

• As Page size decreases?

CS 740 – 93 –

VM Theme
Programmer’s View

• Large “flat” address space
– Can allocate large blocks of contiguous addresses

• Process “owns” machine
– Has private address space
– Unaffected by behavior of other processes

System View
• User virtual address space created by mapping to set of pages

– Need not be contiguous
– Allocated dynamically
– Enforce protection during address translation

• OS manages many processes simultaneously
– Continually switching among processes
– Especially when one must wait for resource

» E.g., disk I/O to handle page fault

CS 740 – 94 –

The Memory Hierarchy
• Exploits locality to give appearance of a large,

fast flat address space owned by a process
• cache(s)
• VM
• TLB

• Hierarchical to exploit qualities of each
technology while reducing cost of overall
system

• Interaction between cache design and VM
design

• What should be automatic and what “manual”?
• Registers? Cache placement? TLB management?

